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Abstract
Weierstrass-type representations have been used extensively in surface theory to create sur-
faces with special curvature properties. In this paper we give a unified description of these
representations in terms of classical transformation theory of �-surfaces.

Keywords Minimal surfaces · Constant mean curvature surfaces · Weierstrass
representation · Bryant representation · Omega-surfaces

Mathematics Subject Classification 53A40 · 53A10 · 53B25

1 Introduction

The Weierstrass–Enneper representation [36] is a fundamental tool in differential geome-
try for creating interesting examples of minimal surfaces in Euclidean 3-space. A similar
representation was developed by Bryant [6], and later [35], for surfaces of constant mean
curvature (CMC) H ≡ c in hyperbolic 3-space of constant sectional curvature −c2. Many
other Weierstrass-type representations exist for various surface classes, for example:

• maximal surfaces in Lorentz 3-space [26],
• zero mean curvature surfaces in isotropic 3-space [33],
• CMC surfaces H ≡ c in de Sitter 3-space of constant sectional curvature c2 [1],
• flat surfaces in hyperbolic 3-space [21],
• linear Weingarten surfaces of Bryant type in hyperbolic 3-space [22],
• linear Weingarten surfaces of Bianchi type in de Sitter 3-space [2].

The ingredients for such representations are always the same: a meromorphic function and
a holomorphic 1-form. Thus one might expect that these representations are related in some
way. A unification of some of these representations was achieved in [3] under the umbrella
of marginally trapped surfaces in Minkowski space.

On the other hand, geometric interpretations of these representations have been sought
in various works. The classical Weierstrass–Enneper representation can be understood using
the Christoffel transformation of isothermic surfaces [23]. The Umehara–Yamada perturba-
tion [35] deforms minimal surfaces in Euclidean 3-space into CMC-1 surfaces in hyperbolic
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3-space. This perturbation is given a Möbius geometric interpretation in [24] as the spectral
deformation of isothermic surfaces, arising due to the integrable nature of this surface class
(see, for example, [7,15,19]). A Laguerre geometric interpretation of this perturbation was
studied in [28], extending this notion to a wider class of surfaces.

Motivated by an observation in [10], we seek to understand Weierstrass-type representa-
tions using transformations of �-surfaces. In [16], using the Christoffel transformation for
isothermic surfaces in Minkowski space, Demoulin develops a notion of dual surfaces for
�-surfaces, yielding a transformation for this surface class. We shall refer to this as the �-
dual transformation. We show that L-isothermic surfaces can be characterised as�-surfaces
admitting a special dual surface, akin to how minimal surfaces in Euclidean 3-space can be
characterised as Christoffel transformations of their Gauss map. We then give an invariant
explanation of all of the aforementioned Weierstrass-type representations as applications of
the �-dual transformation to a prescribed Gauss map.

2 Ä-surfaces

Let x : � → R
3,1 be a spacelike immersion. As defined in [14,30] a smooth map x∗ : � →

R
3,1 is called a Christoffel dual of x if x and x∗

• have parallel tangent planes,
• induce the same conformal structure on T�, and
• induce opposite orientations on T�.

It was shown1 in [8] that these conditions can be encapsulated by

(dx ∧ dx∗) = 0 and dx � dx∗ = 0, (1)

where (dx ∧ dx∗) is a symmetric 2-form defined by

(dx ∧ dx∗)(X , Y ) = (dx(X), dx∗(Y )) − (dx(Y ), dx∗(X)),

and dx � dx∗ is a symmetric 2-form with values in ∧2
R
3,1 (with R

3,1 denoting the trivial
bundle � × R

3,1) defined by

dx � dx∗(X , Y ) = dx(X) ∧ dx∗(Y ) − dx(Y ) ∧ dx∗(X).

A surface which possesses a Christoffel dual is then said to be isothermic. By the symmetric
nature of (1), x∗ is itself isothermic with Christoffel dual x .

In Laguerre geometry, one uses isotropy projection to identify points inR3,1 with spheres
(see for example [13]). Therefore a spacelike immersion x : � → R

3,1 represents a con-
gruence of spheres. Given a spacelike immersion x : � → R

3,1, we may write the normal
bundle of x as dx(T�)⊥ = G⊕G̃, whereG and G̃ are null line subbundles of dx(T�)⊥.We
call G and G̃ the lightlike Gauss maps of x . We may then construct null affine line bundles
L := x + G and L̃ := x + G̃ of R3,1. In Laguerre geometry, these represent the envelopes
of the sphere congruence x (see for example [27]).

As classically defined by Demoulin [16–18], the envelopes of isothermic (spacelike)
sphere congruences are called �-surfaces. Therefore,�-surfaces are the null affine line bun-
dles L ofR3,1, forwhichwemaywrite L = x+G for some isothermic surface x : � → R

3,1.

1 In fact, it was shown using Clifford algebra that this relation can be expressed by the vanishing of a single
wedge.
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Given Christoffel dual maps x and x∗, we say that envelopes L and L∗ of x and x∗, respec-
tively, are �-dual if L is parallel2 to L∗.

3 Marginally trapped surfaces

A spacelike immersion x : � → R
3,1 is called marginally trapped if its mean curvature

vector

H = 1

2
(dXdX x + dY dY x)

⊥

is lightlike, where X , Y ∈ �T� is an orthonormal basis with respect to the induced metric
of x and (.)⊥ denotes projection onto the normal bundle of x . Given p ∈ �, H(p) is then
lightlike if and only ifH(p) ∈ G(p) orH(p) ∈ G̃(p), whereG and G̃ are the lightlike Gauss
maps of x . We say that a marginally trapped surface x is regular if either H(p) ∈ G(p) for
all p ∈ � or H(p) ∈ G̃(p) for all p ∈ �, i.e., H ∈ �G or H ∈ �G̃.

Assume now that the normal bundle of x is flat. Then there locally exists parallel sections
g ∈ �G and g̃ ∈ �G̃ with (g, g̃) = −1. Since g is parallel, we may write dg = dx ◦ S
for some S ∈ � End(T�). Since (dx, dg) is symmetric, we have that S is symmetric with
respect to the induced metric of x . Therefore, S admits a basis X , Y ∈ �T� of orthonormal
(with respect to the induced metric of x) eigenvectors with respective eigenvalues α and β.
Now the mean curvature vector field is given by

H = −1

2
((dXdX x + dY dY x, g)g̃ + (dXdX x + dY dY x, g̃)g) = 1

2
(α + β)g̃ mod G.

Thus, H ∈ �G if and only if α + β = 0, i.e., S is trace-free. On the other hand

dx � dg(X , Y ) = (β + α)dX x ∧ dY x .

Thus S is trace-free if and only if dx � dg = 0.
If dx � dg = 0 for some g ∈ �G, then (ddx, g) = −(dx ∧ dg) = 0. Thus, dx � dg = 0

implies that x and g are Christoffel dual. We thus arrive at the following theorem:

Theorem 3.1 A spacelike immersion in Minkowski space is a regular marginally trapped
surface with flat normal bundle if and only if it is Christoffel dual to a section of one of its
lightlike Gauss maps.

Suppose that x : � → R
3,1 is Christoffel dual to g ∈ �G. By defining L := x + G,

we see that L is �-dual to L∗ := G. Moreover, since x has the same induced conformal
structure on T� as G, one identifies x as themiddle sphere congruence of L , see [4,29]. One
deduces from [9] that such L are the envelopes of L-isothermic surfaces, that is, surfaces in
Euclidean 3-space that admit curvature line coordinates which are conformal with respect
to the third fundamental form. This characterisation gives an analogue of minimal surfaces
being Christoffel dual to their Gauss map in Euclidean space:

Corollary 3.2 Envelopes of L-isothermic surfaces are the�-surfaces that are�-dual to their
lightlike Gauss map.

2 It is always possible to arrange L and L∗ to be parallel, since the normal bundles of x and x∗ are the same.
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Now, the condition dx � dg = 0, implies that3 ζ := g ∧ dx ∈ �1(G ∧ G⊥) is a
closed 1-form. Moreover, since G ∧ G⊥ is an abelian subbundle of ∧2

R
3,1, one has that

[ζ ∧ ζ ] = 0. Therefore, {d + tζ }t∈R is a 1-parameter family of flat metric connections. Let
Tt : � → O(3, 1) be local orthogonal trivialising gauge transformations of d + tζ , i.e.,

Tt (d + tζ )T−1
t = d.

Such transformations are unique up to premultiplication by a constant endomorphism A ∈
O(3, 1). Now Ttdx ∈ �1(R3,1) is a closed 1-form:

d(Ttdx) = Tt (d + tζ )dx = Tt (ddx + tζ ∧ dx) = 0

since ζ ∧ dx = −(dx ∧ dx)g = 0. Thus we may integrate to obtain a new surface xt : � →
R
3,1 satisfying dxt = Ttdx . DefineGt := TtG and set gt := Tt g. Then dgt = Tt (d+tζ )g =

Ttdg, since ζ g = 0, and one deduces that

dxt � dgt = Tt dx � dg T−1
t = 0.

Thus xt is a marginally trapped surface and Lt := xt +Gt is the envelope of an L-isothermic
surface. This is the T-transform of L-isothermic surfaces (see [28,29]). Notice that we obtain
a new closed 1-form

ζt := gt ∧ dxt = AdTt ζ ∈ �1(Gt ∧ G⊥
t ).

We therefore obtain local orthogonalising gauge transformations T t
s : � → O(3, 1) of the

1-parameter family of flat connections {d + sζt }s∈R. In [23, Section 5.5.9] the following
property was shown for iterating these transformations:

T t
s Tt = Tt+s, and thus T t−t = (Tt )

−1. (2)

This property will be useful for us in the following section.

4 Weierstrass-type representations

The ingredients for Weierstrass-type representations are:

• A simply connected Riemann surface �. Equivalently, � is a simply connected 2-
dimensional manifold equipped with a conformal structure and an orientation.

• A meromorphic function φ : � → C ∪ {∞}. Equivalently, since C ∪ {∞} ∼= S2 ∼=
P(L), where L ⊂ R

3,1 denotes the lightcone, we can identify φ with a smooth map
G : � → P(L). φ being meromorphic is equivalent to G being an orientation preserving
map whose induced conformal structure is weakly equivalent to the conformal structure
on �.

• A holomorphic 1-form ω. Alternatively, one may prescribe a holomorphic quadratic
differential4 q . We then have the relation q = dφ ω + dφ̄ ω̄.

We make the assumption5 that φ has no critical points, and thus G is an immersion. Now
for any non-zero lift g ∈ �G, we may write q = (dg, dg ◦ Q) for some endomorphism
Q ∈ � End(T�). q is then a holomorphic quadratic differential if and only if

3 Throughout this paper we shall use the well-known identification ∧2
R
3,1 ∼= so(3, 1), via (a ∧ b)v =

(a, v)b − (b, v)a.
4 That is, we may write q2,0 = hdz2 for some local holomorphic coordinate z on � and some holomorphic
function h.
5 Since φ is meromorphic, this excludes the case that G is constant and isolated points of � where G does
not immerse.
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ζ := g ∧ dg ◦ Q ∈ �1(G ∧ G⊥)

is a closed 1-form (see [12,32]).
Explicitly, one may identify a meromorphic function φ with the map G : � → P(L)

spanned by the lift

g = (1 + φφ̄)e0 + (φ + φ̄)e1 − i(φ − φ̄)e2 + (−1 + φφ̄)e3 ∈ �G, (3)

where {e0, . . . , e3} is a pseudo-orthonormal basis for R3,1 with e0 timelike and e1, e2, e3
spacelike. The induced metric of g is (dg, dg) = 4dφdφ̄. By defining

Q = 1

2

(
ω̄ ⊗ ∂

∂φ
+ ω ⊗ ∂

∂φ̄

)
,

we have that (dg, dg ◦ Q) = dφω + dφ̄ω̄ = q . One then computes

ζ = g ∧ dg ◦ Q = 1

2
{(e0 + φe1 − iφe2 − e3) ∧ (φe0 + e1 + ie2 + φe3)ω

+ (e0 + φ̄e1 + i φ̄e2 − e3) ∧ (φ̄e0 + e1 − ie2 + φ̄e3)ω̄}. (4)

Notice that given Weierstrass data (φ, ω), the right hand side of (4) yields a closed 1-form
with values in G ∧ G⊥, regardless of whether φ has critical points or not.

4.1 Affine hyperplanes inR3,1

Let p ∈ R
3,1 be a non-zero vector. Then hyperplanes with normal p are flat 3-dimensional

affine spaces. Given a closed ζ ∈ �1(G ∧ G⊥) we have that ζp ∈ �1(R3,1) is a closed
1-form and we may locally integrate it to obtain

x : � → R
3,1 satisfying dx = −ζp.

Now d(x, p) = −(ζp, p) = 0, since ζ is skew-symmetric. Thus x takes values in an affine
hyperplane with normal p. If G(p) ⊥ p for some p ∈ � then dpx ∈ G(p) and thus x does
not immerse at p. Away from such points, we may write ζ = g ∧ λ, where g ∈ �G satisfies
(g, p) = −1 and λ ∈ �1(G⊥). Then dx = −ζp = λmod G implies that ζ = g ∧ dx and
the closedness of ζ implies that dg� dx = 0. Hence, L := x +G is �-dual to L∗ := G and
x is marginally trapped. In fact, since p lies in dx(T�)⊥, one deduces that H = 0. Hence, x
has zero mean curvature. We thus have the following 3 cases:

(i) if p is timelike then x is a minimal surface in a Euclidean 3-space,
(ii) if p is spacelike then x is a maximal surface in a Lorentzian 3-space,
(iii) if p is lightlike then x has zero mean curvature in an isotropic 3-space.

In cases (i) and (ii) we obtain a unit (spacelike or timelike, respectively) normal of x by
setting n := g − p ∈ �p⊥.

By choosing p = e0, one deduces from (4) that

dx = −ζe0 = Re{((1 − φ2)e1 + i(1 + φ2)e2 + 2φe3)ω}
and we thus recover the Weierstrass–Enneper representation [36]. By choosing p = e3, we
have that

dx = −ζe3 = Re{(2φe0 + (1 + φ2)e1 + i(1 − φ2)e2)ω},
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recovering the representation of [26] for maximal surfaces in Minkowski 3-space. Choosing
p = e0+e3

2 we obtain the representation of [33] for zero mean curvature surfaces in isotropic
3-space:

dx = −ζ e0+e3
2 = Re

{(
e1 + ie2 + 2φ e0+e3

2

)
ω

}
.

In this case, x is the graph of a harmonic function.

Remark 4.1 In [28] it was shown that surfaces in Euclidean space that are simultaneously
L-minimal and L-isothermic are those surfaces whose middle sphere congruence is one of
the three cases above. On the other hand, a Weierstrass-type representation was developed
for such surfaces in [34]. One can recover this representation by intersecting the envelopes
L of the three cases above with appropriate affine Euclidean 3-spaces.

We summarise the results of this subsection in the following theorem:

Theorem 4.2 The Weierstrass-type representations for

• minimal surfaces in Euclidean 3-space,
• maximal surfaces in Lorentzian 3-space, and
• zero mean curvature surfaces in isotropic space

can be viewed as certain applications of the �-dual transformation to a prescribed lightlike
Gauss map.

4.2 Quadrics inR3,1

Given a closed 1-form ζ ∈ �1(G ∧ G⊥) we have that {d + tζ }t∈R is a 1-parameter family
of flat connections. Therefore, there locally exists parallel sections of these connections.
Suppose that x : � → R

3,1 satisfies

(d + mζ )x = 0

for some6 non-zero m ∈ R. Then d(x, x) = −2m(ζ x, x) = 0, since ζ is skew-symmetric.
Hence, (x, x) is constant. If x(p) ⊥ G(p) for some p ∈ �, then dpx ∈ G(p) and thus x does
not immerse at p. Away from these points, we may write ζ = g∧λ where g ∈ �G such that
(g, x) = −1 and λ ∈ �1(G⊥). Then the condition dx = −mζ x implies that ζ = 1

m g ∧ dx .
The closedness of ζ then implies that dx �dg = 0. Hence, L := x +G is�-dual to L∗ = G
and x is marginally trapped. From [25] we then obtain the following 3 cases:

(i) if (x, x) = −c2 then x is a CMC-c surface in H
3(−c2),

(ii) if (x, x) = c2 then x is a CMC-c surface in S
2,1(c2),

(iii) if (x, x) = 0 then x is an intrinsically flat surface in L.
In cases (i) and (ii) G then has a geometric interpretation as the hyperbolic Gauss map of
x . An important observation is that parallel sections x of d + mζ are given by x = T−1

m c,
where c ∈ R

3,1 and Tm is a local trivialising orthogonal gauge transformations of d + mζ ,
i.e., Tm(d + mζ )T−1

m = d (see Sect. 3).
The Hermitian model of R3,1 identifies points in R3,1 with 2 × 2 Hermitian matrices via

the isometry

x0e0 + x1e1 + x2e2 + x3e3 �→
(
x0 + x3 x1 + i x2
x1 − i x2 x0 − x3

)
,

6 The choice of m here amounts to a constant scaling of the Hopf differential. In many works this scaling is
fixed by choosing m appropriately.
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where the metric on the space of Hermitian matrices is given by (A, A) = − det A. Our basis
vectors become

e0 =
(
1 0
0 1

)
, e1 =

(
0 1
1 0

)
, e2 =

(
0 i
−i 0

)
, e3 =

(
1 0
0 −1

)
.

We identify SL(2,C)with the orthogonal group O(3, 1) by its action on Hermitian matrices

A · v = AvA∗.

Skew-symmetric endomorphisms, i.e., elements of o(3, 1), are then identified with elements
of sl(2,C) via

B · v = Bv + vB∗.

In particular, the skew-symmetric endomorphisms ei ∧ e j are identified with ei j ∈ sl(2,C),
where

e01 = −1

2
e1, e02 = −1

2
e2, e03 = −1

2
e3, e12 = i

2
e3, e13 = − i

2
e2, e23 = i

2
e1.

One then computes that ζ from (4) is identified with

ξ = 1

2
{−(1 − φ2)e1 − i(1 + φ2)e2 − 2φe3}ω =

(−φ φ2

−1 φ

)
ω ∈ �1(sl(2,C)).

Since ξ is a closed 1-form, there exists Ft : � → SL(2,C) so that

F−1
t d Ft = tξ.

One quickly deduces that the orthogonal transformations identified with Ft are in fact local
trivialising orthogonal gauge transformations Tt of d + tζ . Thus parallel sections of d +mζ

are given by F−1
m c(F−1

m )∗ for c ∈ R
3,1. Defining m := F−1

m we have that

dm = −mξm = m

(
φ −φ2

1 −φ

)
ωm . (5)

Now, by setting c := 1
2 ((1 − μ)e0 + (1 + μ)e3) =

(
1 0
0 −μ

)
for μ ∈ R and

x = mc(m)∗ (6)

we obtain

• CMC H ≡ 1√−μ
surfaces in H

3( 1
μ
) when μ < 0;

• CMC H ≡ 1√
μ
surfaces in S

2,1( 1
μ
) when μ > 0;

• intrinsically flat surfaces in L when μ = 0.

When μ = −1 we see that this coincides with the representation of CMC H ≡ 1 in
hyperbolic 3-space surfaces given in [31, Corollary 2.4] and when μ = 1 this coincides
with the representation of CMC H ≡ 1 in de-Sitter 3-space given in [20, Theorem 1]. We
have thus arrived at the following theorem:

Theorem 4.3 The Weierstrass-type representations for CMC-c surfaces in H
3(−c2) and

S
2,1(c2) can be viewed as certain applications of the �-dual transformation to a prescribed

lightlike Gauss map.
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4.3 The Umehara–Yamada perturbation

Suppose that x is a parallel section of d +mζ for some non-zero m ∈ R, and thus x = T−1
m c

for some non-zero c ∈ R
3,1. Then the T-transform xm of x satisfies

dxm = Tmdx = −Tmmζ x = −mζmTmx = −mζmc.

Hence, fromSect. 4.1weknow that xm is a zeromean curvature surface in an affine hyperplane
ofR3,1. Therefore, we recover the result of [28] that the T-transform of L-isothermic surfaces
perturbs the cases (i), (ii), (iii) of Sect. 4.2 into the cases (i), (ii), (iii) of Sect. 4.1, respectively.
This generalises the Umehara–Yamada perturbation [35] and gives a Laguerre geometric
analogue of its interpretation in [24].

We call Gm = TmG the secondary Gauss map of x . Since Gm and G induce the same
conformal structures on T�, there exists a holomorphic function ψ such that

gm = (1 + ψψ̄)e0 + (ψ + ψ̄)e1 − i(ψ − ψ̄)e2 + (−1 + ψψ̄)e3 (7)

is a lift of Gm . We then define a holomorphic 1-form η so that q = dψη + dψ̄η̄. The closed
1-form ζm = AdTm ζ is then identified with

ξm :=
(−ψ ψ2

−1 ψ

)
η.

Now parallel sections x of d+mζ are of the form x = T−1
m c = Tm−mc, using (2). T

m−m satisfies
dTm−m = −mTm−mζm and correspondingly m = F−1

m satisfies

dm = −mmξm = mm

(
ψ −ψ2

1 −ψ

)
η. (8)

This formulation shows that the representation (6) coincides with the representation of [35]
when μ = −1 and with the representation of [1] when μ = 1. The duality between (5)
and (8) has been remarked upon in [5,31].

4.4 LinearWeingarten surfaces of Bryant type

A surface x : � → H
3 is a linear Weingarten surface of Bryant type if the mean curvature

H and Gauss curvature K of x satisfy a relation

(μ + 1)K − 2μH + μ − 1 = 0 (9)

for some μ ∈ R. A Weierstrass-type representation was developed for these surfaces in [22].
The middle sphere congruence of such surfaces is given by xM = x − μ+1

2 g̃, where g̃ ∈ �G
such that (g̃, x) = −1. Three cases emerge7:

• if μ < 0 then xM is a CMC- 1√−μ
surface in H

3( 1
μ
),

• if μ > 0 then xM is CMC- 1√
μ
surface in S

2,1( 1
μ
),

• if μ = 0 then xM is an intrinsically flat surface in L.
We thus have that

xM = m

(
1 0
0 −μ

)
∗

m

7 This analysis is analogous to that performed in [11, Section 4.6] for parallel families of linear Weingarten
surfaces in hyperbolic space.
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where m : � → SL(2,C) satisfies (8). Using the Hermitian model, the lift gm from (7) of
the secondary Gauss map is given by

gm = 2

(|ψ |2 ψ

ψ̄ 1

)
.

Now, since g̃ ∈ �G satisfies (g̃, x) = −1 and T−1
m gm ∈ �G,

g̃ = − T−1
m gm

(T−1
m gm, x)

= − mgm∗
m(

mgm∗
m, m

(
1 0
0 −μ

)
∗

m

) = mgm∗
m

1 − μ|ψ |2 .

Thus8,

x = xM + μ + 1

2
g̃ = m

((
1 0
0 −μ

)
+ μ + 1

1 − μ|ψ |2
(|ψ |2 ψ

ψ̄ 1

))
∗

m

= 1

1 − μ|ψ |2 m

(
1 + |ψ |2 (μ + 1)ψ
(μ + 1)ψ̄ 1 + μ2|ψ |2

)
∗

m .

By setting H := m

(
iψ i
i 0

)
we have that

x = H

(
1+μ2|ψ |2
1−μ|ψ |2 μψ̄

μψ 1 − μ|ψ |2
)
H∗.

We deduce from (8) that

H−1dH =
(

0 mη

dψ 0

)
.

Hence, we have recovered the representation of [22]. Moreover, in the case that μ = 0, we
obtain the representation of [21] for flat surfaces in H

3 .
Linear Weingarten surfaces of Bianchi type, that is surfaces satisfying (9) in S

2,1, were
shown to admit a Weierstrass-type representation in [2]. An analogous analysis can be per-
formed for these surfaces as above. We thus arrive at the following theorem:

Theorem 4.4 The Weierstrass-type representations for linear Weingarten surfaces of Bryant
and Bianchi type can be viewed as certain applications of the �-dual transformation to a
prescribed lightlike Gauss map.
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