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Stability of systems with periodic nonlinearities and external forces:
the method of periodic Lyapunov functionals

Vera B. Smirnova1 and Anton V. Proskurnikov2

Abstract— Lur’e-type systems with periodic nonlinearities
arise in many physical and engineering applications, from the
simplest model of a pendulum to large-scale networks of power
generators or biological oscillators. Periodic nonlinearities often
cause the existence of multiple stable and unstable equilibria,
which can lead to presence of “hidden attractors” and other
complex phenomena reported in multi-stable systems. Many
tools of classical nonlinear control, developed for systems with
globally stable equilibria, become inapplicable for systems for
pendulum-like systems. To study their asymptotic properties,
special Lyapunov techniques have been developed based on
special periodic Lyapunov functionals. In this paper, we extend
this method to address the problem of robustness against
uncertain external disturbances. We are primarily interested
in the situation, where the disturbance decays at infinity or,
more generally, has a finite limit, which enables the disturbed
system to have equilibria. A natural question then arises
whether asymptotic properties of the system (e.g. the solutions’
convergence and the estimates of slipped cycles’ number) are
robust against the disturbance. In this paper, we find sufficient
frequency-domain conditions ensuring such a robustness.

Index Terms— Nonlinear system, stability, robustness,
pendulum-like system

I. INTRODUCTION

The second (or direct) Lyapunov method is recognized as
an extremely efficient tool in analysis of nonlinear systems
and constructive control design [1]–[3]. In spite of this,
relatively “simple” systems often fail to be examined by the
classical Lyapunov techniques due to presence of multiple
equilibria and other effects of multi-stability [4]–[6]. This is
exemplified by Lur’e systems with periodic nonlinearities
– from the simple viscously damped pendulum to quite
complicated “pendulum-like” systems such as vibrational
units, electric motors, power generators and various synchro-
nization circuits such as phase and frequency locked loops
(PLL/FLL) [7]–[11]. The latter class of applications has
given birth to the terms “synchronization” or “synchronous
control” system [12], [13]. Synchronization circuits are nat-
urally described by dynamic models on a smooth manifold
(circle, torus or cylinder) [4], [14] or Lur’e systems with
periodic nonlinearities and infinite sets of equilibria. In both
cases, special methods are needed to examine stability.
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One of the central problems concerned with dynamics of
pendulum-like systems is the convergence of all solutions
to equilibria points, also referred to as the gradient–like
behavior [12], [15]. To establish this stability property, three
non-standard Lyapunov methods have been proposed in the
literature. The method of invariant cones originates from the
works of Noldus [16] and exploits special sign-indefinite
quadratic Lyapunov-type functions. The subsequent devel-
opment of this method [4], [17] has inspired the very recent
works on input-to-state stability of periodic systems [18].
The second method is based on the “comparison principle”
and reduces a nonlinear system to a simpler “comparison”
system, whose trajectories are then explicitly used in the Lya-
punov functions design [4], [17], [19]. The third method ex-
ploits periodic Lyapunov functions (more precisely, function-
als) that are designed as a sum of quadratic part and integrals
of some periodic functions over the system’s trajectory [17],
[20], [21]. The existence of the quadratic part is proved
analytically via the Kalman–Yakubovich–Popov lemma or
numerically by solving LMIs [15], and the positivity of
the integral part imposes nonlinear algebraic constraints on
the parameters. Stability theorems thus have the form of
“frequency–algebraic” or “LMI-algebraic” criteria. Periodic
Lyapunov functions also enable one to reveal some relations
between the initial condition of the system and the terminal
equilibrium, e.g. the number of slipped cycles [22]–[24].

In this paper, we extend the method of periodic Lyapunov
functions to systems with uncertain disturbances. Namely,
we address robustness problems, dealing with disturbances
that vanish (or, more generally, have finite limits) at infinity
and thus enable the disturbed system to have equilibria. First,
we obtain conditions ensuring the gradient-like behavior
of a disturbed system under arbitrary disturbances from
this class. Second, we extend the existing results on cycle
slipping to such systems. Notice that our results do not follow
from the very recent results on ISS robustness analysis of
multi-stable systems under bounded excitations [18], [25],
[26]. Although the ISS property implies the convergence
of solutions under vanishing disturbances, it relies on the
constructive design of ISS Lyapunov functions which, up to
now, has been proposed only for special situations [25], [27]
and remains an open problem for multidimensional systems
with periodic nonlinearities. Besides this, the works on
ISS analysis primarily deal with continuous-time dynamical
systems, whereas we consider discrete-time systems as well.



II. GRADIENT-LIKE BEHAVIOR OF CONTINUOUS-TIME
SYNCHRONIZATION SYSTEMS

We start with a continuous-time MIMO system as follows

ż(t) = Az(t) +Bξ(t) ∈ Rm,
σ̇(t) = CT z(t) +Rξ(t) ∈ Rl,
ξ(t) = ψ(σ(t)) + f(t) ∈ Rl

t ≥ 0. (1)

Here A,B,C,R are real matrices of appropriate dimensions,
and f(t) is an uncertain disturbance influencing the system.

The model (1) is typical for phase-locked loops
(PLL) [12], [28]. Compared to classical Lur’e systems [4],
system (1) has the following important feature. The nonlinear
input ξ(t) depends on the system output σ(t). This output,
however, is not directly influenced by the input ξ(t), which
however affects only the derivative σ̇(t). In PLLs, σ(t) stands
for the phase error, whereas the control input is the frequency
of a voltage-controlled oscillator. This “indirect” control,
along with the periodicity of ψ(·), enables the existence of
multiple equilibria in the system and makes many techniques
of classical absolute stability theory inapplicable [4].

A. Preliminaries and key assumptions

We start with introducing some assumptions on system (1).
Assumption 1: The linear part of (1) is asymptotically

stable, controllable and observable.
Assumption 2: The disturbance f(t) is decomposed as

f(t) = g(t) +L, where L = (L1, . . . , Ll)
> is an (unknown)

constant vector and g is absolutely continuous and vanishes
at infinity. It is also assumed that |g|, |ġ| ∈ L2[0,∞).

Assumption 3: The nonlinear feedback is decoupled in
the sense that ψ(σ) = (ψ1(σ1), . . . , ψl(σl))

T . Each compo-
nent ψj is periodic with the (minimal) period ∆j > 0. All
ψj are smooth, in particular, the minima and maxima exist

µ1j
∆
= min
ζ∈[0,∆j ]

dψj(ζ)

dζ
, µ2j

∆
= max
ζ∈[0,∆j ]

dψj(ζ)

dζ
. (2)

We also assume that each function ϕj(ζ)
∆
= ψj(ζ) +Lj has

simple isolated zeros on [0,∆j) (and hence µ1jµ2j < 0), so
that the disturbed system has equilibria.

For a complex-valued matrix H , H∗ denotes its Hermitian
(complex-conjugate) transpose. If H is square, let ReH ∆

=
(H +H∗)/2. Identity m×m-matrix is denoted by Im. The
transfer matrix of the linear part of (1) from ξ to (−σ̇) is

K(p)
∆
= −R+ C∗(A− pIm)−1B, p ∈ C. (3)

Throughout the paper, ı =
√
−1 denotes the imaginary unit.

All stability criteria presented below involve a set of pa-
rameters, that one can arbitrarily choose (from the predefined
sets). These parameters are interrelated by two types of
constraints: the frequency-domain inequality (which could
be replaced by an LMI) and a set of nonlinear algebraic
inequalities. These parameters are as follows:

• two diagonal matrices Ai
∆
= diag{αi1, . . . , αil}, i =

1, 2, where −∞ ≤ α1j ≤ µ1j , ∞ ≥ α2j ≥ µ2j ∀j;
• arbitrary diagonal matrix κ = diag {κ1, . . . ,κl};

• positive diagonal matrices ε = diag {ε1, . . . , εl}, τ =
diag {τ1, . . . , τl}, δ = diag {δ1, . . . , δl};

• constants a1, . . . , al ∈ [0, 1].

B. Frequency-domain stability criteria

In this paper, we are interested in the situation where
each solution z(t), σ(t) converges to some equilibrium point
z0, σ0. It is easy to show that at any such point we have
z0 = 0 and ϕ(σ0) = ψ(σ0) + L = 0. We give a definition.

Definition 1: We say that a solution to (1) converges
(to an equilibrium point) if there exist a vector σ0 =
(σ10, . . . , σl0) such that ϕj(σj0) = 0∀j and

z(t) −−−→
t→∞

0 (4)

σ̇(t) −−−→
t→∞

0 (5)

σj(t) −−−→
t→∞

σj0. (6)

The system is gradient-like [12] if all its solutions converge.
Our first two results establish “frequency-algebraic” crite-

ria for the gradient-like behavior of (1).
We introduce the functions

Φj(ζ)
∆
=
√(

1− α−1
1j ψ

′
j(ζ)

) (
1− α−1

2j ψ
′
j(ζ)

)
, (7)

where we put α−1
ij = 0 if αij = ±∞. We also denote

νj
∆
=

∫∆j

0
ϕj(ζ)dζ∫∆j

0
|ϕj(ζ)| dζ

, ν0j
∆
=

∫∆j

0
ϕj(ζ)dζ∫∆j

0
|ϕj(ζ)|Φj(ζ)dζ

,

ν2j
∆
=

∫∆j

0
ϕj(ζ)dζ∫∆j

0
|ϕj(ζ)|

√
1 +

τj
εj

Φ2
j (ζ)dζ

.
(8)

Theorem 1: Let parameters A1, A2,κ, τ, δ, ε, ai exist
with the aforementioned properties such that

1) the frequency-domain inequality holds for each ω ∈ R

ReκK(ıω)−K∗(ıω)εK(ıω)− δ−
−
(
K(ıω) +A−1

1 ıω
)∗
τ
(
K(ıω) +A−1

2 ıω
)
≥ 0

(9)

2) the following matrices are positive definite εk
κkakνk

2 0
κkakνk

2 δk
κka0kν0k

2
0 κka0kν0k

2 τk

 > 0. (10)

Here a0k
∆
= 1− ak and k = 1, . . . , l.

Then system (1) is gradient-like.
Proof: We start with transforming (1) as follows

dy(t)

dt
= Qy(t) + Lη(t),

dσ(t)

dt
= D∗y(t)

(11)

where we put by definition

Q
∆
=

[
A B
0 0

]
, L

∆
=

[
0
Il

]
, D

∆
=

[
C
R∗

]
,

y(t)
∆
=

[
z(t)
ξ(t)

]
, η(t)

∆
=

d

dt
ξ(t).



According to the Kalman-Yakubovich-Popov lemma [4],
[29], condition 1) entails the existence of a symmetric (m+
l)×(m+ l)-matrix H such that the following quadratic form

G(y, η) = 2y∗H(Qy + Lη) + y∗DεD∗y + y∗LκD∗y−
−(D∗y −A−1

1 η)τ(A−1
2 η −D∗y) + y∗LδL∗y

is non-negative definite, that is,

G(y, η) ≤ 0 ∀y ∈ Rl+m,∀η ∈ Rl. (12)

We are going to use periodic functions

Fi(ζ) = ϕi(ζ)− νi |ϕi(ζ)| , (13)

Ψi(ζ) = ϕi(ζ)− ν0iΦi(ζ) |ϕi(ζ)| , (14)

constructed in a way to have zero average on a period:∫ ∆i

0

Fi(ζ)dζ =

∫ ∆i

0

Ψi(ζ)dζ = 0, ∀i = 1, . . . , l. (15)

With the help of Fi(ζ) and Ψi(ζ) we construct a
Lyapunov-type function1

v(t) = y∗(t)Hy(t) +

l∑
k=1

κk

(
ak

∫ σk(t)

σk(0)

Fk(ζ)dζ+

+a0k

∫ σk(t)

σk(0)

Ψk(ζ)dζ

)
.

(16)
The derivative of v(t) in view of (11) is as follows

dv(t)

dt
= 2y∗(t)H(Qy(t) + Lη(t))+

+

l∑
k=1

κk(akFk(σk(t)) + a0kΨk(σk(t))σ̇(t).
(17)

It follows from (12) that

dv(t)

dt
≤ −

l∑
k=1

(
εkσ̇

2
k(t) + κkϕk(σk(t))σ̇k(t)

+δkϕ
2
k(σk(t)) + τkΦ2

k(σk(t))σ̇2
k(t)−

−κk(akFk(σk(t) + a0kΨk(σk(t))) σ̇k(t)) + U(t)

(18)

where by definition

U(t)
∆
= −

∑l
k=1 (κkgk(t)σ̇k(t) + δkg

2
k(t)+

+2δkgk(t)ϕk(σk(t))− τkα−1
2k (σ̇k(t)−

−α−1
1k ϕ̇k(σk(t)))ġk(t)− τkα−1

1k (σ̇k(t)−
−α−1

2k ϕ̇k(σk(t)))ġk(t) + τkα
−1
1k α

−1
2k ġ

2
k(t)).

(19)

Since ϕ ∈ C1, one shows that

|σ̇k(t)− α−1
ik ϕ̇k(σk(t))| ≤ D0k|σ̇k(t)|, (20)

where D0k are positive constants. The well-known Cauchy-
Bunyakovsky-Schwartz inequality implies that

a>b ≤ ε̄|a|2 + ε̄−1|b|2 (21)

1Rigorously speaking, v(t) = v(yt(·)) is a Lyapunov functional, depend-
ing on the whole trajectory of the system yt(·) = y|[0,t] : [0, t]→ Rl+m.
We denote it v(t) with some abuse of notation in order to simplify reading.

for each vectors a, b and a number ε̄ > 0. Hence, for an
arbitrary ε̄ > 0 one has

U(t) ≤
∑l
k=1

{
D1kε̄(σ̇k(t))2 +D2kε̄(ϕk(σk(t)))2+

+D3kε̄
−1g2

k(t) +D4kε̄
−1ġ2

k(t)}
(22)

with some positive constants Dik (i = 1, 2, 3, 4). Then
from (13), (14) and (22) we conclude that

v̇(t) ≤ −
l∑

k=1

(Z̄k(σ̇k(t), ϕ(σk(t)),Φk(σk(t))σ̇(t))

+D3kε̄
−1g2

k(t) +D4kε̄
−1ġ2

k(t)),

Z̄k(x, y, z)
∆
= (εk −D1kε̄)x

2 + (δk −D2kε̄)y
2+

+τkz
2 + κkνkakxy + κkν0ka0kyz.

(23)

It follows from condition 2) that for ε̄ > 0 being sufficiently
small, the quadratic forms Z̄k are positive definite, and thus

dv(t)

dt
≤ −

l∑
k=1

(δ0kϕ
2
k(σk(t)) + ε0kσ̇

2
k(t))+

+ε̄−1

l∑
k=1

(D3kg
2
k(t) +D4kġ

2
k(t))

(24)

with ε0k, δ0k > 0. Integrating from 0 to t, one obtains

v(t)− v(0) ≤ −
l∑

k=1

∫ t

0

(δ0kϕ
2
k(σk(t)) + ε0kσ̇

2
k(t)) dt+

+ε̄

l∑
k=1

(D3k

∫ t

0

g2
k(t) dt+D4k

∫ t

0

ġ2
k(t)) dt ∀t ≥ 0.

By Assumption 1, matrix A is Hurwitz. Notice now that
v(t) is bounded from below since function ξ(t) is bounded
(which implies boundedness of the solution) and the integrals
in (16) are bounded due to (15) and the periodicity of Fi,Ψi.
Recalling that ε0k, δ0k > 0, one shows that∫ ∞

0

ϕ2
k(σk(t))dt < +∞,

∫ ∞
0

σ̇2
k(t)dt < +∞. (25)

Since matrix A is Hurwitz, functions z(t), and σ̇(t) are
bounded on [0,+∞). Functions ϕk(σk(t)) and σ̇k(t) are
uniformly continuous on [0,+∞). Then it follows from (25)
according to Barbalat lemma [30] that

ϕk(σk(t))→ 0 as t→ +∞, (k = 1, . . . , l)

σ̇k(t)→ 0 as t→ +∞, (k = 1, . . . , l).

Since ϕk has isolated zeros, σk converges to one of them,
i.e. (6) is valid. By noticing now that ξ(t) = ϕ(σ(t)) +
g(t)→ 0 and A is Hurwitz, one shows that (4) holds.

Theorem 2: Theorem 1 retains its validity, replacing (10)
by the inequalities

2
√
εjδj > |ν2j |κj ∀j = 1, . . . , l. (26)

Proof: Retracing the proof of Theorem 1, consider the
Lyapunov-type function

v(t) = y∗(t)Hy(t) +

l∑
k=1

κk
∫ σk(t)

σk(0)

Yk(ζ)dζ,

Yj(ζ)
∆
= ϕj(ζ)− ν2j |ϕj(ζ)|

√
1 +

τj
εj

Φ2
j (ζ).

(27)



Using (12) and (26), one can derive the inequality (24) for
the Lyapunov function (27).

Notice that the periodicity of nonlinearities is heavily used
in the proofs of Theorems 1 and 2, enabling one to establish
boundedness of the Lyapunov functional v(t) along each
trajectory. Counterparts of Theorems 1 and 2 for undisturbed
systems have been used in [20], [31] to compute “stability
domains” (the set of parameters for which the system is
gradient-like) for undisturbed PLL with proportionally inte-
grating filter and a sine-shaped nonlinearities. Theorems 1,2
show that these domains remain unchanged in presence of
disturbances satisfying Assumption 2.

Below we consider a numerical example, dealing with a
third-order PLL.

Example 1:
Consider the scalar system (l = 1) with the second-order
transfer function

K(p) =
1

p2 + ap+ b
(a, b > 0), (28)

assume that the disturbance vanishes at infinity (L1 = 0) and
the nonlinearity is

ϕ1(σ) = sin(σ)− 1

2
. (29)

To get the stability domain of the system on the plane {a, b}
Theorem 1 with fixed parameters κ1 = |α11| = α12 = 1
and varying parameters δ1, ε1, τ1, a1 has been applied. The
stability domain obtained is shown in Fig. 1 (the shaded
area). It can be shown that below curve C the system has
no locally stable equilibria.

 

Fig. 1. Stability domain for the third-order system (28),(29), estimated by
means of Theorem 1

Remark 1: Instead of using KYP lemma, reducing (12)
to the frequency-domain inequality, the existence of matrix
H = H∗ can be formulated as a condition of some LMI’s
solvability [32]. This inequality, in fact, is linear not only in
H , but also parameters κ, ε, τ, δ, but nonlinear in A1, A2.

III. FREQUENCY–ALGEBRAIC STABILITY CRITERION FOR
DISCRETE-TIME SYSTEMS

In this section, we consider discrete-time counterpart of (1)

z(n+ 1) = Az(n) +Bξ(n),
σ(n+ 1) = σ(n) + C∗z(n) +Rξ(n),
ξ(n) = ψ(σ(n)) + f(n)
(n = 0, 1, 2, . . .).

(30)

The functions and matrices in (30) obey Assumptions 1,3.
Assumption 2 is replaced by the discrete-time counterpart.

Assumption 4: The disturbance f(n) is decomposed as
f(n) = g(n) +L, where L is an (unknown) constant vector
and

∑∞
n=1 |g(n)| <∞.

Definition 2: We say that a solution to (30) converges if
there exist a vector q ∈ Rl such that ϕ(q) = 0 and

z(n) −−−−→
n→∞

0 (31)

σj(n) −−−−→
n→∞

q. (32)

System (30) is gradient-like if all its solutions converge.
Criteria of gradient-like behavior, formulated in this sec-

tion, also consist of a frequency-domain inequality (replace-
able by an LMI in view of the discrete-time KYP lemma).
The frequency-domain inequality involves the rational ma-
trix (3), which serves as the transfer function of the linear
part of (30) from ξ(n) to (σ(n)− σ(n+ 1)).

Theorem 3: Suppose there exist parameters
A1, A2, ε, τ,κ, δ, whose properties are specified in Section
II-A, such that the following conditions hold:

1) the frequency–domain inequality holds for any p ∈ C
such that |p| = 1

0 ≤ ReκK(p)− δ −K(p)∗εK(p)−
−
(
K(p)− (p− 1)A−1

1

)∗
τ
(
K(p) + (p− 1)A−1

2

)
;

2) the inequalities hold for all k = 1, . . . , l

4(εk −
1

2
κkα0k(1 + |νk|))δk > κ2

kν
2
k (33)

where νk are defined in (8) and

α0k
∆
=

{
α2k if κk > 0,

α1k if κk < 0.
(34)

Then system (30) is gradient-like.
Proof: Introduce the matrices

P =

[
A B
0 Il

]
, L =

[
0
Il

]
D =

[
C
R∗

]
, y(n) =

[
z(n)
ξ(n)

]
.

Denoting η(n)
∆
= ξ(n+ 1)− ξ(n), system (30) shapes into

y(n+ 1) = Py(n) + Lη(n),
σ(n+ 1) = σ(n) +D∗y(n)

(n = 0, 1, 2, . . .).
(35)

Consider a quadratic form of y ∈ Rm+l, η ∈ Rl:

G1(y, η)
∆
= (Py + Lη)∗H(Py + Lη)− y∗Hy+

+y∗LκD∗y + y∗DεD∗y + y∗LδL∗y−
−(D∗y −A−1

1 η)τ(A−1
2 η −D∗y)



with H ∈ R(m+l)×(m+l), H = H∗.
Condition 1) of the theorem guaranties, thanks to the

Kalman-Szegö lemma (or discrete-time KYP lemma) [30]
that there exist a symmetric matrix H such that

G1(y, η) ≤ 0, ∀y ∈ Rm+l, η ∈ Rl. (36)

Consider a Lyapunov–type sequence2

V (n)
∆
= W (n) +

n∑
j=1

κj
∫ σj(n)

σj(0)

Fj(ζ) dζ,

W (n)
∆
= y∗(n)Hy(n).

(37)

where Fj are defined by (13). Due to Assumptions 1 and 4,
the sequence y(n) (and hence also W (n)) is bounded.

From (37) we have

V (n+ 1)− V (n) = W (n+ 1)−W (n)+

+
l∑

j=1

κj
∫ σj(n+1)

σj(n)

Fj(ζ) dζ.
(38)

We are now going to estimate the difference (38). It follows
from (35) and (36) that

W (n+ 1)−W (n) = y∗(n+ 1)Hy(n+ 1)− y∗(n)Hy(n) =

= (Py(n) + Lη(n))∗H(Py(n) + Lη(n)))− y∗(n)Hy(n) ≤
≤ −y∗(n)LκD∗y(n)− y∗(n)DεD∗y(n)− y∗(n)LδL∗y(n)+

+(D∗y(n)−A−1
1 η(n))τ(A−1

2 η(n)−D∗y(n)).

Introduce the first differences

σ̄(n)
∆
= σ(n+ 1)− σ(n),

ϕ̄(n)
∆
= ϕ(σ(n+ 1))− ϕ(σ(n)),

ḡ(n)
∆
= g(n+ 1)− g(n).

(39)

Then

W (n+ 1)−W (n) ≤ −
l∑

k=1

{κkξk(n)σ̄k(n)+

+εk(σ̄k(n))2 + δkξ
2
k(n) + τk(σ̄k(n)−

−α−1
1k ηk(n))(σ̄k(n)− α−1

2k ηk(n))} =

=

l∑
k=1

{κkϕk(σk(n))σ̄k(n) + εk(σ̄k(n))2+

+τk(σ̄k(n)− α−1
1k ϕ̄k(n))(σ̄k(n)− α−1

2k ϕk(n))+

+δkϕ
2
k(σk(n))}+ U1(n),

(40)

where we denote

U1(n)
∆
= −

∑l
k=1{κkgk(n)σ̄k(n)+

+2δkgk(n)ϕk(σk(n)) + δkg
2
k(n)− τα−1

1k ḡk(n)(σ̄k(n)−
−α−1

2k ϕ̄k(n))− τα−1
2k ḡk(n)(σ̄k(n)− α−1

1k ϕ̄k(n))+
+τα−1

2k α
−1
1k ḡ

2
k(n)}

(41)

2Similar to the continuous-time case, this sequence can be considered as
a Lyapunov functional, depending on the whole trajectory of the system.

It follows from the assumption on the entries of A1, A2

(see Section II-A) and (2) that

(σ̄k(n)− α−1
1k ϕ̄k(n))(σ̄k(n)− α−1

2k ϕ̄k(n)) ≥ 0 (42)

(this estimate relies on the mean-value theorem, stating that

ϕ̄k(n)) = ϕ
′

k(σ̂kn)σ̄k(n),

where σ̂kn is a point between σ(n) and σ(n+ 1)).
It can be shown [20] that

κk
∫ σk(n+1)

σk(n)

Fk(ζ) dζ ≤ κkFk(σk(n))σ̄k(n)+

+
1

2
κkα0k(1 + |νk|)σ̄2

k(n)

(43)

The inequalities (42) and (43) imply that

V (n+ 1)− V (n) ≤ −
l∑

k=1

{κkνk|ϕk(σk(n))|σ̄k(n)+

+(εk −
1

2
κkα0k(1 + |νk|)σ̄2

k(n)) + δkϕ
2
k(σk(n))}+

+U1(n).

(44)

To finish the estimating of (38) we have to estimate the value
of U1(n). Notice that in virtue of (2)

|σ̄k(n)− α−1
ik ϕ̄k(n)| ≤ C0k|σ̄k(n)|) (i = 1, 2) (45)

where C0k does not depend on n. Using the Cauchy-Scwartz
inequality (21), for an arbitrary ε̄ > 0 one has

U1(n) ≤
l∑

k=1

{C1kε̄(σ̄k(n))2 + C2kε̄(ϕ(σk(n)))2+

+C3kε̄
−1g2(n)},

(46)

where positive constants Cik (i = 1, 2, 3) depend
onκk, τk, εk, δk, αik (i = 1, 2) but not on n. Thus

V (n+ 1)− V (n) ≤ −
n∑
k=1

Zk(n) +

l∑
k=1

C3kε
−1g2

k(n) (47)

where

Zk(n) = (εk −
1

2
κkα0k(1 + |νk|)− C1kε̄)(σ̄k(n))2+

+(δk − C2kε̄)ϕ
2
k(σk(n)) + κkνk|ϕk(σk(n))|σ̄k(n).

Let ε̄ be chosen so small that the inequalities hold

4

(
εk −

1

2
κkα0k(1 + |νk|)− C1kε̄

)
(δk − C2kε̄) > κ2

kν
2
k .

Then Zk(n) are positive definite quadratic forms of σ̄k(n)
and |ϕk(σk(n))|. Therefore,

V (n+ 1)− V (n) ≤ −δ0|ϕ(σ(n))|2 + Cε̄−1|g(n)|2, (48)

where δ0 > 0 and C = maxk=1,...,l C3k.
The property (15) and the boundedness of W (n) imply

the boundedness of V (n). Then we conclude from (48) and
Assumption 4 that

∞∑
n=1

|ϕ(σ(n))|2 <∞, (49)



which implies that ϕ(σ(n))→ 0 and thus ξ(n) = ϕ(σ(n))+
g(n)→ 0. In view of the system stability, one obtains (31),
also, σ(n+1)−σ(n)→ 0 as n→∞. Since ϕ(·) has isolated
zeros, one arrives at (32), where q is one of such zeros.

Example 2: Consider a pulse phase-locked loop
(PPLL) [33] with l = 1, L1 = 0,

ϕ1(σ) = TpΩy(sin(σ + σ0)− sinσ0), σ0 ∈ (0,
π

2
). (50)

and a proportional integrating filter:

K(p) =
dp+ 1− b− d

p− b
. (51)

Here d = 1 − m
a (1 − b), b = e−a, a > 0, m ∈ (0, 1).

To demonstrate the application of Theorem 3 we fix the
parameters τ1 = 0, κ1 = |α11| = α12 = 1, and vary the
remaining parameters δ1, ε1. Then Theorem 3 requires the
frequency-domain inequality

ReK(p)− ε1|K(p)|2 − δ1 > 0 (52)

to hold for p = 1+iω
1−iω , ω ∈ R, along with the condition

4δ1(ε1 −
1

2
(1 + ν1)) > ν2

1 . (53)

Here ν1 is given by

ν1 =
π sinσ0

2(cosσ0 + σ0 sinσ0)
. (54)

The condition (52) holds if

ε1 + δ1 = 1. (55)

and

ε1(2d+ b− 1)2 + δ1(1 + b)2 ≤ (1 + b)(2d+ b− 1). (56)

We begin with conditions (53) and (55). They can be
fulfilled, both of them, if ν ∈ (0, 1

3 ).
Choosing for every ν

δ1 =
1− ν

4
ε1 =

ν + 3

4
. (57)

we can guarantee that inequality (56) is true provided that

ν ≥ 2− b− 3d

b+ d
. (58)

So the PPLL is gradient-like if

2− b− 3d

b+ d
≤ ν < 1

3
. (59)

The stability conditions (59) can be essentially weakened,
varying the whole set of parameters.

IV. CONCLUSION

In this paper we study the asymptotic behavior of forced
solutions of multidimensional continuous- and discrete-time
Lur’e systems with periodic nonlinearities in presence of
uncertain disturbances. It is assumed that this disturbance
does not oscillate at infinity, enabling the disturbed system
to have equilibria. The results are obtained by means of
the “periodic Lyapunov function” method. Notice that in
the continuous-time case, some of our results can be also
obtained by the method of Popov’s integral indices, devel-
oped in [34], [35]. The method of Lyapunov functions and
sequences, developed in this paper, has however a number of
advantages of the latter approach. First, a closer analysis of
the proofs reveals the possibility to estimate the convergence
rate of the solutions, also, it opens up the perspective of
obtaining ISS-like criteria for multidimensional pendulum-
like systems [5], [25] in the case of bounded disturbances.
Second, it also enables to evaluate some characteristics
of transient processes, such as e.g. the number of cycle
slipping [22]. These extensions are beyond the scope of this
paper and will be included in its extended journal version.
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