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Abstract: 

Virtual storage in district heating systems consists in modifying the thermal request profiles of some of 
the connected buildings with the goal of modifying the thermal load of the plants. This approach allows 
one shaving the thermal peak and, consequently, reducing the primary energy consumption or 
connecting additional buildings to the network. Another use is related with the possibility to shift the 
thermal production in order to increase the possibility to compete on the electricity market. Good 
prediction of thermal behavior of buildings is an important aspect for managing virtual storage in order 
to optimize the global effect while guaranteeing the same comfort levels to the end-users. This also 
allows one selecting the most suitable buildings that can be considered for the implementation of such 
approach. In this paper, an analysis of the buildings connected to a distribution network of a large district 
heating system is performed, on the basis of data gathered through a monitoring system installed in the 
various substations. These data includes temperature and mass flow rate in the user heat exchangers 
available each 6 minutes. The analysis allows one identifying users with peculiar behavior, creating 
various clusters of buildings with similar characteristics and providing an energetic overview of the 
various distribution networks belonging to a large network. 
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1. Introduction 
District heating (DH) technology represents a valuable way to provide heat and hot water to buildings, through 

the combined exploitation of delocalized plants, renewable sources and industrial excess heat [1, 2]. Together 

with high efficiency plants, such as groundwater heat pumps [3,4,5], it is expected to play an increasing role 

for house heating especially in urban areas. Full exploitation of the capabilities of DH systems can be only 

obtained through optimization of the operating conditions, which requires detailed knowledge of 

thermodynamic quantities along the network and in the buildings. In [6], experimental data of the exchanged 

heat fluxes are used in order to build a thermal load predictor, as a function of the outdoor temperature and the 

social behaviour of the consumers. Daily average loads and environmental conditions monitored during 

various years in six Swedish DH systems have been used to predict the overall thermal load [7]. In [8], the 

hourly thermal load provided to the local distributors is monitored for a year and used to build a model for heat 

demand prevision in large areas. In [9], pumping pressures in a DH network are monitored and used for testing 

an optimizer for minimizing pumping cost. 

Information about energy flows are usually available, for existing DH systems, only for short time periods or 

with a low frequency (e.g. one value per day), in particular when large networks are considered. However the 

focus on optimal DH system management and smart heat networks, is leading, in the last year, to an increasing 

interest in the installation of data monitoring systems.  

In [10], an introductory analysis of several substation measurements is proposed. The work analyses one year 

of hourly heat meter from 141 substations in two district heating networks in two cities in the south-east of 

Sweden. The same amount of data have been used in [11] for detecting faults regarding temperature differences 

and quality assurance of eliminated temperature faults. In [12] an IoT software infrastructure for city district 



data management and energy flow simulations is discussed. Data gathered in the user substations of two 

different distribution networks are used in [13,14] with the aim of shaving the thermal peak for optimizing the 

peak reduction effects.  

Thermal peak shaving is a very important aspect for the optimal management of DH networks. Especially in 

Mediterranean areas, heating systems are switched off during the night and a thermal peak occurs in the 

morning due to the large temperature differences taking place in the substations, when the heating system is 

switched on. In the case night attenuation is performed, this phenomenon is reduced, but still occurs. The 

presence of a peak leads to a series of disadvantages such as the reduction of the cogeneration exploitation and 

the increase in water mass flow rate circulating in the network. The latter involves larger pumping costs and 

potential limitations on the number of additional buildings which can be connected to the network without new 

pipelines installation. The main strategies used for the thermal peak shaving are the installation of thermal 

storages along the network and the application of virtual storages [13,14]. Virtual storage is intended as the 

use of the thermal capacity of the buildings with the goal of modifying their thermal demand profiles with the 

aims of reducing the thermal request at the power plants. Clearly such approach presents constrains related 

with the thermal comfort in the buildings. 

In this work, an approach for evaluating information related to the buildings linked to a DH network is 

proposed starting from the data gathered through a monitoring system installed in the substations; such data 

are used for analysing the buildings connected to a distribution network where virtual storage is applied. Mass 

flow rates and temperatures at both sides of the heat exchangers are the data required for the analysis. A 

monitoring system has been used to gather the data; in particular, they are detected each 6 minutes. Using these 

data it is possible to capture information about thermal coefficients (heat transfer coefficient of the building k 

and its thermal capacity c) of the buildings. Furthermore, a cluster analysis based on a global coefficient of the 

performances allows classifying buildings into classes; such information can be used to select the more suitable 

users for the application of the virtual storage.  The final aim of the work is to apply to the selected users a 

virtual storage optimizer, which includes a physical network simulator, in order to shave the thermal peak 

request. 

2. Methodology 

 

The goal of the work is to propose methodology for significant thermal peak shaving through the analysis of 

the data collected at the substations.  The thermal peak shaving is performed through virtual storage, i.e. the 

modification of the switching on time of the user heating systems. In this work, only anticipations of the 

switching on time are considered for not affecting the indoor temperature at the early morning. In particular, 

the maximum anticipation for each user is performed through an analysis of the data collected in the user 

substations. The methodology of the work conduced with the aim of peak shaving is depicted in Fig. 1. At 

first, the data collection and the data pre-processing have been performed with the aim of achieving all the data 

that are mandatory for the peak shaving and for the evaluation of the maximum anticipation. Such data have 

been used for the evaluation of the main thermodynamic characteristics of the buildings: the equivalent heat 

transfer coefficient and the equivalent thermal capacity of the building. These data are grouped through a 

cluster analysis and for each group the maximum anticipation that can be performed is selected. In the end the 

optimizer for the selection of the anticipation that maximize the peak shaving is run. The optimizer includes a 

physical simulator of the network in order to evaluate the best peak shaving of the overall distribution network. 

It allows to taking into account the dynamic of the network, such as the different delay of the flow that leave 

the various users and the transient when the water inside the network start flowing. The various phases of the 

work are explained in the following paragraphs as detailed in Fig. 1. 

 

 

 

Fig. 1 Scheme of the work 
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2.1. Data collection system 

The district heating network substations consist of an heat exchanger between the main district heating 

network, supplying superheated water coming from the thermal power plants (primary side), and the heating 

network of the building (secondary side). A simplified scheme of the substation is represented in 2. The heat 

exchanger on the left is the one between primary and secondary network, where the secondary network is the 

one bringing the hot water in the heating devices of each apartment of the building. The heat exchanger on the 

left is a fictitious device, which represents the heating devices (radiators, radiant floors, etc.) in the building.  

 

 
Fig. 2 Simplified scheme of the district heating network substation. 

 

A system for monitoring the main thermodynamic quantities of the building substations has been implemented 

over the past years. Temperature sensors and mass flow meter are installed for collecting temperatures at the 

inlet and at the outlet sections of the heat exchanger and the flowing water mass flow rate. These data can be 

managed with the aim of achieving the heat request evolution with different external temperatures. In Figure 

3 some data collected in a distribution network of the Turin DH system are shown.  

 

Figure 3. Data collected at the heat exchangers of some users in Turin DH system 

 

Figure 3 depicts the evolution of the temperature at the inlet and at the outlet section at the primary side, the 

mass flow rate and the heat flux requested. Mass flow rate and heat power evolutions present various peaks 

during the day. The larger peaks occur at early morning mainly between 5 am and  8 am. The observation of 

the mass flow rate evolutions show that most of the heating systems are switched off during the night while 

only few users are never switched off. These user are also characterized by a constant temperatures at the inlet 

of the heating system. During the functioning of the heating systems the inlet temperature values are between 
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118 °C and 113 °C, due to the various distances of the users from the link between the subnetwork and the 

main transport network, which causes different the thermal losses values. The temperature in the outlet section 

depends on the inlet temperature, the mass flow rate and the heat exchanged with the secondary side. Most 

values for the users depicted in Fig. 3 are between 55 °C and 70 °C.  

2.2. Substation and Building Model 

A compact user model has been created in order to simulate the single user of the district heating network, 

connected to the substation. Input data of the compact user model are the primary flow and primary supply 

temperature together with the external one. Moreover, the characteristics of the building are needed such as: 

building volume, secondary flow, pipe running delay and parameters 𝑘, 𝑐. 

 

The building model is based on a simple energy balance: 

𝜙ℎ − 𝜙𝑙𝑜𝑠𝑠 = 𝑐 𝑉 
𝑑 𝑇ℎ𝑜𝑢𝑠𝑒

𝑑 𝑡
 (1) 

The thermal losses of the building can be calculated as: 

𝜙𝑙𝑜𝑠𝑠 = 𝑘 𝑉 (𝑇ℎ𝑜𝑢𝑠𝑒 − 𝑇𝑒𝑠𝑡) (2) 

The building parameters are obtained through analysis of the real data available for the building. In order to 

estimate the global heat transfer coefficient 𝑘, system operating conditions in the afternoon are considered. In 

fact, in the afternoon, typically the steady state conditions are reached (see also Fig. ). In these conditions, it is 

possible to write: 

𝜙ℎ = 𝜙𝑙𝑜𝑠𝑠 = 𝑘 𝑉 (𝑇ℎ𝑜𝑢𝑠𝑒 − 𝑇𝑒𝑠𝑡) (3) 

Performing a sensitivity analysis of the seasonal data allows one to evaluate the best value of 𝑘. 

The Fig.4a shows a linear correlation between the external temperature and the thermal request in the afternoon 

for a sample building. Finding the fitting line it is possible to obtain values of 𝑘 in the range 0.85 −
0.95 [𝑊/(𝑚3𝐾)] for old buildings and 0.35 − 0.45 [𝑊/(𝑚3𝐾)] or even less for new ones.   

 

  
Fig. 4- K and C evaluation; a) correlation between the afternoon thermal request and the external 

temperature. b) Temperatures on the secondary side of the heat exchanger in blue and green. 

 

 

Considering the transient behaviour of the building after switching off the heating system, it is possible to 

evaluate the thermal capacity of the building 𝑐.  

In Fig. 4b are represented the temperatures T3 and T4 on the secondary side of the heat exchanger (blue and 

green curves, respectively), together with the external temperature Test (light blue curve). Difference between 

T4 and Test in black and fitting exponential decay in red. 

Black curve represents the difference 𝑇4 − 𝑇𝑒𝑠𝑡 for the last hours of the transient evolution, while red curve is 

the theoretical exponential evolution. In the last hours of transient this exponential decay is comparable with 

the decay of 𝑇ℎ𝑜𝑢𝑠𝑒 − 𝑇𝑒𝑠𝑡 since the temperature of the heating circuit becomes close to the indoor temperature. 

This is also highlighted by the fact that no significant difference is registered between the supply and return 

temperatures. The last three before the starting time are thus considered as best timeframe in order to estimate 

the thermal capacity of the building.  

Using (1) and (2), it is possible to write: 



𝑘 𝑉 (𝑇ℎ𝑜𝑢𝑠𝑒 − 𝑇𝑒𝑠𝑡) = − 𝑐 𝑉 
𝑑 𝑇ℎ𝑜𝑢𝑠𝑒

𝑑 𝑡
 (4) 

Subtracting 𝑇𝑒𝑠𝑡  in the derivative and introducing 𝜗 = 𝑇ℎ𝑜𝑢𝑠𝑒 − 𝑇𝑒𝑠𝑡, one can obtain: 

𝑘 𝜗 = − 𝑐 
𝑑 𝜗

𝑑 𝑡
 (5) 

The solution of (5) through integration is: 

𝜗 = 𝜗0 𝑒−
𝑘

𝑐
∙𝑡

 (6) 

The term −𝑘/𝑐 coincides with the power coefficient of the theoretical exponential decay represented in red in 

Errore. L'origine riferimento non è stata trovata., therefore it is possible to obtain the value of the thermal 

capacity. 

The thermal capacity 𝑐 values are in the range 50 000 − 150 000 [𝐽/(𝑚3𝐾)].   
Referring to Fig. 2, a model of the two heat exchangers is needed in order to evaluate 𝜙ℎ. Using the modelling 

approach represented in Fig.2 the environment where the fictitious device is located is characterized by an 

homogeneous temperature. This is thus an average building temperature, which does not necessarily coincide 

with the internal room temperatures, but is just representative of the internal conditions. Assuming that the 

current request profile is acceptable for the end-users, a different profile can be considered acceptable as well 

in the case the average internal conditions do not change. This particularly implies the fact that the new average 

temperature is never below an acceptance level achievable with the current strategy.   

The difference between 𝑇5 and 𝑇4 is due to the pipe running delay from the outlet of the heating device to the 

inlet in the heat exchanger, located in the thermal power station of the building. The heat exchanger between 

the primary and secondary network is modelled with Δ𝑇𝑚 𝑙𝑜𝑔 and effectiveness-NTU method. The first 

calculated parameter is the design heat flux needed for the building. In the district heating network design, a 

typical value used to roughly design the heat exchanger is 28 𝑊 for each 𝑚3 of building volume [15]. 

𝜙𝐷 = 𝑉 ∙ 28  (7) 

Once obtained the design heat flux it is possible to calculate the product 𝑈 ∙ 𝐴 with: 

𝑈 ∙  𝐴 =
𝜙𝐷

Δ𝑇𝑚 𝑙𝑜𝑔
  

(8) 

where 𝑈 is the global normalized heat transfer coefficient of the heat exchanger, 𝐴 is the heat exchange surface 

and Δ𝑇𝑚 𝑙𝑜𝑔 is the mean logarithmic temperature difference. 

Once 𝑈 ∙ 𝐴 is calculated, it is possible to calculate the effectiveness of the heat exchanger, 𝜀, assuming counter-

flow configuration for the heat exchanger and using the corresponding effectiveness formula [16].  

The heat flux is thus expressed as: 

𝜙𝐼 = 𝜙𝑚𝑎𝑥 ∙  𝜀 (9) 

where the maximum heat exchangeable 𝜙𝑚𝑎𝑥 is: 

𝜙𝑚𝑎𝑥 = (𝑚̇ ∙ 𝑐𝑝)
𝑚𝑖𝑛

∙ (𝑇1 − 𝑇4) (10) 

These equations allow to calculate the temperatures of the two streams exiting the heat exchanger, on the basis 

of the inlet temperatures. The fictitious heating device has been solved in the same way, through the calculation 

of the effectiveness 𝜀ℎ as the ratio between the heat exchanged in design conditions (assumed coincident with 

𝜙𝐷) and the maximum heat flux, namely:   

𝜀ℎ =
𝜙ℎ,𝐷

𝜙ℎ,𝐷 𝑚𝑎𝑥
 (11) 

𝜙ℎ,𝐷 𝑚𝑎𝑥 = (𝑚̇ ∙ 𝑐𝑝)
𝑚𝑖𝑛,ℎ

∙ (𝑇3𝑑 − 𝑇ℎ𝑜𝑢𝑠𝑒,𝑑) (12) 

Effectiveness in off-design conditions has been considered equal to that in design conditions, which allows 

one evaluating the heat flux: 

𝜙ℎ = 𝜙ℎ,𝑚𝑎𝑥 ∙  𝜀 (13) 



    𝜙ℎ,𝑚𝑎𝑥 = (𝑚̇ ∙ 𝑐𝑝)
𝑚𝑖𝑛,ℎ

∙ (𝑇3 − 𝑇ℎ𝑜𝑢𝑠𝑒) (14) 

In this way also the second heat exchanger is solved and it is possible to calculate 𝑇4, i.e. the return secondary 

temperature, which is just equal to 𝑇5 but delayed of a certain time ∆𝑡𝑑𝑒𝑙𝑎𝑦, characteristic of the analysed 

building. 

The requested heat flux obtained through (13) is then used in (1) in order to evaluate the trend of the average 

building temperature 𝑇ℎ𝑜𝑢𝑠𝑒 during the analysed day. Knowledge of the internal temperature evolution 

provides information about the possibilities to modify the heating system schedule. In fact, any anticipation of 

the switching on time leads to changes in the indoor temperature evolution, which could not be acceptable for 

comfort reasons and thus needs to be checked. In this work the internal temperature evolution is studied for 

different values of schedule modification in order to estimate the maximum acceptable anticipation for each 

user. A tolerance of 0.5 °C is selected and only the anticipation that leads to an indoor temperature reduction 

smaller than the tolerance, during the most critical time of the day, are considered.  

 

2.3. Clustering 
Once the thermal capacity and the thermal conductivity are calculated, the effects of these coefficients on the 

internal temperature can be evaluated with the aim of obtaining a single parameter that allows including the 

contribution of both terms. In particular, the indoor temperature decrease, that occurs when the heating system 

is switched off, has been studied for different values of k and c. The equivalent quantity U is expressed as: 

 𝑈 =
𝑘′+ 𝜇 𝑑′

1+𝜇
  (15) 

where 

 𝑘′ =  𝑘/max (𝑘)  (16) 

 𝑑′ =  
1

𝑐

max 
1

𝑐

   (17) 

μ is the weight factor that allows to correlate the contribution of c and k in the decrease of indoor temperature. 

The value of μ  is estimated through the physical model of the building expressed by equation (1), considering 

𝜙ℎ = 0.  

The quantity U is evaluated for each building considered in the analysis. The U values have been clustered 

into 7 groups that quantify the energetic efficiency of the buildings. Clustering is performed through a k-means 

approach. The aims is to associate each element xi to one of the cluster k such that the quantity J, expressed by 

equation (17) is minimized. 

 𝐽 = ∑ ∑ ‖𝑥𝑗 − 𝑅𝑖‖
2𝑛

𝑖=1
𝑘
𝑖=1   (18) 

R is the centroid of the cluster, n is the overall number of elements and k is the number of cluster previously 

selected. The k-means algorithm works through an iterative technique that allows to improve the results 

progressively. The algorithm proceeds as reported in Fig. 5. 

Once the clustering analysis has been performed, for each cluster the maximum allowed anticipation has been 

evaluated, through the use of the substation model. 

 



 
Fig. 5 k-means clustering algorithm 

 

 

2.4. Virtual storage optimizer 

 

The virtual storage optimizer aims at selecting the best set of schedule anticipations (y), i.e. the time the each 

heating system is switched on, that allows to maximize the peak reduction without affecting the comfort 

conditions for the end-users. The y variable can assume only discrete values since the time schedule allows 

just such discrete modifications. In particular, the time slot considered for the modifications are 10 min long. 

A genetic algorithm, set for integer-value, has been used to carry out the minimization. 

The virtual storage optimizer has been applied to a single subnetwork of the Turin DH system. The buildings 

presenting high values of the energy efficiency indicator, obtained through the clustering analysis, are selected 

as the ones which schedule can be modified. 

The objective function that has to be minimized is the maximum value of the thermal power: 

  Φmax = min(ΦBCT(t)𝑚𝑎𝑥)  (19) 

where ΦBCT(t)𝑚𝑎𝑥 is the maximum thermal power requested by the distribution network. This is obtained 

considering the total mass flow rate circulating in the selected network at each time-step and the corresponding 

supply and the return temperatures: 

 ΦBCT(t)𝑚𝑎𝑥 = max (GTOT_BCT(t) cp (Tsupply − Tret_nodeBCT(t)))  (20) 

A physical network model is included in the virtual storage optimizer [17]. It is a one dimensional model based 

on energy conservation equations. It considers a graph approach for the network topology description [18].   

The balances applied to all the nodes of the network and written in a matrix form are: 

 0 extGGA  (21) 

   gTKTM   ,   (22) 

 

where G includes the mass flow rates in all the branches, Gext the mass flow rates entering and exiting the 

network in the nodes, M and K are the mass and the stiffness matrix, including respectively the characteristics 

affecting the pipeline dynamic and the coefficients of the terms depending on temperature; g includes the terms 

not depending on temperature. Further details on the numerical method used for the problem solving are 

available in [19]. 
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The physical network model is used in order to consider the effects of the long distances involved in the 

network, on temperature distribution. In fact, on the return network, water exiting the substations flows and 

mixes with the various streams coming from the users located in the same distribution network; not all these 

streams are at the same temperatures because of the different distances involved. Furthermore, thermal losses 

affect temperature distribution, and as a result of these effects the temperature evolution at points that connects 

the distribution network to the transportation network is significantly different than that at the users. Therefore 

Tret_nodeBCT  has been evaluated through the thermal fluid-dynamic model 

 

3. Results 

3.1 Model Validation 

One of the most important characteristic of this model is the compactness, which allows using it within an 

optimization logic without affecting the computational cost despite the potentially large number of buildings 

the model is applied to. The model has been preliminary validated through comparison with real data available 

for a thermal barycentre of the Turin district heating network, in Italy. 

 

 

 

 

 

Fig. 6  In red the heat flux resulting from the model for three different users for one day of 2014. With dotted 

lines the experimental data in black. 

 

In Fig. 6 the heat flux results for three example users of the Turin network are shown. Results show that the 

model is able to simulate the heat flux evolution with good accuracy.  



3.2 Clustering Analysis 

The aim of the first part of the work is to select the buildings that are more suitable for virtual storage 

installation. In fact, some building possess characteristics such that large anticipation are admitted while others 

do not. The values obtained for the thermal conductivity k and the thermal capacity c for each considered 

building are depicted in the scattered plot in Fig. 7. 

 

Fig. 7 k and c correlation 

 

It is clear from Fig 7 that commonly buildings characterized by high thermal and conductivity have low heat 

capacity values. The global normalized coefficient U is obtained correlating the k value and the inverse of the 

c value through an analysis of the indoor conditions, when the heating system is switched off. In Fig. 8 the 

indoor temperature evolutions are reported for different k and c values. The original values are selected as the 

mean k and c values. Large values of k and small values of c cause fast temperature decreases. However the 

effects of the thermal capacity percentage variations, respect to the mean values, are larger respect to the effect 

obtained through the same thermal conductivity percentage variation. 

 

Fig. 8 Indoor temperature variation for different c and k values 

 

In order to better visualize the influence of k and c on the indoor temperature evolution, the temperature 

decrease are reported in Fig. 9 for several values of k and c. Temperature variations have been  evaluated 

considering a transient time period of an hour. This is a reasonable amount of time considering that the 

anticipation performed on the user are included between 0 minutes to 1 hours.  

 

Fig. 9 Indoor temperature variation after 1 hour varying c and k 

 

Through linearization of the results it is possible to obtain the value of μ, which allows evaluating the global 

normalized efficiency U for each buildings. This is 1.577.  

Clustering of the buildings have been carried out using the U values; results are reported in Fig. 10. Most of 

the buildings analysed present low U values. This means that they have low thermal conductivity and high 

thermal capacity. There is only a building with U value higher than 0.5 and only 6 with values higher than 

0.25. More than half of the analysed buildings are included in clusters 1 and 2.  



 

Fig. 10 Clustering results 

 

In Fig 11, the thermal conductivity and the inverse of the thermal capacity of the buildings are depicted in a 

scatter plot. In addition, the cluster subdivision is also represented. As expected, the green points, that are 

related to the buildings with higher energetic performances, are located in the bottom left corner where thermal 

conductivity are low and thermal capacity high. In particular, the buildings in this area are characterized by 

high time constant and therefore a variation in the heating system schedule is expected not to cause quick 

variations in the indoor conditions. The virtual storage analysis is then applied to the buildings characterized 

by low values of U. 

 

 

Fig. 11 Clustering represented as a function of k and 1/c 

 

 

3.3 Optimization results 

The virtual storage optimizer is finally applied and the set of anticipation obtained are reported in Fig. 12. The 

anticipation obtained are well distributed among the various possibility. The users that are not modified are 

19. These are the users that have a peak that occurs in the late morning and that do not need of being anticipated. 

28 users are subjected to an anticipation of 10-30 minutes. The remaining 12 users are anticipated of more than 

40 minutes (40-50-60 min). These are the users whose the peak occurs in the more critical time and with a 

larger peak width. 

 



 

 

Fig. 12 Best set of anticipations  

 

In Fig. 13, the thermal request evolutions occurring before and after the virtual storage application are reported. 

The dashed line is the total heat flux required to the distribution network without any modifications in 

scheduling; the continuous line represents the total heat flux required to the distribution network when the 

virtual storage is applied. It is evident from the results that the application of virtual storages yields a 

considerable peak reduction. The thermal request obtained with virtual storage increases before, due to the 

schedule anticipation. The thermal peak in the current conditions reach 11.6 MW, while the virtual storage use 

allows obtaining a maximum peak of about 8.5 MW. The peak reduction performed is about 25%. This is a 

promising result that encourage further investigations on virtual storage installation for the thermal peak 

shaving. 

 

Fig. 13 Thermal peak shaving 

4. Conclusions 
In this work, data gathered through a monitoring system installed in the DH substation are used to estimate 

parameters that describe the thermal behaviour of connected buildings. These pieces of information are then 

used in order to identify the buildings which are more suitable for the application of virtual storage. Virtual 

storage optimization is then conducted with the aim of minimizing the maximum thermal request. The virtual 

storage optimizer includes a physical model of the network able to simulate the temperature evolution of the 

water that flows into the pipelines.  

The analysis of the variation of the indoor temperature with different thermal conductivities and thermal 

capacities shows that both the variables largely affect the indoor temperature variation. Virtual storage is 

applied to the peak shaving of a distribution network in the Turin DH system. Results show that the virtual 

storage leads to a reduction of about 25% of the morning thermal peak. This is a very encouraging results and 

it gives reasons to continue the virtual storage research for thermal peak shaving.  



Nomenclature 
𝑇1  primary side supply temperature, K 

𝑇2   primary side return temperature, K 

𝑚̇ℎ  primary side flow, kg/s 

𝑇3   secondary side supply temperature, K 

𝑇4  secondary side return temperature, K  

𝑚̇𝑐  secondary side flow, kg/s 

𝑇5  heating device outlet temperature, K 

𝑇ℎ𝑜𝑢𝑠𝑒  average building temperature, K 

𝑉   building volume, m3 

𝜙𝐼   heat flux of heat exchanger between primary and secondary side, W 

𝜙ℎ  heat flux required by the building, W 

𝜙𝑙𝑜𝑠𝑠 thermal losses of the building, W 

𝑘  global heat transfer coefficient, W/(m3K) 

𝑐  thermal capacity of the building, J/(m3K) 

∆𝑡𝑑𝑒𝑙𝑎𝑦 pipe running delay, s 
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