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Abstract: Convolutional Neural Networks (CNNs) are brain-inspired computational models designed
to recognize patterns. Recent advances demonstrate that CNNs are able to achieve, and often exceed,
human capabilities in many application domains. Made of several millions of parameters, even the
simplest CNN shows large model size. This characteristic is a serious concern for the deployment on
resource-constrained embedded-systems, where compression stages are needed to meet the stringent
hardware constraints. In this paper, we introduce a novel accuracy-driven compressive training
algorithm. It consists of a two-stage flow: first, layers are sorted by means of heuristic rules according
to their significance; second, a modified stochastic gradient descent optimization is applied on less
significant layers such that their representation is collapsed into a constrained subspace. Experimental
results demonstrate that our approach achieves remarkable compression rates with low accuracy
loss (<1%).

Keywords: deep learning; machine learning; neural networks on-chip; optimization

1. Introduction

Convolutional Neural Networks (CNNs) represent a class of machine learning algorithms that are
able to extrapolate complex data representations from unstructured data, e.g., images, text, and audio.
Starting from the astounding results obtained by Krizhevsky et al. [1] during the 2012 ImageNet
competition, CNN models have been improved substantially, achieving classification accuracies that
go beyond those of a human being. Today’s CNNs are considered the state-of-the-art in several
application domains, such as medical diagnosis [2–4], personal home assistants [5], surveillance
systems [6], and self-driving vehicles [7]. The most important factor behind the rise of CNNs, and deep
learning in general, is the availability of efficient computing platforms able to speed-up the training
stages, e.g., GPUs. Nonetheless, the adoption of CNNs in pervasive applications, such as those of the
Internet-of-Things, is still far from being achieved. The reason is simple: the requirements of storage
capacity and computational resources do not fit into low-power embedded architectures. To better
grasp these concepts, let us consider the internal structure of a CNN. Figure 1 depicts the feature
maps of the well-known VGG-16 model. It consists of several layers, each with a proper function:
(i) the input layer (red box), which produces a first transformation of the input image to be fed to
the next convolutional layers; (ii) the output layers (gray boxes), which are perceptron-based artificial
neural networks in charge of producing the final answer on the classification task; and (iii) the hidden
layers, where the features extraction takes place. Figure 1 also shows the dimension of each layer;
by summing up the contributions of all the layers, it results that even a small CNN model like the
VGG-16 requires 138 MB of memory storage, and that is for weights alone. One should consider the
feed-forward phase of a CNN asks for additional memory to store the partial results produced by each
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layer. It is therefore clear that CNNs have to be squeezed in order to fit into architectures with few MB
of memory available.

Figure 1. Topology of the VGG-16 model.

Several strategies have been proposed to shrink pre-trained CNN models. Knowledge distillation [8,9]
and low rank approximation [10,11] are representative examples of non-destructive techniques.
The original model serves as a reference point to generate a child model with a smaller structure and
unchanged accuracy, or to generate linear-separable kernels that can be represented with a concise
mathematical representation. By contrast, destructive methods do apply a direct modification of the
original CNN structure. Under this category, weights pruning [12–14] and weights quantization [15,16]
are the most widely studied techniques. Inspired by the mechanisms that control and modify neural
synapses in the human brain, the pruning approach is based on the idea of removing unimportant
neural connections by setting their weights to zero. Quantization, instead, is used to reduce the number
of bits per weight, hence the memory footprint, and thus the precision of each weight representation.
Extreme quantization techniques include the possibility to quantize weights to binary [17,18] or
ternary [19,20] numbers, and thus to further reduce the complexity of multiply-and-accumulate
operations (replaced with simple shift operations). However, binary and ternary networks are proved
to lead to huge accuracy degradations when evaluated on large datasets [21]. This is because most
solutions apply a blind quantization, without taking into account how weights evolve during the
training stages. In order to fill this gap, Ref. [22] introduced an efficient −σ compressive training
algorithm that accounts for weights represented in the constrained space (−σ, 0, σ). Differently from
other state-of-the-art strategies, the compressive training searches for optimal σ’s such that accuracy
degradation is minimized. However, since the accuracy loss is unconstrained, some CNN may
experience large accuracy degradation.

This work improves over the original algorithm of [22] introducing a knob to control accuracy.
The rationale is to apply the σ-constrained compression only on a specific sub-set of layers. An optimal
layer selection is implemented through a dedicated heuristic that quantifies the significance of each
layer, i.e., how the layer affects the classification performance. The resulting CNN is a hybrid model
where less significant layers (those that contribute less to the inference process) are reduced with
the compressive algorithm proposed in [22], whereas the most significant layers remain untouched.
Experimental results demonstrate that such solution is very effective and it outperforms previous
techniques achieving a better compression-accuracy trade-off.

2. Background

2.1. Overview of Training Algorithms

The term training refers to the process used to find (sub-)optimal values for all weights and biases
in a neural network. The most popular training procedures make use of iterative methods that follow
the derivatives of a loss function to reach a minimum cost. The loss function, here denoted with
L, is the error between the output of the network and the expected one. Given ~ω as the tensor that
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represents all the weights in a CNN model, L is defined as in Equation (1), with ~x the input of the
CNN:

z = L(~ω,~x). (1)

Let us consider the k-th component in the input space ~xk. The associated loss function zk is the
difference between ~ζk, i.e., the predicted class associated to ~xk, and the correct result ~δk, as reported in
Equation (2):

L(~ω,~x) = ‖~δk −~ζk‖2. (2)

In other words, the loss function can be seen as a measure of similarity between the outputs ~ζk
and ~δk.

The same formulation can be extended to a batch of input tensors B by defining the loss as
the sum of all the single errors on the elements of the batch itself; this is true as errors are always
positive. Hence, minimizing the sum implies minimizing each contribution. To prevent this summation
to diverge, the loss function is averaged by the number of elements in the batch N as reported in
Equation (3):

L(~ω) =
1
N ∑

B
‖~δk −~ζk‖2. (3)

The stochastic gradient descent (SGD) is an iterative optimization method that can serve to
minimize a loss function. It may reach the optimality of the solution when the objective function is
convex and it does not stop in a saddle point, namely a point where derivatives are zero. However,
when applied to non-convex functions, SGD allows reaching a local minimum. In the context of deep
learning models, local minima represent a reasonable solution and a good compromise: CNNs are
too complex to be handled with more sophisticated methods, whereas SGD is simple and effective.
As the name suggests, the SGD implements a stochastic exploration of the solution space which is
aimed to reach the optimal ~ω. The search evolves following the negative slope of the objective function.
More specifically, the SGD exploits the definition of gradient, that is the vector of the first-order
derivatives of the objective function as described by Equation (4). When calculated in a generic point
P(v1, v2, . . . , vN) of the optimization space, the direction of ~∇PL suggest where to move from P to
maximize the function L. The complement −~∇PL heads towards lower values:

~∇L = (
∂L
∂w1

,
∂L
∂w2

, . . . ,
∂L

∂wN
). (4)

Clearly, derivatives are significant in the close neighborhood of P. Therefore, for a given L(~ω),
the generic point ~ωt should be updated to ~ωt+1 accounting for a small perturbation ∆~ω as reported in
Equation (5):

~ωt+1 = ~ωt + ∆~ω. (5)

As ∆~ω follows−~∇PL, the loss function L gets smaller: L(~ωt+1) < L(~ωt). It is possible to express
the update as reported in Equation (6), where ~ωt points toward the same direction as −η~∇L(~ωt),
η being the learning rate:

~ωt+1 = ~ωt − η~∇L(~ωt). (6)

According to Equation (3), the computation of ~∇L(~ωt) may result in being quite expensive
depending on the cardinality of the batch B. This is reflected by Equation (7):

~∇L(~ωt) =
1
N ∑

B
~∇L(~ωt,~xt). (7)
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To overcome this issue, a practical solution is to use mini-batches. Instead of computing the sum
over the whole B, each iteration just takes a sub-set ofM random samples as described in Equation (8),
where BM is called mini-batch. In such case, the gradient is approximated on theM contributions:

~∇LM(~ωt) =
1
M ∑
BM

~∇L(~ωt,~xt) (8)

such that the update formula becomes as in Equation (9):

~ωt+1 = ~ωt − η~∇LM(~ωt). (9)

Each iteration works with different mini-batches until every sample of the original batch B is
visited at least once. When exhausted, the mini-batches are newly generated using different random
samples from B. This shuffling prevents any collateral biasing effect. Another property of mini-batched
SGD is the ability to escape from a local minima or plateau ~∇L(~ωt) = ~0. The stochasticity achieved
by picking random samples can differentiate the approximated gradient ~∇LM(~ωt) from ~∇L(~ωt),
such that these little stochastic fluctuations will possibly allow reaching a lower point.

2.2. Pruning

One of the most simple, yet effective techniques for reducing the number of weights is called
pruning. It is based on the idea of removing some neural connections by setting their weights to zero.
This concept is inspired by several motivations, either philosophical or empirical ones. First of all,
it emulates the mechanisms that control and modify neural connections in the human brain, especially
during the growth of a human being. Indeed, both artificial and biological neural networks are
error-resilient: they can work if damaged, or when connections are cut off. As demonstrated in
previous work, it is possible to simplify the neural network model still meeting the same original
accuracy [14,23]. The second motivation is related to the redundancy of neural networks, where
neurons are fully connected to all inputs, even if some connections can be useless. It may happen that
a specific input does not contribute, or does not contribute in a sensible way, to a particular neuron
functionality. Even worse, a connection can even alter the neuron’s functionality, for example because
its weight is far from its optimal value. In this latter case, the model may stack in a local minimum
where all other neurons have learned to compensate its error. In this sense, pruning can be used to
jump throughout the weights space and improve the ability of the SGD method to escape from a local
optimum. It also acts as an extreme form of regularization: it reduces the number of parameters in
order to prevent overfitting. In this work, pruning is used as a compression strategy to reduce the
model complexity.

From a practical viewpoint, each weight is a coefficient multiplying an input in a matrix-vector
manner. A small weight makes a specific input quite irrelevant in the total summation; this behavior
can be approximated by dropping that input. In other words, small weights can be approximated by
zero-values. Generally speaking, the training algorithm sets a weight high (in the absolute sense) if
that connection must have a strong excitatory or inhibitory effect, and hence a significant influence.
Such selection can be obtained by defining a threshold τ as in the relationship in Equation (10):

ωj =

{
ωj, if |ωj| ≥ τ,

0, otherwise.
(10)

3. Compressive Training

The compressive training technique is a modified version of the SGD algorithm illustrated in
Section 2.1. The entire procedure is based on three sequential stages. Firstly, the CNN model undergoes
a preliminary training. This is accomplished through a standard training procedure during which the
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weights are updated using the standard SGD algorithm. Once trained, the weights show a typical bell
distribution as shown in the leftmost plot of Figure 2. Secondly, an amplitude-based weights pruning,
as described in Section 2.2, is applied. This stage is performed iteratively in order to gradually achieve
the desired amount of sparsity, i.e., the percentage of zero-weights. Every pruning iteration is followed
by a short retraining phase thus to adjust the remaining connections. The central plot in Figure 2
illustrates a pruned weights distribution where almost half of the original weights are collapsed to zero.
Thirdly, the σ-constrained compression algorithm is applied; during this phase, weights are bounded
layer-wise into the (−σ, 0, +σ) subspace; the weights distribution will then resemble the one depicted
in the rightmost plot in Figure 2. It is worth noticing that each layer may have its own optimal σ.
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Values

0%

20%

40%

Oc
cu

rre
nc

e

-0.1 -0.05 0 0.05 0.1
Values

-0.1 -0.05 0 0.05 0.1
Values

Figure 2. Weights distribution of the second layer of AlexNet trained on CIFAR10. After the preliminary
training (left), after pruning (center), after compression (right).

3.1. σ-Constrained Stochastic Gradient Descent

During the initial stage, each layer l is assigned to a preliminary σ that is the statistical mean of the
weights distribution Wl . The mean is calculated as reported in Equation (11), where ψ is the number of
weights after pruning, ωi are the weights, and ∆ωi is the update resulting from the back-propagation
of the error function:

σ =
1
ψ

ψ−1

∑
i=0
|ωi + ∆ωi|. (11)

In Equation (11), positive and negative contributions can be split as shown in Equation (12):

σ =
1
ψ

(
∑

ωi>0
ωi + ∆ωi − ∑

ωi<0
ωi + ∆ωi

)

=
1
ψ

ψ−1

∑
i=0
|ωi|+

1
ψ

(
∑

ωi>0
∆ωi − ∑

ωi<0
∆ωi

)
.

(12)

Following the description provided in Section 2.1, where ∆~ω = −η~∇L(~ωk), ∆ωi is defined as in
Equation (13):

∆ωi = −η
∂L
∂ωi

(~ωk). (13)

At the (n + 1)-th iteration, Equation (12) can be written as σ(n+1) = σn + ∆σ, with ∆σ as reported
in Equation (14):

σn =
1
ψ

ψ−1

∑
i=0
|ωi|; ∆σ =

1
ψ

(
∑

ωi>0
∆ωi − ∑

ωi<0
∆ωi

)
. (14)

Each σ is updated with the weighted arithmetic mean of the gradients’ components. Hence, if a
generic weight is far from its optimal value, its partial derivative would strongly affect the value of σ.
While using the arithmetic mean for the first step represents a reasonable starting point, fine-tuning σ

in a constrained solution space allows for carrying out an optimum search strategy.
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The constrained space can be seen as a semi-bisector described as in Equation (15), where~s is a
vector having components in the form sj = sign(ωj) and norm ‖s‖ =

√
ψ:

ê =
~s
‖s‖ . (15)

By expressing the non-pruned weights in their vectorized form ~ω, all their possible values,
and thus the optimal solution, can be found along the tensor ~ω = σn~s. However, some components of
the direction could theoretically change because ωj might flip its sign. Therefore, the solution space
is the set of all possible semi-bisectors, and the complete definition of sj takes the form reported in
Equation (16):

sj = sign(ωj + ∆ωj). (16)

Let us assume an original 5× 5 matrix pruned until only two positive weights ωx, ωy and a single
negative weight ωz are left. The solution space can be represented in three dimensions and becomes
a semi-straight line, whose direction is~s = (1, 1,−1)T . Figure 3 gives a pictorial representation of
the solution space. If the actual solution ~ω = (ωx, ωy, ωz)T = (σn, σn,−σn)T belongs to the attractive
valley of a minimum point H, then −~∇L(~ω) will point towards it.

� ��
�

�

�
���

��
�

��

��

Figure 3. Visual representation of the solution space.

However, ~ω can only move along ~s, i.e., ê. That means it is possible to find the projection of
−η~∇L(~ω) on ê to know which is the optimal ∆σ as to approach as close as possible to H. This is the
ultimate sense of this algorithm: lowering or increasing σ to approach the minimum point in the best
approximated way. In fact, the scalar product Equation (17) that projects ∆~ω = −η~∇L(~ω) on ê can be
used to update σn, obtaining a formulation which is similar to Equation (14):

∆σ = 〈~e, ∆~ω〉 = 1√
ψ
〈~s, ∆~ω〉 = 1√

ψ

ψ−1

∑
i=0

si∆ωi. (17)

The difference between Equations (14) and (17) stands in the constant factor 1/
√

ψ, which works as a
slowing factor of the descent in the solution space. Although very effective with several deep learning
models, either convolutional or recurrent, the main drawback is the lack of control on the accuracy loss.
The next section introduces an accuracy-driven compressive framework which overcomes this limitation.

4. A Greedy Approach for Compressive Training

This section gives a step-by-step description of a new greedy strategy where layers are unevenly
compressed using the compressive training algorithm. The flow is reported in Figure 4. At a glance,
the algorithm is composed of three main stages denoted with different colors: pre-training (light
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red), setup (yellow), and optimization (blue). The numbered boxes serve as an index for the detailed
description.

Trained CNN Model

Pruning

Layers Sorting

Compression

Validation

C2

Update

re-Training

Condition 1: Accn > Acc0 - ε 
Tolerance: ε 

Accuracy: Acc0
Epoch: 0

Accuracy: Accn 
Epoch: n

Ternary Layers Counter: N += ΔN
CounterStep: ΔN

C1

Condition 2: n = n_max 
Epochs Number: n_max 

Metric: Sparsity % 

Full Precision  
re-Training

Layerwise  
Ternarization

0

1

2

3

4

5

6

7

8

Granularity: Weights
Metric: Magnitude

PRE-TRAINING

SETUP

OPTIMIZATION

Y

N

N

Y

Figure 4. The proposed net compression pipeline.

4.1. Pre-Training

Step 0—Trained CNN Model. The input of the proposed flow is represented by the trained model
of the CNN that needs to be optimized. Our solution is designed to work on classical floating-point
CNN models; however, it can be also applied to quantized CNNs. It can work equally on top of
pre-trained floating-point CNN models, or on clean models, after a standard training process.

4.2. Setup

Step 1—Pruning. It consists of a standard magnitude-based pruning applied to both convolutional
and fully-connected layers. The user specifies an a priori value for the desired percentage of sparsity
of the net. Since such a value is unique for the entire CNN, each layer may show a different pruning
percentage. This allows representing the CNN model with a non-homogeneous inter-layer sparsity. We
decided to follow this direction under the assumption that each layer influences the knowledge of the
CNN differently, i.e., each layer provides a specific contribution to the final prediction. For this reason,
the layers do not all keep the same amount of information, but the knowledge is spread heterogeneously
among the layers, and hence they keep different percentages of redundant parameters.
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Step 2—Layers Sorting. It is known that some layers are more significant than others. That means
the compression of less significant layers will marginally degrade the overall performance classification.
The most significant layers, instead, should be preserved in their original form. As a rule of thumb,
we selected the intra-layer sparsity as a measure of significance. More in detail, we argue that layers with
lower intra-layer sparsity are those that play a major role in the classification process, whereas those
with a higher intra-layer sparsity can be sacrificed to achieve a more compact CNN representation.
In other words, we base our concept of significance on the number of activated neurons.

A significance-based sorted list of layers is generated at first. All layers are processed as they
appear in the original model, and then pruned and sorted based on their weights distribution according
to the rule higher-sparsity first-compressed. A graphical example is reported in Figure 5, where (i) the
top-most pictures represent the original weight distribution of each layer (numbered L1 to L8) of
the AlexNet model trained on the CIFAR10 dataset; (ii) the plots in the middle depicts the weight
distribution after pruning; and (iii) the down-most plots report the layers sorted according to their
significance, namely, less important layers are those with a smaller standard deviation, which is directly
correlated to their sparsity.

Figure 5. AlexNet on Imagenet, layers after the sorting algorithm; the sparsity value S is reported for
each layer.

4.3. Optimization

Step 3—re-Training The retraining phase is applied in order to recover the accuracy loss due to
pruning. The retraining is applied after pruning at first, and then after each optimization loop.

Step 4—Compression It is the compressive training described in Section 3. The weights are
projected in a sub-dimensional space composed by just three values for each layer, i.e., (−σ, 0,+σ),
with σ defined layer-wise.

Step 5— Validation The model is validated in order to quantify the accuracy loss due to
compression, and thus to decide if it is worth continuing with further compressions. Validation
is a paramount step for the greedy approach as it actually enables an accuracy-driven optimization.
The accuracy Accn is evaluated and stored after each compression epoch n.

Step 6—Condition 1 (C1) The accuracy recorded during the n-th epoch (parameter Accn) is used
to determine if the CNN model can be further compressed, as in Equation (18). The accuracy of the
pre-trained model (Acc0) works as baseline, whereas the parameter ε represents the user-defined
accuracy loss tolerance:

Accn > Acc0 − ε. (18)

It is worth noticing that the higher the ε, the higher the compression of the CNN model.
The framework takes a larger execution time for small values of ε. This is due to the increased
complexity in selecting a good combination of layers that allows matching the user’s constraints.
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C1 can lead to two possible branches. If Equation (18) holds true, then the algorithm goes to step 7;
otherwise, the quit condition C2 is evaluated.

Step 7—Update This stage is applied if Equation (18) is verified. The counter N indicates how
many layers of the sorted list can be compressed. Each and every time C1 is evaluated as true, and N
is incremented by ∆N. The latter represents another granularity knob, hence on the speed of the
framework; ∆N is mainly defined by the network size: the larger the CNN model, the larger the ∆N.

Step 8—Condition 2 (C2) This last condition is based on the maximum number of epochs
nmax, a user-defined hyperparameter. At the n-th iteration, if more than nmax epochs are elapsed,
the algorithm stops, else the flow iterates over step 3.

Figure 6 shows how accuracy evolves during the optimization loop: we report the validation’s
trend during the algorithm’s epochs (blue-line), also reporting the accuracy values after both the
re-Training and Compression phases (red-line). To better understand the behavior of the model during
its compression, we recall that, for each loop, the algorithm first runs the retraining phase (based on a
float32 back-propagation algorithm) and then a feature projection of the full precision model in the
constrained solution space (this induces some accuracy drop). As the plot suggests, the performance
loss is recovered within each retraining phase. The peak of loss reflects the addition of a new layer in
the compressible subset list. There are layers that influence more the performance drop, but in general,
after some epochs, the network reconstructs the information lost.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
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cu

ra
cy

Step4
Step3 + Step4

Figure 6. Training plot of VGG-19 architecture on CIFAR10 dataset. The plot shows the validation
accuracy after the re-Training and the Compression (Step3 and Step4) with the red-line, while, with the
blue-line, the validation accuracy trend on the σ-constrained solution space can be seen (after the
Compression, Step4).

5. Results

The objective of this section is to quantify the effectiveness of our compression training w.r.t. other
state-of-the-art solutions. We focus on some of the most popular CNNs models and datasets.

CNN models—The adopted CNN models are trained from scratch or retrained from the
Torchvision package of PyTorch [24]. More specifically, we adopted the following CNNs: AlexNet [1],
VGG [25], and several residual networks with increasing complexity [26].

All the models are trained and tested using PyTorch [24] (version 0.4.1). The training epochs
of the compressive algorithm are fixed to 100, with a batch size of 128 and an initial learning rate of
1× 10−3, which is scaled every 33 epochs by a factor of 0.1.

Datasets—CIFAR10 and CIFAR100 [27] are two large-scale image recognition benchmarks that, as
their names suggest, differ for the number of available labels. Both are made up of 60,000 RGB images.
The raw 32× 32 data are pre-processed using a standard contrast normalization. We applied a standard
data augmentation composed of a 4-pixel zero-padding with a random horizontal flip. Each dataset is
equally split into 50,000 and 10,000 images for training and validation, respectively. The intersection
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between training-set and validation-set is void. Tested CNNs are: AlexNet [1], VGG [25], and residual
networks [26].

ImageNet (ILSVRC-2012 [28]) represents a ultra-large image dataset. Being composed of about
1.2 M images for training and over 50,000 ones for validation, it accounts for a total of 1k different
classes. We followed the original data augmentation reported in [1]: the original raw images with size
256× 256 are cropped into 224× 224 patches with a global contrast normalization. For the training
stage, the transformation is applied randomly together with a horizontal flip; during validation,
a center crop manipulation is applied. AlexNet [1] and ResNet18 [26] are the two tested CNNs.

5.1. Performance

For the validation of the proposed technique, we consider the trade-off between the accuracy
loss and the compression ratio. The two performance metrics are described in Equations (19) and
(20). The former represents the accuracy loss and is defined as the difference in terms of accuracy
percentage between the original full-precision model (ModelFP) and the compressed one (ModelC).
The latter describes the compression rate defined as the ratio between the memory storage needed to
save the original model’s parameters and the storage needed for saving the compressed model after
the encoding. On each compressed layer, we apply the weights encoding illustrated in [22], using a
4-bit counter. In the original model, all the weights’ parameters (N0) have to be saved in 32-bit; for the
compressed model, only the different Nσ values (one per each compressed layer) and the total number
of weights of the full-precision layers NFP need 32 bit precision.

AccuracyLoss [%] = Accuracy(ModelFP)− Accuracy(ModelC), (19)

CompressionRate [×] =
N0 · 32bit

NFP · 32bit + Length(Enc) · 1bit + Nσ · 32bit
. (20)

We first focus on the performance on CIFAR10 and CIFAR100 datasets with AlexNet, VGG19bn,
and ResNet110. Tables 1 and 2 summarize the obtained results. In both tables, the first row reports
the name of the CNN model with the baseline accuracy in parentheses; the second row reports
the experimental results in terms of Top-1 accuracy and accuracy loss; the last row describes the
compression rate after weights encoding for each different CNN model. Obtained numbers refer to
a user-defined accuracy loss of <1%. The numbers suggest not only that the accuracy constraint is
successfully met, but they also indicate that very large compression rates (e.g., 26.4× for the AlexNet
model) are easily achieved. This proves the adopted rationale is sound and also applicable to very
complex CNN model; it allows to preserve useful information just removing redundant, or less
significant, parameters on the less significant layers.

Table 1. Validation accuracy results of compressive training on CNNs trained on CIFAR10. For each
CNN model, the accuracy loss (Acc.Loss) is referred to the baseline accuracy reported in parentheses.

CIFAR10
AlexNet (77.22%) VGG19bn (93.02%) ResNet110 (93.81%)

Accuracy Acc.Loss Accuracy Acc.Loss Accuracy Acc.Loss

OUR 76.44% 0.78% 92.20% 0.82% 93.32% 0.49%

Compression Rate 26.4× 6.7× 8.0×
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Table 2. Validation accuracy results of compressive training on CNNs trained on CIFAR100. For each
CNN model, the accuracy loss (Acc.Loss) is referred to the baseline accuracy reported in parentheses.

CIFAR100
AlexNet (44.01%) VGG19bn (71.95%) ResNet110 (71.14%)

Accuracy Acc.Loss Accuracy Acc.Loss Accuracy Acc.Loss

OUR 43.47% 0.54% 71.62% 0.33% 70.80% 0.34%

Compression Rate 26.4× 6.5× 7.3×

To further understand our approach, we detail two network structures before and after the greedy
compressive training. Table 3 shows the ResNet20 architecture on CIFAR10: the two first columns
show the layers ID and their input size; the next columns show the intra-layer sparsity percentage
and the bit-width adopted to represent the weights, both for the full precision model (FP) and the
compressed model (CM). The last rows report the sparsity of the resulting net, the compression rate
w.r.t. the original model, and the final accuracy. Table 4 shows the same kind of metrics for AlexNet
trained on CIFAR100.

Since our framework applies automatic decisions on the number of layers to compress, for each
CNN and each dataset adopted, the results may change substantially, also depending on the accuracy
constraint and the number of iterations run.

Table 3. Layer-wise sparsity and width before (Full Precision) and after the compressive greedy
technique (Compressed Model) application on ResNet20 architecture (CIFAR10). Considering that
convolutional layers have input shape (n, cin, kh, kw), and fully-connected layers have input shape
(n, cin), where kh and kw are respectively the height and width of input planes in pixels, while cin

denotes the number of input channels and n the batch size.

FP CM

Layer Input Shape Sparsity Width Sparsity Width
[%] [Bit] [%] [Bit]

Conv1 (16,3,3,3) 0 32 41 32
Conv2 (16,16,3,3) 0 32 18 2
Conv3 (16,16,3,3) 0 32 45 32
Conv4 (16,16,3,3) 0 32 23 2
Conv5 (16,16,3,3) 0 32 24 2
Conv6 (16,16,3,3) 0 32 31 2
Conv7 (16,16,3,3) 0 32 37 2
Conv8 (32,16,3,3) 0 32 32 2
Conv9 (32,32,3,3) 0 32 45 2

Conv10 (32,16,1,1) 0 32 29 32
Conv11 (32,32,3,3) 0 32 44 2
Conv12 (32,32,3,3) 0 32 50 2
Conv13 (32,32,3,3) 0 32 53 2
Conv14 (32,32,3,3) 0 32 62 2
Conv15 (64,32,3,3) 0 32 44 2
Conv16 (64,64,3,3) 0 32 58 2
Conv17 (64,32,1,1) 0 32 50 32
Conv18 (64,64,3,3) 0 32 70 2
Conv19 (64,64,3,3) 0 32 87 2
Conv20 (64,64,3,3) 0 32 90 2
Conv21 (64,64,3,3) 0 32 94 2

Fc1 (10,64) 0 32 39 32

Final Sparsity 0.00% 68.16%

Compression Rate - × 6.1×

Accuracy 93.02% 92.47%
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Table 4. Layer-wise sparsity and width before (Full Precision) and after the compressive greedy
technique (Compressed Model) application on AlexNet architecture (CIFAR100). Considering that
convolutional layers have input shape (n, cin, kh, kw), and fully-connected layers have input shape
(n, cin), where kh and kw are, respectively, the height and width of input planes in pixels, while cin

denotes the number of input channels and n the batch size.

FP CM

Layer Shape Sparsity Width Sparsity Width
[%] [Bit] [%] [Bit]

Conv1 (64,3,11,11) 0 32 39 32
Conv2 (192,64,5,5) 0 32 57 2
Conv3 (384,192,3,3) 0 32 68 2
Conv4 (256,384,3,3) 0 32 55 2
Conv5 (256,256,3,3) 0 32 66 2

Fc1 (10,256) 0 32 18 32

Final Sparsity 0.00% 60.61%

Compression Rate -× 26.7×

Accuracy 44.01% 43.47%

5.2. Comparison with the State-of-the-Art

The analysis includes some of the most popular works on aggressive CNN compression:
Xnor-Net [17], by Rastegari et al., where both filters and feature maps are optimized in a binary space;
Ternary Weights Network (TWN) [20] where Li and Liu et al. overcame the binary solution space adding
the zero value as third quantized instance; Trained Ternary Quantization (TTQ) [19], where Zhu et al.
propose a new ternary quantization procedure able to use just 2-bit weights (with relative scaling
factors) during CNN inference; DoReFa-Net [29], where Zhou el al. explored hybrid CNNs with
different quantization widths for weights, gradients, and activations type with binary weights and
32-bit activations; we focus on the 1-32-32 DoReFa-Net in particular. For all the comparisons, the
baseline is the accuracy obtained with full-precision models found in the PyTorch repository. In the
following text, we use the accuracy loss as the main metric for comparison. Indeed, the results reported
in the previous works do implement any encoding scheme and comparing the compressive rates might
result in being quite unfair.

Let us first consider the results on the CIFAR10 dataset. The first row in Table 5 describes the
ResNet20 and ResNet56 baseline accuracies; each column reports the obtained results. For the first
CNN model, our technique is able to outperform TTN’s solution with just 0.55% of accuracy loss,
whereas, for the ResNet56, the solution is closer to the baseline. However, for both networks, we set
up the accuracy tolerance ε at 1%, reaching a considerable compression rate (6.1× and 6.9×).

Table 6 reports the experimental results obtained with the Imagenet dataset. We can see that,
for AlexNet, the best solution is that achieved with TTN. In fact, they claim to be able to improve
over full precision model. Their solution consists of a ternary weights CNN model (with relative
scaling factors), except for the first and last layers, which are kept on float32 precision. Our solution
outperforms all the other solutions, e.g., a 12.35% delta w.r.t. XNOR-Net. On the other hand, with the
ResNet18 architecture, our model is able to outperform all considered state-of-the-art techniques,
reaching just 1.86% of accuracy loss. For this set of experiments, considering the 1k-labels dataset
complexity, we fixed the accuracy tolerance ε at 2%, reaching compression rates of 10.9× for AlexNet
and 3.6× for ResNet18.
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Table 5. Validation accuracy results of compressive training on CNNs trained on CIFAR10, comparison
with respect to TTN work. For each CNN model, the accuracy loss (Acc.Loss) is referred to the baseline
accuracy reported in parentheses. The compression rates are considered just for our solution.

CIFAR10
ResNet20 (93.02%) ResNet56 (93.65%)

Accuracy Acc.Loss Accuracy Acc.Loss

OUR 92.47% 0.55% 93.04% 0.61%
TTN [19] 91.13% 1.89% 93.56% 0.09%

Compression Rate 6.1× 6.9×

Table 6. Validation accuracy results of compressive training on CNNs trained on Imagenet, comparison
with respect to other compressive approaches. For each CNN model, the accuracy loss (Acc.Loss) is
referred to the baseline accuracy reported in parentheses. The compression rates are considered just for
our solution.

Imagenet
AlexNet (56.55%) ResNet18 (69.76%)

Accuracy Acc.Loss Accuracy Acc.Loss

OUR 55.2% 1.35% 67.9% 1.86%
TTN [19] 57.5% -0.95% 66.6% 3.16%
TWN [20] - - 61.8% 7.96%
XNOR-Net [17] 44.2% 12.35% 51.2% 18.56%
DoReFa [29] 53.9% 2.65% - -

Compression Rate 10.9× 3.6×

6. Conclusions and Future Works

In this paper, we presented a layer-wise compressive training tool that is able to significantly
squeeze CNN structures with minimal accuracy drops (below 1%). Our approach leverages a heuristic
that identifies the most appropriate layers to be compressed. This allows for reaching a sub-optimal
combination of mixed representations that obeys user-defined accuracy constraints. Experimental
results show that the proposed solution overcomes the limitation of a blind pruning, thus providing a
smart optimization flow for an effective deployment of CNNs on devices with low storage capacity.
Despite the remarkable achievements shown in the paper, there is much room for improvement.
First, the sparsity-based empirical rule used to drive the layer-by-layer compression can be expanded
with additional parameters that give a more accurate estimation of the accuracy drop. That would help
to improve the accuracy-compression trade-off. Second, the execution time of the compression loop
can be reduced by lowering the number of retraining epochs. There exists an optimal setting of the
hyper-parameters used in the flow, e.g., C1 and C2, which is a function of the dataset adopted and the
CNN under design. Finally, the use of quantization, e.g., fixed-point weights, represents an orthogonal
knob that brings additional savings in terms of both memory storage and computational resources.
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