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ABSTRACT Driving range is one of the most critical issues for electric vehicles (EVs): running out of
battery charge while driving results in serious inconvenience even comparable to a vehicle breakdown, as an
effect of long fuel recharging times and lack of charging facilities. This may discourage EVs for current
and potential customers. As an effect, the dimensioning of the energy subsystem of an EV is a crucial issue:
the choice of the energy storage components and the policies for their management should be validated at
design time through simulations, so to estimate the vehicle driving range under reference driving profiles.
Thus, it is necessary to build a simulation framework that considers an EV power consumption model that
accounts for the characteristics of the vehicle and the driving route, plus accurate models for all power
components, including batteries and renewable power sources. The goal of this paper is to achieve such an
early EV simulation, through the definition of a SystemC-AMS framework, which models simultaneously
the physical and mechanical evolution, together with energy flows and environmental characteristics. The
proposed solution extends the state-of-the-art framework for the simulation of electrical energy systems
with support for mechanical descriptions and the AC domain, by finding a good balance between accuracy
and simulation speed and by formalizing the new information and energy flows. The experimental results
demonstrate that the performance of the proposed approach in terms of accuracy and simulation speed w.r.t.
the current state-of-the-art and its effectiveness at supporting EV design with an enhanced exploration of the
alternatives.

INDEX TERMS Cyber-physical systems, design-time optimization, electric vehicles, electrical energy
system, SystemC-AMS.

I. INTRODUCTION
Electric Vehicles (EVs) are posing new challenges for Cyber
Physical System (CPS) design: the introduction of compo-
nents such as batteries and energymanagement policies imply
indeed a tighter interaction between mechanical components,
computational units and the physical environment, including
the grid [1], [2].

As a matter of fact, each EV comprises a number of inter-
acting CPSs. Compared to the combustion engine vehicles,

The associate editor coordinating the review of this manuscript and
approving it for publication was Amjad Anvari-Moghaddam.

the most relevant CPS of an EV is the powertrain, i.e., the
EV energy subsystem, that includes battery, electric motor,
energy management systems and the necessary inverters and
converters. The design of the energy subsystem is thus a
critical design dimension for EVs. The main limitations to
their widespread adoption are: (1) to their limited autonomy,
due to low efficiency, (2) to the still limited presence of
charging facilities, and (3) to the long charging times [3].

As a result, during the design flow of an EV it is neces-
sary to carefully choose and dimension the energy sources,
to ensure long driving cycles and to reduce conversion
inefficiencies. In this perspective, computer modeling and
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simulation are a key resource for designers: testing the behav-
ior of the vehicle on reference routes allows indeed to esti-
mate battery lifetime, and to track the behavior of all energy
components, so to take into account non-ideal behaviors and
conversion losses [4]. Additionally, the simulation frame-
work should allow easy reconfiguration, to explore different
component configurations and energy management strate-
gies, before the EV prototype is ready.

The high interest in the design of EVs generated a number
of simulation approaches in the literature. However, most
works focus on power consumption estimation, with limited
or no modeling of the energy subsystem [5]. Additionally,
the models for power consumption accurately reproduce the
mechanics of the EV, thus resulting in long and complex
simulations of the internal components of the motor [6]–[8].
This makes day-long simulations unfeasible, while they are
on the other hand necessary to estimate the EV driving range
and to validate the dimensioning of the energy components.

This work faces this challenge by simulating the
energy subsystem of an EV through the definition
of a SystemC-AMS framework. The modularity of
SystemC-AMS and its support for multiple models of com-
putation allow to easily cover all domains included in an EV
with a lightweight yet accurate simulation. The framework
extends the solution proposed in [9] for generic electrical
energy systems.

The main novel contributions of this work are:
• The formalization of the information and energy flows,
and of the components typically involved in the simula-
tion of the energy subsystem of an EV;

• The modeling of the alternating current (AC) domain
in SystemC-AMS, by reaching a compromise between
the complex sinusoidal nature of AC and the need for
simulation speed of the framework;

• The identification of a suitable model of power con-
sumption, to accurately simulate EV power consumption
preserving to some extent the mechanical aspects, still
without reproducing in detail the behavior of motor
components or killing simulation speed;

• The application to a Tesla Model 3 EV, to compare the
proposed framework w.r.t. the current state-of-the-art in
terms of simulation speed and accuracy;

• The development of a photovoltaic (PV) EV, i.e., a small
EV equipped with solar panels, used for design space
exploration of alternative configurations.

The paper is organized as follows. Section II provides
the necessary background. Section III details the proposed
SystemC-AMS framework. Section IV shows how to gener-
ate the input driving traces. Finally, Section V focuses on the
experimental results, and Section VI draws our conclusions.

II. BACKGROUND
This Section introduces the main solutions for EV simulation
at state-of-the-art (Section II-A) and the main characteristics
of the SystemC-AMS standard for analog and mixed signal
modeling (Section II-B).

A. SIMULATION OF EVs
EV modeling has been widely investigated in the literature.
ADVISOR is the main reference for the design electric vehi-
cles or hybrid electric vehicles in terms of vehicle perfor-
mance, fuel economy and emissions [10], [11]. ADVISOR
provides a library of models reproducing the dynamics and
themechanical evolution of each internal component, that can
be used to configure the vehicle and the energy subsystem.
From this configuration, ADVISOR estimates energy con-
sumption under a given driving profile by determining vehicle
dynamics, the corresponding required motor power and the
related battery current.

Other MATLAB-based approaches use a similar
library-based strategy, with differences in terms of simulation
speed or of how they determine vehicle dynamics. PSAT
(Powertrain System Analysis Toolkit) estimates mechanical
evolution (e.g., vehicle speed and motor torque) from current
load and vehicle dynamics. This increases accuracy, but it
leads to slow simulation times [12]. SIMPLEV simulates fuel
economy and power consumption under input driving pro-
files, and it models each component in terms of corresponding
power loss in the drivetrain [13]. ELPH studies peak power
and control schemes of hybrid EVs [4], [14], and it supports
simple models of battery current and voltage.
Modelica allows to design vehicle specification to esti-

mate EV performance and energy consumption with an
equation-based approach, including in the analysis exter-
nal disturbances like side wind force and longitudinal
acceleration [15]. This is however out of our research scope.

All the aforementioned Matlab/Simulink and Modelica-
based solutions target the mechanics of the EV, thus resulting
in long and complex simulations that require very detailed
models of the internal components of the motor, repre-
sented as complex differential equations [6]–[8]. This makes
day-long simulations unfeasible, thus limiting design space
exploration and reducing the effectiveness of validation of the
configuration chosen for the energy sub-domain.

Some attempts have been made to adopt the standard
SystemC framework also in the context of electrical energy
systems [9], [16], [17]. However, none of these approaches
targets the modeling of EVs. The only exception is [18], that
on the other hand restricts the focus to the battery manage-
ment subsystem.

B. SystemC AND ITS AMS EXTENSION
SystemC-AMS extends C/C++ with libraries to describe
HW constructs [19] and analog/mixed-signal subsys-
tems [20].

SystemC-AMS provides different abstraction levels to
cover a wide variety of domains. Timed Data-Flow (TDF)
features the modeling of discrete time processes, that are
scheduled statically by considering their producer-consumer
dependencies. Linear Signal Flow (LSF) models continuous
time behaviors as mathematical relations through pre-defined
primitives (e.g., integration, or delay). Electrical Linear
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FIGURE 1. Structure of the proposed template architecture for EV
simulation in SystemC-AMS: the figure shows the typical components of
the EV energy sub-domain and their interfaces, formalizing the energy
and information flows in the system. Type and meaning of the signals are
described in section III-B.

Network (ELN) models electrical networks through the
instantiation of predefined linear network primitives, e.g.,
resistors or capacitors. The SystemC-AMS AD solver ana-
lyzes the ELN and LSF system to derive the equations mod-
eling system behavior, that will be solved to determine system
state at any simulation time. ELN is conservative, i.e., the AD
solver guarantees that energy conservation laws are satisfied.

SystemC-AMS has been applied in a number of extremely
heterogeneous domains [21], [22]. However, there is no work
in the literature targeting the modeling of complex and large
scale mechanical systems like EVs. The only mechanical
applications in the literature are MEMS systems, modeled
by abstracting the dynamics equations through model order
reduction or by mapping mechanical phenomena to the elec-
trical domain [23], [24].

III. PROPOSED FRAMEWORK
Modeling an EV requires to trace its physical and mechan-
ical evolution, together with the energy flows and the envi-
ronmental characteristics: EV power consumption (during
movement) and production (during regenerative breaking) are
indeed highly dependent on the mechanics of the vehicle
(e.g., motor power rating and efficiency) and on its operat-
ing conditions (e.g., motor torque and angular speed). This
requires to support multiple domains in the same simulation
environment, i.e., mechanical and electrical energy, plus the
cyber domain for the management policy.

The proposed framework builds upon the one proposed
in [9], that targeted themodeling of electrical energy systems.
However, that work restricts support to the DC domain, and
it does not cover mechanical models. Thus, this work extends
the framework to cover EVs, by formalizing the new power
and information flows.

A. FRAMEWORK FOR ELECTRICAL VEHICLE SIMULATION
Figure 1 shows the template of the architecture for the simu-
lation of the energy subsystem of an EVs in SystemC-AMS,
built by identifying the information and energy flows inside
of the system that should be tracked at simulation time.

Components naturally have different roles w.r.t. the
power flow, i.e., each EV includes component that either

consume, generate, distribute, or store energy. This difference
is reflected upon simulation: components with different roles
will have different interfaces and models. This leads to a
classification of components of the energy domain of an EV.

The most characteristic block is the mechanical power
model (1), i.e., the block that reads environmental data of
acceleration, speed and road slope to estimate the mechanical
power demand. This block belongs to themechanical domain,
and it provides the power demand to the electrical power
model(2), that converts themechanical power to AC electrical
power and operates as an inverter to move to the direct
current (DC) domain.

Power is mostly provided by energy storage devices
(ESDs) (3), typically batteries. Such devices are necessary to
allow EV operation, and they are conveniently managed and
charged from the utility grid to prolong EV lifetime (4). More
than one ESD are allowed in the same system, e.g., to meet
the desired voltage and current levels.

EVs may additionally feature power sources that harvest
some quantity (e.g., weather-related phenomena) to generate
additional power (5). A typical example are PV panels, that
can be used to cover the exterior of the EV to prolong battery
lifetime. Power sources are not mandatory, i.e., an EV may
rely only on ESDs.

All the system is then connected to a charge transfer inter-
connect (i.e., theCTI bus) andmanaged by a charge allocation
policy, that monitors the state of charge (SOC) of the ESDs
and the power produced by the power sources, to determine
whether the EV should be stopped and charged (6). If neces-
sary, convertersmay be introduced to maintain compatibility
of voltage levels between the CTI bus and the ESDs and the
power sources.

B. INTERFACES OF THE COMPONENTS
In this work, the focus is restricted to the energy subsystem
of EVs. Thus, the most important quantities to be tracked at
simulation time are the expressions of power: P for AC power
(in red in Figure 1), andV and I for DC voltage and current (in
blue), respectively. In detail, the interfaces of the components
are:

1) the mechanical power model reads environmental data,
and shares the estimated power demand (P), plus
a coefficient that exposes characteristics of the AC
electrical curves, called power factor (PF , as will be
detailed later);

2) the electrical power model converts such mechanical
power (P) to DC electrical power expressed in terms of
voltage (V ) and current (I );

3) ESDs share their voltage (V ), and they receive in input
the current demand (I ) of the system. Furthermore,
they communicate their state of charge (SOC) and their
nominal capacity (E), so that they can be monitored
and activated by the charge allocation policy through
an enable signal (En);

4) the ESD charger is connected to the utility grid (here
abstracted): it takes in input the ESD voltage (V ) and
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state of charge (SOC), and it provides the ESD with
current (I ) to charge it whenever necessary;

5) the interface of power sources includes the supplied DC
current (I ) and voltage (V ). Additionally, one activation
signal is used to keep track of when the power source
is used to feed the EV (En);

6) the CTI bus connects ESDs, power sources and the
electrical load model. Its interface thus includes a cou-
ple of I and V ports per connected component, plus
the ports carrying information about the status of each
ESD (i.e., SOC , E and En), that are used by the charge
management policy to control the energy flow.

C. FRAMEWORK IMPLEMENTATION
The framework proposed in [9] works well with the DC
domain: SystemC-AMS proved to guarantee fast yet accurate
simulation w.r.t. state-of-the-art tools like Matlab/Simulink,
with speedups up to two orders of magnitude and a high level
of accuracy.

The support of EV introduces new challenges, that must
be analyzed and fixed in an effective way to avoid killing
performance and accuracy:

• The main issue is the support of the AC domain,
that relies on sinusoidal quantities and requires com-
plex non-linear conversion circuits to and from the DC
domain [25], [26]. Section III-D explains how we suc-
ceeded at modeling AC, given that SystemC-AMS does
not directly support AC descriptions.

• An additional problem is introduced by the presence
of mechanical components, since there is no work in
the literature targeting the modeling of complex and
large scale mechanical systems like EVs in SystemC-
AMS. Section III-E presents how we achieved a good
performance/accuracy trade off.

D. EXTENDING SUPPORT TO AC COMPONENTS
In the DC domain, current and voltage have a constant
direction, even if their value may change over time; thus,
SystemC-AMS variables and ports can be naturally used to
model their value over time.

Vice versa, in the AC domain, voltage and current have
a sinusoidal nature. SystemC-AMS only supports sinusoidal
curves as sources of non-conservative data or noise (i.e.,
the sca_source LSF primitive). Thus SystemC-AMS
primitives can not be exploited to straightforwardly model
AC quantities. Additionally, considering such a detailed rep-
resentation of power would slow down simulation, while not
adding de facto information w.r.t. the goal of the simulation
framework, that is the overall validation of the energy flows
and of the dimensioning of the energy sub-domain.

To solve this issue, we observed that a sinusoidal curve
can be abstracted as its root mean square (RMS), i.e., a
quadratic mean that can be calculated also for continuously
varying functions, thus taking into account variations of the
amplitude of the sinusoidal curve over time (Figure 2.a).

FIGURE 2. AC modeling in SystemC-AMS: RMS of a sinusoidal curve
(a) and relationship between active and apparent power, given the
presence of a phase φ between the voltage and current sinusoidal
curves (b).

This implies that the involved quantities (i.e., AC power,
voltage and current) can be represented by a single value
and thus with standard SystemC-AMS ports and variables,
as done for the DC domain.

However, this is not enough to represent AC power: AC
power is determined by two sinusoidal curves, i.e., one for
current and one for voltage, that may be out of phase by a
degree φ. This generates power that does no work at the load
and that is rather wasted, but that still must be supplied by
the power source, called reactive power. This is often the
case with EVs, as they mostly behave as inductive loads,
just like all mechanical motors. As a consequence, in the
AC domain we must simulate the sum of active power and
reactive power, called apparent power, that can be derived
from active power by multiplying it by a factor cosφ, called
also power factor (as evident from Figure 2.c). In case of
electric motors, the power factor is typically between 0.7 and
0.9 [27].

As a result, power demand of an AC load is represented by
a port P, representing the RMS of active power over time, and
a portPF , exposing the corresponding power factor. Note that
the latter port is necessary as the power factor is typically not
constant: it may indeed vary depending on which mechanical
components are active at any time. On the other hand, a model
of power consumption may produce directly the apparent
power, with no explicit information about the power factor.
In this case, the load uses only the P port, to convey the
apparent power, and it thus avoids the PF port, given that the
evolution of power factor is not available. This allows a higher
degree of flexibility in terms ofmodels of power consumption
that can be adopted.

The management of AC and of the conversion to and from
DC require complex non-linear conversion circuits called
inverters [25], [26], which exploit non-linear objects such
as diodes that are not supported in the current version of
SystemC-AMS. Explicitly modeling such circuitry would be
useless, given the level of detail of the proposed representa-
tion of AC sinusoidal curves, and it would be a tight bottle-
neck for simulation speed. Interestingly, inverter datasheets
measure conversion losses in terms of efficiency, i.e., of
ratio between the generated AC power w.r.t. the input DC
power [28], [29]. This efficiency tends to be constant and
almost independent on the amount of input AC power [30],
as depicted by Figure 3. Thus, it is possible to approximate
AC-DC conversion as its efficiency, that is either constant or
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FIGURE 3. Typical efficiency curve of an inverter: efficiency tends to be
constant and almost independent on input power, whenever this is at
least 15% of rated power.

function of the sole input power and that thus can be simply
modeled in SystemC-AMS.

E. EXTENDING SUPPORT TO MECHANICAL AND
PHYSICAL MODELS
SystemC-AMS does not natively cover the mechanical
domain: it does not support mechanisms such as the nature
construct of VHDL-AMS, that allows to define a physical
discipline or energy domain and to describe its conservation
laws [31]. SystemC-AMS is rather restricted to data flows
and signals, or to electrical linear circuits. On the other hand,
the goal of this work is not to accurately reproduce the
mechanical behavior of an EV, but to rather have a quick esti-
mation of power consumption given a driving cycle, so that
the designer can get a quick feedback on battery lifetime and
on the autonomy of the EV. Thus, we do not need a detailed
mechanical model of the EV.

For this reason, we adopted a model that represents the
behavior of the EV as equations [3], [32]. This model derives
EV power consumption as a function of road slope, vehicle
speed and acceleration over time, that can be easily mod-
eled as C++ functions. The result is a good trade off in
terms of accuracy and simulation speed: the empirical poly-
nomial equations ensure good simulation performance, and
the model takes into account mechanical phenomena, such
as loss on the motor and drivetrain, that heavily impact on
vehicle power consumption.

Instantaneous power consumption of an EV is dominated
by propulsion power. Thus, it is possible to abstract the
power consumption of the EV as a function of road slope θ ,
EV acceleration a, EV mass m and EV velocity v, such
that:

Pdyna ≈ (α + βsinθ + γ a+ δv2)mv (1)

where coefficients α, β, γ and δ depend on the vehi-
cle rolling resistance, gradient resistance, inertia resis-
tance, and aerodynamic resistance. Coefficients can be
derived as in [3] from publicly available data or from
experiments.

The model additionally takes into account the efficiency of
the motor and of the drivetrain. Overall EV power demand is

thus correlated to dynamic power by a factor η:

PEV =
Pdyna

η
and η =

Pdyna
Pdyna + C0 + C1v+ C2v2 + C3T 2

where T is the motor torque and C0, C1, C2, and C3 are coef-
ficients for constant loss, iron and friction losses, drivetrain
loss, and copper loss, respectively [3].

Finally, the model supports also regenerative breaking,
i.e., kinetic energy of the EV can be converted to electric
energy during breaking periods:

Pregen = εTv+ ζ

where ε is regenerative force and ζ is the minimum power to
generate regenerative power [3], [32].

F. IMPLEMENTATION IN SYSTEMC-AMS
The resulting system can be easily implemented in
SystemC-AMS. Each component is mapped onto one
SystemC-AMS module. Interfaces are implemented as TDF
ports, since the execution semantics of TDF accelerates
simulation by defining a static schedule, and thus enforces
an efficient interaction between components.

Even if we enforce a TDF interface, the flexibility and
modularity of SystemC-AMS allows to adopt the most suit-
able abstraction level for the implementation of the model of
each component.

When the component has a functional model (e.g., based
on equations, as done for the mechanical power model,
or the cyber control implemented inside of the CTI bus),
the SystemC-AMS module is implemented as a TDF
module (SCA_TDF_MODULE). This is the case of Fig-
ure 4.a, that shows the implementation of the EV power
consumption model. Component evolution is handled by
the processing() function, that encapsulates the C++
implementation of the model (i.e., all the equations). This
function is repeatedly executed over time to evaluate the
evolution of power consumption on the updated values
of speed, acceleration and road slope (lines 16–22). The
initialize() function is executed at the beginning
of simulation, and it initializes the value of coefficients
(lines 9–15).
Circuit-equivalent models are implemented as standard

SystemC modules (SC_MODULE) encapsulating the instan-
tiation of ELN primitives, used to map the circuit elements.
Native ELN-to-TDF converters are used to convert signals
between the ELN primitives and the TDF interface. This is
usually the case of battery or power source models. Figure 4.b
shows an example of circuit-equivalent battery model (right)
and a snapshot of its SystemC-AMS implementation built by
connecting ELN primitives, like capacitors (sca_c, line 5),
current sources (sca_isource, line 6), voltage sources
(sca_vsource, line 7), etc.

IV. GENERATION OF DRIVING CYCLE
To generate speed, acceleration and road slope over time for
a desired driving cycle, we used a strategy based on Google
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FIGURE 4. Snapshots of SystemC-AMS code: (a) TDF code implementing an example of mechanical model of EV power consumption and (b) ELN
circuit-equivalent model of a battery.

Maps [33]. Given the departure and arrival points and the time
to departure, Goole Maps finds the optimal route considering
speed limit and traffic information at that time. Figure 5(a)
shows an example route: the route is divided into several
segments according to vehicle speed determined by traffic
and speed limit of the road (red for heavy traffic, orange
for medium traffic, and blue for no traffic, i.e., vehicles can
accelerate until speed limit). We can estimate the average
speed of each segment based on the distance of the segment
and on the average driving time to pass the segment, which
is reported by Google Maps. Acceleration is then derived as
a byproduct of speed.

Road slope is obtained by extracting GPS data along
the route, that allow to obtain the corresponding elevation
data [34]. As an example, Figure 5(b) shows the elevation
data of the route in Figure 5(a).
The environmental traces are then saved to files, that are

loaded all along SystemC-AMS simulation.

V. SIMULATION RESULTS
This Section proves the effectiveness of the framework on two
EVs: a Tesla Model 3 car, used to compare the framework
w.r.t. ADVISOR (Section V-A), and a custom EV, used for
design space exploration (Section V-B).

A. CASE STUDY 1: COMPARISON WITH STATE-OF-THE-ART
TOOLS
Tesla Model 3 (Figure 6) is a long-range EV produced for the
mass-market equipped with:

FIGURE 5. Example of driving route: (a) road traffic information and
(b) road slope information.

• an internal permanent magnetic electric motor, with
maximum power 202kW from 4,700 to 9,000 RPM,
and maximum torque 416 Nm from 100 to 4,500 RPM
respectively. The motor supports regenerative breaking,
i.e., power production during the breaking phase;

• a battery pack including 4,416 4.17V 5.065Ah cells
with a 46p×96s arrangement, for an overall nominal
operating conditions of 233Ah and 400V. This ensures a
long driving range (220km to 670km).

The resulting energy subsystem is depicted on the bottom of
Figure 6. The reference driving profile is a 586km route from
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FIGURE 6. Tesla model 3: picture (top) and energy subsystem modeled
with the proposed framework (bottom).

TABLE 1. Coefficients for tesla model 3.

Munich to Berlin (Figure 5). The average speed is 91 km/h,
and road slope is from -2.13% to 2.23%.

1) CONSTRUCTION OF THE SIMULATABLE MODELS IN
ADVISOR AND SYSTEMC-AMS
We implemented the Tesla Model 3 EV both in the proposed
framework and in ADVISOR, with the goal of evaluating
performance and accuracy. To feed the ADVISOR model,
we extracted information related to vehicle specification and
driving results [35]–[37], and we adopted a battery model
compatible w.r.t. the specifications in terms of capacity and
operating conditions.

To reproduce the EV in the proposed framework, we char-
acterized the power consumption model in Section III-E
from the available information and from driving profiles as
presented in [3]. The derived values of the coefficients are
reported in Table 1. The power consumption model calculates
apparent power, thus the power factor is not modeled and the
PF port is removed.
To model the battery, we adopted a circuit equivalent

model of a single cell, as presented in [38]. The single bat-
tery cell has been modeled by adopting a circuit equivalent
model, implemented in SystemC-AMS ELN and character-
ized with information extracted solely from the datasheet
of battery. The adopted model provides accurate simulation
results, since it is sensitive to load frequency and current
rate [38]. We additionally implemented an ideal scaling of
the battery cell model according to the serial and parallel
interconnection, to allow faster simulation runs and a higher
flexibility in the modeling of large battery pack, so that not
all cells of a large pack have to be simulated individually. The
battery module also includes a battery management system,

in charge of controlling the charge and discharge phases, and
of avoiding over-charging and over-discharging to reduce the
capacity aging degradation of battery [39].

2) COMPARISON OF SIMULATION RESULTS W.R.T. ADVISOR
Figure 7 compares the simulation results of SystemC-AMS
and ADVISOR. The simulation stops when the battery man-
agement system detects a battery SOC of 20%, which is a
widely accepted safety bottom line to reduce battery aging.
The figure shows input speed, road slope and acceleration
profiles (top), computed mechanical power (middle), and
battery SOC over time (bottom). The positive peaks in the
output mechanical power occur when the EV enters into the
highway, while the negative peak occurs when the EV brakes
due to a traffic jam. This allows regenerative breaking, thus
producing electrical energy and charging the battery (more
evident in the zoom in in Figure 8).

Figure 7 highlights that SystemC-AMS follows well
ADVISOR, as proved by the error traces reported for the
computed mechanical power and the battery SOC: the aver-
age absolute error on power is 2.26%, and the error of SOC
is 0.13%. The zoom in on the right hand side allows to
better elaborate on the evolution of error over time. The
computed mechanical power has a maximum relative error
of 20%: this is caused by the mechanical model adopted in
our framework, that abstracts the actual behavior of the EV
(e.g., wheel inertia, impact of the transmission system and
of the gear box). However, the zoom in allows to appreciate
that the peak error is limited in time, and it is mostly caused
by sudden changes of vehicle speed, acceleration and road
slope, whose effect is not modeled as accurately as by the
ADVISOR mechanical model. Thus, this level of accuracy
is acceptable, given the level of detail of the adopted power
model. Nonetheless, the absolute error is still limited, and the
estimation of mechanical power quickly converges on values
that adhere to the ADVISOR traces. In fact, the proposed
framework is independent from the power model adopted:
thus, future work may include an exploration of more accu-
rate power models, to improve the accuracy of mechanical
power estimation.

The other peak of relative error is at the beginning of
the simulation: by looking at the absolute error, it is easy
to notice that the high relative error (in the order of 12%)
is caused by the low value of power consumption (around
5kW): even small variations in the estimation of power (i.e.,
less that 0.5kW) are indeed relatively significant while they
are limited if compared to the EV peak power consumption
(48kW).

It is interesting to note that, in correspondence to the peak
errors on mechanical power, the error on battery SOC is still
limited and almost flat (around 0.15%). Indeed, the longer
temporal dynamics of the battery partially compensates the
error on power demand, thus achieving a higher accuracy on
the estimation of the battery SOC. Thus, the energy subsys-
tem is simulated with a level of accuracy that satisfies the
requirements for our framework.
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FIGURE 7. Simulation results of SystemC-AMS and ADVISOR: speed, road slope and acceleration profiles (top), computed mechanical power (middle),
and battery SOC over time (bottom) with the corresponding error. The zoom in allows to better appreciate the evolution of error as a result of
variations of the iput environmental values.

On the other hand, SystemC-AMS simulation is 438 times
faster than ADVISOR: runtimes are 0.15 seconds and
71.04 seconds, respectively. This speedup is once again
strictly correlated with the complexity of the mechani-
cal model adopted in this work, and by the structure
of the simulation framework. SystemC-AMS is organized
in 7 SystemC-AMS modules (4 of which devoted to bat-
tery modeling, to have an accurate simulation, and only
1 for the mechanical model) and includes only 12 ELN
primitives (i.e., 7 ELN blocks and 5 ELN nodes). The
efficient activation of TDF modules, based on a static
scheduling, and the limited number of ELN primitives guar-
antees fast simulation and a low overhead of both the

solver and the scheduler. Vice versa, the ADVISOR system
is implemented as over 3,000 Simulink blocks, including
114 switches, 9 S-Functions (invoking external Matlab and
C code) and 28 lookup tables, that heavily impact on sim-
ulation performance. Interestingly, both SystemC-AMS and
ADVISOR use the same solver configuration, i.e., a first
order solver based on Euler’s method with a fixed time step
of 1s.

These results show that the proposed SystemC-AMS
framework exhibits both a high level of accuracy and a
speedup of more than three orders of magnitude, thus enhanc-
ing EV design and allowing quick design space exploration
in early design stages.
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FIGURE 8. Zoom in of the evolution of computed mechanical power (top)
and battery SOC over time (bottom) to highlight the impact of
regenerative breaking on battery SOC.

TABLE 2. Coefficients for the custom EV.

B. CASE STUDY 2: SUPPORT FOR DESIGN SPACE
EXPLORATION
The second case study is a smaller custom EV, i.e., a small
dune buggy powered by an electric motor. The EV can host
up to 10 PV modules: they are indeed an ideal power source
for EVs, since they are light-weight and durable, and they
allow to prolong EV autonomy. Given the small area covered
by the PVmodules (i.e., rooftop and back panel), they are not
enough to fully operate the EV, but they can be exploited to
charge the battery when the EV is parked and not plugged to
any charging facility.

The EV characteristics are available in [3]:

• the EV is powered by a 8-pole brushless motor, with
continuous power rate 1.5kWwith a 7.17Nm torque. The
motor supports regenerative breaking, with peak current
70A;

• the EV is equipped with a battery pack composed by
NCR18650B 3.7V 3400mAh rechargeable Li-ion cylin-
drical cells;

• PV modules generate 20W each at standard conditions
(i.e., 1000W/m2 irradiance and 25◦C temperature) [40].
The PV modules are connected to a solar charge con-
troller, that applies a Maximum Power Point MPP)
tracking algorithm, i.e., that determines the operating
voltage over time by trying to maximize output power.

1) SystemC-AMS IMPLEMENTATION
The resulting energy subsystem is depicted on the bottom of
Figure 9. The EV power model has been derived as explained
in Section III-E, and the resulting coefficients are shown
in Table 2. The power consumptionmodel calculates apparent
power, thus the power factor is not modeled and the PF port
is removed.

FIGURE 9. The custom EV: picture (top) and energy subsystem modeled
with the proposed framework (bottom).

The battery pack has been modeled with a circuit-
equivalent battery cell model and scaled-up ideally based
on the battery pack inner configuration, as described
for the former case study. The battery charger adopts a
Constant Current-Constant Voltage (CC-CV) protocol, that
has been optimized to ensure an optimal tradeoff between
aging degradation of capacity and quality of service (e.g.,
smallest average SOC and smallest possible charging current
during constant current phase) [41]. The maximum SOC is
set to 90%, while the battery is considered discharged when
the SOC is 20%.

The PVmodules are modeled with a functional model, that
directly extracts the MPP and that is built directly from the
sole datasheet information [42]. Given in input the current
vs. voltage graph available on the datasheet [40], the model
identifies the corresponding maximum power points. Such
points are then used as a mapping of irradiance values to
output power, and fitted to a polynomial curve that can be
easily implemented in SystemC-AMS. It is important to note
that more accurate models might have been adopted, like the
circuit-equivalent model in [43], that can be easily modeled
in with ELN primitives.

Finally, the AC to DC conversion has been implemented
with fixed efficiency, by observing that, whenever input
power is at least 15% of the rated power, efficiency can be
approximated as constant [30].

2) DESIGN SPACE EXPLORATION
We adopted the proposed framework to evaluate alternative
configurations in terms of number of PV modules and of
battery cells. The constraint is that all solutions must have the
same initial capital cost to buy the components (i.e., $750,00).
In this way we created 6 different configurations. Configu-
ration 1 is the reference configuration, depicted in Figure 9.
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TABLE 3. Configurations considered during the design space exploration
analysis. Configuration 1 is considered the reference one.

TABLE 4. Capital cost, weight and lifetime of PV panel, and battery cells
in custom EV.

All other configurations are obtained from configuration 1
by decreasing the number of PVs and by compensating with
additional battery cells. Table 3 reports the main charac-
teristics of each configuration, in terms of number of PV
modules and battery cells (with their topology, in terms
of parallel×series), nominal capacity and nominal voltage.
Nominal battery voltage is almost constant across all config-
urations to match the operating voltage of the EV motor: for
this reason, batteries are organized in series strings of 25 to
27 cells, so to sum up voltages, and strings are then connected
in parallel.

Table 4 indicates the useful information about the PV
modules and the battery cells, including unit cost, weight and
expected lifetime.

We simulated all configurations on a typical 24-hours
driving cycle emulating a daily commute in Munich: going
to work, charging the battery through the PV panels during
working hours, going back home, and charging the EV con-
nected to the grid over night.

Figure 10 shows a snapshot of the evolution of the EV for
configuration 1 during two hours in the morning, from when
the vehicle leaves the house. While driving, the EV consumes
power proportionally to the characteristics of the road (i.e.,
speed, acceleration, and road slope, top of the Figure). The
battery SOC (middle) and voltage (bottom) decrease corre-
spondingly, since the EV is powered by the battery. Once that
that the car is parked, the battery is charged by the PVs: power
consumption is zero, and the battery SOC and voltage slowly
increase.

Figure 11 compares the 6 configurations in terms of their
composition and their performance. The figure reports: the
number of PV modules and battery cells, the weight of the
energy subsystem (dominated by the PV modules and by
the battery cells), the residual SOC before and after going
home, and the daily cost of each configuration. All values are
normalized w.r.t. configuration 1.

The most evident result is that configuration 6, i.e., the one
with no PV, does not complete the driving cycle, since the
battery SOC ends before reaching home. Indeed, the battery

FIGURE 10. Snapshot of the evaluation of EV power consumption (top),
battery SOC (middle), and battery voltage (bottom) for configuration 1.

SOC before leaving work is the lowest of all (39.5%), and
it is too low to complete the path to home. Thus, even if PVs
have a small rated power, their contribution can not be ignored
as they can charge the battery while the EV is parked and
they allow to complete the driving cycle. For this reason, most
metrics are not available for configuration 6.

For all other configurations, residual SOC at home, before
plugging to the grid, is mostly influenced by the number of
battery cells: the higher the capacity, the longer the lifetime.
The weight of the energy subsystem has a lower impact: the
heaviest configuration (i.e., configuration 6 with 28.875 Kg)
impacts for only the 4% of the total EV weight (the sole
mechanical parts weigh around 600Kg).

As an additional evaluation metric we adopt total daily
cost, including:
• electricity cost for charging the battery pack, estimated
as cel =

∫
e(t)P(t)dt where e(t) is the instantaneous

electricity cost over time (modeled as a stepwise func-
tion, with different costs at different times of the day)
and P(t) is the instantaneous charge power;

• wear cost, due to aging, of each component of the energy
subsystem, estimated as

cwear =
initial capital cost
lifetime× 365

• operating andmaintenance (O&M) cost for PVmodules,
estimated as 65$/kW per year.We added suchO&Mcost
to the wear cost of PV panel.

PV wear cost and battery wear cost linearly depend on the
number of units in each configuration. Electricity cost mainly
depends on two main factors, i.e., the nominal total capacity
of battery pack and the SOC of battery pack when the EV is
plugged to the charger at the end of the day. This cost is almost
constant for configurations 1 to 4. Surprisingly, configuration
5 has a sensibly higher electricity cost. This configuration
features only two PVs, that do not charge enough the EV
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FIGURE 11. Results of the design space exploration: the six configurations are compared in terms of number of PV modules and of battery cells,
weight, residual SOC in two different moments of the day, and costs. Values are normalized w.r.t. configuration 1. Not all metrics are available for
configuration 6, since this configuration does not complete the driving cycle.

during the working hours. Thus, the battery SOC when the
EV leaves to go home is sensibly lower (67%) than the other
configurations, that reach almost full charge (89% in average,
considered that the charging policy stops at 90% for aging
reasons). This implies that configuration 5 requires a longer
charging phase, and this impacts on the total electricity cost:
for these reasons, configuration 5 is not an optimal one for
this EV.

As a result, the designer may consider three configurations
as optimal outputs of the design space exploration: configu-
ration 1, that minimizes total daily cost, and configurations
3 and 4, that achieve a higher residual SOC (+65.56% in
average) and impact on battery aging with a minimal impact
on cost (+8.61%)w.r.t. configuration 1. It is important to note
that simulations lasted in average 0.91s, thus the design space
exploration allowed to determine optimal configurations and
their pros and cons in a few seconds overall.

VI. CONCLUSIONS AND PERSPECTIVE
This work proved to successfully extend a SystemC-AMS-
based framework for the modeling of electrical energy sys-
tems to EVs. The experimental results proved a good level
of accuracy both in the estimation of power consumption
(error about 2% w.r.t. the state-of-the-art tool ADVISOR)
and of battery dynamics (error lower than 1%). This ensures
an effective estimation of component behavior. The achieved
speed-up w.r.t. ADVISOR (of more than two orders of mag-
nitude) enhances the design process, and allows to explore
multiple alternatives to determine the most effective con-
figuration of the energy components in terms of autonomy,
component aging and cost, as proved by the second case
study. Thus, the adoption of the proposed framework allows
to effectively improve the dimensioning of the energy subsys-
tem and the driving range of the EV under design.

Future work should focus on identifying a more accu-
rate model of physical aspects, to reduce approximation
margins while still allowing good simulation performance.
Possible solutions are either refining the model for mechan-
ical power, e.g., by increasing the order of polynomials
or by considering more environmental inputs like wind,
or reducing the mechanical aspects to domains supported
by the SystemC-AMS standard, e.g., by building electrical

equivalent models, that emulate the behavior of non-electrical
phenomena through electrical linear components (like resis-
tors or capacitors).
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