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Confinement of dislocations inside a crystal with a prescribed external strain

Abstract. A system of n screw dislocations in an isotropic crystal
undergoing antiplane shear is studied in the framework of linear elas-
ticity. Imposing a suitable boundary condition for the strain, namely
requesting the non-vanishing of its boundary integral, results in a con-
finement effect. More precisely, in the presence of an external strain
with circulation equal to n times the lattice spacing, it is energetically
convenient to have n distinct dislocations lying inside the crystal. The
result is obtained by formulating the problem via the core radius ap-
proach and by studying the asymptotics as the core size vanishes. An
iterative scheme is devised to prove the main result. This work sets
the basis for studying the upscaling problem, i.e., the limit as n — oo,
which is treated in [17].
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1 - Introduction

Starting with the pioneering work of Volterra [28], much attention has been
drawn on dislocations in solids, as the ultimate cause of plasticity in crystalline
materials [11, 20, 21, 26]. Dislocations are line defects in the lattice structure.
The interest in dislocations became more and more evident as soon as it was
understood that their presence can significantly influence the chemical and phys-
ical properties of the material. The measure of the lattice mismatch due to a
dislocation is encoded in the Burgers vector, whose magnitude is of the order of
one lattice spacing (see [16]). According to whether the Burgers vector is per-
pendicular or parallel to the dislocation line, ideal dislocations are classified as
edge dislocations or screw dislocations, respectively. In nature, real dislocations
come as a combination of these two types. For general treaties on dislocations,
we refer the reader to [14, 16, 19].

In this paper we focus our attention on screw dislocations in a single isotropic
crystal which occupies a cylindrical region 2 x R and which undergoes antiplane
shear. According to the model proposed in [5] in the context of linearized
elasticity, this allows us to study the problem in the cross section Q C R2.
Throughout the work, we will assume that

(H1) Q is a bounded convex open set with C* boundary.

We consider the lattice spacing of the material to be 27w and that all the Burgers
vectors are oriented in the same direction. Therefore, every dislocation line is
directed along the axis of the cylinder, is characterized by a Burgers vector of
magnitude 27 along the same axis, and meets the cross section 2 at a single
point. Moreover, we assume that an external strain acts on the crystal: we
prescribe the tangential strain on 9€) to be of the form

(H2) fe L 09Q) with f(z)dH (z) = 2mn
a0

for some n € N. This choice of the external strain will determine at most
n distinct dislocations inside 2 (see, e.g., [2, 23] for a comment on the topo-
logical necessity of the presence of exactly n defects; see also [9], where an
evolution problem in the fractional laplacian setting is also studies), which we
denote by a := (a1,...,a,) € Q" \ A, where A, = {x = (z1,...,z,) € Q" :
there exist ¢ # j such that z; = z;}.

Since the elastic energy associated with a defective material is infinite and
has a logarithmic explosion in the vicinity of each dislocation a; (see, e.g.,
[5, 19]), we resort to the so-called core radius approach, which consists in
considering the energy far from the dislocations ai,...,a,. More precisely,
given € > 0, we aim at studying the elastic energy in the perforated domain
Qc(a) = Q\ U, Be(a;). This approach is standard in the literature and
it is employed in different contexts such as linear elasticity (see, for instance,
[19, 25, 27]; also [4, 5, 22] for screw dislocations and [6] for edge dislocations),
the theory of Ginzburg-Landau vortices (see, for instance, [2, 23] and the refer-
eces therein), and liquid crystals (see, for instance, [12]). Since the core radius



approach eliminates the non-integrability of the strain field around the disloca-
tions, classical variational techniques can be used. Therefore, we consider the
energy

(1)
(") (a) := min 1 : -7 = fon B ;
£ (a) = {2/%1) F2dz : F e X.(a), F-7= f o 6Q\HB€(az)},

where 7 denotes the tangent unit vector to 02 and
X.(a) = {F € L2(Qc(a);R2) s cwrl F = 0 in D' (Qe(a)), (F - 7,1), = 27Tm},

where D' (Q(a)) is the space of distributions on .(a) and v is an arbitrary sim-
ple closed curve in Q.(a) winding once counterclockwise around m dislocations.
Note that the boundary condition F' -7 must be intended in the sense of traces
and that (-,-), denotes the duality between H~'/2(y) and H'/?(vy) (see [7]).
Since these spaces are encapsulated, the energy & is monotone: if 0 < € < 7
then

(2) £ (a) > £ (a).

If the a;’s are all distinct and inside Q, the energy (1) scales like mn|loge].
This suggests to study the asymptotic behavior, as e — 0, of the functionals
FMQr — RU {+00} defined by

(3) FM(a) := €M (a) — wn|loge|.

In this context, we say that the sequence of functionals .7-"6(”) continuously con-
verges in Q" to F(") as € — 0 if, for any sequence of points a¢ € Q" converging
to a € Q" the sequence (of real numbers) Fim (a®) converges to F(")(a).

In order to write the limit functional, we introduce two objects: we take
g: 02 — R a primitive of f with n jump points b; € 9 and jump amplitude

27 (see (10) for a precise definition), and for every i € {1,...,n} we set
L . \ai - aj| .
(4) d; := Je{r{}}?n} {2,d1st(a“8ﬂ) ,
J#i

where dist(-,0Q) is the distance function from 9.

Theorem 1.1. Under the assumptions (H1) and (H2), as ¢ — 0 the

Junctionals .7-'6(") defined by (3) continuously converge in Q" to the functional
F . Q" — RU{+o0} defined as

- 1 "1
F™(a) ::Zwlogdi+§/ |V’ua|2dx+25/ |K,,|* da
i=1 2 i=1 © JQ;(ai)
(5) n
+Z/ Vva~Kaidx+Z/Kai~Kajdx,
Qdi (al) : Q

i=1 i<j



ifa€ Q" \ A,, and F™(a) := +oco otherwise. Here K,,(z) == p;! ()04, (2),
being (pa,,0a;) a system of polar coordinates centered at a;, and v, solves

Ava =0 mn €,
Va=9g— > qbs  on N

In particular, F™) is continuous in Q" and diverges to +oco if either at least
one dislocation approaches the boundary or at least two dislocations collide, that
is, F(™(a) — +oo0 as d; — 0 for some i. Thus, F™ attains its minimum in
Q" \ A,

We notice that, by rotating the vector fields of 7/2, (5) can also be expressed
as the sum of two terms: the self energy Esir, responsible for the contribution
of individual dislocations, and the interaction energy &y, depending on the
mutual position of two dislocations. In formulas,

1
Esert(a;) = mlogdist(a;, 89)4—5 /

1
|V i +Vw;|? d:c—f—f/ |Vw;|? de,
Qa(ay(a) 2

By(a)(a)

and

Eint(as,a5) = /Q(qui + Vw;) - (Vo + Vw;) da.

Here, ¢; and w; are the solutions (with w; determined up to an additive con-
stant) to

A¢; = 2md,, in €, q Aw; =0 in €,
an
oi(x) =log|x —a;| on 09, dywi(z) =L1f—08,¢; on 0N
A consequence of Theorem 1.1 is that also the energies (1) attain their
minimum in Q™ at an n-tuple of well separated points.

Corollary 1.1. Under the assumptions (H1) and (H2), there exists g > 0
such that, for every e € (0,¢€g), the infimum problem

(6) inf{£™(a) : a € Q"},

admits a minimizer only in Q™ \ A,. Moreover, if a® € Q™ \ A, is a minimizer
for (6), then (up to subsequences) we have a® — a and Fim (a%) — F(a),
as € — 0, where a is a minimizer of the functional F™ defined in (5). In
particular, for e small enough, all the minimizers of problem (6) are n-tuples of
distinct points that stay uniformly (with respect to €) far away from the boundary
and from one another.

Throughout the paper, we will always assume (H1) and (H2), even if it is
not explicitly stated. We stress that the convexity and regularity assumptions



on (2 stated in (H1) provide a uniform interior cone condition of angle between
/2 and T, i.e.,

(7)

there exist m/2 < @ < 7w and €, > 0 such that for every b € 99 the disk B (b)

meets J€ at two points by and by forming an angle at least o with b.

We point out that convexity and regularity play different roles: the former is
conveniently assumed in order to simplify the exposition of the results (in fact,
it can be removed without changing their essence); the latter, on the other
hand, is fundamental in our proofs. Finally, we observe that the boundary
condition of Dirichlet type F -7 = f, with f as in (H2), is fundamental to
keep the dislocations confined inside the material. In fact, the natural boundary
conditions of Neumann type imply that the dislocations migrate to the boundary
and leave the domain, since, in such a case, the Dirichlet energy of the system
decreases as the dislocations approach 99 (see, e.g., [3, 15]).

A key feature in our analysis is the rescaling introduced in (3) (see also [1]),
which is related to the so-called Hadamard finite part of a divergent integral (see
[13]). Such type of asymptotic analysis has the advantage of keeping into account
the energetic dependence on the position of the dislocations a € Q" whereas
it is well-known that the standard rescaling obtained by dividing the energy by
|log €| gives rise to an energy which only counts the number of dislocations in
the bulk (see again [1]).

Some results close to those presented in this paper can be found in the
literature about Ginzburg-Landau vortices (see [2] and also [23]). In this respect,
the present paper can be considered as a self-contained presentation of the
asymptotic results for the energy (3), presented in a language that is familiar to
the dislocation community, targeted, in particular, to applied mathematicians
and continuum mechanists. The statement of Theorem 1.1 is in fact similar
to that of [2, Theorems 1.9 and I.10], but its proof is based on an original
iterative procedure (close, in spirit, to some combinatoric algorithms) which
makes it quite different and useful for numerical applications. The need for
such an algorithm is dictated by the fact that in the core-radius approach we
allow for the cores around each dislocation to intersect with one another and
with the boundary of the domain, which was avoided in [2] by introducing a
safety radius. Moreover, we set here the bases and the notation for tackling the
more challenging problem of the upscaling of the system of dislocations. In [17]
we study the limit as n — oo and obtain a limit energy functional defined on
measures describing the distribution of dislocations in the material.

Section 2 sets the notation and presents some preparatory results. Section 3
contains a result on the properties of K and on some a priori bounds for har-
monic functions. Section 4 is devoted to proving Theorem 1.1 and Corollary 1.1.
Section 5 contains numerical plots of F(™) in Q = B(0, 1) under different bound-
ary conditions.



2 - Preliminaries

In Subsection 2.1 we introduce the notation used throughout the paper.
Then, in view of the core radius approach, in Subsection 2.2 we rewrite the

energy 55(") in terms of the displacement of a regular function.

2.1 - Notation

- B,.(z) denotes the open disk of radius r > 0 centered at x € R?; B,(z) is its
closure;

- forn > 1, and for x1,...,z, € Q, we denote x = (21, ..., x,) whenever there
is no risk of misunderstanding; the symbol €2,.(x) denotes the open set

Q. (x) =0\ (i_LnJlBr(:vi)>;

Q,.(x) is its closure;

- the function R? > z + dist(z, ) denotes the distance of z from a set E C R?;
in the particular case E = 0%, we define d(z) = dist(z, 0Q);

- we denote Q") := {z € Q: d(x) > r} and by Q") its closure;
- Q™ denotes the cartesian product of n copies of Q and Q™ its closure;

- for 0 < r < R, AF(2) := Bgr() \ B,(z) denotes the open annulus of internal
radius r and external radius R centered at x € R?;

- xe denotes the characteristic function of E: xg(z) =1ifx € E; xg(z) =0
ifx ¢ E;

- given a set E with piecewise C! boundary, v and 7 denote the outer unit
normal and the tangent unit vectors to OF, respectively;

- diam E denotes the diameter of a set F C R?;
- given & = (71, 22) € R?, we denote by 2+ := (—x3,2;) the rotated vector;

- given z € R?, we define (p,,0,) as the standard polar coordinate system
centered at x; p, and 0, denote the corresponding unit vectors;

- given x € R?, we denote by K, the vector field K, := p;lém. It is easy to see
that ([18])

divK, =0 in D'(R?),
(8) curl K, = 275, in D'(R?),
Ky, v=0 on 9B, (z), for any r > 0.



Notice that K is the absolutely continuous part of the gradient of the function
0., and the jump set of 6, is the half line starting from x and passing through
y with [0,] = 27 across it;

- we define the function w: Q — {1,2} by

1 ifaeq,
©) w(a)_{2 if a € 89;

- spt ¢ denotes the support of the function ¢;
- given x € R?, §, is the Dirac measure centered at x;
- H' denotes the one-dimensional Hausdorff measure;

- the letter C' alone represents a generic constant (possibly depending on )
whose value might change from line to line.

2.2 - Displacement formulation

We start by introducing the multiplicity of a dislocation.

Definition 2.1 (multiplicity of a dislocation). Let n € N with n > 2 and
let a1,...,a, € Q. We label the dislocations in such a way that the first ¢ of
them (¢ < n) are all distinct, so that a; # ay, for all i,k € {1,...,¢}, i # k, and,
for every j € {¢+1,...,n} there exists i(j) € {1,...,£} such that a; = a,(;). For
every i = 1,...,f we say that a point a; has multiplicity m; if there are m; — 1
points a;, with j € {¢+1,...,n} that coincide with a;. Clearly, Ele m; =n.

Given n dislocations ay,...,a, € §2, we choose n (closed) segments 31, ...,
Y, joining the dislocations with the boundary, such that Q\ (X, U---UZX,,) is
simply connected. One possible construction of such a family of segments is to
fix a point a* ¢ Q and take ¥; as the portion of the segment joining a; with a*
lying inside €, for i = 1,...,¢. With this construction, if a; = aj, then 3; = ¥;.
Moreover, we set b; ;== 3; N9Q, for i = 1,...,¢. Given b € 90\ {b1,...,bs},
we denote by v} the counterclockwise path in € connecting b and z. Such
parametrization induces an ordering on the points of the boundary: we say that
x precedes y on 9N, and we write z < y, if the support of 4} contains that ot ;.
Without loss of generality, we may relabel the b;’s (and the a;’s, accordingly)
so that b < by < ... = by. According to this notation, for i = 1,...,¢, we define
b, 00\ {b;} = R as

1
f/ Fdt i b <2< b
n yE

9, () == 1
—/ fdt—2r ifb, < <b.



Moreover, we introduce

L j—1
(10)  g(x) := Zmigbi (x) = / fly)dy — QWZmZ— ifbj_1 < x < by,
i=1 g i=0

with j € {1,...,0+ 1}, bg = bey1 := b, and mg := 0. Note that, since gp, is
continuous except at b;, where it has a jump of 2m; 7, we have that the boundary
datum ¢ has a jump of 2wm; at every b; (whereas it is continuous at b).

In view of the construction above, for every € > 0, every connected compo-
nent of Q.(a)\ (X1 U...UZX,) is simply connected. Therefore, the energy (1)
can be expressed as

1
(1) 56(”)(3):7/ Vs 2 da,
2 Qc(a)

where ug € H'(Qc(a)) is characterized by

Aug =0 in Qc(a)\ (UL,%,),
[ug] = 2mm; on ¥, NQ(a),

(12) ug =Y migy, =g on 9\ UL, Be(ay),
oug /ov =0 on 0Q.(a) \ 09,

A(ug)T/Ov =0(us)”/Ov on (U ,3;) N Q(a).

We point out that the expression (11) is consistent with the definition of the

energy in (1); in particular, when a; = a for every ¢ = 1,...,n, choosing b; = b,

the datum g in (10) is given by g(x) = fvw f(y) dy, and we have 56(")(a, coa) =
b

ngc‘,}(l)(a). Therefore, by (3), for every e small enough

(13) F™(a,...,a) = n2FY(a) + n(n — 1)7|loge|.
e
The following lemma shows that the construction of the ¥;’s described above
is arbitrary.

Lemma 2.1. The functional Ee(n) does not depend on the choice of the
discontinuity points b;’s, nor the primitive g of f, nor the cuts ¥;’s.

Proof. Itisenough to prove the result for n = 1. Let ¥ be a simple smooth
curve in § connecting a with b, intersecting OB (a) at a single point and 9 only
at b. Notice that each connected component of (a) \ X is simply connected.
The condition curl F' = 0 in Q(a) implies that there exists u € H*(Q(a) \ ¥)
such that F' = Vu in Q(a) \ X. Therefore, the energy (11) can be expressed as
(14)

EW(a) = min {;/ |Vul*de : w € H'(Q(a) \ X), u = g on 9 \Bs(a)}.
Qe (a)



To show that the energy above does not depend on the choice of the discontinuity
point b, nor on the primitive g of f, nor on the curve X, we argue as follows.

Let g and ¢’ be two primitives of f with the same discontinuity point. Then
the two boundary data differ by a constant. The same holds true for the cor-
responding minimizers of (14), which have the same gradient and the same
energy.

Let now assume that g and ¢’ have two different discontinuity points, say
b and V. Denote by ¥ and ¥’ the segments joining a and b, and a and ¥,
respectively. Let ¢ and ¢’ be the angles associated with the discontinuity points
b and b’, respectively, in the angular coordinate centered at a. It is not restrictive
to assume that ¢ < ¢’. Let u be the solution to (40) associated with g, b, and
Y; define v := u + 2mwxg, where S is the subset of Q.(a) in which 8, € (¢, ¢').
Tt is easy to see that v is admissible for (14) associated with ¢/, ', and ¥’. In
particular, v is the solution to (40) associated with ¢’, ¥, and ¥’; moreover,

1
2,
This concludes the proof of the invariance with respect to the discontinuity point
in the case of a straight cut.

For general curves ¥ and ¥', the region in Q.(a) lying between ¥ and ¥/ is
the union of some simply connected sets S;, ¢ > 1, bounded by portions of %
and ¥'. In this case, the same strategy applies, provided one adds or subtracts
2mxs,, according to whether the portions of ¥ bounding S; preceeds or follows
that of ¥/ in the positive orientation of the angular coordinate. This concludes
the proof. O

1
|Vul|? dz = 7/ |Vo|? da.
(a) 2 Ja.(a)

€

Notice that the functional (11) and the system (12) are well defined even in
the case that there exists ¢ € {1,...,n} such that a; € 9Q. In this case, Lemma
2.1 allows us to choose the discontinuity point b; = a; and the cut X; = 0.

We may write Vug as the sum of a singular and a regular part

(15) Vug =Y w(ai)Ka, + Vg,
=1

where the K, satisfy (8) and w is defined in (9). Here we impose that the
angular coordinate 6,, centered at a; which defines K,, has a jump of 27 on
the half line containing ¥; if a; € ©, and on the half line containing the outer
normal to the boundary at a; in case a; € 9. The function o5 € H'(Q.(a))
solves

Avg =0 in Q.(a),
(16) 0= S (g — wla)fa)  on 02\ UL, Bela),
o )ov = =31 | K, - v on 0 (a) \ ON.

The weight w(a;) is necessary in order to balance the jump of g, at b;. Using



Figure 1: (a) A crystal with 4 dislocations. (b) A crystal with 5 dislocations.

(15), we can write the energy (11) as

n 1
ZUCEEY

Remark 2.1. By linearity, the function ¢¢ introduced in (16) can be written

ol —e [O— : €
as the superposition vg = ) ;" ; 5 of the solutions 5, to

n 2
w(a;)K,, + Vog| da.

i=1

Avg, =0 in Q.(a),
oS, = gy, —w(ai)fs, on I\ U, Bc(a;),
Ov, /0y = —K,, v on 9Q(a) \ 0.

Fix i € {1,...,n}. By linearity, the solution o5  of the system above can be
written as a superposition of one function satisfying a homogeneous Neumann
boundary condition and another function satisfying a homogeneous Dirichlet
boundary condition, namely vy, = g, + g5 , where 4 and g, solve, respec-
tively,

Adg, =0 in Q.(a),

ag, = g, — w(a;)0,, on 92\ U?zlge(aj),

g, /Ov =0 on U}_; OBc(ay)
and

Agg. =0 in Q.(a),

g, =0 on 90\ UJ_, Bc(ay),

0qa, /v = =Ko, -v  on Uj_; 0Bc(ay),
faBe(aj) dq5, /0T =0 forevery j=1,...,n.

3 - Auxiliary lemmas

We start by proving some useful properties of the function K satisfying (8).

10



Lemma 3.1 (Properties of K). Let y1, yo € R%. Set r := |y; — y2|/2 and
y the midpoint (y1 + y2)/2. Then the vector fields K,, and K,, satisfy the
following properties:

(i) the scalar product K,, - K,, is negative in the disk B.(y), is zero on
OB, (y)\ {y1,y2}, and is positive in R\ B,.(y). In particular, fBT(y) K, -
Ky, dz > —2m;

(ii) the following estimate holds: fB ) K, - Ky, de<2m, fori=1,2.
Moreover, let £ € N, and let y1,...,y; € Q be distinct points. Then,

(ii) if y; € Q, for every 0 < e < d; (see (4)),
(17)
27| log €| + 2mlog d; < / |K,,|? dz < 27| log €| + 27 log(diam Q);
Qe(y1,---,y0)

(i) if y; € 09, for every 0 < e < minji{eq, |y —y;]/2},

(18) aloge|+aloge, < / |K,,|> dz < 7|log €|+ log(diam ).
Qe(y1,--,ye)

Proof. To prove (i) it is enough to notice that, given a point z € R? \
{y1, 2}, the angle g1 = 9 is larger than, equal to, or smaller than /2, according
to whether x € B,.(y), x € 0B,(y), € R?\ B,(y), respectively. To prove the
estimate, we consider the disk B, (y) whose diameter is the axis of the segment
joining y; and yo, and we define B,.(y)* the half of B,.(y) on the side of y». By
symmetry, we have

2
/ Kyl'Kyzdz:*2/ | y2|dx>**/ |Kyz|dx
By (y) ¥+ " JB.(y)*

3m/2
> — f/ / dp2d92

To prove (ii), observe that |K,,| <

1 _
/ Ky, - K, dr <= / lz| " da = 7.
Br(y:) B.(0)

To prove (iii) and (iv) one integrates in polar coordinates centered at y; over
the sets AN 2 (y)NQ, AL (y;)NQ, A2(y;)NQ with s := min; ;i {eq, [vi —y; |/2}
and uses the convexity assumption (H1) and (7).

\ B,-(yi), so that

In the rest of this section, we prove some a priori bounds on harmonic
functions that will be useful in the sequel.

11



Lemma 3.2. Let aj,...,a, € Q, let h € WHL(0Q), and let 0 be the
solution to

Auf =0 in Qc(a),
(19) a=h on 00\ U_, Bc(a;),
duc/Ov =0 on 9Qc(a) N (VI dB(ay)).

Then 4 is the minimizer of the Dirichlet energy in H'(Qc(a)) with prescribed
boundary datum h on 0Q\ U}_; Bc(a;), and the following estimates hold

(20) [a(x)] < C||h| L= (a0, for all x € Q.(a)
and
(21) | Vi de <l s on,
Qc(a)
for some constant C' > 0 independent of e. Moreover, in the case ay,...,a, €

are distinct points and € < min; d;, also the estimate on the gradient holds
(22) |Va(z)| < Cllhll L~ 09), for all v € U7_;10B(a;).

Proof. The minimality of @€ follows from the uniqueness of the solution
to (19); estimate (20) is a consequence of the maximum principle and Hopf’s
Lemma, while (21) is obtained by testing @¢ with the minimizer of the Dirichlet
energy in H'(Q) with prescribed boundary datum A on 99\ Uj_, Bc(a;) and
using the continuity of the map which associates the minimizer with the bound-
ary datum. Finally, the proof of (22) is standard (see, e.g., [10]). O

As a simple consequence of Lemma 3.2, we have the following estimate in
the case n = 1.

Lemma 3.3. Let a € Q and let ¢ € (0,d(a)/2). Let w® be the harmonic
extension in Be(a) of aS. Then there exists a constant C > 0 independent of €
such that

(23) /B T dr < Ol ~Oulm oy

Proof. By applying Lemma 3.2 with n = 1, we immediately obtain that
us € WH*°(9B.(a)) and

(24) llag w1 0B, (a)) < Cllg = Oall L 50)-

It is a known fact in the theory of harmonic functions (see [10]) that there exists
a constant C' > 0 such that for every harmonic function ¢ € H'(B(0))

||V<P||i2(31(o)) < OH@ - m(‘P)”?{l/z(aBl(o))a
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where m(¢p) is the average of ¢ on 0B;(0). Using the Poincaré inequality we
have

[p—m(¢) H?{l/Q(aBl(O))

lp(x) = (y)?
<C| e —m(p)|3: +/ / — 5 —dady
(” (22050 0B, (0) aBl(o |$—y\2

<C(/ ('0 dx—i—/ / (Qy)| dxdy)
8B (0) 8B1(0) JOB, (0 |9C— Yl

Therefore, using this and employing the change of variables z = ex’ + a and
y = ey’ + a we have

||Vw5||2L2(BE(a)) = / |Vwe(ex’ + a)|?* da’

B1(0)
<(}
9B1(0)

ows (e’ + a) |?
/ / |we(ex’ + a)l - w/ 2(ey +a)l? d:z:’dy’)
8B1(0) JOB;1 (0 2’ — |

or
€ o€ 2
o] | o o [ WDl )
OB (a) 8B (a) JOB.(a) |z — yl

or
Owing to the fact that w® = @ on 0B.(a) and by (24), we obtain (23). O
The following result is similar to [2, Lemma 1.5]; however, for the sake of
completeness, we present here a proof.

da’

Lemma 3.4. Let Dq,...,Dy ng be open, bounded, simply connected sets
with Lipschitz boundary, such that Dy, ..., Dy are pairwise disjoint and intersect
Q. Set Q' :=Q\ UL, D; and for every i = 1,...,4, let h; € C*(Q). Consider

the minimum problem

1
(25) minmin -~ [ |Vu|?d,
c u 2 Q
with ¢ = (c1,...,¢¢) € RY and u varying in the subset of functions in H' ()
satisfying
(26) u="h;+c; ondD;NQ, fori=1,... ¢

Then p € HY(QY) is a solution to (25) if and only if it satisfies

Ap=0 in Q,
(27) dp/ov =0 on 09 N o1,
Op/O0T = Oh;/OT on OD;NQ, fori=1,...,¢,

Jop,nqOp/OvdH! =0 fori=1,...,L

13



Moreover, a solution p satisfies

Ohi(x)
or |

¢
: 1
(28) | rrgxp - r%l,np| < ;7—[ (0D; N ) Jhax,

Proof. First we remark that problem (25) is well posed, namely the class
of admissible functions is not empty: indeed, the function v := Zle Cih; sat-
isfies (26), being (; suitable smooth functions in €’ which are identically 1 in a
neighborhood of D;.

If p satisfies the minimum problem (25), then it is easy to obtain system
(27) as the Euler-Lagrange conditions arising from minimality.

Conversely, assume that p satisfies (27). In order to show that p is optimal
for (25), it is enough to show that the (27) has a unique solution (up to a
constant). Take two solutions of (27); then their difference s is characterized by

As=0 in Q,
(29) 0s/ov =0 on 09 NN,
0s/0T =0 on 00 \ 992,

Jop,nn 08/0v dH! =0 fori=1,...,L.

The third condition implies that s is constant on the boundary of the holes
(intersected with ), namely s = s; on 9D; N for some s; € R, fori =1,...,¢.
In view of the maximum principle, we infer that either s attains its maximum on
the boundary 9\ 02 or it is constant. The former case is excluded by Hopf’s
Lemma combined with the second and fourth conditions in (29); therefore the
latter case holds and the proof of the first statement is concluded.

We relabel the sets D; so that the local minima of p on their boundary are
ordered as follows:

AP 2 JgiRgp 2 2 it p = miny.

Notice that, for the last equality, we have used the maximum principle, combined
with the Hopf’s Lemma, which prevents the minimum of p to be on 9Q (the
same holds true for the maximum). We now define an ordered subfamily of
indices as follows: we choose

j E{' © max p = max },
) J 8Djn§2p Q' b

and, by recursion, given j; we choose

"16{': max p = max }
it I apinal T Uil obuna?

Since j;+1 > ji, in a finite number of steps, say i*, we find j;» = ¢ and the
procedure stops. We clearly have

maxp= max p> max p>...> Inax p= max
el 6Djlmﬂ BD]‘QFISZ 8Dji* nQ 0DyNQ

14



Moreover, we claim that, for every i =1,...,i* — 1

30 min < max
(30) oD;, mszp aDhHme

Once proved the claim we are done, indeed

max — minp max p— min p
| o a } aD;,NQ aD; . N0

i*—1
*Z max p— min p)+z min p— max p)
8D;,NQ aD;,NQ £~ 9D;, N0 8D;,,,NQ
¢
Oh;(x)
or

)

< max p— min (0D; NQ)) max
Z aD; mﬂp aD; m(z Z oD;NQ

where, in the last line, we have used the Mean Value Theorem. This proves
(28).

In order to prove the claim (30), we argue by contradiction: we assume that
there exists ¢ € {1,...,7* — 1} such that

= mln > max .
P oD, o p= jmmp

Notice that, by construction, we have

min  p > max

Ui;laDkﬁQ Ui:jHlakaQ

Consider the nonempty set £ := {z € Q' : p > p(x) > p} and the function

p(x) if p(z) <P,
Y(x) =D ifz € E,
p(z)+p—p if p(z) >p.

The function 1 is an element of H!()’), it is admissible for the minimum prob-
lem (25), and it decreases the Dirichlet energy, contradicting the optimality of
p. (|

As a direct consequence of Lemma 3.4 we obtain the following corollary.

Corollary 3.1. Let ay,...,ap € Q be distinct points and let (a§,...,a5)
be a sequence of points in QF converging to (a1, ...,as) as € — 0, such that the
disks Be(a§) are pairwise disjoint. Fizi € {1,...,0} and let p§ be the solution
(unique up to a constant) to

Aps =0 in Qe(af,...,af),
op§/ov =0 on 0Q\ US_, B.(a5),

(31) op§ /0T = —0log(|x — a5|)/0r  on OB(a§) N, for every j #1i,
ops/oT =0 on OB (a§) N,
faBe(ajmapg/au:O forj=1,... ¢

15



Then, there exists a positive constant C' independent of € such that

(32) 1P§[| o= (9 (a5......a5)) < Ce.
Moreover,
C
(33) / |Vps |2 da < .
Qc(a5,-...05) |log e

Proof. By applying Lemma 3.4 with D; = Bc(a§), and h; = —log(|z —aj|)
for every j € {1,...,£} \ {i}, h; = 0, estimate (28) provides a positive constant
C such that

max pfi— min pf| < 2weC.
‘ Qe (as,..., a§ Qc(as,..., a$)
which implies (32).

Let ¢ be a smooth cut-off function which is identically 1 inside B(0) and 0
outside B \/E(O), and whose support vanishes as € — 0. From the minimality of
p§, comparing with ¢; = --- = ¢, =0 and

u(z) ==Y (el —a5) log(|z — ag)
J#i

in (26), we obtain

(34) / Vps|? de < c(/
Qc(a$,...,a5) B

for some positive constant C' independent of €. By infimizing with respect to
Cc €{¢ € CX(B(0)), ¢ =1in B(0)}, the integral in the right-hand side of
(34) is the capacity of a disk of radius e inside a disk of radius /e, which is
equal to 47 /|loge|, therefore we obtain

4
/ |fo|2d:c§C7r<+e),
Qc(ag,...,a5) ‘10g€|

VP de + | spt ce),
ve(0)

which implies (33). The lemma is proved. O
Lemma 3.5. Let ay,...,a, be distinct points in Q and let (ag,...,as,) be

a sequence of points in Q" converging to (a1, ...,an) as € = 0. Then, for every

i=1,...,n, as € — 0 we have

(35) HV@Z: — Vg, L2(Q.(a)R2) — 0,

where V5. is defined in Remark 2.1 and v, satisfies

Av,, = in €,
(36) {vl 0 m

Va; = gb; — 00,  om OSD.
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Proof. Since the limit points a1, ..., a, are all distinct and far from the
boundary, we may assume, without loss of generality, € < d := min;e(y,... ny d;
(see (4)), so that, for e small enough, the disks B.(a$) are pairwise disjoint and
do not intersect 9. Let now ¢ € {1,...,n} be fixed. By Remark 2.1, the
solution ¥g. can be written as v5. = 4 + ¢f. Then to prove (35), we will show
that, for every fixed ¢ € {1,...,n},

(37&) ||Vﬁf — V’UQE L2(Q (a%);R?) — O,
(37b) Va5l L2(0. (as);r2) — 0.

Note that in (35) we can replace v,, with v, thanks to the continuity of the
map C°(0Q) > h — wy, € H'(Q), where wy, is harmonic in  with boundary
datum h.

By Lemma 3.2, 4 minimizes the Dirichlet energy in H*(£2.(a%)) with bound-
ary datum gpe — 0,c on 09, and by (21) we have

IV |72 (0. aeym2) < Cllgse = bas 1 F1/2 (00 -

Let us consider the extension of 4¢ (not relabeled), which is harmonic in every
Bc(a$). By (20) and (22), an estimate similar to (23) holds: there exists C' > 0
independent of € such that

2
L (99)"

IVa§]|72 (. a2y < C€llgn; — ba

j i

Since all the points a§ are in 004/2) by the two estimates above, we obtain a
uniform bound in H'(Q) for 4, and therefore @ has a subsequence that con-
verges weakly to a function w; in H(f2) as € — 0. By the lower semicontinuity
of the H! norm and the minimality of 4§ and v,,, it turns out that w; = v,,
and

lim Va5 L2 om2) = ([Vva, |22 @r2);
moreover, by the triangle inequality we have that

”va: - V'Ua§

L2(Q:R2) < HVﬁf - Vvai||L2(Q;Rz) + ||V'Ua,- — Vvag L2(;R2),
with v, solution to (36). The first term in the right-hand side above vanishes as
€ — 0. The second term converges to zero thanks to the continuity of the map
that associates v, with the boundary datum g—6, (observe that g—65 — g—#6,
in H'/2(09)), so that

(38) Va5 — Vvae || L2 o2y — 0,

hence (37a) follows.

To obtain an estimate for the gradient of ¢f, we define Pf := (V¢§)* =
(—02q5, 01¢f) and notice that Pf is a conservative vector field in Q. (a), namely
its circulation vanishes along any closed loop contained in Q.(a¢). Therefore,
there exists pS € H(Q(a%)) such that Pf = VpS and, in view of Remark 2.1

17



with the fact that —K,e - v = dlog(|z — af|)/07, p§ is a solution to (31). Then
by (33) we deduce that the gradient of p — 0 as € — 0 and since the gradients
of p§ and ¢f have the same modulus, we obtain (37b). O

Remark 3.1. From the proof of Lemma 3.5 we derive some important prop-
erties of the functions 4§ and p§ introduced in Remark 2.1 and (31), respectively.

Let aq, ..., ay be distinct points in © and let (af, ..., af,) be a sequence of points
in Q" converging to (a1,...,a,) ase€ — 0. Then, foreveryi =1,...,n,ase — 0,
we have

(i) the function @ admits an extension which converges to v,, strongly in
H(Q). This follows by combining the fact that Vas — Vg, strongly in
HY(Q), 4 and vqe agree on the boundary, the Poincaré inequality, and
property (38);

(ii) the function p¢ admits a (not relabeled) extension p¢ € H'(Q2). In fact,
recalling that ¢.:(-) = log(| - —ag|), since pf = ¢4 + ¢; on dB.(aj) for
j # i and pS = ¢; on 0B(a$) for some constants ci,...,c,, we define
P§ = ¢as + ¢;j on Be(aj) and p§ = ¢; on Be(ag). Thus, up to subtracting a
constant, thanks to (32), p¢ is observed to tend to 0 strongly in H'(Q).

Lemma 3.6. Let ai,...,ap be distinct points in Q and let the functions
o5 € HY(Qe(ay, ..., ar)) solve the system in Remark 2.1 for somei € {1,...,(}.
Then the function v, admits an extension (not relabeled) in H* (). In partic-
ular, there exist € > 0 and a constant C' > 0 such that

/ |Vﬁ2i|2dx <C,
Be(ay)

for all e < € and for every j € {1,...,£}.

Proof. We consider the domain E := R?\ (U{_, B.(a;) UQ) and we extend
Uy, on E by defining it as the solution to the Dirichlet problem with datum

gb, — w(a;)0,, on OE N ON. Tt is easy to check (one can use, for instance, (21))
that there exists a constant C' > 0 such that

/ Vo5, [>da < C.

E

Let € := fmin{|a; — a;| : 4,5 € {1,...,£},i # j}. For € < €, consider a family
of functions ¢, € C°>°(B(0)) which are zero in a neighborhood of B, /5(0), equal
to 1 in a neighborhood of dB.(0), and such that ||V(||r2(p.(0)) is uniformly
bounded. We shall exploit the fact that o5 is defined in the annulus A2¢(a;) for
every j € {1,...,/} to define its extension in B¢(a;). To this aim, consider the
inversion function I, : C\{a;} — C\{a;} given by I{ (z) := e2(x—aj)/|x—a;)?,
and define

o€ (I) — {Ce(-’ﬂ)vgi (HZ]_ (3?)) ifx e ng (Age(aj))7

o 0 elsewhere in Bc(a;).
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Also in this case, an easy check shows that
/ Vo, [Pde < C VoS, [>da < C,
Be(aj) Az<(ay)

for some constant C' > 0 independent of €, and for all ¢ < €. The lemma is
proved. O

4 - The limit as ¢ — 0

This section is devoted to the proof of the main results, Theorem 1.1 and
Corollary 1.1, which is presented in Subsection 4.4. Our proof strategy will
rely on the results in the case of one dislocation a € €, which we treat next in
Subsection 4.1. To study the asymptotic behavior of the rescaled energies (3),
we distinguish two different scenarios (recall the function d; defined in (4)):

- all the limit points are in the interior of ) and are all distinct, namely
min; d; > 0 (treated in Subsection 4.2);

- either at least two limit points coincide or one limit point is on the bound-
ary 02, namely min; d; = 0 (treated in Subsection 4.3).

4.1 - The case n =1

Given a € Q, the energy & (a) == é’e(l)(a) in (1) reads
Se(a):min{;/ |F|?da : F € L*(Q(a); R?), curl F = 0,
Qe (a)
F.7=fon GQ\BG(a)},

and its rescaling F.(a) = ]-'él)(a) in (3) reads

1

(39) J—'E(a):f/ |Vus |? do — n|loge|,
2 Ja.(a)

where uf, solution to (12) with n = 1, namely

Auf, =0 in Qc(a)\ 2,

[ug] = 27 on ¥NQ(a),
(40) ug, =g on 90N\ B.(a),

ous/ov =0 on 0B.(a) N Q,

A(us)t /v =0(us,)” /ov on XN Q(a).
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In the last equation above, v is a choice of the unit normal vector to 3. Notice
that, when dist(a, 9Q) < €, the choice of b € 902N B.(a) implies that Q.(a)\ X =
Qc(a) and the jump condition of u¢ across ¥ is empty.

In this case, the decomposition (15) reads

(41) Vul, = w(a)Ky + Vs,

where 4§ € H'(Q(a)) is the solution to

Aug, =0 in Qc(a),
(42) i =g—w(a)l, ondN\Ba),
ous/ov =0 on 0Bc(a).

Notice that this function is the same as the o5 in Remark 2.1 when n = 1,
thanks to (8).

Given a® — a as € — 0, the asymptotics of F.(a®) when a € Q is dealt
with in Proposition 4.1, whereas the case in which a € 99 is dealt with in
Proposition 4.2. These two results readily imply Theorem 1.1 in the case n =1
(the continuity of the limit functional F follows from the relationship between
continuous convergence and I'-convergence, see [8, Remark 4.9]).

Proposition 4.1. Let a € Q and v, satisfy (36). For every sequence
a® — a as € = 0 we have

(43) F.(a%) — mlog d(a) +% /

1
| K, + Vg |* do + f/ |V,|? da.
Qa(a)(a)

Bg(ay(a)

Proof. Since a € Q, w(a) = 1. Since d(a®) — d(a) and d(a) > 0, we can
take € so small so that € < min{d(a¢),1}. By plugging (41) into (39), F(a®)
reads

1 1
]:e(ae) = 5/;2 ( ) ‘vﬂZe 2dI+A2 ( )Kae'Vﬂge dl‘+§/§2 ( ) ‘K(Le

Set, for brevity, d := d(a), d° := d(a), K := K,, and K := K,c. Writing

2dz+mloge.

1 1 1

- |K )2 de =~ |K?da + = |K¢|? dz

2 2 2

Qe (ac) Qge (a®) Al (ac)
1 dc
7/ |K€|?dz + 7log —,
2 Qqe (a®) €
we obtain

2

1
AL
2 Qe(ae)

1

Fe(a) =nlogd® + 7/ |K€)? dz +/ K¢ V. dx
(44) Qge (aé) Qe(aé)
2dax.
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If we prove that, as e — 0,

1 1
(45a) mlog d® + 7/ |K¢|>dx — mlogd + 7/ |K|? de,
Qe (a%) 2 Jau(a)

2
(45b) / K¢ -Vu,.dz — K Vv, dz,
Qe (ac) Qq(a)
1 1
(45¢) f/ Ve, 2 dz — f/ Va2 da,
2 Jo (a0 2 /o

where v, satisfies (36), then (43) follows.

Since d° — d, K°Xp,(ac) converges pointwise to KXp,(a), and KXp,c(ac)
are uniformly bounded for e small enough, (45a) follows by the Dominated
Convergence Theorem.

To prove (45b), we integrate by parts to obtain

/ Ke-VﬁZedx:/ (K€ v)(g — 0q4¢) dx,
Qe(af) o0

where we have used (8) and the fact that @5 = g — 0,c on 9Q (see (42)). Since
K€ and 6, are uniformly bounded in € on the set 02, and converge pointwise
to K and 6,, respectively, by the Dominated Convergence Theorem, we have

/ Ke-Vﬂgedx%/K-Vvadx: K -Vy,dz,
Q.(ac) Q Qa(a)

which gives (45b). The last equality follows by the Divergence Theorem, com-
bined with (8).

It remains to prove (45¢). To do this, consider the harmonic extension w€ of
at. inside Be(a®). By applying Lemma 3.3 to w® with a replaced by a€, estimate
(23) reads

w 7 0 5 2 Ol
which implies that
(47) w51 (B. (a)) — 0, as € — 0.

By combining (46) with (21), we have

/|Vw€|2dx:/ |V,
Q Qc(ac)

+ 062”9 — Oqe

2dx+/ |Vwe? dz < C|lg — Oae 12L11/2(69)
B (a€)

2
Lo (99"

Therefore, letting € — 0, we obtain

limsup/ |Vu|*dz < Cllg — 0a||?{1/2(39)7
Q

e—0
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which, together with Poincaré inequality, implies that w® is uniformly bounded
in H'(Q). As a consequence there exists w € H'({2) such that (up to subse-
quences) w¢ — w weakly in H(Q). Since w® = g — 0, on 99 for every ¢, then
w = g—0, on J. Since the @S, in (42) is the minimizer of the Dirichlet energy,
we have that

1 1 1
= |Vac > de < = |Vvge?dz < = [ |Vuge
2 2 2

Qe (ac) Qe (a*) Q

the lower semicontinuity of the H' norm, together with (47), gives

2dz

)

2dx

1 1 1
f/ |Vwl|? dz Sliminff/ |Vwe|? dz < limf/ |Vvge
2 Ja e—0 2 Jq =02 Jq

1
:f/ |V,|? de,
2 Ja

which implies that w = v,, by the uniqueness of the minimizer v,. Thus, all the
inequalities in (48) are in fact equalities. This, together with (47), gives (45c¢)
and completes the proof. O

(48)

Proposition 4.2. Let a € 9Q and a¢ be a sequence of points in Q con-
verging to a as € — 0. Then there exist two constants C1,Cy > 0 independent
of €, a, and a, such that

(49) Fe(a®) = Cy|log(max{e, d(a)})| + Ca,
for every e small enough. In particular, F.(a®) = +00 as € — 0.

Proof. Since a € 09, w(a) = 2. Let a and ¢, be as in (7), let € <
min{e,, 1}, and d° < €,/2, where we set, for brevity, d := d(a) and d° := d(af).
We distinguish two possible scenarios: the slow collision ¢ < d° and the fast
collision € > d¢. In the former case € < d¢, exploiting (44) we get

2

1
(50) 5 / Vs,
Qqe (a)

1
=T log dE =+ 7/ |KCL5 —+ V'ELZ&
2 Jye (a9

1
Fe(a®) >mlogd® + f/ |Kye|? da —|—/ Ky - Vg, dz
Qge (CLE) Qge (ae)

2dz

2 dz.

where we have used that fQ‘(ae) Kge - Vs do = deé (acy Bar - Vg dz. By
Lemma 2.1, we may assume that the discontinuity point b¢ of the boundary
datum g is one of the projections of a¢ on 9%, so that b € 9By (a®) N IN. In
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particular, Qoge (b) C Qg4e(a®), so that

/ |Ke + Vi
Qge (ac)

> inf {/ |Vul? dz : u € H (Qage (b)), u = g on 9\ Bage (be)}
Qaqe (b°)

2dz

2dx > / | Kqe + Vg
Qage (b°)

(51) =inf {/ 2Ky + Vul?dr s u € H (Qaqe (b%)),
Qage (b°)
u =g — 20 on O\ Boge (bé)}

= / 12Ky + Vil dz,
Qage (b°)

where @ solves

Ai=0 in Qage (b),
U=g— 20y on 90 \ Bage (b°),
0u/ov = —2Kpe - v on 0Bage (b) N Q.

Since Kpe-v = 0 on 0Bag- (b°) by (8), it follows by uniqueness that @ = uf., where
u§ € H'(Q(b)) is the solution to (42). Therefore, using Young’s inequality and
(21) (with h = g — 26,), recalling that € < d°, we may bound (51) as follows:

1

f/ 12Ky + Va|* do
2 Qage (b)

22/ \Kbe|2dx+2/ Ky - Vadx
Qaqe (b9) Qaqe (b9)
1

22/ | Kpe 2dx—)\/ | Kpe de—f/ |Va|? de
Qoae (b°) Qe (b°) A J e (b)

C
>(2 -\ Kpel?de — = — 20,12

where A > 0 is a constant that will be chosen later. Now, in view of the
assumption on d€ at the beginning of the proof, the set Q224 (b¢) contains a sector,
which, in polar coordinates centered at b€, is the rectangle R := (2d¢, ¢4) X
(¢o, &1) with ¢1 — g = a. Therefore, in the case € < d¢, by combining (50) and
(51) with (52), and using the estimate from below in (18), it follows that

(52)

. . € C
Fe(a®) = (7= (2= Na) logd® + (2 — A)arlog 3 ) Max llg — 29b||§11/2(89)~

Recalling that o > 7/2 by (7), we can choose A = (o — 7/2)/a, so that the
inequality above can be written as

(53) ]-"e(ae) Z 01‘ log d€| + Cg,
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with

T T €a Ca 9
(54) Cl = (afg) and CQ = (a*’*g) log 370{_77{_/2 ig%g ||g720b||H1/2(8Q)
Moreover, in the case € > d¢, we consider the projection b¢ of a¢ on 952, so
that b¢ € 9B.(a®) N 99, and the disk Bs.(be) contains Bc(a®). Arguing as in
(51), (52), and using (18) with d¢ replaced by €, we can estimate (39) as follows

1
(55) Fe(a®) > f/ [2Kpe + Vﬂ|2dx — 7| loge| > Cq|loge| + Ca,
Qze(b‘)

with the same constants Cy and Cs provided in (54).
Therefore, by (53) and (55) for every € < min{e,, 1}, the thesis (49) follows.
U

4.2 - The case n > 1 with min; d; > 0

In this case, it is convenient to write the rescaled energy (3) as the sum
of the rescaled energy of each dislocation plus a remainder term accounting
for interactions: recalling the expression (39) for the rescaled energy of one
dislocation and the decomposition (41), we write the energy (3) as

n

(56) Fi0a) =Y Fe(ai) + Y Re(ai) + Y _ Gelai,ay),
i=1

i=1 i#j
where, for every i = 1,...,n, Fc(a;) is given by (39),

1

1
(57) Re(a;) == 7/ |Kq, + V05, [* da — 7/ |Kq, + Vg, |* dz,
2 Ja.(a 2 Ja.(a)

and, for every i,j =1,...,n, with ¢ # j,
Ge(ai, ay) :=/ ( )(Kai + Vug,) - (Ko, + Vg, ) da,
Qe (a

ug,, being the solution to (42) associated with a;, and v5, being as in Remark 2.1.

Proposition 4.3. Let a = (a1,...,a,) € Q" be an n-tuple of distinct
points and let a¢ be a sequence converging in Q™ to a as € — 0. Then, for every
i=1,...,n, we have R.(a$) — 0 as e — 0.

Proof. For brevity, we define the d$’s as in (4), associated with the family
{af,...,aS}, and the d;’s associated with the family {a1,...,a,}. By assump-
tion d§ — d; > 0 for every ¢ = 1,...,n; therefore, without loss of generality, we
may take € < min; d;. In particular, the disks Bc(a$) are all contained in Q and
are pairwise disjoint for every € € (0, min; d;).
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Fix now ¢ € {1,...,n}. The remainder (57) evaluated at a$ can be written
as Re(al) = RL(a) — RY(af), with

RL(a$) = %/Q » (2K + Vs + Vis) - (Vo§ — Vi) da,

and )
RY(a) = 5 Z/ K¢+ V| de,
j#i 7 Belag)
where, for brevity, we have replaced the subscript a§ with the subscript j coupled
with the superscript e. By the Divergence Theorem, (42), and Remark 2.1, we
have

R'(af) = % / (= 955 /0w + 0us /ov) (5 — ) da
29, (ac)
= 1/ (= Vg + Vi) - (Vo — Vi) do
2 Jau(ao)

:_1/ Vs — Ve[ da.
2 Qc(ac)

Then, R(a5) < IVT5 = VUi || 126 (aeymzy + 1V0F = V|| 12 (a).2) Which, in
view of Lemma 3.5, converges to 0, as € — 0. Moreover, in view of Lemma 3.2
(withn =1 and h = gy — 05) and the fact that ||K,L~E||Loo(BE(a;);]R2) < 1/(2d5 —e)

for every j # i, we may bound R (af) as follows:

RU@) <Y [ (K |va) o
j#i BE(a§)
1
2 €12
<m(n—1)e ((2d§—e)2 + Cllgss — 9i||L°°(8Q))>

for some constant C' > 0 independent of e. In particular R”(a$) tends to zero
as € = 0. This concludes the proof of the proposition. O

Proposition 4.4. Let a = (a1,...,a,) € Q" be an n-tuple of distinct
points and let a¢ be a sequence converging in Q" to a as € — 0. Then, for every
i,j=1,...,n, with i # j, we have

(58) Ge(ag, af) — /Q(Kal + Vg,) - (Ka; +Vug,)dz, ase—0,

Vg, being the solution to (36) associated with a;.

Proof. For brevity, we define the dS’s as in (4), associated with the family
{af,...,aS}, and the d;’s associated with the family {ai,...,a,}. Fix i,j €
{a,...,n}, i # j. By assumption df — d; > 0 and d§ — d; > 0; therefore,

25



without loss of generality, we may take e < min{d;,d;}. Since the limit points
are distinct, in view of Lemma 3.5, we have

XQ. (ac) VUge — Vg, and ae)Vv — Vu,, strongly in L*(Q;R?),
so that
(59) / VoS - Vi do — / Vg, - Vg, dz.
Q. (ac) ‘ 7 Q

Setting for brevity d := min{d;, d;}, we decompose the domain of integration as
Qe(a%) = (Qu(a, a$) U Ba(as) U By(a U Be(a

Since Ka§ — K,, and Ka§ — Kg; a.e. in Q, by the Dominated Convergence
Theorem it is easy to see that, as e — 0,

(60) / Kaf . Kaf dx — Ka,i . Kaj dz
Qq(as,as) ! Qal(as,aj)

and

Oa; * Oas—(as—a;
/ Kag - Kqe da :/ P E(az ‘12) da
Ba(a$) i J Bg(a;) 1T — ai| T —aj + (ai _ az)|

— K, - Kq; dz.
Ba(a;)

(61)

An analogous result holds exchanging the roles of ¢ and j. Eventually, since the
limit points a1, ..., a, are distinct, we have, for k # i, j,

2
e
(62) / | Kae » Koe| do < - —0, ase—0,
Be(ag) ! (2d5 — €)(2d5 —¢)

and

2
(63) / | Kqe - Koe|do < E7re —0, ase—0
B ((16) ¢ J 2d] — €

(and again, the same holds swapping the roles of ¢ and j.) Notice that (62) and
(63) are refined versions of Lemma 3.1(ii). By combining (60), (61), (62), and
(63) we get

(64) / Kye - Kge do — / Ky - Ko dz, ase—0.
Qc(as) ! Q

In order to study the asymptotic behavior as € — 0 of the L? product of K.

and Vg, we use the decomposition ¢ as = = U5 +¢; introduced in Remark 2.1. We
J
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recall in particular Remark 3.1(i): 4¢ admits an H! extension (not relabeled)
that strongly converges to v,,;; thus, integrating by parts and exploiting again
the Dominated Convergence Theorem, in the limit as e — 0 we get

/ K - Vs de = / Kos - V5 dx—/ Kqe - Vi dz
Q. (ac) Qe(asf) Ujz Be(af)

(65) = [ K -v(gpe — 0uc)dz + o(1)
! ’ !

— Ko, -v(gy, —04,;)dz = / Kq, - Vg, dz,
G19) Q

where we have used the fact that @ has vanishing L* norm in the disks B (aj,)
as € — 0; while K¢ is uniformly bounded in every disk B(aj,) with k # i, and
satisfies Kye - = 0 on 0Bc(a5). On the other hand, we recall that (qu?)J- = Vp5
in the perforated domain, p$ being a solution to (31). Since the solution to (31)
is unique up to a constant, we choose p§ such that p§ = 0 on 0B (a5). Therefore,
in view of Remark 3.1(ii), we infer that p§ admits a an extension in H'(Q) (not
relabeled) which is harmonic in every disk B (aj,) and such that ||p§|| 1) — 0
as € — 0. Therefore, by letting ¢$(z) := log(|x — a§|), we have

/ K - Vg5 dz = / Vo5 - Vpjdz = / ¢;Vp5 - vdz

(66) Qe (ac) Qe(ac) k=1 0Bc(a})

-/ OV B vde= [ Ve Vs,
k=1 9Bc(a}) Uk;ﬁi Be(ay,)

and its absolute value can be estimated from above by

(’I’L — 1)\/7?6 €

?HVPJ‘HL‘Z(Q) — 0.
Similarly, the same limits in (65) and (66) hold exchanging the roles of ¢ and j.
The thesis (58) follows then by putting together (59), (64), (65), and (66). O

4.3 - The case n > 1 with min; d; =0

Lemma 4.1. Let a = (a1,...,a,) € Q" and let 0 < € < n be such that for
every a; € Q we have By(a;) C Q (i.e. d;j > n). Then there exists a positive
constant C', independent of € and n, such that

(67) Fi(a) > F{(a) - €

Proof. We start by comparing the energies £ and &,. Recalling (2), it is
easy to see that

1
E@ ey [
Ui, A% () |

=& (@) + Jy + J2 + J3 + Ju,

2
w(a;)Kq,; + Vog| dz
1

n

(68)
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where we have defined

‘ ‘
1 1
J1 =3 E / |Vog | de, Jo = B E m?wQ(aj)/ |Kq,|? dz,
i1 Ad(ai)

i=1 A(ai)

14
J3 = Z mjmhw(aj)w(ah)/ Kaj : Kah dl’,
g Al(ai)
>j

¢
Z mjw(aj)/ Ko, - Vigde.
=1 A?(‘li)

The term J; is strictly positive, and we can neglect it. In order to bound
Jo from below, we need to distinguish two cases, according to whether d(a;) is
greater or smaller than 7, namely whether or not the annulus A?(a;) is contained
in Q. In the former case, w(a;) = 1 and a simple computation gives (see (17))

1 : 2 2 .

Jy:

i

1
|Kq,|? dz me%wQ(ai)/ |K,,|? dz
?(as) 2 AZ(a:)
=mm; log(1/e).

In the latter, A?(a;) is not completely contained in © and therefore, by hypoth-
esis, we know that a; € 90 and in particular w(a;) = 2, so that

2dz

¢
1
mewa(aj)/ |Kaj|2dx >2m? | K,
(70) 2 AZ(a:) AZ(as)
min(7, €a)
>mm3 log (%),

where €, is given in (7) (see (18)). Therefore, for n small enough, min(n, e,) = n
and (70) provides the same bound as (69), hence, summing over i, we obtain

4
(71) Jo >y wm} log(n/e).

i=1

Recalling the definition (3) of Fim (a), from (68) and (71) we obtain

14
@)+ (D mi—n)wlog(n/e)+Js+Ji = F @)+ Ja+Ja,
i=1

(72) FM(a) > Fi"

since 7 > € and Zle m? —n > 0. We obtain the thesis (67) from (72), provided
we bound J3 and Jy from below.
In view of Lemma 3.1(i), we have

¢
(73) J3 = Z mjmhw(aj)w(ah)/ Ky, - K, dz > —8mln? > —8mns.
i,j,h=1 A?(ai)
h>j
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To estimate Jy, we start by splitting Vog = Vag+Vqg, with ag = 7, 4§
and q§ = >, ¢5,» where 4, and g5 _are introduced in Remark 2.1. Then

4 l
; /Azmn fog Vit = ; /A

and, by using the Divergence Theorem, (20), and the fact that [K,, (z)] < ||
on JA"(a;), we can estimate

¢ ¢
K, -Vua,dr = / K, -vadx
;/A?wa o ; o o

L
K, - Vigdr + ) / K,, - Vqidz
i=1 A

d(aq) d(aq)

Al (i)
(74) e
>_C / |Kqy, - v|de > —27Chn,
; DA ()
where C = |lg — >_1_, w(ak)ba, I < (952)- Moreover

(as)

V4 4
Ko Vayde =Y [ Vo, vide
> 2L

with p§ = >_1", pS,, where pS solves (31). In particular, by using (32), we infer
that the L* norm of p is bounded by Cne, so that we can estimate

l
(75) > / K,, - Vgidz > —2xCn?,
i=1 7 A(ai)

Combining (74) with (75) and summing over j, we obtain Jy > —27n?(C +
Cn), which, together with (72) and (73), allows us to get estimate (67), with
constant C' = 27n?(C + (C + 4)n). The lemma is proved. O

Proposition 4.5. Let a € Q" and let a be a sequence of points in Q"
converging to a as € — 0. If mini<;<, d; = 0 with d; defined as in (4) then
fe(n)(ae) — 00, as € = 0.

Proof. Our goal is to show that we can bound the energy ]-'E(n)(ae) from
below by a quantity that explodes in the limit as € — 0. This will be achieved
by applying the following iterative procedure, which is performed at € fixed.

Step 0 (Labeling) We start by relabeling in a more suitable way the limit
dislocations and the approximating ones. According to Definition 2.1, we relabel
the limit points so that the first ¢ (1 < ¢ < n) are distinct. Moreover, we fix
0 > 0 such that the disks Bj(a;) are pairwise disjoint for ¢ = 1,...,¢. For

every i = 1,...,¢, there are m; points in {a$,..., a5} which converge to a;. We
denote these points by aj ;, with j = 1,...,m;. For € small enough we clearly
have a5 ; € Bs(a;), for every j =1,...,m; andi=1,..., L.
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At each iteration (from Step 1 to Step 3), we will replace the sequence

(with respect to € > 0) of families (indexed by i € {1,...,¢}) {aj;}72; with
a sequence of singletons ¢, still converging to a; as € — 0, with multiplicity
m;. Additionally, we will define a new core radius 7(e) and in Step 4 we will
compare the energies F."™ (a%) and }—75?5)) (c9).
Step 1 (Ordering) Let i € {1,...,¢} be fixed. According to Definition 2.1,
we order the family {a§ ;}72; so that the first £§ are distinct, and we denote by
mj ; their multiplicities. Notice that 25:1 mj ; = m;. With these positions, we
clearly have

(n) (n€)
fe (a ) -
(n) € € € € €
(76) FM( ais ... Qi seees Qi1 seees Qpa seees Gy )-
mi’l—tlmcs mili_times m;l—tlmcs mzl—tlmcs mz[é —times
In case /¢ > 1, for every j = 1,... /%, we associate to the distinct points af .
i 5 9 s Yo 1,7

the following quantity: if af ; € 02, we set
as . — af
s(ag ;) := min {|”21k| cke{l, .. 050\ {j}},
whereas, if af ; € (), we set

|az€'j —ag ;| .
s(a;j) := min {d(a;j),min{’Q” cke{l,..., 651\ {j}}}

Observe that, if the limit point a; € , for € small enough d(a;j) is always

greater than any mutual semidistance |af ; — af ;|/2, for all j,k € {1,... (5}
Up to reordering the different ¢§ points {a;l, ey ag’ze_} we can always suppose
that

0 <s(agy) <...<s(agy,)
In case £ = 1, namely when all the af ; coincide with af |, we set

¢ 0 if a; € Q,
(77) s(agq) == . .
d(ag,) if a; € 0Q.

Step 2 (Stop test) If s(a; ;) = 0 forevery i = 1,...,¢, then we define ¢§ := af ;,
n(e) := €, and we go to Step 4. Observe that by (77) ¢ € 9Q if a; € .
Otherwise, we define the following quantity

(78) §=25(e) :=min{s(a5,) >0 : ie{l,....(}}

and we go to Step 3. Observe that the set where the minimum is taken is not
empty, hence § is finite and strictly positive.
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Step 3 (Iterative step) We compare § with e.
If § > ¢, we relabel ay ; by aj, j and their multiplicities accordingly, set € := §,

and estimate F.™ (a®) by means of (67) proved in Lemma 4.1, with n = €, to
obtain

(79) FM@)>FM(.., ay ... —C.
~—~

If § < e we distinguish two cases:

(1) 8 is equal to |a5; — af,|/2, for some i: we replace the points af; and
as, (and all those coinciding with either one of them) by a5, the mid-
point between af; and af 5, with multiplicity m;, := m{; + m{,. The
replacement is performed &multaneously for all the indices i that realize
the minimum in (78). For all the other indices, we simply relabel aj, ; by

ajy, ; and their multiplicities accordingly.

(2) 8 is realized by d(a§,), for some i: we replace the point af; (and all
those coinciding w1th it) by a as q, its projection to the boundary 0f2, with
multiplicity mg; := mg ;.

Setting € := €+ § and recalling (2), (3), and (76), we have

(80) FM(a) > ]:é(n)(. oy agy  ,...) —nmlog?2.
-~

i, -times
Notice that € satisfies the following bound:
(81) € < max{2¢, §} < max{2e¢, 5},
where 5 is defined as the maximum value of the s(a; ;), namely
§ = 5(€) := max {s(a;fs) >0 :ie{l,...,00}.
We have obtained a new family {a5;} and a new radius € and we restart the

procedure by applying Step 1 to these new objects.

Notice that the procedure ends after at most n? iterations. Indeed, when
applying Step 3, we will always fall into case (1) after at most n iterations,
and then the number of distinct points will decrease when we apply (1). In
conclusion, since the number of distinct points is at most n, we will reach the
target situation after at most n? iterations of Step 3.

Step 4 (Estimates and conclusion) By combining the chain of inequalities
obtained by applying Step 3 k(< n?) times, estimates (80) and (79) give

(82) .7:6(”)( ) >.7-"772)( g ..., ¢ ) —k(C+nmlog?2),
m1-times my-times
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where 7(¢€) is a number depending on € obtained after k iterations of the proce-
dure that defines € in Step 3. Let us estimate 7(€). At every iteration, the value
S can increase, but it is easy to see that it cannot grow lager than its double.
Therefore, after k iterations of Step 3, by (81), we have

n(e) < 28 max{e, 5} < 2" max{e, 5}.

Since 5 tends to 0 as € — 0, we have n(e) — 0 as € — 0.
We now claim that the right-hand side of (82) tends to +oco as e — 0.
Similarly to (56), we write the energy as the sum of three contributions:

¢ ¢
FbC L v )= FRC )+ o miRee)
(83) mi-times me-times i=1 m;-times i=1
+ 3 mam;Ge(cs, o)
i#]

where, setting w; := w(a;) = w(c;) (see Step 3), and K§ := K¢ for brevity,

7

1 1
(84) Re(cf) := 5/ |win+Vﬁf|2dm—f/ |w; K§ 4+ Vs | da,
Qn(ey(efyeoneg) Qe (c5)

and
(85) Ge(cj, cj) = / (wiK§ + V7)) - (w; K5 + V5) dz,
Q) (e15--565)

@f being the solution to (42) associated with ¢§ and o§ being as in Remark 2.1
fori=1,...,¢ and core radius 7(e).
Fix i € {1,...,¢}. If a; € Q, we have

Fas( c ) =m2Fyo(cs) + mi(mi — V)| logn(e)|
(86) m;-times

>m;(m; — 1)m|logn(e)| — C,

where the equality follows from (13) and the inequality is a consequence of
Proposition 4.1. If instead a; € 952, by using (13) again and (49), we have

FUm (e ) > Cym?|log(max{n(e), d(c5)})| + mi(m; — 1)m| logn(e)| + Cam?
nle) \ ,
m;-times

(the constants Cy and Cy are those in (54)), and, since d(cf) = 0 as noticed in
Step 2, we obtain

(87) ]-'7(77(7:))( ¢ ) > (Cym? 4+ mi(m; — 1)m)|logn(e)| 4+ Com?.
m;-times
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By Lemma 3.6 the function o can be extended inside any disk B, )(c5) with
J # i; therefore the remainder (84) can be rewritten as R(c§) = RL(c§)— R”( )
with
1 1

R () = 7/ i K + Vit P — f/ i K+ Vi 2de
2 Ja (e 2 Ja, )

and
R (cf) : Z / |lwi K§ + Vg2 da.
]752 B (e )(C

Using the minimality of u§ in €2, (cf) it turns out that R (cf) > 0. Using that
[K5| < 1/n(e) in Byye)(c ) for every j # ¢ and Lemma 3.6 we obtain

Re(cf) = = R{(c)

1
(88) >_ = Z/ |le6| de — = Z/ V5§ [2dz > —C.
24~ JB (e
j#i Y Bne (€5 i ¥ Bn(oy(c5)
To estimate the interaction term (85), fix also j € {1,...,¢}\ {i¢}. Then, we
can write G.(c§, J) =g/(c, J) + Gl (c, ]) + G (e, j) w1th

(89a)  Gl(c,c5) —wiwj/ K{ - Kjdz,
n(e) (€f5-¢7)

geeey

(89b)  G/(cf, c5) == wj/ Vg Kederwz/ Vs - Kf du,
Qo) (€16 n(e) (€1,

) )

(89c) Gl'(c5,¢5) = / V5 - Vo da.
Qn(g)(ci,...,cg)

Thanks to Lemma 3.1(i), the functional G/ in (89a) is uniformly bounded from
below by a constant. To estimate G and G!”” we recall the decomposition o§, =
uf, + g5, and the function pf,, solution to (31), that we introduced in Remark 2.1,
where k = ¢ or k = j. Here the functions 4§, and gj, are introduced in Remark 2.1
with (ag,...,a5) replaced by (cf,...,cj), and the Dirichlet boundary condition
for af, given by gpe — wx0j, on €. Therefore, we can estimate (89c) as follows

Q”’(c,,<:7)§/Q ( )(\va§|2+|va;\2+|vq§\2+|vq;\2)dx
n(e) (€1re-5C5

and since, the gradient of ¢j coincides in modulus with the gradient of pg, by
(21) and (33) we can bound G/(cf, ¢5) from below. The functional in (89b) is
the most delicate to treat: if both a; and a; are in €, g”(cl,cj) is bounded
below by a constant (notice that in this case we could have applied Proposition
4.4 to Ge(ct, J) itself and we would have concluded). In the general case, by

means of the above-mentioned decomposition, (89b) reads

gl (c, ])zwj/ Vﬁf-K;—dx—kwi/ Vs - K¢ dx
(90) Qp(ey(€yenep) Qe (cfse0cf)

+(Uj/ qu~K;dx+wi/ Vg; - Ki du.
n(e) (C55e5cg) (o) (efs )
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We first deal with the last two terms, involving the gradients of ¢f and ¢: from
Holder’s inequality, recalling that the gradient of ¢ coincides in modulus with
the gradient of p,, by (33) and (17) we conclude that these terms are bounded.
To estimate the first two terms in (90), we use Young’s inequality, (21) and (17)
to obtain

wj/ Vﬁf~K;dx+wi/ Vg - K dx
Qyey (€55-05¢) Qo) (€550,¢F)

1

~€|2 ~€|2
gﬁ (wj| Vg |* + wi|Va5|7) da

QU(E)(ci,...,CE)

A
+5 (5 + |G )
Qo) (cfseesch)
<< (lans — i oy + o — w512
=3 Gbs Vi llH1/200) 9o Y512 00)
+ 27 Al log(n(e))| + 2w A log(diam ),

where C' is a positive constant independent of ¢ and A > 0 is an arbitrary
constant that will be chosen later. Finally, we can control the term Ge(cf, ) as

(91) Ge(c§, c5) = —2mA[log(n(e))| — Cyj

where all the terms independent of € have been included in the constant Cj;.
We can classify each point a; according to whether it belongs to

1. the interior of 2, with multiplicity m; = 1;
2. the interior of ), with multiplicity m; > 1;
3. the boundary 012.

For k = 1,2,3 we denote by Ij the set of indices corresponding to those points
c§ — a; belonging to the k-th category. Therefore, combining (86), (87), (88),
and (91), summing over ¢ and j, we obtain the following lower bound for the
energy (83):

FO( & s & )2 w(Cr —ACo)|logn()| + C,
m1-times my-times

where

Cr = Z mi(mi—l)—&—ZClm?, Cg = 2n?,

i€l2Ul3 i€l3

and C'is a constant independent of e. The assumption min;<;<, d; = 0 guaran-
tees that Cx > 0, since in this case either Iy # () or I3 # (). Therefore, choosing
Ain (91) so that 0 < A < Cx/Cg, we obtain that the right-hand side of (82)
tends to +oo as € — 0. The proposition is proved. O
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4.4 - Proofs of Theorem 1.1 and of Corollary 1.1

We combine the previous results to prove the main results in the case of
n dislocations. Proof. [Proof of Theorem 1.1] By (56), combining Propo-
sitions 4.1 and 4.2 with Propositions 4.3, 4.4, and 4.5 yields the continuous
convergence of ]-'E(n) to F(™. The continuity of F follows from the relation-
ship between continuous convergence and I'-convergence (see [8, Remark 4.9]),
which implies that F(")(a) tends to 400 as either one of the a;’s approaches the
boundary or any two a; and a; (with ¢ # j) become arbitrarily close. Therefore
F ™) is minimized by n-tuples a = (a1, ..., a,) of distinct points in Q". O

Proof. [Proof of Corollary 1.1] Recalling definition (4), let § > 0 and let

Q0 = {(z1,...,2,) €Q":d; > 6 Vi=1,...,n}.

The energy functional 56(") is continuous over Q%" for every ¢ € (0,9). Indeed,
given two different configurations of dislocations a’ and a”, it is possible to
construct a diffeomorphism ® that maps . (a’) into Q.(a”), keeps the boundary
09 fixed, and satisfies [[D® — || (qr2x2), || det D® — 1|[ (o) = of[a" —a”]).
This implies that 5§”)(a’) =g (@”)+o(ja”" — a"|).

Fix now € > 0 and k € N and let a.  be such that

(92) inf F < F"(ay,) < inf F™ +1/k.

Qn Qn
Without loss of generality, we can assume that the whole sequence ac  converges
to some a“ € Q", as k — oo, and satisfies |a., — a‘| < 1/k. We claim that
there exist € > 0 and § > 0 such that (defining d$’s as in (4), associated with
the point a€)

(93) d°:=mind; >§ Vee (0.

Assume by contradiction that there exists a subsequence of e (not relabeled)
such that d° — 0 as ¢ — 0. Let k. be a sequence of natural numbers, increasing
as € goes to zero, and let a be a cluster point of the family {a. x_}e. In view of
Theorem 1.1, thanks to [8, Corollary 7.20], we infer that a is a minimizer of the
functional (™). By the triangle inequality, we get

1
ke

mind; <d°+|a—a. g |+ |ack, —al <d*+ — +o(e) = 0,
which implies that there exists an index ¢ such that either a; € 09 or a; = a;
for some i # 7, in contradiction with Theorem 1.1.

Let €y := min{¢, 0} and € € (0, ¢). In view of (93), the minimizing sequence
{ac i }x lies in the set {(z1,...,2,) € Q" : d; >0 Vi=1,...,n}. Therefore, by
(92), we conclude that

inf £ = lim F™(a.;) = F"(ac),
Q'n,

k—oc0
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namely a® is a minimizer of ]-'e(n) made of n distinct points each of which is at
distance at least 0 from the boundary. Eventually, again by [8, Corollary 7.20],
we infer that, up to a subsequence (not relabeled), a¢ converges to a minimizer
of F(™ so that F.(a®)™ — F(a) as ¢ — 0. O

5 - Plots of the limiting energy

We plot here the limiting energy ]-"6(") of (3) in the special case n = 1 and
) the unit disk centered at the origin O for two different boundary conditions.

In view of Corollary 1.1, for a fixed € > 0 small enough, the minima of .7-'5(1) are

close to those of F), therefore, by (3), the energy landscape provided by F @

is a good approximation of that of 56(1).

The two different boundary conditions that we consider are f; = 1 on 012,
and fo =2 on IQN{x > 0} and fo = 0 on 92 N {x < 0}; the choices that we
make for the numerics are

200 in the first quadrant,
g1 =060 and go=4T in the second and third quadrants,
200 — 27 in the fourth quadrant.
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Figure 2: To the left, the functional F(1) associated with g;; to the right, the
functional F() associated with go. Both are top views.

o

From Figure 2 one can deduce that the energy profile associated with f;
is radially symmetric and has a minimum in the center. The one for fs is no
longer radially symmetric, but symmetric with respect to the y axis and has
a minimum in the interior of  which is located where fy is the largest (by
symmetry, it is located along the z-axis, at about x = 0.65).

For n > 2, we consider (2 the unit disk centered at the origin, f(™ = n on 99,
and, for simplicity, we minimize F (™) in a subclass of configurations: the vertices
of regular n-gons centered at the origin (this particular choice is supported by
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the conjecture in [24]). The optimization problem becomes (numerically) easy,
as it is enough to minimize the energy with respect to the circumradius of the

n-gon, which may vary from 0 to 1.
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Figure 3: The optimizers of F(™ among the vertices of regular n—gons centered
at the origin for n = 2,5, 20, from left to right.

Let us denote by p,, an optimal n-gone of F™ (unique up to rotations). As
it is suggested by Figure 3, as n increases we observe a decrease of the distance
dist (pn, 0Q) and of the energy F(™(p,,) (which is negative). More precisely,
we observe the following behaviors (see Figure 4):

1
dist (pp, 0€2) ~ — |F™M (pp)| ~n?, asn — +oo.

Let us mention that the investigation of minima and minimizers of () in the
limit as n — 400 is the object of our paper [17].
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Figure 4: Plot of dist (p,, Q) (left) and plot of |F(™(p,)| (right) as functions
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of n. Test done for n dislocations, n between 1 and 60.

37

50

60



1]

2]

References

R. ALICANDRO, L. DE LucA, A. GARRONI, and M. PONSIGLIONE, Metastability
and Dynamics of Discrete Topological Singularities in Two Dimensions: A T'-
Convergence Approach, Arch. Rational Mech. Anal. 214 (2014), 269-330.

F. BETHUEL, H. BREZIS, and F. HELEIN, Ginzburg-Landau vortices, Progress in
Nonlinear Differential Equations and their Applications, 13, Birkh&user Boston,
Inc., Boston 1994.

T. Brass, I. FONsEcA, G. LEONI, and M. MORANDOTTI, Dynamics for systems
of screw dislocations, SIAM J. Appl. Math. 75 (2015), 393-419.

T. Brass and M. MORANDOTTI, Renormalized energy and Peach-Kdhler forces
for screw dislocations with antiplane shear, J. Convex Anal. 24 (2017), 547-570.

P. CERMELLI and M. E. GURTIN, The motion of screw dislocations in crystalline
materials undergoing antiplane shear: glide, cross-slip, fine cross-slip, Arch. Ra-
tion. Mech. Anal. 148 (1999), 3-52.

P. CeErMELLI and G. LEONI, Renormalized energy and forces on dislocations,
SIAM J. Math. Anal. 37 (2005), 1131-1160.

G. Q. CHEN and H. FrID, On The Theory Of Divergence-Measure Fields And
Its Applications, Bol. Soc. Bras. Mat. 32 (2001), 401-433.

G. DAL MASO, An introduction to I'-convergence, Progress in Nonlinear Differ-
ential Equations and their Applications, 8, Birkh&duser Boston Inc., Boston 1993.

S. DIPIERRO, G. PALATUCCI, and E. VALDINOCI, Dislocation Dynamics in Crys-
tals: A Macroscopic Theory in a Fractional Laplace Setting, Commun. Math.
Phys. 333 (2015), 1061-1105.

L. C. EvaNs, Partial differential equations, Graduate Studies in Mathematics,
19, American Mathematical Society 1998.

A. GARRONI, G. LEONI, and M. PONSIGLIONE, Gradient theory for plasticity via
homogenization of discrete dislocations, J. Eur. Math. Soc. 12 (2010), 1231-1266.

E. C. GARTLAND JR., A. M. SONNET, and E. G. VIRGA, Elastic forces on ne-
matic point defects, Contin. Mech. Thermodyn. 14 (2002), 307-319.

J. HADAMARD, Lectures on Cauchy’s problem in linear partial differential equa-
tions, Dover Phoenix editions, Dover Publications, New York 1923.

J. P. HIrTH and J. LOTHE, Theory of Dislocations, Krieger Publishing Company,
Malabar 1992.

T. HubpsoN and M. MORANDOTTI, Qualitative properties of dislocation dynamics:
collisions and boundary behaviour, STAM J. Appl. Math. 77 (2017), 1678-1705.

D. HurL and D. J. BACON, Introduction to dislocations, Butterworth-Heinemann,
Oxford 2001.

38



[17]

[18]

[19]

[22]

[23]

[24]

28]

I. LUCARDESI, M. MORANDOTTI, R. SCALA, and D. Zucco, Upscaling of screw
dislocations with increasing tangential strain, Submitted, arXiv:1808.08898.

N. I. MUSKHELISHVILI, Some Basic Problems in the Math. Theory of Elasticity,
Noordhoff, Groningen 1963.

F. R. N. NABARRO, Theory of crystal dislocations, International series of mono-
graphs on Physics, Clarendon, Oxford 1967.

E. OROWAN, Zur kristallplastizitat. 111, Zeitschrift fur Physik 89 (1934), 634-6509.

M. PoLANYI, Uber eine art gitterstorung, die einen kristall plastisch machen
konnte, Zeitschrift fiir Physik, 89 (1934) 660-664.

M. PONSIGLIONE, Elastic energy stored in a crystal induced by screw dislocations:
from discrete to continuous, SIAM J. Math. Anal. 39 (2007), 449-469.

E. SANDIER and S. SERFATY, Vortices in the magnetic Ginzburg-Landau
model, Progress in Nonlinear Differential Equations and their Applications, 70.
Birkh&user Boston, Inc., Boston 2007.

E. SANDIER and M SORET, S'-Valued Harmonic Maps with High Topological De-
gree, Harmonic morphisms, harmonic maps, and related topics, 141-145, Chap-
man & Hall/CRC Res. Notes Math. 413, Chapman & Hall/CRC, Boca Raton
2000.

E. B. TADMOR, M. ORTIZ, and R. PHILLIPS, Quasicontinuum analysis of defects
in solids, Philosophocal Magazine A - Physics of Condensed Matter Structure
Defects and Mechanical Properties 73 (1996), 1529-1563.

G. I. TAYLOR, The Mechanism of Plastic Deformation of Crystals. Part I. Theo-
retical, Proceedings of the Royal Society of London. Series A 145 (1934), 362-387.

B. VaN KoTEN, X. H. L1, M. LuskIN, and C. ORTNER, A computational and
theoretical investigation of the accuracy of quasicontinuum methods, in Numerical
Analysis of Multiscale Problems, Lect. Notes Comput. Sci. Eng., 83, Springer,
Heidelberg (2012), 67-96.

V. VOLTERRA, Sur l’équilibre des corps élastiques multiplement connexes, Annales
scientifiques de ’Ecole Normale Supérieure, 24 (1907), 401-517.

39



ILARIA LUCARDESI

Institut Elie Cartan de Lorraine,

B.P. 70239

54506 Vandoeuvre-les-Nancy, France
e-mail: ilaria.lucardesi@univ-lorraine.fr

MARCO MORANDOTTI

Politecnico di Torino,

Corso Duca degli Abruzzi, 24
10129 Torino, Italy

e-mail: marco.morandotti@polito.it

RICCARDO SCALA

Sapienza, Universita di Roma,
Piazzale Aldo Moro, 5

00185 Roma, Italy

e-mail: scala@mat.uniromal.it

Davibe Zucco

Universita di Torino,

Via Carlo Alberto, 10

10123 Torino, Italy

e-mail: davide.zucco@unito.it

40



