
27 November 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Fault Grading Techniques of Software Test Libraries for Safety-Critical Applications / Floridia, Andrea; Sanchez, Ernesto;
Sonza Reorda, Matteo. - In: IEEE ACCESS. - ISSN 2169-3536. - ELETTRONICO. - 7:(2019), pp. 63578-63587.
[10.1109/ACCESS.2019.2917036]

Original

Fault Grading Techniques of Software Test Libraries for Safety-Critical Applications

Publisher:

Published
DOI:10.1109/ACCESS.2019.2917036

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2734232 since: 2019-05-28T11:54:58Z

IEEE

Received April 10, 2019, accepted May 8, 2019, date of publication May 15, 2019, date of current version May 28, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2917036

Fault Grading Techniques of Software Test
Libraries for Safety-Critical Applications
ANDREA FLORIDIA , (Student Member, IEEE), ERNESTO SANCHEZ, (Senior Member, IEEE),
AND MATTEO SONZA REORDA , (Fellow, IEEE)
Dipartimento di Automatica e Informatica, Politecnico di Torino, 10129 Turin, Italy

Corresponding author: Andrea Floridia (andrea.floridia@polito.it)

ABSTRACT The adoption of complex and technologically advanced integrated circuits (ICs) in safety-
critical applications (e.g., in automotive) forced the introduction of new solutions to guarantee the achieve-
ment of the required reliability targets. One of these solutions lies in performing in-field test (i.e., the test
performed when the device is already deployed in the mission environment) to detect faults that may arise
in this phase of electronic circuit life. In this scenario, one increasingly adopted approach is based on the
software test libraries (STLs), i.e., suitable code which is run by the CPU included in the system and is able to
detect the existence of possible permanent faults both in the CPU itself and in the rest of the system. In order
to assess the effectiveness of the STLs, fault simulation is performed, so that the achieved fault coverage
(e.g., in terms of stuck-at faults) can be computed. This paper explains why the fault simulation of the STLs
represents a different problem with respect to the classical fault simulation of test stimuli (for which very
effective algorithms and tools are available), shows why it can be highly computationally expensive, and
overviews some solutions to reduce the computational cost and possibly trade-off between results accuracy
and cost.

INDEX TERMS Functional safety, fault simulation, software test libraries, ISO 26262.

I. INTRODUCTION
Dependability of electronic systems has been a major con-
cern since decades, leading to technical solutions which
have been extensively used, for example in domains such as
space, aircrafts, military, nuclear plant control. More recently,
new application domains such as automotive, biomedical or
telecommunications drastically changed the scenario to be
considered (e.g., by emphasizing parameters such as cost and
Time To Market), and forced the adoption of new solutions
for the development of dependable electronic systems. How-
ever, the continuous evolution in terms of target applications
and adopted semiconductor technologies accelerated even
further the request for new techniques able to support the
designer of these kinds of electronic systems. In particu-
lar, the last period is experiencing further changes in this
domain, due to the massive adoption of electronic systems
for applications where the requirements in terms of safety
are very strict, while the high performance required asks for
advanced (and thus less reliable) semiconductor technologies
and architectures (e.g., multi-core ones). As a result, the
so-called functional safety standards (as the ISO 26262 for
the automotive domain, or in general the IEC 61508 for

The associate editor coordinating the review of this manuscript and
approving it for publication was Luca Cassano.

safety-critical applications) appeared in the last decade to
regulate the usage of electronics devices in these domains.
Such standards impose reliability figures which are normally
achieved by leveraging different safety mechanisms. Accord-
ing to the ISO 26262 (in the following it is used as reference,
but similar concepts can be found in any functional safety
standard), a safety mechanism is a portion of the system
oriented to the detection of faults, controlling system failures
in order to achieve and/or maintain a safe state. The most
commonly adopted safety mechanisms are:

• Logic and Memory BIST (LBIST and MBIST respec-
tively): they are mainly intended for in-field testing, but
also used for end-of-manufacturing test;

• End-to-End Error Correction Codes (ECCs) for protect-
ing memories against bit flips due to radiations;

• Dual-Core LockStep (DCLS): two processor cores (the
main and the checker respectively) are paired together
and always fed with the same identical inputs. Their out-
puts are continuously monitored by a set of comparators,
so that any failure in one of the two processors can be
immediately detected;

• Software Test Libraries (STLs), which are a set of
Software-Based Self-Test (SBST) routines commonly
used for in-field testing.

63578
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0003-2766-9188
https://orcid.org/0000-0003-2899-7669

A. Floridia et al.: Fault Grading Techniques of STLs for Safety-Critical Applications

ECC and Lockstep are the de-facto standard solutions
against the Single-Point Faults for the highest reliability
applications (ASIL C and D according to the ISO 26262).
Such faults would directly cause critical failures without
a suitable safety mechanism guarding for them. However,
Latent Faults (i.e., faults not causing directly a failure, but that
can become dangerous in conjunction with a second fault)
could invalidate the functionalities of these safety mecha-
nisms. BIST-based solutions are adopted for the Power-On
Self-Test (POST) that is the in-field test performed when the
device is powered up. Although being particularly effective
solutions, the applicability of these solutions is limited to the
POST since they are normally invasive solutions that damage
the system status, and the test application time could be quite
long. This could be problematic if the time interval between
two consecutive power-on is long. For these reasons, STLs
represent a better solution for the on-line testing, which is the
in-field test performed concurrently with the user application
(e.g., an Operating System). When dealing with on-line test-
ing, the test phase must fit in relatively short periods (in the
order of tens of milliseconds, or less), while intrusiveness
should be minimal.

The idea behind procedures composing STLs is relatively
simple and known since decades [13], [14], [27], [28]: if the
target device corresponds to or includes a processor, we can
force it to execute a suitable piece of code, possibly reading
some input data and processing them in a carefully selected
manner. By looking at the produced output data, one can
detect a number of faults possibly existing within the proces-
sor module (and around it). By adopting suitable techniques,
the obtained fault coverage can achieve sufficiently high
values.

The advantages offered by this solution for in-field test
have pushed producers of devices to be used in safety-critical
applications (e.g., in the automotive sector) to deliver libraries
of such Self-test procedures (sometimes known as Software
Test Libraries, or STLs). These procedures are developed by
the semiconductor company, which owns all the structural
information about the device and can guarantee that their exe-
cution allows achieving a given figure in terms of Fault Cov-
erage. Once available, Self-test procedures are then integrated
by the system company (often corresponding to a Tier1 com-
pany in the automotive domain) into the application software
and invoked when required (e.g., periodically, or during the
application idle times). In this way, the required safety level
can be obtained without transferring any sensible information
from the semiconductor to the system company. Thus, prac-
tical industrial applications of STLs range from the on-line
test of processor cores for ASIL A or B applications (the
lowest level of safety level according to the ISO 26262) to
the test of latent faults in safety mechanism as the DCLS and
the ECC [24] for ASIL C or D applications. For the DCLS,
STLs are particularly suitable for avoiding latent faults
accumulation in both the checker and the main core, that
could cause failures being masked. This approach is today
widely supported by many semiconductor and IP companies,

such as Infineon [1], STMicroelectronics [2], Cypress [3],
Renesas [4], Microchip [5], ARM [6].

When working at the development of a Software Test
Library for a given device, the test engineer must face two
main issues:

• How to effectively write their code, minimizing the
related effort (e.g., by following some guidelines, while
clearly re-using the code developed for previous ver-
sions of the same device, or for similar ones, if possible)

• How to compute in a time effective and precise manner
the fault coverage achieved by the procedures.

While a number of papers focused on the first point,
proposing techniques to write Self-test procedures for dif-
ferent modules in a system (e.g., [7]–[10]) and to optimize
them [11], this paper focuses on the second point. Computing
the Fault Coverage achieved by a given test sequence is typ-
ically done resorting to Fault Simulation. In the ‘90s, a wide
research effort led to the development of effective and highly
optimized algorithms for fault simulation (e.g., [12]). Such
algorithms have been widely adopted in commercial tools
(e.g., fault simulators and ATPG tools) which are nowadays
used in different commercial environments for generating and
grading test patterns for a given digital circuit. However, those
tools and methodologies targeted a rather different problem
than the one considered in this paper. In fact, traditional
fault simulation approaches are intended to compute the fault
coverage (typically, with respect to stuck-at faults) provided
by a sequence of input vectors applied to a generic sequential
circuit, assuming that all the output signals can be continu-
ously observed. This scenario is very similar to the one that
can be found during the end-of-production testing but is very
different to the one related to in-field testing.

When considering the effects stemming from the execution
of a Self-test procedure, we are focusing on a processor
executing a program stored in a memory and producing some
output results, also written in memory and observed at the end
of the procedure execution. This scenario is quite different
than the previous. For example, the sequence of inputs for
the processor (e.g., the sequence of executed instructions)
often changes due to fault effects, as it frequently happens
for example when a fault affects the logic implementing
the instruction fetch mechanism. Moreover, the observability
mechanism is completely different: a fault can be labeled as
detected if it produced a wrong result in memory at the end of
the Self-test procedure execution. This analysis is normally
part of the Functional Safety Verification flow [22], [23].
Specifically, the fault grading of STLs becomes relevant
during the Failure Modes Effects and Diagnostic Analy-
sis (FMEDA) [23]. FMEDA is a structured approach that
aims at defying failure modes, computing the failure rate,
devising proper safety mechanisms for the identified fail-
ures and measuring their effectiveness. For better fitting this
scenario, the so-called functional fault simulators recently
appeared on the market (e.g., Z01X by Synopsys, or as new
features in the Incisive platform by Cadence). Such tools

VOLUME 7, 2019 63579

A. Floridia et al.: Fault Grading Techniques of STLs for Safety-Critical Applications

allow fault simulation of circuits at different abstraction levels
(i.e., from RT to gate level), as often done during functional
safety analyses.

The purpose of this paper is many-fold. First and fore-
most, we want to emphasize the inadequacy of traditional
fault simulation methodologies to effectively compute the
fault coverage produced by a library of Self-test procedures
and clarify the differences between sequential circuit fault
simulation (SC-FSIM) and Self-test procedures fault simula-
tion (STP-FSIM). Secondly, we explain the reasons for (and
provide experimental evidences of) the huge computational
cost required to perform STP-FSIM. Finally, we overview
some solutions able to significantly speed-up the STP-FSIM,
sometimes at the expenses of a limited loss in accuracy.
All the proposed solutions are based on the usage of com-
mercially available EDA tools, thus being easily adoptable
by professionals in the field. To the best of our knowledge,
with respect to similar works [20], [21], this paper is the
first attempt to provide a comprehensive and commented
overview about the techniques that can be adopted to effec-
tively perform the fault grading of STLs.

The rest of the paper is organized as follows: in
Section 2 the required terminology and background infor-
mation are provided; in Section 3 and 4 detailed descrip-
tions of possible fault simulation techniques are illustrated;
Section 5 presents the gathered experimental results; finally,
in Section 6 we discuss the conclusions of the present work.

II. BACKGROUND
In this Section, we aim at pinpointing the differences between
the problem faced by traditional Fault Simulation techniques,
developed in the past to support sequential circuit fault sim-
ulation (typically used for assessing the effectiveness of test
solutions for the end-of-manufacturing testing) and the one
of computing the Fault Coverage achieved by a Self-test
procedure belonging to a Software Test Library (STL) for in-
field test. To make the explanation easier, in the following we
will assume that the common stuck-at fault model is adopted,
although the following concepts can be extended to several
other fault models (e.g., the transition delay one).

A. SEQUENTIAL CIRCUIT FAULT SIMULATION (SC-FSIM)
In this case, the goal is to compute the Fault Coverage
achieved when a given test sequence is applied to the Cir-
cuit Under Test (CUT), which correspond to a combina-
tional or sequential digital circuit (Figure 1). Typically,
the test we refer to when performing such a computation is
the final test executed at the end of the device manufacturing.
In this scenario, the CUT is mounted on an Automatic Test
Equipment (ATE) and the test sequence is applied. In most of
the cases, the test of the CUT resorts to Design for Test (DfT)
structures. The sequence of values, or test patterns, applied
to the CUT is fixed, and does not depend on the sequence
of output values produced by the CUT itself during the test,
nor on the effects of the faults. Moreover, the output signals
are continuously monitored to detect possible fault effects.

FIGURE 1. Test vectors-based end-of-manufacturing test scenario for a
generic sequential CUT.

FIGURE 2. STL-based in-field test scenario for a CPU-based system.

As soon as a difference on any output signal is produced by
a fault, the fault can be labeled as detected. The fault sim-
ulation should accurately reproduce this scenario. However,
the goal of the fault simulation is only to compute the number
of detected faults. Since fault simulation is computationally
intensive, once the fault is detected, it can be dropped, and
it is not necessary anymore to simulate its effects in the
following. This mechanism (known as Fault Dropping [15])
significantly reduces the computational cost of Fault Simula-
tion, since most of the faults are only simulated for a limited
period of time.

B. SELF-TEST PROCEDURES FAULT
SIMULATION (STP-FSIM)
When the goal is to compute the Fault Coverage achieved
by running one or more Self-test procedures on a CPU,
the scenario is quite different. This process is also known
as Fault Grading [21] of Self-test procedures. In particular,
in this case the scenario to be considered is more complex,
since the typical application of STLs is for in-field test, which
is performed when the device is already in the operational
phase, without the support of anyATE. In fact, in this scenario
the CPU is not fed with test patterns but with processor
instructions and data read from the memory or coming from
input peripherals (if any).

Actually, during the test the CPU executes a piece of code,
and thus continuously interacts with the memory modules for
instruction fetch and for data read/write operations. The CPU
may also interact with peripheral modules, too. Therefore,
the CUT to be fault simulated cannot be the CPU only, but
all the modules it interacts with (Figure 2). For the sake of
simplicity, and since I/O operations are conceptually similar
to memory operation, we will neglect I/O operations in the

63580 VOLUME 7, 2019

A. Floridia et al.: Fault Grading Techniques of STLs for Safety-Critical Applications

following. In practice, the self-test routines often accumulate
the produced results in a single register in order to create a
test signature. Such signature is then checked by the Self-
test code itself against a golden one: a fault is considered
as detected if the execution of the test code produced some
wrong signature value of the execution. At the end of the test,
the Self-test code itself performs the check on the signature
and returns by storing a flag in the memory, stating whether a
fault has been detected and/or the computed signature. Hence,
the following statements are true:

1. the CPU is stimulated with an input sequence corre-
sponding to:

• values coming from the code memory, correspond-
ing to the codes of the instructions that the CPU
should execute;

• values coming from the data memory, correspond-
ing to the values of the accessed memory cells.

In both cases, the input sequence corresponds to the
content of the memory cells accessed by the CPU by
outputting an address. Hence, the input sequence may
change if a fault modifies any of the addresses gener-
ated by the CPU. SC-FSIM techniques (and tools) are
hardly able to manage such a scenario.

2. A fault is detected if some specific condition is true
at the end of the test code execution (e.g., a given
memory location stores a given value, or a given value
is returned by the Self-test procedure). Once again,
SC-FSIM techniques (and tools) are hardly able to
manage such a scenario;

3. Since a fault can be labeled as detected only at the end
of the test code execution, Fault Dropping cannot be
performed. All faults must be simulated until the end
of the test code execution, thus resulting in a significant
increase of the computational cost.

As a conclusion, the Fault Simulation of Self-test procedures
is a quite different task than SC-FSIM, requiring methodolo-
gies and tools able to:

1. efficiently fault simulate a CPUwhile executing a piece
of code (i.e., interacting with the memories);

2. support more sophisticated fault detection strategies
than simply detecting a difference on the output signals;

3. limit the computational cost, by taming the extra
effort required by the absence of the Fault Dropping
mechanism.

It is worth noting that the specifications for STP-FSIM may
be more complex than those outlined in this Section. As an
example, a fault may provoke effects which are different than
simply producing a wrong value in memory at the end of
the test procedure: faults triggering an exception or forcing
the processor to enter an endless loop may be easily found.
In both cases, the fault is typically categorized as detected,
forcing the fault simulation tool to support fault detection
mechanisms that can hardly be implemented by SC-FSIM
techniques.

III. BASIC STP-FSIM TECHNIQUES
One of the goals of this work is to overview different fault
simulation techniques aiming at effectively performing the
fault grading of a set of Self-test procedures. In the follow-
ing, possible approaches for STP-FSIM are described. The
different approaches differ, first of all in terms of a) fault
detection mechanism, and b) input stimuli. The former point
defines which output signals (i.e., observation points) of the
design to observe and when to observe them in order to
determine whether a fault can be labeled as detected or not.
The latter instead means how the instructions and data are
fed to the CPU. In the following, it is assumed that each self-
test procedure stores the computed signature at the end of its
execution in the data memory (as it often happens).

First, the Fault Grading of a single Self-test procedure is
considered. Then, the analysis is extended to the Fault Grad-
ing of an entire Software Test Library. For each approach,
advantages and drawbacks are presented, which are then
validated in the experimental part of this work.

A. FAULT GRADING OF A SINGLE SELF-TEST PROCEDURE
For performing the fault grading of a single Self-test pro-
cedure, it is possible to adopt different approaches, that we
categorize in the following three main alternatives:

1. STP-FSIM0: this approach is based on the traditional
SC-FSIM. Although being originally conceived for a
rather different purpose than the fault grading of Self-
test procedures, traditional fault simulation techniques
and tools can be adopted even in this case. However,
as discussed in the following, this may become quite
inadequate and may not yield correct results. When
dealing with this type of fault simulation, the CUT is
the CPU, only, and its inputs are fed with test pat-
terns. In this case, test patterns correspond from one
side to the sequence of encoded instructions compos-
ing the Self-test procedure, which are fed sequentially
to the CPU each time it performs a fetch operation,
and from the other side to the data values the CPU
reads from the memory each time it performs a read
memory access. Since we are considering a traditional
SC-FSIM method, the input sequence is fixed. Hence,
no matter if any fault changes or delays the sequence
of instruction/data addresses produced by the CPU,
the sequence of fetched and executed instructions/
data remains the same during the whole fault simula-
tion. Moreover, during the fault simulation experiment,
all CPU outputs are observed clock cycle per clock
cycle, and as soon as a difference is detected, the cor-
responding fault is labeled as detected. In this way, this
approach could lead to wrong (i.e., larger than real)
figures in terms of fault coverage, since faults might
provoke a difference in one or more output signals, but
such a difference could later be masked, and hence not
be reflected in the final Self-test procedure signature.

2. STP-FSIM1: The procedure described above can
be improved to increase the correctness of the fault

VOLUME 7, 2019 63581

A. Floridia et al.: Fault Grading Techniques of STLs for Safety-Critical Applications

FIGURE 3. Graphical representation of the fault detection mechanism for
STP-FSIM1.

simulation results. In order to mimic the real case
scenario (that is, when the test is performed in field),
the observability is limited to the signals directed to the
Data Memory (signals on which the signature is sup-
posed to transit when being stored). Moreover, the fault
simulator should be instructed to observe such signals,
at the time the result is going to be written, only. This
situation is represented in Figure 3, where the offset
time represents the initial period of time where the
test program executes its instructions without writing
the results into the memory. The main limitation of
this approach remains the fact that it is not possible
to reproduce the effects of faults that lead to a dif-
ferent execution flow of the test code. Additionally,
Fault Dropping is not exploited: outputs are observed
exclusively at the end of the Self-test procedure. Thus,
all faults must be simulated during the whole experi-
ment, and the computational cost grows significantly.

3. STP-FSIM2: The limitations of the methodologies
described above partly stem from the fact that the
CUT is exclusively the CPU, and the interactions with
memories cannot be suitably modelled, especially in
the faulty circuits. However, when resorting to a func-
tional fault simulator these limitations can be over-
come by simulating the entire system in which the
CPU is integrated, including data and code memo-
ries, and eventually peripherals. In this way, the exact
Fault Coverage figure achieved by a Self-test proce-
dure can be computed. Normally, the CPU is described
as a gate-level netlist (as in the SPT-FSIM0 and
STP-FSIM1 approaches), while the other components
resorting to behavioral descriptions. The instructions
(which represent the input stimuli for the CPU) are
directly fetched from the instruction memory which is
now part of the simulated model, thus it is possible to
model the effect in which a fault forces a different exe-
cution flow. Moreover, it is possible to model also the
scenario in which different data are retrieved or stored
to or from the data memory. Concerning the observ-
ability, the final content of the memory is directly
observed, once the Self-test procedure terminates.
Clearly, it makes sense to check only those addresses in
which the test program is supposed to write; otherwise,
it becomes unfeasible to check the entire memory for
a large design. However, since the simulated model is

now much larger, the computational cost required with
respect to the previous two approaches is significantly
higher. Simulation of memories is computationally
expensive and since fault dropping is not performed,
the fault simulation tends to be slow and memory
intensive.

B. FAULT GRADING OF A SOFTWARE TEST LIBRARY
Normally, Self-test procedures are developed according to a
divide and conquer strategy. If the target module is a CPU,
this is partitioned into submodules, and for each submodule,
a specific Self-test procedure is developed [9]. The method-
ologies described in the previous sub-section represent a good
solution for performing the fault grading of a single test
procedure. During the development of the Self-test proce-
dure for the targeted module, only the faults belonging to it
are considered. Nevertheless, during the global development
flow it is quite common that a fault simulation of a set of
Self-test procedures on the entire CPU fault list is required.
This step is essential to assess the overall fault coverage
achieved and (during the STL development) to better guide
the development and reach the target fault coverage. The
rationale behind this relies on the fact that it is likely that
a test program developed for a given submodule can also
detect faults present in different submodules. The most effi-
cient strategy is the so-called incremental fault grading. The
fault simulation of the whole STL is divided into different
passes. At each pass, a different Self-test procedure is fault
simulated. Initially, all the faults present in the fault list are
labeled as not detected. After the first pass, another test
program is fault simulated. This second pass inherits from
the initial one all the faults that are labeled as not detect.
This process is repeated until all the Self-test procedures
are fault simulated. The main advantage of this approach
relies in the fact that only the first Self-test procedure is fault
simulated against the full fault list. As passes are executed,
the number of faults to be simulated progressively reduces
and thus also the effort for the fault simulation itself. It is
worth noting that the strategy described above can be applied
to any fault simulation methodology without any loss in
accuracy concerning the fault coverage. Besides, those that
benefit the most from this approach are the fault simula-
tion methodologies more computationally intensive, such as
STP-FSIM2.

IV. OPTIMIZED FAULT SIMULATION TECHNIQUES
The aim of this section is to further extend the set of available
techniques considering two additional strategies. They are
built on the top of the STP-FSIM2, but they enable a faster
fault simulation at the expenses of a limited loss in accu-
racy concerning the final fault coverage figure. The common
observation behind both techniques is that, in STP-FSIM2,
Fault Dropping is not exploited at all. Hence, in the fol-
lowing it is discussed a suitable way to still adopt such a
mechanism.

63582 VOLUME 7, 2019

A. Floridia et al.: Fault Grading Techniques of STLs for Safety-Critical Applications

FIGURE 4. STP-FSIM3 scenario: The observability locations are marked
in red.

FIGURE 5. STP-FSIM4 scenario: The observability locations are marked
in red.

A. STP-FSIM3
The main difference of this method (Figure 4) compared
to basic STP-FSIM2 concerns the observability. Instead of
observing exclusively the data memory at the end of the
test program execution, the address signals towards the code
memory are monitored at each clock cycle. The motivation
for this choice originates from the fact that some faults
can cause a different sequence of instructions to be fetched
from the code memory. This normally leads to a different
execution flow of the test program, and thus to a different
signature produced by the test procedure itself. In order to
save fault simulation time, the idea is to identify faults that
force a different execution flow, by discarding them from
the fault simulation as soon as possible (hence enabling the
Fault Dropping). Obviously, not all the faults that cause a
different execution flow finally produce a different memory
content. As a consequence, a slightly different fault cover-
age is expected, higher than STP-FSIM2. On the other side,
the experimental results show that the difference is normally
small, while the saving in computational cost may be relevant.

B. STP-FSIM4
A further optimization (Figure 5), which can provide addi-
tional speed-up with respect to STP-FSIM2, consists in
observing the CPU signals connected to the data memory
(namely data and address signals) when the CPU performs a
write operation to memory. A fault is marked as detected (and
hence immediately dropped) if the address value produced
by the CPU when a memory write operation performed is
different than the expected, or when the data value written to
memory at the same time is different. This strategy is clearly
the most aggressive one since it leverages as much as possible

FIGURE 6. The OR1200 architecture.

the Fault Dropping. Once again, on one side this method
allows for fault simulation time reduction, while sacrificing
accuracy of the fault coverage.

Theoretically, this method may lead to optimistic results
since faults affecting memory operations could not be
reflected in the signature. In practice, fewmemory operations
are normally performed during the execution of the self-
test procedures. These operations involve saving/restoring the
previous context prior to the self-test program invocation and
store/load operations to specific addresses for testing specific
units. In the former case, any corruption of the stack frame
due to faults irreversibly leads to the test failure. In the latter
case, since normally the entire test is built upon thesememory
operations, any variation is reflected in the final signature.

Table 1 summarizes the fault simulation methodologies
presented in this paper. For each method, all the relevant
characteristics are reported. Interestingly, for STP-FSIM2-
based approaches it is not required any input sequence since
the stimuli required for the CPU are directly taken from the
memories and they may vary depending on the fault effects.

V. EXPERIMENTAL RESULTS
In this section, a brief overview of the flow used for assessing
the fault coverage of a Software Test Library is first presented.
Then, we will present the relevant characteristics of the Self-
test procedures and the fault simulation environment we used
to quantitatively evaluate the effectiveness of the different
techniques. Finally, we will present and discuss the gathered
experimental results.

Experiments were conducted on the open source Open-
Risc1200 (OR1200) soft-core processor [16], [17]. It consists
of a 32-bit scalar RISC with Harvard architecture, MMU and
basic DSP functionalities. The OR1200 includes a CPU and
basic peripherals (e.g. timer, interrupt controller) as shown
in Figure 6. The OR1200 was inserted in a SoC, which
comprises a WishBone Interface, a Flash memory and a
RAM. The Flash and RAM memories are 2MB each. The
OR1200 was synthesized and mapped to a 65nm CMOS
technology library, using Synopsys Design Compiler as logic
synthesis tool.

VOLUME 7, 2019 63583

A. Floridia et al.: Fault Grading Techniques of STLs for Safety-Critical Applications

TABLE 1. Fault simulation techniques comparison.

TABLE 2. STL characteristics.

We emphasize the fact that the OR1200 is representative
of a class of CPUs which is widely used in practice in
safety-critical applications. Despite its relatively small size,
its adoption as a test case in this paper does not limit the
generality of the adopted results. In fact, moving to larger
processors simply increases the computational effort and
memory required for fault grading, while the comparative
behavior of the different fault grading techniques outlined in
the previous sections remains the same.

The Self-test procedures we used for our experiments
were developed resorting to different development strate-
gies (random, deterministic, ATPG-based) [9]. The Self-
test procedures compute internally the result of the test and
then this is written to a known memory location in the
system RAM. Each test program addresses stuck-at faults of
a specific part of the CPU: Register File (RF), control unit,
Operand multiplexers, ALU, Multiply and accumula-
tor (MAC) unit, Load Store Unit (LSU), Fetch and Decode,
Writeback multiplexers. The final STL includes eight Self-
test procedures, whose main features are listed in Table 2.

Concerning the fault simulation campaigns, the Z01X
tool by Synopsys has been used. Z01X is a functional
fault simulator, which is widely used for functional safety
analyses. Its fault simulation algorithm is based on a
compiled event-driven concurrent engine and it supports
both the SC-FSIM and STP-FSIM techniques. For imple-
menting both STP-FSIM0 and STP-FSIM1, the test pat-
terns (i.e., the instructions) are provided to the CUT
(that is, the OR1200) by means of a Value Change
Dump (VCD) file, previously generated through a logic sim-
ulation of the Self-test procedure on the gate-level netlist (for
these experiments, leveraging Synopsys VCS). During the
STP-FSIM0 fault simulations, the observation points were

TABLE 3. Fault simulation results.

placed on all top-level ports of the OR1200 (namely the
green boxes in Figure 6). For STP-FSIM1, the observa-
tion points were limited to the Data WishBone Interface
(namely WB D in Figure 6). Moving to the STP-FSIM2,
STP-FSIM3 and STP-FSIM4 experiments, the simulated
model is a system composed of the OR1200 core and two
memory modules of 2 MB each. During STP-FSIM3 the
RAM memory content and the Instruction WishBone Inter-
face (WB I in Figure 6) were exclusively observed, while
for STP-FSIM4 Data and Instruction WishBone Interface
were observed. Among the other functionalities offered by
the tool, there is also hyperfaults [18] detection. However,
fault simulators do not always support this specific mecha-
nism. Hence, for the sake of experiments reproducibility, this
feature was disabled during the fault simulation campaigns.
All the experiments were performed on a workstation with an
Intel Xeon CPU running at 2.5 GHz, equipped with 12 cores
and 256 GB of RAM.

Fault simulations were run leveraging just one of the
available cores. For the sake of generality, the experiments
were performed on the processor stuck-at fault list, without
removing Safe Faults [19], i.e., faults that in the application
environment cannot produce any failure. When removing
Safe Faults, the achieved Fault Coverage can be significantly
higher. Finally, the fault simulations were performed with a
zero-delaymode (i.e., all combinational and sequential delays
were ignored).

In Table 3, we reported the gathered experimental results
for the methodologies presented in Section 3 and 4. The
figures concerning the fault coverage were computed for the
entire STL against a full CPU fault list (which accounts for
about 98k stuck-at faults), using the incremental fault grading
strategy. It is possible to observe that both STP-FSIM0 and
STP-FSIM1 approaches are undoubtedly the fastest, although
they are the ones producing the highest discrepancies
concerning the fault coverage figures with respect to

63584 VOLUME 7, 2019

A. Floridia et al.: Fault Grading Techniques of STLs for Safety-Critical Applications

FIGURE 7. The detected faults by STP-FSIM2, STP-FSIM3, STP-FSIM4 and
their possible intersections. In this case, E = F = G = 0.

STP-FSIM2 (in bold, being the one yielding correct
fault coverage results). STP-FSIM1 is slower compared to
STP-FSIM0 due to the reduced observability that inhibits the
fault dropping mechanism. Moving to the STP-FSIM2-based
techniques, STP-FSIM2 yields the exact value of fault cover-
age, since it reproduces the same operational conditions as the
ones when the SoC is deployed in field. The Self-test proce-
dures were designed so that their result is written in a single
memory location. Therefore, at the end of the test program
execution, only that memory location should be checked.
Finally, the two optimized techniques (STP-FSIM3 and
STP-FSIM4) exhibit a non-negligible speed-up compared
to the base approach. STP-FSIM3 allows a fault simula-
tion time reduction of almost 56%, while STP-FSIM4 goes
even further, around 68%. This is significant, since the loss
of accuracy of fault coverage is very reduced (0.3% for
STP-FSIM3, 0.4% for STP-FSIM4, both with respect to
STP-FSIM2). The reason for this minor difference between
STP-FSIM3 and STP-FSIM4 mainly stems from the fact that
in STP-FSIM4 there is a higher number of faults marked as
potentially detected by the fault simulator. If these faults were
counted as detected, the two methods would yield almost the
same fault coverage figures.

Interestingly, after processing the fault lists of STP-
FSIM2-3-4 with a Fault List Analysis Tool (FLAT, [26]),
it emerged that the three approaches detect slightly different
sets of faults. Let us denotewithA, B, C,D, E, F andG the sets
of faults to be considered when comparing the sets of faults
detected by the three fault simulation approaches (Figure 7).
In Table 4 instead, it is detailed the number of faults within
each set. As shown in Figure 7, the set of detected faults
by each fault simulation approach can be expressed as a
composition of these sets (for sake of conciseness, since E,
F and G are empty in the considered case they are omitted in
the following).

It can be observed from Table 4 that the set A is the
largest one, in fact, is the one that contains the faults cov-
ered by all the three techniques. The set B is in common
between STP-FSIM2 and STP-FSIM3, but not present in

TABLE 4. Size of faults sets.

FIGURE 8. Fault simulation methodologies: Fault coverage accuracy
versus Fault simulation time. The red line represents the exact FC figure.

STP-FSIM4. It should be noticed that all the faults cov-
ered by STP-FSIM2 are included in the faults covered
STP-FSIM3. The faults within the set C, that are only covered
by STP-FSIM4 and STP-FSIM3 (marked as not detected in
STP-FSIM2), mainly belong to themodules genpc, if and ctrl.
This is reasonable, since STP-FIM3 and STP-FSIM4 differ
from STP-FSIM2 in the observation of the instruction bus,
and genpc, if and ctrl are directly connected to that interface.
The same reasoning applies to the set D, exclusively included
in STP-FSIM4. Faults in D are mainly related to the lsu and
except units, which have a connection to the data bus, and
STP-FSIM4 is the only technique that observes these signals.

Figure 8 summarizes the results produced by the pre-
sented methodologies. As it can be noticed, STP-FSIM0 and
STP-FSIM1 approaches are the fastest concerning fault sim-
ulation time, although they provide quite inaccurate fault
coverage metrics (with respect to the exact value, repre-
sented by the red line). On the other hand, STP-FSIM2-
based approaches are more computationally intensive but
yield the most accurate results. Specifically, given that
STP-FSIM2 provides exact results, STP-FSIM0 is sup-
posed to yield always higher values of fault coverage,
since all outputs are observed continuously. Differently,
STP-FSIM1 gives lower values of fault coverage, since it does
not consider the effect of faults causing a different execu-
tion flow. When dealing with STP-FSIM3 and STP-FSIM4,
the fault coverage metrics are an acceptable approximation of
the real coverage (as confirmed by the experiments).

The reader should also note that by carefully developing
the self-test routines, the difference between the exact fault
coverage figure and the one given by any of the approximate
methods can be minimized.

VOLUME 7, 2019 63585

A. Floridia et al.: Fault Grading Techniques of STLs for Safety-Critical Applications

TABLE 5. STP-FSIM2 vs. STP-FSIM0 fault grading.

TABLE 6. Monolithic vs. incremental fault grading.

As an example, consider Table 5, that reports the fault cov-
erage values on each module targeted by the specific self-test
routine when using STP-FSIM0 and STP-FSIM2. For tests
like rf_test, alu_test, and lsu_test the difference between the
two techniques can be significant (e.g., 24.62% of difference
for rf_test). This mainly stems from the fact that modules
like the LSU are directly connected to the OR1200 top-level
outputs (that is, the system bus interface) thus it is easier to
detect faults effects when using STP-FSIM0 (in which all
outputs are observed) rather than with STP-FSIM2 (which
leverage exclusively the produced signature).

For RF and ALU instead, the discrepancies are due to the
fact that the ALU is used for computing the effective address
of load and store operation. Therefore, the ALU output is
also connected to the system bus interface and it happens
that during the test of RF (tested with a test algorithm like
the one presented in [25]) and ALU some bogus data transit
on that signal which are not reflected in the final signature.
On the other hand, there exist modules deeply embedded in
the processor core that do not suffer from these divergences.
Indeed, MAC and Operand multiplexers do not have a direct
connection with top-level signals, hence the results are quite
similar with both approaches.

For the sake of completeness, the fault simulation time
required for a monolithic (i.e., without incremental fault
simulation) fault grading of the STL was computed for
the STP-FSIM0, STP-FSIM1 and STP-FSIM2 approaches
(Table 6). As it can be noticed, although it is still feasible
for STP-FSIM0, for the other approaches the fault simulation
time explodes, and it would become quite unfeasible for large
designs.

From the experiments described so far, it is undeni-
able that STP-FSIM0 and STP-FSIM1 are not suitable for
providing a final fault coverage figure that reflects what
happens in the operational field. However, when dealing with
STL generation for cores embedded in a DCLS-based SoC,
the usage of the STP-FSIM0 could significantly improve the

TABLE 7. STP-FSIM0 for DCLS-oriented STL grading.

development time and yet provide correct results. Indeed,
DCLS is normally adopted for meeting reliability constraints
of complex devices such as multi-core ones. In this con-
text the STL are used for detecting latent faults affecting
checker or main core. Clearly, adopting STP-FSIM2 for such
huge designs could be problematic. However, let us consider
how the lockstep principle works. The key idea is to add an
exact copy (from the functional viewpoint) of the main core,
so that any fault effect that propagates up to some output
signals can be immediately detected by a set of comparators.
This principle holds as long as just one of the two replicas is
affected by the faults.

For this reason, STLs are used against the latent faults,
so that the possible occurrence of faults is forced to appear
as a failure at the processor output. Since these outputs
are continuously monitored by comparators, when this hap-
pens an alarm is triggered and the SoC reacts accordingly.
Thus, there could be faults that manifest themselves before
the comparison of the signature by the self-test routines,
thanks to the lockstep comparators. The scenario described
above is conceptually similar to what happens in fault sim-
ulation, especially in STP-FSIM0, in which the output sig-
nals are monitored and compared with the golden values of
a fault-free machine. Hence, STP-FSIM0 can be exploited
(along with its advantages) when developing and grading
STLs for DCLS-based SoC. Obviously, there is not a perfect
equivalence as the experiments performed with an in-house
DCLS version of the OR1200 confirmed. The lockstep was
applied to the lowest possible level, that is at the CPU level.
Table 7 summarizes the results of the experiments. By observ-
ing the second column, it is worth noting that the self-test rou-
tines have fault coverage metrics slightly higher compared to
those in Table 5. This is because for the results in Table 5 the
observation points were placed on the output signals of the
OR1200 that embeds the CPU, that is, one level of hierarchy
higher with respect to the what was done in Table 7. This
was necessary to have a fair comparison with the results when
leveraging the lockstep mechanism only.

The third column reports the fault coverage when observ-
ing the output signal of the lockstep comparators. As it can
be noticed, the differences are present but negligible (0.03%
in the worst case).

VI. CONCLUSIONS
The main objective of this paper is to overview the different
approaches for performing the fault simulation of a STL.
Through the experiments, it has been shown the inadequacy
of the traditional fault simulation approaches when dealing
with this kind of task, since the nature of the problem evolved

63586 VOLUME 7, 2019

A. Floridia et al.: Fault Grading Techniques of STLs for Safety-Critical Applications

from end-of-manufacturing to in-field test methodologies and
so the fault simulation methodologies should evolve, too.
When dealing with the development of an STL, fault sim-
ulation is a crucial step, often requiring a huge computational
effort, and a combination of all these techniques should be
exploited for maximum efficiency. During the early phases,
fast fault simulations (e.g.,STP-FSIM0 and STP-FSIM1)
may be preferred for refining the programs. Then, once the
Self-test procedures are mature enough, the test engineer
should move to more accurate fault simulations (e.g., STP-
FSIM3 or STP-FSIM4). Finally, when computing the final
fault coverage of the entire STL, they should resort to STP-
FSIM2. However, it was also shown that when developing an
STL for a DCLS-based SoC, STP-FSIM0 can be used as it
is for the whole development, avoiding long and expensive
fault simulations.

ACKNOWLEDGMENT
The authors would sincerely thank Federico Salieri,
Jean-Marc Forey and Mel Gilmore from Synopsys Inc. for
the valuable talks about fault simulation.

REFERENCES
[1] Software Test Library Infineon. Accessed: 2019. [Online]. Available:

https://www.hitex.com/tools-components/software-components/selftest-li
braries-safety-libs/pro-sil-safetcore-safetlib/

[2] Software Test Library STMicroelectronics. Accessed: 2018.
[Online]. Available: http://www.st.com/content/ccc/resource/technical/
document/application_note/02/1a/91/78/e4/15/4d/35/CD00290100.pdf/fil
es/CD00290100.pdf/jcr:content/translations/en.CD00290100.pdf

[3] Software Test Library Cypress. Accessed: 2018. [Online]. Available:
http://www.cypress.com/file/249196/download

[4] Software Test Library Renesas. Accessed: 2018. [Online]. Available:
https://www.renesas.com/en-eu/products/synergy/software/add-ons.html#
read

[5] Software Test Library Microchip. Accessed: 2018. [Online]. Available:
http://ww1.microchip.com/downloads/en/DeviceDoc/52076a.pdf

[6] Software Test Library ARM. Accessed: 2018. [Online]. Available:
https://developer.arm.com/technologies/functional-safety

[7] M. Psarakis, D. Gizopoulos, E. Sanchez, and M. Sonza Reorda, ‘‘Micro-
processor software-based self-testing,’’ IEEEDesign Test Comput., vol. 27,
no. 3, pp. 4–19, May/Jun. 2010.

[8] A. Paschalis and D. Gizopoulos, ‘‘Effective software-based self-test strate-
gies for on-line periodic testing of embedded processors,’’ IEEE Trans.
Comput. Aided Design Integr. Circuits Syst., vol. 24, no. 1, pp. 88–99,
Jan. 2005.

[9] P. Bernardi, R. Cantoro S. De Luca, E. Sánchez, andA. Sansonetti, ‘‘Devel-
opment flow for on-line core self-test of automotive microcontrollers,’’
IEEE Trans. Comput., vol. 65. no. 3, pp. 744–754, Mar. 2016.

[10] A. Riefert, R. Cantoro, M. Sauer, M. S. Reorda, and B. Becker, ‘‘A flexible
framework for the automatic generation of SBST programs,’’ IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 10, pp. 3055–3066,
Oct. 2016.

[11] M.Gaudesi, I. Pomeranz,M. S. Reorda, andG. Squillero, ‘‘New techniques
to reduce the execution time of functional test programs,’’ IEEE Trans.
Comput., vol. 66, no. 7, pp. 1268–1273, Jul. 2017.

[12] T. Niermann, M. Wu-Tung, J. Cheng, and H. Patel, ‘‘PROOFS: A fast,
memory-efficient sequential circuit fault simulator,’’ IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst., vol. 11, no. 2, pp. 198–207, Jul. 1990.

[13] S. M. Thatte and J. A. Abraham, ‘‘Test generation for microprocessors,’’
IEEE Trans. Comput., vol. C-29, no. 6, pp. 429–441, Jun. 1980.

[14] L .Chen and S. Dey, ‘‘Software-based Self-testing methodology for pro-
cessor cores,’’ IEEE Trans. Comput. Aided Design Integr. Circuits Syst.,
vol. 20, no. 3, pp. 369–380, Mar. 2001.

[15] S. Gai and P. L. Montessoro, ‘‘The fault dropping problem in concurrent
event-driven simulation,’’ IEEE Trans. Comput. Aided Design Integr. Cir-
cuits Syst., vol. 10, no. 8, pp. 968–971, Aug. 1990.

[16] OR1200 Instruction Set Architecture. Accessed: 2018. [Online]. Available:
https://openrisc.io/

[17] OR1200 Design. Accessed: 2018. [Online]. Available: https://github.com
/openrisc/or1200

[18] S. Gai, P. L. Montessoro, and F. Somenzi, ‘‘MOZART: A concurrent mul-
tilevel simulator,’’ IEEE Trans. Comput. Aided Design Integr., vol. CAD-7,
no. 9, pp. 1005–1016, Sep. 1988.

[19] R. Cantoro, A. Firrincieli, D. Piumatti, M. Restifo, E. Sanchez, and
M. S. Reorda, ‘‘About on-line functionally untestable fault identification in
microprocessor cores for safety-critical applications,’’ in Proc. IEEE 19th
Latin-Amer. Test Symp. (LATS), Mar. 2018, pp. 1–6.

[20] F. Pratas, T. Dedes, A. Webber, M. Bemanian, and I. Yarom, ‘‘Measuring
the effectiveness of ISO26262 compliant self test library,’’ in Proc. 19th
Int. Symp. Qual. Electron. Design (ISQED), Mar. 2018, pp. 156–161.

[21] P. Bernardi, M. Grosso, E. Sanchez, and O. Ballan, ‘‘Fault grading of
software-based self-test procedures for dependable automotive applica-
tions,’’ in Proc. Design, Automat. Test Eur., Mar. 2011, pp. 1–2.

[22] G. Bahig and A. El-Kadi, ‘‘Formal verification of automotive design in
compliance with ISO 26262 design verification guidelines,’’ IEEE Access,
vol. 5, pp. 4505–4516, 2017.

[23] A. Nardi and A. Armato, ‘‘Functional safety methodologies for automo-
tive applications,’’ in Proc. IEEE/ACM Int. Conf. Comput. Aided Design
(ICCAD), Nov. 2017, pp. 970–975.

[24] M. Restifo, P. Bernardi, S. De Luca, and A. Sansonetti, ‘‘On-line software-
based self-test for ECC of embedded RAMmemories,’’ in Proc. IEEE Int.
Symp. Defect Fault Tolerance VLSI Nanotechnol. Syst. (DFT), Oct. 2017,
pp. 1–6.

[25] P. Bernardi, R. Cantoro, S. De Luca, E. Sanchez, A. Sansonetti, and
G. Squillero, ‘‘Software-based self-test techniques for dual-issue embed-
ded processors,’’ IEEE Trans. Emerg. Topics Comput., to be published.

[26] P. Bernardi, D. Piumatti, and E. Sanchez, ‘‘Facilitating fault-simulation
comprehension through a fault-lists analysis tool,’’ in Proc. IEEE 10th
Latin Amer. Symp. Circuits Syst. (LASCAS), Feb. 2019, pp. 77–80.

[27] D. Gizopoulos, A. Paschalis, and Y. Zorian, ‘‘An effective built-in self-
test scheme for parallel multipliers,’’ IEEE Trans. Comput., vol. 48, no. 9,
pp. 936–950, Sep. 1999.

[28] N. Kranitis, A. Paschalis, D. Gizopoulos, and G. Xenoulis, ‘‘Software-
based self-testing of embedded processors,’’ IEEE Trans. Comput., vol. 54,
no. 4, pp. 461–475, Apr. 2005.

ANDREA FLORIDIA received the M.Sc. degree
in computer engineering from the Politecnico di
Torino, Torino, Italy, in 2017, where he is currently
pursuing the Ph.D. degree with the Department of
Control and Computer Engineering. His research
interests include test of multi-core systems-on-
chip and fault simulation techniques.

ERNESTO SANCHEZ received the degree in elec-
tronic engineering from Universidad Javeriana,
Bogota, Colombia, in 2000, and the Ph.D. degree
in computer engineering from the Politecnico di
Torino, Italy, in 2006, where he is currently an
Assistant Professor with the Department of Con-
trol and Computer Engineering. His main research
interests include microprocessor testing and evo-
lutionary computation.

MATTEO SONZA REORDA received the M.S.
degree in electronics and the Ph.D. degree in com-
puter engineering from Politecnico di Torino, Italy,
in 1986 and 1990, respectively, where he is cur-
rently a Full Professor with the Department of
Control and Computer Engineering. His research
interests include test of SoCs and fault tolerant
electronic system design.

VOLUME 7, 2019 63587

	INTRODUCTION
	BACKGROUND
	SEQUENTIAL CIRCUIT FAULT SIMULATION (SC-FSIM)
	SELF-TEST PROCEDURES FAULT SIMULATION (STP-FSIM)

	BASIC STP-FSIM TECHNIQUES
	FAULT GRADING OF A SINGLE SELF-TEST PROCEDURE
	FAULT GRADING OF A SOFTWARE TEST LIBRARY

	OPTIMIZED FAULT SIMULATION TECHNIQUES
	STP-FSIM3
	STP-FSIM4

	EXPERIMENTAL RESULTS
	CONCLUSIONS
	REFERENCES
	Biographies
	ANDREA FLORIDIA
	ERNESTO SANCHEZ
	MATTEO SONZA REORDA

