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The reduction of system margin in open optical line systems (OLSs) requires the capability to predict the qual-
ity of transmission (QoT) within them. This quantity is given by the generalized signal-to-noise ratio (GSNR),
including both the effects of amplified spontaneous emission (ASE) noise and nonlinear interference accumula-
tion. Among these, estimating the ASE noise is the most challenging task due to the spectrally resolved working
point of the erbium-doped fiber amplifiers (EDFAs), which depend on the spectral load, given the overall gain
profile. An accurate GSNR estimation enables control of the power optimization and the possibility to auto-
matically deploy lightpaths with a minimum margin in a reliable manner. We suppose an agnostic operation of
the OLS, meaning that the EDFAs are operated as black boxes and rely only on telemetry data from the optical
channel monitor at the end of the OLS. We acquire an experimental data set from an OLS made of 11 EDFAs and
show that, without any knowledge of the system characteristics, an average extra margin of 2.28 dB is necessary
to maintain a conservative threshold of QoT. Following this, we applied deep neural network machine-learning
techniques, demonstrating a reduction in the needed margin average down to 0.15 dB. © 2020 Optical Society of

America
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1. INTRODUCTION

Data traffic demand will experience a dramatic increase over
the next few years, driven by the implementation of 5G access
and the expansion of bandwidth-hungry applications, such
as high definition video and virtual- and augmented-reality
content [1]. These applications will boost cloud computing
and cloud-storage-related data exchange, causing traffic expan-
sion both within and between data centers. Optical networks
will sustain this growth trend, particularly within their back-
bone portion. These backbone networks already carry massive
amounts of data, and a further push will be required to match
the required transmission capacity over the next five years.
A key operator request is the ability to fully exploit existing
infrastructure in order to maximize returns from investments.
This need is directly related to the capability of orchestrating
all network layers, allowing the data transport to reach the
maximum available capacity [2-6]. In optical networks, the
enabler for optimal exploitation of data transport—the dense
wavelength division multiplexed (DWDM) transmission—
is the control layer. In particular, software-defined network
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controllers rely on a network abstraction. Nowadays, optical
networks are fast moving toward partial disaggregation, with
a final goal of full disaggregation; a disaggregated network has
subsystems that are managed independently from one another
by relying on common data structures and API (application
program interface). Contrary to aggregated networks, disaggre-
gated networks can be open and multivendor but are not able
to have closed management. These features pave the road for
a software-defined controller that is able to manage separately
the working points of the various network elements, enabling
the management to be user-customizable.

The first step in disaggregating the network is to consider the
optical line systems (OLSs) that connect the network nodes. In
this framework, the quality of transmission (QoT) degradation
depends on the capability of OLS controllers to operate at the
optimal working point [7,8]. The more accurately this demand
is reached, the lower the margin for traffic deployment and,
thus, the larger the deployed traffic rate. Moreover, there is the
potential for the recovery of network failures to be automated,
reducing downtime. Therefore, to reduce the margin, it is
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mandatory to rely on a QoT estimator (QoT-E) that is able to
reliably predict lightpath (LP) performance before its actual
deployment, i.e., the generalized signal-to-noise ratio (GSNR),
that includes the effects of amplified spontaneous emission
(ASE) noise and provides both the optical SNR (OSNR) and
nonlinear interference (NLI) accumulation [9]. The interac-
tion between ASE noise and NLI [10,11] occurs in the case of
very low operational GSNR, namely for extremely long OLSs,
which require several amplification points. These conditions
are verified in submarine point-to-point networks but have
negligible effects within terrestrial networks. In this work
we focus on terrestrial regional and notional backbone net-
works for which transparent propagation is over much smaller
distances, meaning that considerable ASE-NLI interactions
are not produced. Among the ASE noise and NLI contribu-
tions, the former is the most dominant, because it is twice
the NLI when the system operates at optimal power [7,12].
Remarkably, it is also the most challenging to estimate. In
fact, the ASE noise magnitude depends on the working point
of erbium-doped fiber amplifiers (EDFAs) [13]; this in turn
depends on the spectral load [14]. On the contrary, the NLI
can be accurately predicted when the ASE noise accumulation
is well characterized [15].

The purpose of this work is to investigate the reduction
of uncertainty in the OSNR prediction and, consequently,
to enable the network controller to reliably deploy the LP
at the minimum margin. In this work we suppose the worst
case of a completely agnostic scenario, by relying only on data
coming from the optical channel monitor (OCM) available
at the end of the line system. The uncertainty on the working
point of the EDFAs is typically induced by a mixed effect of
physical phenomena [14] and implementation issues, meaning
that an analytic approach is almost impossible to achieve in
an open environment. To counteract this, we opted to use
machine-learning (ML) techniques, a tactic that has already
been effectively tested when managing optical networks; see
[16-19] for performance monitoring applications, [20,21] for
prediction estimation of the ML approach, and [22] for both.
An overall survey of ML applied in optical networks can be
found in [23].

Specifically, we also cite [24-27]. In [24], the authors utilize
ML to predict the gain of a single EDFA and show that this
method can provide improvements over an analytical model. In
[25] ML is used to predict the output of an EDFA cascade; in
particular, wavelength assignment over a specific network con-
sidered in its entirety is able to be automated. Reference [26]
investigates how ML can mitigate the effect of the EDFA
gain ripple on QoT-E within a simulated network and [27]
demonstrates how ML may be used to automatically configure
the gain required by amplifiers after deployment. The main
difference between this previous research and the present work
is that we focus on the OSNR response to specific configura-
tions in a particular OLS that is considered as an element of a
completely disaggregated network. Through this, we obtain
an evaluation that can be combined with a nonlinear SNR
prediction, in order to obtain a reliable QoT-E that can be used
both in network planning and for the wavelength assignment
in the online case.

In Section 2, we first address the issues related to the abstrac-
tion of the physical layer in order to effectively perform
a multlayer optimization. In particular, we argue that an
accurate QoT-E has a key role in minimizing the margin.

In Section 3, we describe the experiments performed to
emulate an open OLS composed of 11 cascaded amplifiers and
one booster amplifier. With this setup we have obtained a data
set of measurements mimicking the power readings from an
OCM, where different spectral loads have been generated by
shaped ASE noise. Additionally, the EDFAs are used as black
boxes, setting the average gain to the nominal level.

In Section 4, we statistically analyze the experimentally
measured data set over all investigated bandwidths. Then, we
present the variation in OSNR with respect to the spectral
load configuration and discuss these fluctuations in light of
physical considerations. Consequently, we derive the required
margins, supposing a total absence of knowledge on the EDFA
gain and of the noise figure per wavelength. These results show
that the uncertainty induced by an agnostic use of the OLS
may require the deployment of 2.28 dB of system margin,
on average. Note that a closed OLS based on single-vendor
equipment may largely reduce this uncertainty by character-
izing the parameters of these devices. Nevertheless, aging and
environmental effects may introduce some uncertainty even in
this case.

In Section 5 we tested ML techniques. Here, we suppose
that a training data set acquired before the deployment of real
traffic has been collected in order to reduce the uncertainty
of the estimated OSNR. We did not aim to develop a specific
ML algorithm from scratch and instead aimed to show the
effectiveness of ML in this scenario. For this reason, we relied
upon the TensorFlow open source library [28]. We show that
by utilizing and optimizing deep neural network (DNN) algo-
rithms, we are able to reduce the required average margin on
the OSNR prediction from the initial value of 2.28 dB down
t0 0.15 dB.

In Section 6, we give some overall comments that address
possible further investigations.

2. PHYSICAL LAYER ABSTRACTION AND
OPTIMIZATION IN TRANSPARENT OPTICAL
NETWORKS

From a data transport point of view, an optical network is
an infrastructure connecting site—in general with a meshed
topology—where traffic is added/dropped or routed (see
Fig. 1). Site-to-site links are bidirectional fiber connections
implemented as one or more fiber pairs, with one fiber for each
direction, that are periodically amplified by lumped and/or dis-
tributed amplification techniques: EDFAs optionally assisted
by some distributed Raman amplification. These links are
commonly defined as an OLS and are managed by a controller
that has properly set the working point of the amplifiers and,
consequently, the power spectral density (spectral load) at
the input of each fiber span. State-of-the-art optical networks
rely on coherent technology for optical transmission; routing
operations are done at the optical transport layer thanks to
reconfigurable optical add/drop multiplexers (ROADMs) that
implement the transparency paradigm. The spectral usage of
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Fig. 1.  Schematic description of an optical network as a topology
of ROADM nodes connected by OLSs. The inset shows a general
setup for an OLS that in this case is supposed to be open.

fiber propagation exploits DWDM to enable multichannel
transmission over the C-band and, in the future, over multi-
band systems, starting from the L-band. The DWDM spectral
grid can be either fixed or flexible, according to the ITU-T
recommendations [29] that define the spectral slots enabling
transparent source-to-destination optical transport. Within
this grid, the LPs are defined as the circuits describing the rout-
ing space, i.e., the set of possible connections that the routing
wavelength assignment may rely on to set traffic transport
(the LP deployment). Over a deployed LB a polarization-
division-multiplexed multilevel modulation format propagates
transparently from source to destination, suffering from propa-
gation impairments; this is summarized as ASE noise added
by the amplifiers, fiber propagation effects, and ROADM
filtering effects. It has been extensively demonstrated that the
fiber propagation on an uncompensated OLS impairs the
QoT of LPs operated with coherent technologies by introduc-
ing some amount of phase and amplitude noise [7,30-32].
This phase noise is typically well compensated by the carrier
phase estimator module of the digital signal processing at the
receiver. This disturbance must be considered only for high
symbol rate transmission that is designed for short-reach,
high-capacity transparent optical transmission or in the case of
probabilistic shaping [32]. The amplitude noise that derives
from fiber propagation, commonly defined as the NLI, always
impairs performance as it is a Gaussian disturbance that sums
with the ASE noise at the receiver. Additionally, the filtering

effects of ROADMs impact QoT degradation as an extra loss

contribution.

A. Quality of Transmission Estimation Based on the
GSNR

It is well accepted that the merit of QoT for deployed LPs
is given by the GSNR, including both the effects of the
accumulated ASE noise and NLI disturbance, defined as

Pry
GSNR =

Pase + Puux
where OSNR = PRx/PASEa SNRNL = PRx/PNLIa PRx is the
power of the channel under test (CUT) at the receiver, Pasg is
the power of the ASE noise, and Py is the power of the NLI.
In particular, given the bit-error ratio (BER) versus the OSNR
back-to-back characterization of the transceiver, the GSNR
accurately predicts the BER, as has been extensively shown in
multivendor experiments using commercial products [9]. Pnpi
is generated by nonlinear effects and depends on the power of
the CUT and on the spectral load with a cubic law [7]. This
means that for each OLS there exists an optimal spectral load
that maximizes the GSNR [8].

Given the cascade of N optical domains, each characterized
by a generalized GSNR;, where 7 =1, ..., NN, it is straight-
forward to demonstrate that the overall QoT is given by the
following expression:

N -1
GSNR = (Z —GSII\IR) : (2

i=

= (OSNR™'+SNR) ™', (1)

If we analyze the propagation effects on a given LP over a
network route, we can abstract it as a cascade of the effects
of each optical domain that introduces QoT impairments.
Therefore, besides the effects of ROADMs, each LP expe-
riences the cumulative impairments of all previously passed
OLSs, where each introduces some amount of ASE noise
and NLI. For QoT purposes, the OLS can be abstracted by
a unique parameter commonly defined as SNR degradation
that, in general, is frequency resolved (GSNR;(f)), if the
OLS controllers are able to keep the OLS operating at the
optimal working point. Hence, with this condition, if the OLS
controllers are able to expose the corresponding GSNR; for
QoT operations, a network can be abstracted as a weighted
graph corresponding to its topology. The graph nodes are
ROADM network nodes, while the edges are the OLSs and the
weights on these edges are the GSNR; ( /) degradations of the
corresponding OLSs, as shown in Fig. 2. In particular, for a LP
routed from A to F that passes through C and E, the QoT is

GSNRy; (/) = GSNRA(F) + GSNRE (/)
+ GSNRg; (/).

Note that the network abstraction of the physical layer may
be enriched with additional information, such as the latency
or the accumulated chromatic dispersion. Both of these addi-
tional quantities sum on routes as the SNR degradation and
are not exploited in this work. Once the network abstraction
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GSNRp (/)

Fig. 2.  Abstraction of an optical network as a topology graph
weighted by the generalized SNR degradation for optical line systems,
GSNR; (/).

is available and reliable for network management, LPs can be
deployed with the minimum margin, which relies upon the
GSNR of the related route and frequency in the case of traffic
deployment or recovery. To ensure reliability, the margin min-
imization requires full control of physical layer fluctuations.
In particular, the OLS controllers must fix the response of the
amplifiers and expose an accurate evaluation of the GSNR in
the frequency domain.

To obtain this accuracy, it is straightforward to address the
two contributions to the OLS impairments separately: the NLI
generation and the ASE noise accumulation. The NLI power
can be reliably calculated with different levels of uncertainty
using mathematical models [33-36]. The required data for
these models are the spectral load of the fiber span and its char-
acteristics (including Raman pumps, if used). Among these
variables, only the input connector loss is affected by some
considerable uncertainty. For each fiber span, this loss fixes the
actual power of the spectral load, producing different magni-
tudes of NLI. Nevertheless, the prediction capability of Pyyi
is in general very good once a suitable mathematical model is
applied to the system under analysis [15,35]. Consequently,
in this work, we focus our investigation only on the OSNR
component of the GSNR.

In order to address only the OSNR characteristics, in a typ-
ical scenario (an EDFA cascade), we consider a line composed
only of amplifiers and variable optical attenuators (VOAs)
in place of the fiber spans. With this constraint, we avoid
any generation of NLI due to propagation through the fiber.
Therefore, all the experimental measurements analyzed within
this work are not affected by any nonlinear effects. Each EDFA
in the line is characterized by a gain G;(f) and a noise fig-
ure NF;(f), where i =0, ..., N. After the ith EDFA, the
ith attenuator introduces the L,y loss, except for the final
amplifier.

The overall OSNR is given by

Pry Hij\iﬂ Gi (f) L; (f)

S, hfBNELG () = 1T LCHGUH
3)

OSNR(f) =

Research Article

where 4 is the Planck constant and B, is the reference band-
width for the OSNR. It is straightforward to observe that the
uncertainties on G;(f) and NF;(f) induce overall OSNR
fluctuations, which must be taken into account when the
system margin is estimated.

B. Approaches for QoT Estimation

In Fig. 3, we list three possible data sets, each representing a
different level of knowledge of the OLS behavior, with each
allowing a different reduction of the GSNR uncertainty.
Typically [option (1)], some data is available from the static
characterization of devices (e.g., calculating amplifier gain
and noise figure in the frequency domain, connector loss, etc.)
and is very significant for closed systems. By using these data
and characterizing the OLS components, an accurate QoT-E
can be implemented in vendor-specific systems. In particular,
if all of the physical characteristics of the OLS are known, the
OSNR may be calculated using Eq. (3). Nevertheless, this
static data may be incomplete or inaccurate; even in a best-case
scenario, the components experience degeneration due to
aging, leading to a progressively unreliable QoT-E over time.

A second possibility is that telemetry data concerning only
the current network status is available [option (2)]. Assuming
an agnostic operation of the OLS (as is required in an open
OLS) means that the OLS controller must mainly rely upon
telemetry data originating from the OCM and the EDFAs.
This approach does not require knowledge of the device
parameters and avoids the deterioration of the QoT-E accuracy
due to aging discussed in option (1). In this case it is possible
to use the telemetry data to estimate the OSNR response
of the system by relying on the current parameter values.
The problem of this approach is that the OSNR response
is highly dependent upon the spectral load configuration,
requiring a large margin, as can be seen from the analysis of the
experimental data set in Section 4.

Lastly, option (3) considers a data set that collects the QoT
responses to random spectral loads. These data can be gener-
ated before the in-service operation of the OLS, supposing the

GSNR()) Telemetry
, storage
dat.
ata 2 |

Telemetry

[ ocm | ocm

=008
Fig. 3.  General scheme for a QoT-E module predicting the
GSNR(f). The three available data sets are shown: (1) static data

from device characterization, (2) data from current-state telemetry,
and (3) stored data from historical telemetry that feeds a ML module.



availability of a device that is able to supply the OLS with vari-
ous spectral load configurations and measure the OLS response
in terms of OSNR. As OLSs are typically bidirectional, it is
conceivable that a two-port portable device operating as an
ASE-shaped generator at the output port and an accurate
OCM at the input port can be used to retrieve these data.
Moreover, a future implementation considers the possibility
of these devices being built into the ROADM nodes, allowing
the data to be collected with periodical updates via streaming.
Utilizing this data set enables a QoT-E based on the OSNR
response to specific spectral load configurations, increasing
the accuracy of OSNR predictions with respect to option (2),
where only telemetry data is considered. Additionally, this
approach does not require knowledge of the physical parame-
ters of the OLS. This case provides an ideal scenario to apply
ML, where the OLS is treated as a black box. In fact, a ML
method using a training data set composed of past spectral load
realizations can yield an accurate prediction for every newly
generated spectral load realization.

In this work, we focus on option (3) and consider a realistic
use case, namely, a scenario where the OLS controller wishes to
allocate a new LP over the CUT, given an existing spectral load.
In particular, we investigate the level of OSNR associated with
this new LP.

3. EXPERIMENTAL SETUP

To obtain an experimental data set, we design and implement
the experimental setup depicted in Fig. 4, based on commercial
EDFAs [37] used as black boxes. Span losses are obtained by
attenuators in order to focus only the OSNR and to avoid any
NLI generation. The channel combs that provide the OLS
spectral load have been obtained by shaping ASE noise. This
approach does not limit the generality of the results because of
the large time constant that characterizes the physical effects
within EDFAs. The output of the ASE noise source is shaped
by means of a programmable optical wave-shaper filter (Finisar
1000 S) to generate a 100 GHz-spaced, 35-channel WDM
comb centered at 193.5 THz, amplified by a booster ampli-
fier (EDFA in Fig. 4). The choice of the 100 GHz spacing
was forced by the hardware availability, as well as the overall
frequency domain under investigation, which was limited to
3.5 THz (35 channels, each with 100 GHz spacing). These
restrictions do not limit the generality of the results, as the
OSNR values do not change appreciably within each channel
bandwidth and all criticalities concerning the EDFA ampli-
fication process are properly captured. The optical line is
composed of 11 spans, each made of a VOA, with the optical
span attenuation set to 10 dB, each followed by an EDFA that
operates at a constant output power of —10 dBm per channel.
For the EDFAs, MATLAB control software has been developed
to enable black box control. The OCM at the end of the OLS is
mimicked by an optical spectrum analyzer (OSA). OCMs that
are currently present in ROADM nodes are not able to capture
the noise floor due to their lack of sensitivity. As mentioned in
option (3) within the previous section, for a real application
scenario we suppose the presence of a specific device that is able
to measure both the channel powers and the noise floor, or,
to update the current OCM presence on the ROADM nodes.

EDFA,

Optical
source

4

gL

"' frequency [THz]

Power [dBm]

Power [dBm]

ey i
Fig. 4. Experimental setup: Here, the OLS under investigation is
composed of an initial booster amplifier and a cascade of 11 spans,
each containing a VOA and an EDFA. We show the input and output
spectral power measurements obtained using an optical spectrum
analyzer in blue and red, respectively.

Regarding the technical aspects of the data collection within
this project, the experimental campaign lasted several days due
to the OSA usage, taking significantly longer than an OCM.
We expect that within a real application scenario the data col-
lection process would last the duration of a single night before
the in-service operation of the OLS, producing the required
amount of data needed for training the ML.

For every spectral load, we measured the input and output
spectrum in order to generate the final data set. Specifically,
we measured the total power over each channel spectral band-
width, i.e., the noise floor if the channel is off, or the channel
power if the channel is 0. In fact, since the channel bandwidth
(32 GHz) is less than half of the channel spacing, we have
been able to measure the noise floor even for the o7 channels,
estimating their OSNR. An experimental data set has been
generated with 4435 cases representing different spectral load
configurations. For clarity, let us define /N, as the number of
channels in the o7 state in a distinct configuration. Given this
definition, the data set is composed of a scenario with all chan-
nels on (N,, = 35), the 35 cases where only one channel is o7
(V,, =1), and 140 configurations for each N,,=2, ..., 34.
This final set of configurations includes pairs of spectral loads
that are identical, except for the CUT being either within the
onor off state.

4. STATISTICAL ANALYSIS OF EXPERIMENTAL
DATA

In this section, we statistically analyze the OSNR fluctuations
produced by different spectral loads in order to obtain a quan-
titative estimation of the total OSNR uncertainty, given a static
OLS (the OSNR values are calculated with a noise bandwidth
of 12.5 GHz). Moreover, we use the experimental data set as
outlined in option (3) in Section 2 to acquire a prediction of
the OSNR responses. To summarize the data set character-
istics, there are 4435 measurements of distinct spectral load
configurations, which are a subset of the 2% possibilities, given
35 channels. To populate the data set, we select a sample of
spectral load configurations which is uniform over the number
of channels in the o state. Moreover, for the set of configura-
tions with the same /V,,, the channels that are in the 07 state are
chosen randomly, except for the CUT, which is equally divided
between the o7 and off states. This specific data set selection
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Fig. 5.  Overall OSNR measurements in the frequency domain.
The blue dots are the mean values over the entire sample for each
channel; the error bars are equal to the standard deviations. In red
and green the maximum and the minimum for each channel are out-
lined, respectively. The dashed red line indicates the overall OSNR
minimum of 28.1 dB.

method is enacted in order to validate the prediction method
on the CUT OSNR response. During the entire analysis, we
have not taken into account any uncertainty in the measure-
ments, as they are negligible with respect to the characteristic
variances of the system. A few basic considerations arise by
calculating the average of the OSNRs for each channel over
the entire sample, presented in Fig. 5. These OSNR aver-
ages sketch a characteristic figure of the EDFA amplification
process, which takes place between 29.5 and 30.9 dB, with
standard deviations from 0.14 to 0.40 dB. In order to learn
more about the EDFA cascade behavior, it is necessary to con-
sider each configuration separately. In fact, the OSNR of each
channel depends upon the state of every other channel within
the spectral load. For example, as a primitive analysis in this
direction, we investigate how the OSNR distributions change
with regards to the number of 07 channels in the spectral load.
Figures 6 and 7 present the distributions enclosed in Fig. 5 for
a select subset of channels, plotted against the total number
of on channels in the configurations: here these figures show
the means and standard deviations, o, of the channels, respec-
tively. It must be noted that because the data set was further
divided into chunks, the reliability of the averaged quantities
is substantially decreased. This causes the standard deviation
(presented in Fig. 7) to be far less uniform across all channels
when only a small number of channels are in the on state.
Regardless, Fig. 6 shows that for the CUT (/= 195.25 THz),
there is an unquestionable increase in the OSNR as the line
approaches a full load configuration. Moreover, for all chan-
nels o decreases under the same conditions, meaning that the
system tends toward a stable state. To further characterize the
OSNR response with respect to a specific configuration, it
is necessary to fully understand the intrinsic behavior of the
amplification phenomenon.

A. Physical Considerations

Despite it being possible to obtain a precise physical descrip-
tion of the emission phenomenon involved in the amplification
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Fig. 6. Mean values of four channel OSNRs are plotted with

respect to the configurations for an increasing /N,,. In the legend, we
report the central frequency of the channels considered. The colored
lines and shaded areas are qualitative visual expressions of the trend of
measured data.
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Fig. 7.  Standard deviation values of the same configurations plot-

ted in Fig. 6. As expected, the channel centered at 195.25 THz main-
tains the highest variance out of all of the configurations. The colored
lines and shaded areas are qualitative visual expressions of the trend of
measured data.

process, without accurate knowledge of the OLS physical
parameters it is not feasible to determine the evolution of the
spectral load through the EDFA cascade. In a general sce-
nario, this obstacle would be exacerbated by the embedded
EDFA software controller, which, in order to maintain specific
requirements, changes the spectral powers at the output of the
amplifiers with an unknown algorithm. Properly addressing
the cause of the OSNR fluctuations requires splitting the
OSNR into its constituents: the received signal power and the
ASE noise. An important point is that intensity of the signal
amplification and the ASE noise are strictly related. Essentially,
these quantities coincide with the stimulated and spontaneous
emission of the amplifiers, respectively, and both depend on
the population inversions of the erbium within the EDFAs
[14]. As a rough summary, if no power is transmitted in a given
frequency band, all the relative population inversion is utilized
by the ASE noise, allowing it to reach a maximum value. In
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lighting an increase as the OSNR approaches the frequency where the
peak of the spectral hole burning occurs, given by the dashed red line
in the figure.

contrast, when the transmitted signal is amplified, a smaller
amount of population inversion is present, resulting in a lower
maximum noise value that may be attained. This effect is
shown within Fig. 8, where two spectral load configurations are
considered. Here, a clear reduction in ASE noise is observed by
switching an extra channel on. This is the case for all channels,
with the minimum amount of ASE noise being achieved when
all channels are in the o7 state. Furthermore, it should be noted
that among all possible configurations, the example shown in
Fig. 8 experiences the wildest change in the noise figure. In fact,
the channel switched to the o state has a frequency bandwidth
centered at 195.25 THz, with a frequency close to the peak
of the well-known spectral hole burning phenomenon [14].
Likewise, this behavior is also reflected by the large OSNR
variance of this channel. Revisiting the data set, this feature is
pictured in Fig. 9, where we plot the standard deviations of the
overall OSNR measurements for each channel. Furthermore,
in Fig. 8 it can be observed that even though channels have a
frequency spacing of 32 GHz in this experiment, changing a
channel to o7 can affect the power of the noise upon frequency
bandwidths hundreds of gigahertz away. Since the EDFA
energy level population inversion quantifies the intensity of
both the amplification and of the noise, we can conclude that
the state of a single channel impacts both the signal power and
the ASE noise of channels within its frequency neighborhood.
This cross-dependency between the power of the channel
and the ASE noise, which depends on the state of the other
channels, means that calculating the OSNR of every channel is
challenging; this is not an intrinsic value of the channel but of
the entire spectral load. Owing to the above considerations, it
is not possible to further characterize the OSNR response for
a particular configuration if the parameters of the OLS are not
accurately known.

Apart from the statistical description of the entire data set
and the heuristic analysis on OSNR fluctuations, we wish
to use this data set as grounds for a realistic use case. In gen-
eral, the required margin must be conservative and take into
account the OSNR fluctuations, and depends upon the needs
of the OLS operators; to be agnostic with respect to these needs
and to compare different prediction methods in a fair manner,

we quantify an estimation of the average margin by calculating
the root-mean-square (RMS) error, given by

. L@

D ' P2
RMS — \/Zi:o (OSNR; — OSNR?)

where OSNR! and OSNR? are the measured and predicted
values of the CUT OSNR for the 7th spectral load, respec-
tively, and D is the dimension of the test data set. If nothing
is known about the OSNR dependency upon frequency, the
same OSNR threshold must be implemented for all channels
with a magnitude lower than an overall expected minimum. In
this case, the OSNR? are set to the constant OSNR threshold
of 28.1 dB, producing an average margin of up to 2.28 dB over
a set of realizations equivalent to our sample.

Supposing the availability of stored data that describes the
frequency-resolved OSNR response [option (3) in Section 2],
one can reduce the margin by setting a minimum value for
each channel that must lie beneath the respective minimum
measurement (the continuous green line in Fig. 5). Although
this solution is suboptimal, it is the best achievable result
that is conservative and agnostic with regards to the specific
spectral load configuration. This solution produces a limited
improvement, compared to the initial value of 2.28 dB, as the
average margin would lie between 1.72 and 0.46 dB, depend-
ing upon the channel. This result can be further improved
by characterizing the OSNR fluctuation dependency upon
the specific spectral load configuration; as the user knows the
number of oz channels for a given spectral load, they can set the
threshold as the minimum value of the OSNR measurement
for the given N,,. The result of this approach produces an
RMS error which lies between 1.22 and 0.09 dB for the CUT
(worst-case scenario), shown in Fig. 10. These improvements
would reduce the margin in an effective manner; however,
being highly dependent upon the sample features, their accu-
racy is limited by the statistical incidence of the sample over all
possible realizations of the system. This means that having a
reliable value for each channel may require considering a large
number of instances. In light of this, a ML approach appears to
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be an appropriate candidate to increase the accuracy of OSNR
predictions, if the dimensions of the sample are fixed.

5. QOT-E BASED ON MACHINE-LEARNING

The prediction of the OSNR based upon a specific spectral
load configuration is an ideal scenario for ML, especially within
a case where the OLS is treated as a black box, as ML is able to
compensate for the lack of knowledge of the OLS parameters.
In order to measure the enhancement obtained using a ML
approach, we focus on the real-case scenario outlined at the
end of Section 2. Far from being an exhaustive description of
ML applications, the goal of this work is to achieve a better pre-
diction of OSNR using ML techniques in the scenario under
investigation. First, it is necessary to divide the measurement
data set into training and testing sets. The former represents
the stored data set on which the OLS controller can base the
OSNR predictions for a LP that will be allocated to the CUT.
The latter represents a set of real outcomes that can be used
to validate the accuracy of a particular prediction method.
To estimate this accuracy we use the RMS error, considering
OSNR! and OSNR? as the measured and predicted values of
the CUT OSNR, restricted to the test subset of the data set.
Setting a constant OSNR! for all 7 as the minimum measured
value of the CUT OSNR yields a value of 1.63 dB RMS error
over all the configurations in the test data set. Following this,
we take advantage of the well-known TensorFlow platform
[28] to perform ML, adapting various high-level features from
this platform according to our requirements.

Before proceeding with implementing a ML technique to
predict the OSNR of an OLS, we first undertook preliminary
investigations in order to probe whether a neural network or
a linear regression model provides superior performance—
as a result we decided to utilize the DNN implemented in
TensorFlow, which is a feed-forward multilayer (deep) neural
network, because it outperforms a linear regression model in
this scenario. We applied this DNN model to our data set,
obtaining various levels of accuracy depending on the DNN

network parameters. We characterized this DNN model uti-
lizing a proximal Adagrad optimizer (again, implemented in
TensorFlow [28]) with a fixed learning rate of 0.1 and a regu-
larization strength of 0.001. Most importantly, we have tuned
the number of hidden layers and nodes in order to achieve
the best trade-off between precision and computational time.
These two parameters are linked to the complexity of the
DNN, which in turn is tied to the complexity of the problem
to be solved. Although increasing the number of layers and
nodes improves the accuracy of the DNN, raising these values
also has an adverse effect on computational time. In the end,
we decided upon a DNN with three hidden layers, containing
32 nodes each, taking approximately 8 min to train (using a
machine running with 32 GB of 2133 MHz RAM and an Intel
Core i7 6700 3.4 GHz CPU), as increasing DNN complexity
does not further improve the accuracy of the OSNR estima-
tions. These quantities would be changed if we considered a
system with a larger number of amplifiers, with the computa-
tion time increasing accordingly (a rough estimation obtained
from our trials is that the computation time scales linearly
with the number of nodes). Once the model has been trained
it can be validated and utilized for any possible spectral load
configuration, within the overall investigated bandwidth, for
the OLS under consideration.

A. Data Set Preparation

Considering a single CUT (with f=195.25THz), we
selected 30% of the data set to be designated as a testing subset.
Because of the CUT being close to the spectral hole burning
peak, this is a worst-case scenario for OSNR fluctuations;
therefore, lower error predictions are expected for all other
CUT selections. The testing subset was created by randomly
choosing instances from the data set, with the only requirement
being that the uniformity of the distribution with respect to
the number of o7 channels in the configurations was preserved.
This means that for each configuration subset with a given N,,
we select 30% to be in the test data set. DNN training and pre-
diction processes require the definition of features and labels,
which indicate system inputs and outputs, respectively. As
outlined in the previous section, the uncertainty of the system
can be divided along the variances of the received signal power
and the ASE noise. Therefore, we consider these two quantities
as independent inputs of the system and set them as the DNN
features. Correspondingly, the OSNR is the only system out-
put under investigation and so is set as the DNN label. In order
to properly address the aforementioned realistic scenario, the
DNN features correspond to the quantities measured when
the CUT is off, whereas the labels correspond to the CUT
OSNR when the CUT is in the o7 state. As a consequence of
this restriction, the final data set composed of the training and
testing subsets is half the size of the original data set.

B. Results and Comments

In Fig. 11, we show the distributions of the measured OSNR
for the CUT and the predictions of the DNN over the test data
set. This figure highlights how the DNN predictions closely
resemble the measured OSNR values, having a similar mean,
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i, range, and standard deviation, o. An average margin of
0.15 dB is obtained through this DNN estimation of the CUT
OSNR, a significant improvement with respect to the previous
solutions presented at the end of the previous section. To prop-
erly frame these results in the realistic use-case scenario, it must
be underlined that despite the DNN providing a high level of
accuracy, it may make predictions that are not conservative. For
example, in this case 38% of the predictions are greater than
the real values, even if the majority are greater by a marginal
amount. This percentage of nonconservative predictions may
be reduced by shifting the OSNR estimations of the DNN by a
fixed amount. For example, to reach a scenario where less than
6% of the predictions are nonconservative, the DNN estima-
tions must be shifted by a factor of 0.2 dB, giving an RMS error
of 0.27 dB, which remains a significant improvement over the
initial average margin estimations. Furthermore, it should be
stressed that the data set used in this work contains fewer con-
figurations where a small number of channels are o7, visible in
Fig. 12. The result is that these scenarios are underrepresented
in the training data set, causing the accuracy of the DNN
predictions to be lower when N,, < 10; ensuring that these
cases are represented equally would reduce the overall RMS

error. Additionally, Fig. 12 reveals that all nonconservative
cases in this investigation were given when Njg =10 or less,
further stressing that the criticalities of the DNN prediction
depends upon the statistical incidence of the sample over all
possible realizations. In light of these results a ML approach
exhibits promising accuracy, and it seems that with further,
more in-depth parameter selection and training that the DNN
may eventually lead to an OSNR margin estimation that
approaches zero, at least for similar use cases.

6. CONCLUSIONS

In this work we have addressed the system margin minimiza-
tion enabled by a reliable prediction of the QoT given by the
GSNR. The main idea of our approach is that in order to
obtain the best estimation of the GSNR, this QoT-E must
be separated into OSNR and nonlinear SNR components.
In fact, because of the inaccuracy on the parameters and the
software-defined EDFA behavior, the former cannot be analyti-
cally estimated in an accurate way, and so requires an adaptive
approach. We focus on predicting the OSNR component of
the GSNR, as opposed to the nonlinear SNR, as this term
is both the most dominant and the most affected by uncer-
tainties. We propose a ML approach to estimate the OSNR
response over distinct spectral load configurations, leaving the
estimation of the nonlinear SNR to an analytical model that
may give a fast and accurate prediction, once the actual signal
spectral powers are known.

We supposed an agnostic use of the OLS by operating the
EDFAs as black boxes that set the nominal gain and by relying
only on data from the OCM to predict the spectrally resolved
GSNR. Experimentally, we obtained a data set from an OLS
containing a cascade of 11 pairs of EDFAs and VOAs; we
utilize the attenuators in place of the fiber in order to avoid
any NLI generation and to focus our investigation only on the
prediction of the OSNR.

We consider a realistic scenario where an OLS controller
wishes to predict the OSNR of a LP over the CUT, given an
existing spectral load. Supposing the availability of previously
measured OSNR outputs, we give different predictions with
different levels of accuracy by considering different OLS
behavior awareness. First, we show that, without any specific
knowledge of the OLS or the uncertainty fluctuations of
the OSNR, deploying the minimum required conservative
threshold produces an average margin of 2.28 dB. Next, by
considering the minimum measurements for each channel as
an OSNR threshold we evaluate a varying average margin that
lies between 1.72 and 0.46 dB, depending upon the channel
under consideration. This result can be further improved by
assuming that the /V,,, is known, allowing the OSNR threshold
to be set to the minimum values that have been measured
within the respective set of configurations. An average mar-
gin between 1.22 and 0.09 dB is found in this case, which,
nevertheless is not reliable as it depends strongly upon the
statistical incidence of the analyzed sample over all possible
realizations of the system. Finally, we demonstrate that DNN
ML techniques from the TensorFlow platform enable an accu-
rate OSNR estimation with an RMS error of 0.15 dB over
the CUT, representing the worst-case scenario. By applying a



rigid shift to the DNN predictions, it is possible to guarantee
a requested conservative percentage threshold, decreasing the
DNN accuracy. For example, introducing a shift of 0.2 dB
to the DNN estimations produces a result where 94% of the
predictions are fully conservative and gives a reasonable RMS
error 0of 0.27 dB.

To conclude, future analyses performed by also including
telemetry data from the EDFAs may yield a further reduc-
tion in the residual uncertainty, consequently reducing the
required system margin. Furthermore, a future investigation
could exploit a ML algorithm that, during the training stage,
penalizes prediction values that are higher than the measured
values, obtaining a model that is predisposed to conservative
predictions and ensuring that the model maintains reliability
with high accuracy.
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