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Fault Detection and Isolation for a 3-DOF Helicopter
with Sliding Mode Strategies

U. Pérez1, E. Capello2, E. Punta3, J. Perea1, and L. Fridman1

Abstract— This paper analyzes the problem of detection and
isolation of faults in the actuators of a 3-Degree-of-Freedom (3-
DOF) helicopter by a residual-based approach. A third-order
sliding mode differentiator is designed for the evaluation of the
residuals. Moreover, two sliding mode controllers are suitably
designed to stabilize the angular positions and velocities: (i)
a super twisting control system and (ii) a continuous twisting
control system. The performance of the designed controllers and
the effectiveness of the residual-based method are illustrated by
simulations.

I. INTRODUCTION

In the last decades, due to the growing design of complex
systems, the problem of fault detection and isolation (FDI) is
one of the most important subject, mainly due to the need of
increasing the productivity and the safety. The main objective
of this paper is the identification and isolation of faults
for a three Degree-of-Freedom (DOF) helicopter, combined
with sliding mode controllers (SMCs) to partially or fully
compensate these faults and to improve the performance of
the studied system.

As proposed in [1], FDI techniques can be divided in
three categories: (i) knowledge-based approach, (ii) signal
processing-based approach, and (iii) analytical model-based
approach. The first of this techniques strongly depends on
the experience of the control operator, for example the expert
system can use a combination of object-oriented modeling
[2] or logic-based approach as in [3]. The second approach is
based on the idea of hardware redundancy, this means that
sensors measuring the same data are installed on-board to
characterize off-line the fault. Drawbacks of this approach
are related to the need of several measurements of the
same data and that off-line computation cannot provide real
time FDI. The interest on the third approach is increased
in the last years due to the improvement on modeling
techniques. This approach are considered efficient and easily
applicable, as explained for example in [4] and [5]. The
method proposed in this paper is based on this last approach,
since the mathematical model of the system is well known
and differentiator-based approach is considered to deduce
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the faults informations. The model-based methods of fault
detection were developed by using input and output signals
and applying dynamic process models. In detail, as presented
in [5], these methods are based, e.g., on parameter estimation,
parity equations or state observers. Moreover, fault diagnosis
is typically achieved by combining a residual generator and
a residual evaluation strategy to provide Boolean decisions
on whether faults have occurred. Marzat et.a. [6] presented
a survey of model-based fault diagnosis, which focuses on
those methods that are applicable to aerospace systems.

Since some of the electromechanical parameters are un-
certain during operations, SMC is a general method for
designing controllers for uncertain systems and provides
invariance to matched uncertainties, that is, uncertainties that
affect the dynamics of the system acting in the input channels
and insensitivity to parameters variations. The main features
of SMC are the robustness properties against matched and
bounded external disturbances and parameter variations, as
well as the simplicity in design. The main advantages of
these controllers are high precision, robustness and finite
time convergence. In [7] the authors show how SMCs can
be exploited for fault detection (specifically fault signal
estimation) and subsequently fault tolerant control, including
an aerospace application. An appropriate combination of
the adopted SMC and sliding mode differentiator (SMD) is
considered in [6] and this algorithms combination is designed
to on-line detect and reconstruct the faults and also to give
a sensorless control strategy which can achieve tolerance to
a wide class of total additive failures.

The main objectives of this paper are: (i) to detect and
isolate faults in the actuators of a three degrees of freedom
(3-DOF) helicopter [8], and (ii) to implement a reconc-
tructive fault-tolerant control. The FDI technique is based
on the theory of both Super Twisting (STW) control and
Continuous Twisting Algorithm (CTA). Moreover, the faults
in the actuation system are compensated by the CTA con-
troller [9]. Further, a third-order sliding mode differentiator
is designed for the estimation of the angular velocities and
accelerations to evaluate the missing data in the state vector
and to construct the residual equations. The present paper
continues the research initiated in [10]. The novelties of this
paper are: (i) the design of two SMC control schemes for the
system dynamics control, (ii) both fault detection and fault-
tolerant control are proposed, and (iii) one of the proposed
controller is able to compensate faults in the actuators.

The paper has the following structure. In Section II the
problem and the 3-DOF helicopter model is presented.
Section III is dedicated to the control design of the two
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proposed controller schemes (STW SMC and CTA SMC).
The residual equations are given in Section IV. Extensive
simulation results are presented in Section V. Finally, some
concluding remarks are in Section VI.

II. PROBLEM STATEMENT

The main idea of this paper is to make a comparison
between of the two proposed controllers, when a failure
in the actuators occurs. Moreover, the performance of both
controller are compared in terms of exact compensation, not
only in terms of detection and isolation.

The following 3-DOF helicopter model (Figure 1) is
analyzed. The range of the parameter variation is in Table
II and the parameters given by the manufacturer are in the
Table II.

ε̈ =
g

Jε
(MwLw −MhLa) +

KfLa
Jε

us

ρ̈ =
KfLh
Jρ

ud

θ̈ =
−KpLa
Jθ

sin (ρ)

(1)

The state vector is x =
[
ε ρ θ ε̇ ρ̇ θ̇

]T
, where ε

and ε̇ are related to the elevation dynamics, ρ, and ρ̇ are
related to the pitch dynamics, whereas θ and θ̇ are related to
the travel angle dynamics. The control input u =

[
us ud

]T
is defined according to the voltages in the engines. So,
we have that us = Vf + Vb and ud = Vf − Vb, with
Vf voltage in front engine and Vb voltage in back engine,
assuming that these voltages are proportional to the lift
forces Ff = Kfud and Fb = Kfus, by a constant Kf ,
respectively for the front and back engines. The gravity
force is Fg = g

Jε
(MwLw −MhLa). All the parameters are

defined in Table II.
The control system (1) can be rewritten as follows, where

the elevation and pitch-travel dynamics are kept separated

ε̈ =

[
0 1
0 0

] [
ε
ε̇

]
+

[
0

KfLa
Jε

]
us + Fg, (2)

[
ρ̈

θ̈

]
=


0 1 0 0
0 0 0 0
0 0 0 1

−KpLa
Jθ

sin (ρ) 0 0 0



ρ
ρ̇
θ

θ̇

+


0

KfLh
Jρ

0
0

ud.
(3)

TABLE I
WORKSPACE AND SIGNAL CONTROL

Variable Value Units Description
ε [−25, 25] Degree Elevation position
ρ [−90, 90] Degree Pitch position
θ [−∞,∞] Degree Travel position
Vf [−15, 15] V Voltage in front engine
Vb [−15, 15] V Voltage in back engine

Fig. 1. Free-body diagram for 3-DOF helicopter

TABLE II
MODEL PARAMETERS

Parameter Value Units Description
Jρ 0.0364 kgm2 Inertial moment around the pitch axis
Jε 0.91 kgm2 Inertial moment around the elevation axis
Jθ 0.91 kgm2 Inertial moment around the travel axis
Kp 0.686 N Flight constant
Kf 0.5 N/V Voltage-Force propellers constant
Mh 1.15 kg Helicopter mass
Mw 1.87 kg Counterweight mass
La 0.66 m Helicopter-elevation axis length
Lh 0.177 m Propeller-pitch axis length
Lw 0.47 m Counterweight-elevation axis length
g 9.81 m/s2 Gravitational constant

III. CONTROL DESIGN

Two control schemes are proposed for stabilizing the
trajectories of the system (Figure 1) in the equilibrium point[
ε ρ θ

]T
= [0, 0, 0]T . Moreover, this equilibrium point

represents the initial condition. This means that, if a fault
occurs, the controller is able to compensate it exactly.

1) Super Twisting Control: The super-twisting (STW)
[11] sliding mode control strategy is based on a second order
sliding mode controller. The STW sliding mode controller
designs a continuous control, thus reducing the chattering
phenomenon and therefore the mechanical stress since no
discontinuous control variations are required. Furthermore,
STW SMC results to be easy to implement and guarantees
high performance and efficiency.

For the design of super twisting algorithm the following
sliding surfaces are proposed

S1 = c1ε+ ε̇,

S2 = −B2ρ̇ cos ρ− 3c2B2 sin ρ+ 3c22θ̇ + c32θ.
(4)

where B2 =
−KpLa
Jθ

and the sliding variables (4) are
defined such that the zero-dynamics of the system (2)-(3) on
S1 = S2 = 0 is asymptotically stable. The sliding surface
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S2 is defined as in [10].

The control us can be written as

us =
Jε

KfLa

(
−k1|S1|

1
2 sgn (S1) + v1

)
v̇1 = −k2sgn (S1)

, (5)

and the control ud as

ud =
Jρ

KfLh

(
−k3|S2|

1
2 sgn (S2) + v2

)
v̇2 = −k4sgn (S2)

. (6)

2) Continuous Twisting Algorithm: The Continuous
Twisting Algorithm (CTA) [9] is a homogeneous control
algorithm for uncertain second order plants. CTA designs
continuous control signals, is able to compensate Lipschitz
uncertainties/perturbations, and guarantees finite-time con-
vergence to third-order sliding mode.

As shown in Section II, the 3-DOF helicopter can be
decoupled in two subsystems: (i) one related to the elevation
dynamics and (ii) one related to the pitch dynamics; both are
second order systems.

For the design of continuous twisting algorithm the fol-
lowing sliding surfaces are proposed

S1 = ε,

S2 = c3
−KpLa
Jθ

sin (ρ) + c4θ + c5θ̇.
(7)

where the gains c3, c4 and c5 of the sliding variable (7)
are chosen such that both zero dynamics (s2 = 0) are
asymptotically stable.

The structure of the control us is as follows

us =
Jε

KfLa

(
−K1|S1|

1
3 sgn(S1)−K2|Ṡ1|

1
2 sgn(Ṡ1) + η1

)
η̇1 = −K3sgn(S1)−K4sgn(Ṡ1)

,

(8)

and the structure for ud is

ud =
Jρ

KfLh

(
−K5|S2|

1
3 sgn(S2)−K6|Ṡ2|

1
2 sgn(Ṡ2) + η1

)
η̇1 = −K7sgn(S2)−K8sgn(Ṡ2)

.

(9)

IV. FAULT DETECTION AND ISOLATION

For the identification of faults, the required information
is related to the angular accelerations. To achieve this infor-
mation in finite time, third-order differentiators are designed,
which also provide the velocity values for the control system.
See Figure 2 for the connection scheme.

Fig. 2. Control scheme

A. Actuators faults

Actuators faults represent a partial loss or total loss of the
actuators control action. The actuators faults of helicopters
mainly include constant output faults, constant gain change
faults and drift faults. Constant gain faults represent that the
actual output values of actuators are γ, 0 ≤ γ ≤ 1, percent
of the normal case, like servo power and main rotor power
lost their efficiency. In this paper we consider this kind of
actuator faults. There are two cases: (i) fault of the front
motor (Vf ) and (ii) fault of the back motor (Vb).

The fault of the front motor is defined as follows

V ∗
f =

{
Vf if t < tf
γfVf if t ≥ tf

(10)

In Eq. (10) the fault occurs in a fault time tf and it is
represented as a scaled value of the front engine voltage
by means of a constant gain γf . V ∗

f is the new value of the
front engine voltage, Vf is the assigned front engine voltage
and 0 < γf < 1 is a constant value, which expresses the
percentage of fault.

In a similar way, the fault of the back engine is represented
in Eq. (11).

V ∗
b =

{
Vb if t < tb
γbVb if t ≥ tb

(11)

As before, V ∗
b is the new value of the back engine voltage,

Vb is the assigned back engine voltage and 0 < γb < 1 is
a constant value, which expresses the percentage of fault.
More details about fault definition are given in [1] and [10].

Let us consider the vector of the outputs available to the
controller and some of its derivatives in order to establish
later on the residual generator and the corresponding FDI
approach.

We define the following vector Y (t)

Y (t) = [ε̈ ρ̈ θ̈]
T
, (12)

and each component (i.e. angular accelerations) of the vector
Y (t) can be exactly estimated in finite time using robust
exact third-order sliding mode differentiators as in [12].

B. Residual Method

The main idea of the residual method, once the system
is stabilized, is to identify deviations in the accelerations,

281



to identify faults in each engines, as shown below. The
following cases are considered:

- Fault in the front engine:

ε̈ = Fg +
KfLa
Jε

(us + δf ) ,

δf = − (1− γf )Vf sgn (Vf )
(13)

- Fault in back engine:

ρ̈ =
KfLh
Jρ

(ud − δb)

δb = − (1− γb)Vbsgn (Vb)
. (14)

The residual equations are designed according to [10].
Remark 1: As can be seen in Eq. (13)) the fault represents

a change in the control coefficient, affecting Vf , while in
Eq. (14)) the affected coefficient is Vb. These expressions
allow to isolate the faults in the actuators (engines) of the
system.

The residual-based equations can be defined as

Rε = A1 (ε̈− Fg)− us, (15)

and
Rρ = A2ρ̈− ud, (16)

with A1 = Jε
KfLa

, A2 =
Jρ

KfLh
, us = Vf + Vb and ud =

Vf − Vb.
Remark 2: Starting from Eq. (15) and Eq. (16) the fault

can be detected (if it occurred in the front engine or the back
engine).

V. SIMULATIONS RESULTS

Simulations have been done in the Matlab Simulink en-
vironment, employ the Euler discretization method with a
fixed sampling time τ = 10−4 [s]. The initial conditions
for all simulations are x(0) =

[
2 1 −0.5 0 0 0

]
, the

duration of the simulations is T = 40 [s].
An intermittent fault occurs in the front motor (10), in

the interval of time Tf = [tf1 , tf2 ] with tf1 = 10 [s] and
tf2 = 20 [s]. In the interval Tf the tension of front motor
fall as γf = 0.85 which represents about 15% of the nominal
voltage. After the interval Tf the fault vanishes, i.e. γf = 1.
On the other hand, a persistent fault occurs in the back motor
(11) at the time tb = 30 [s], the tension of back motor fall as
γb = 0.9 which represents about 10% of the nominal voltage.
Firstly, the results obtained by simulations for the STA
control law are analyzed, and then the CTA closed-loop is
tested.

1) Results for Super Twisting Control: The gains em-
ployed for the surface in (4) is c1 = 1 and c2 = 1 which
ensure zero dynamics asymptotically stable. The gains for
the control us in (5) are k1 = 2.2 and k2 = 0.9. The gains
for ud in (6) are proposed as k3 = 2.2 and k4 = 0.9.

It can be seen from Fig. 3 that all the states have been
the settling time about 5 [s] from the initial conditions
to the equilibrium point X =

[
0 0 0 0 0 0

]T
. The

faults (variation of the voltage in any of the engines) are
compensated exactly by the ST controller. The controllers
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Fig. 3. Angular positions of the 3-DOF Helicopter in closed-loop with ST
control.
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Fig. 4. Super-Twisting Controllers.

us in (5) and ud in (6) are drawing in Fig. 4. There are
proportional changes in the magnitude of the controllers
when any fault occurs.
The residual equations (15) and (16) are shown in Fig. 5. It
can be note when a fault occurs in the front motor (interval
Tf ) both residual equations have the same magnitude and
sign. On the other hand, when a fault occurs in the back
motor (at the time tb until the end) both residual equations
have the same magnitude but opposite sign.

2) Results for Continuous Twisting Control: The gains
employed for the surface in (7) are c3 = 0.4113, c4 =
−0.9920 and C4 = −1.8187 which ensure zero dynamics
asymptotically stable. The gains for the control us in (8) are
K1 = 1.2, K2 = 2.4, K3 = 0.2 and K4 = 0. The gains for
ud in (9) are proposed as K5 = 1.2, K6 = 2.4, K7 = 0.2
and K8 = 0.

It can be seen from Fig. 6 that all the states have been
the settling time about 5 [s] from the initial conditions to
the equilibrium point X =

[
0 0 0 0 0 0

]T
. We can

note that the faults (fall of voltage in any of the engines) are
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Fig. 5. Fault detection with ST control.
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Fig. 6. Angular position of the 3-DOOF Helicopter in closed-loop with
CTA control.

compensated exactly by the ST controller. The controllers
us in (8) and ud in (9) are drawing in Fig. 7. There are
proportional changes in the magnitude of the controllers
when any fault occurs.
The residual equations (15) and (16) are shown in Fig. 8. It
can be note when a fault occurs in the front motor (interval
Tf ) both residual equations have the same magnitude and
sign. On the other hand, when a fault occurs in the back
motor (at the time tb until the end) both residual equations
have the same magnitude but opposite sign. In addition, the
residual equations are mostly affected by discretization noise
when the CT controller is used instead of the ST.

3) Analysis of the Simulation Results: The simulations
done for the ST and the CT controllers allows to conclude
the following:

1. Both controllers are able to compensate exactly the
faults in the front motor or in the back motor.

2. The residual equations have the same magnitude in
presence of any fault, but when a fault occurs in the
front motor the residuals have the same sign and when a
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Fig. 7. Super-Twisting Controllers.
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Fig. 8. Fault detection with ST control.

fault occurs in the back motor the residual have opposite
sign. Table III summarizes the value of the residual
equations in presence of faults.

3. The proposed scheme allows to detect an exact com-
pensate faults in the motors of the 3-DOF Helicopter
using continuous control.

VI. CONCLUSIONS

Two Sliding Mode controllers are designed to stabilize
a 3-DOF helicopter and a FDI scheme based on residual
equations, including third-order differentiators, is proposed.
Different faults on the actuation system are induced, to verify
the effectiveness of the proposed method. Faults are easily

TABLE III
RESIDUAL EQUATIONS IN PRESENCE OF FAULTS.

Residual V ∗
f = γfVf V ∗

b = γbVb

Rε −(1− γf )Vf −(1− γb)Vb
Rρ −(1− γf )Vf (1− γb)Vb
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identified with both controllers but partially only the CTA
controller is able to compensate for faults.
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