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imprecise historical information
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1Institute of Hydraulic Engineering and Water Resources Management, Vienna University of Technology, Vienna, Austria,
2Centre for Water Resource Systems, Vienna University of Technology, Vienna, Austria, 3Institute of Statistics and
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Abstract This paper presents a novel framework that links imprecision (through a fuzzy approach) and
stochastic uncertainty (through a Bayesian approach) in estimating flood probabilities from historical flood
information and systematic flood discharge data. The method exploits the linguistic characteristics of
historical source material to construct membership functions, which may be wider or narrower, depending
on the vagueness of the statements. The membership functions are either included in the prior distribution
or the likelihood function to obtain a fuzzy version of the flood frequency curve. The viability of the
approach is demonstrated by three case studies that differ in terms of their hydromorphological conditions
(from an Alpine river with bedrock profile to a flat lowland river with extensive flood plains) and historical
source material (including narratives, town and county meeting protocols, flood marks and damage
accounts). The case studies are presented in order of increasing fuzziness (the Rhine at Basel, Switzerland;
the Werra at Meiningen, Germany; and the Tisza at Szeged, Hungary). Incorporating imprecise historical
information is found to reduce the range between the 5% and 95% Bayesian credibility bounds of the
100 year floods by 45% and 61% for the Rhine and Werra case studies, respectively. The strengths and
limitations of the framework are discussed relative to alternative (non-fuzzy) methods. The fuzzy Bayesian
inference framework provides a flexible methodology that fits the imprecise nature of linguistic information
on historical floods as available in historical written documentation.

1. Introduction

Numerous extreme floods around the world in the last decades [Hall et al., 2014] have resulted in a renewed
interest in historical floods. Due to the rich historical material, Europe lends itself particularly well to study-
ing historical floods [see e.g., Br�azdil et al., 2006, 2012; Glaser et al., 2010; Hall et al., 2014].

Historical floods are not only interesting from a process perspective, they can also be very useful for flood
risk assessment since their record lengths are often much longer than those of the systematic data of the
instrumental period [Kjeldsen et al., 2014]. Numerous formal statistical methods have been proposed that
combine information on historical floods with systematic flood discharge measurements [e.g., Leese, 1973;
Cohn et al., 1997; O’Connell et al., 2002; England et al., 2003; Benito and Thorndycraft, 2005] and with regional
and process information [see e.g., Merz and Bl€oschl, 2008a,b; Viglione et al., 2013]. The combination is often
framed in Bayesian terms in order to estimate flood discharge probabilities and their uncertainties [e.g.,
Stedinger and Cohn, 1986; O’Connell et al., 2002; Parent and Bernier, 2003; Reis and Stedinger, 2005; Neppel
et al., 2010; Payrastre et al., 2011].

Information on historical floods, usually, is not only stochastically uncertain but also vague or imprecise.
There is an important distinction between stochastic uncertainty and imprecision. Stochastic uncertainty
relates to a lack of information about the world and is usually represented by random variables. In the case
of floods, the randomness represents the lack of knowledge of the timing future floods of a given discharge
will occur (as represented by the flood frequency distribution), and the parameters of that distribution can
be uncertain too (due to limited flood record lengths and measurement errors). Imprecision, in contrast,
relates to the content of the statement on floods. For example, if historical records described a flood as a
‘‘large flood’’, there is nothing uncertain about this statement. Rather it is a vague or imprecise statement, as
‘‘large’’ can imply a wide range of water levels. Nevertheless, this kind of information can be useful.
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Fuzzy set theory [Zadeh, 1965] has been developed in order to represent such vagueness in a quantitative
way. At the core of the theory is the membership function that defines the degree of an element’s member-
ship in a fuzzy set. A membership function of flood discharges associated with the term ‘‘large flood’’, for
example, represents the degree to which one thinks a particular flood discharge would be considered a
‘‘large flood.’’ Since the association of a given flood discharge with the term ‘‘large flood’’ can be partly true
and partly false at the same time, the discharges are represented as fuzzy or imprecise numbers.

Fuzzy sets have been extensively used in hydrology and water resources planning in such diverse areas as
geostatistics [B�ardossy et al., 1990], modeling water flow in the unsaturated zone [Schulz and Huwe, 1997],
catchment water balance modeling [Nasseri et al., 2014], flood forecasting [B�ardossy, 2008], and flood polder
planning [Schumann and Nijssen, 2011]. Surprisingly, fuzzy sets have hardly been used for quantifying histor-
ical floods even though much of the historical information is linguistic and the original development of
fuzzy set theory was largely motivated by quantifying the vagueness of the human language such as the
‘‘the class of tall men’’ [Zadeh, 1965, p. 1]. We believe that the descriptions of historical floods as available in
archives and other historical sources perfectly fit the nature of fuzzy modeling due to its ability to process
quantitatively imprecise linguistic linguistic expressions and transform them into fuzzy numbers.

The aim of this paper is to propose a new framework that exploits the benefits of fuzzy numbers in quanti-
fying imprecise, linguistic information on historical floods and combines them with systematic flood dis-
charge data by a Bayesian approach. We thus link imprecision (through a fuzzy approach) with stochastic
uncertainty (through a Bayesian approach) in estimating flood probabilities.

Section 2 of this paper describes typical source material of historical floods, highlighting its imprecise
nature. Section 3 proposes the framework for linking specific information about historical floods with their
fuzzy model, building on the fuzzy Bayesian inference theory of Viertl [2008a, 2008b]. Section 4 presents
three case studies to illustrate the feasibility of the framework for different characteristics of the historical
source material. Section 5 discusses the main findings and section 6 presents the conclusions.

2. Historical Data are Fuzzy

In this paper, we refer to data from the preinstrumental period as the historical time series, as opposed to
data from the systematically measured period that are referred to as the systematic or instrumental time
series. Historical time series may be developed from various types of written documentary evidence such as
narratives (e.g., chronicles, annals, diaries), institutional sources which can be economic-administrative
(accounts) and legal-administrative (e.g., charters, official/administrative letters, notes, reports), epigraphic
evidence (e.g., flood marks, paintings/drawings), and media information (e.g., newspapers, pamphlets) etc.
Depending on source availability, the quality and the regularity of observations and the recording practices,
flood series may be built from one source type (e.g., accounts, flood marks, charters/letters etc.) or, more
often, from a combination of various source types (e.g., narratives, epigraphic and institutional sources).

A representative example of the fuzzy character of historical documentary evidence is the general terminol-
ogy applied. In medieval and early modern times in Europe, texts are often written in Latin where the over-
all magnitude of a flood is represented by specific terms. A clear term for an extreme flood of exceptional
magnitude is deluge (‘‘diluvium’’). This term is rarely used before the beginning of the 14th century, and typ-
ically used for the most extreme cases such as the floods that occurred in 1315, 1342, 1343, 1374 or 1501 in
central Europe. For the Th€uringen rivers in Germany, ‘‘Diluvium Thuringiacum’’ in Latin or ‘‘Th€uringishe Sint-
flut’’ in German were used [see Deutsch and P€ortge, 2003]. A very large flood is sometimes referred to as
‘‘inundatio maxima’’ (enormous flood), for example, the 1343 Upper-Rhine flood (Generallandesarchiv Karls-
ruhe Urk. 1345, Sept. 30, GLA. 16/97, Konv. 22), or ‘‘maximae aquarum inundationes’’ (enormous floods of
water) (e.g., February 1342, by Franciscus Pragensis: Loserth [1875]). A large flood that is, however, not
extraordinary in magnitude is usually referred to as ‘‘Nimia/magna/ingens inundatio aquarum’’ in Latin or
‘‘gross g€uß’’ in German, a terminology widely used in all document types (e.g., annals, chronicles, accounts,
charters, diaries etc.–see e.g., Rohr [2004]; Kiss [2007, 2009]; Kiss and Laszlovszky [2013]; Wetter et al. [2011]).
Some chronicles, such as the Petrak-chronicle written in Szentes (45 km north of Szeged, Hungary), furnish
a direct comparative terminology for all flood classes: ‘‘igen nagy, pusztito arviz volt’’ (there was a very
great/destructive flood), ‘‘nagy arviz volt majusban’’ (there was a great flood in May) and ‘‘Ebben az evben is
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volt arviz’’ (there was a flood
also in this year). Rohr [2004]
provides a more detailed termi-
nological discussion and other
examples.

An alternative way of flood char-
acterization are basic damage
measures (e.g., casualties, build-
ings and infrastructure destroyed
etc.), such as reported for the
exceptional event in summer
1275: ‘‘Festo Petri et Pauli Rhenus
pontem Basiliensem destruxit,
submersis plus minus 100 homi-
nibus.’’ (On the day of Peter and

Paul (29 June in Julian Cal.) the bridge of Basel was destroyed, and around 100 people submerged) (source pub-
lished in Latin: Pertz [1861]). There is thus no precise information on the maximum water levels.

Floods are also sometimes assessed with reference to human memory. Examples for unprecedented floods
are ‘‘de a memoria hominum, non visa non audita’’ (not seen or heard about in human memory (i.e., in human
lifetime)) for the extreme ice jam flood of February 1775 in Budapest, as referred to in the town protocols of
BudaPest (BFL Pest. IV. 1202a. 355a. 22 Feb, 1775 [see e.g., Kiss, 2007]). Almost the same expression was used
for the catastrophic 1343 summer flood of Lake Constance (Austrian-German-Swiss border): ‘‘quod antea non
est visum, ut antiquiores tunc temporis referebant’’ (reported by J. von Winterthur: Baethgen [1924]).

Information on the extent and level of the flood waters may also appear in the source material. Examples are
‘‘die Br€ucken einem Holz-floß auff dem Wasser gleich gesehen’’ (the bridge looked like a wooden raft on the
water), referring to the 1570 Rhine flood (see Figure 1) (referenced in Wetter et al. [2011], taken from the
Kurtze Bassler Chronik: Groß [1624]) and ‘‘Ganz Pest gleicht einer Insel’’ (the entire city looked like an island in
the water), referring to the 1784 Danube flood in Budapest (Kiss [2007]: Pressburger Zeitung I March, 1784).

If quantitative information on water levels is available, as well as information or assumptions about the cross
section, discharge can be reconstructed by hydraulic modeling [Benito et al., 2003; Br�azdil et al., 2005, 2006;
Herget and Meurs, 2010; Wetter et al., 2011; Elleder et al., 2013; Herget et al., 2014]. If the information is less
specific regarding water tables, historical flood series are often classified into magnitude categories, and
each magnitude class receives a numerical value or index. Table 1 provides the most widespread method of
classifying the general information derived from the flood descriptions available in the various source types
listed above. The primary indicators relate to the information that is most likely available in historical sour-
ces which is information on damage and causalities. The secondary indicators relate to potentially available
hydrological information such as water tables, hydromorphological changes and the flood duration. On the
basis of both indicators, floods are classified into three index classes.

Figure 1. Original archival record from the ‘‘Kurtze Bassler Chronik’’ [Groß, 1624] containing
the description of the 1570 Rhine flood in Basel.

Table 1. Typical Criteria Used in the Literature for Classifying Documentary Evidence on Historical Floods into Indicesa

Level Classification Primary Indicators Secondary Indicators

1 Smaller, regional flood Little damage, e.g., fields and gardens close to
the river, wood supplies that were stored
close to the river are moved to another place

Short flooding

2 Above average, or
supra-regional flood

Damage to buildings and constructions related
to the water, like dams, weirs, footbridges,
bridges, and buildings close to the river, like
mills, etc.; water in buildings

Flood of average duration; severe damage to
fields and gardens close to the river, loss of
animals and sometimes people

3 Above average, or
supra-regional flood
on a disastrous scale

Severe damage to buildings and constructions
related to the water, i.e., dams, weirs, foot-
bridges, bridges, and buildings close to the
river, like mills, etc.; water in buildings. In part,
buildings are completely destroyed or torn
away by the flood

Duration of the flood: several days or weeks;
severe damage to fields and gardens close to
the river, extensive loss of animals and people;
morpho-dynamic processes like sand
sedimentation cause lasting damages and
change the surface structure

aTaken from Sturm et al. [2001].
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Often it is useful to prepare more specific criteria that are tailored to the characteristics of a particular case
study. Table 2 shows such a tailored table for the Tisza at Szeged, Hungary. The primary indicators are more
strongly based on agricultural damage, travel obstruction and flood protection issues than those in the gen-
eral table. The secondary indicators use flood extent and duration instead of overbank flow because of the
small elevation differences of the floodplain. For both criteria there is a clear break in 1879 because of the
complete destruction of the town during the 1879 flood, followed by a fundamental change in the flood
protection system of the entire river. Tables 1 and 2 summarize a set of rules that intend to minimize the
effect of perception changes throughout the historical period on the classification of the magnitude of his-
torical flood events.

The criteria in Tables 1 and 2 can be linked to imprecise or fuzzy numbers as will be illustrated by three case
studies later in this paper.

3. Linking Historical Records With Fuzzy Discharges

3.1. Fuzzy Bayesian Inference
In this paper we propose a method that transforms the descriptions found in historical records into fuzzy
peak discharges, and combines them with systematic discharge measurements by Bayesian flood frequency
analysis.

Bayesian inference uses Bayes’ theorem to combine prior information with observed data, in order to obtain
updated information on the distribution of the parameters of a given model. For a flood frequency distribu-
tion with parameters h, Bayes’ theorem states that

p hjDð Þ5 l Djhð Þ � p hð Þð
H

l Djhð Þ � p hð Þdh

(1)

where p hjDð Þ is the posterior distribution of the parameters h, after having observed the data D; l Djhð Þ is
the likelihood function and p hð Þ is the prior distribution of the parameters.

Fuzzy Bayesian Inference [Viertl, 2008a, 2008b] is a generalized framework for Bayesian inference when
fuzzy samples D� and/or fuzzy prior probability distributions p� hð Þ are present, which is the case for nonpre-
cise historical floods. Here symbols with asterisks indicate fuzzy valued functions or numbers. Fuzzy flood
discharges are represented by their membership functions which give the degree of association n between
discharges and a linguistic term such as ‘‘large flood’’ as illustrated in Figure 2. The discharge interval associ-
ated with a given membership value n is termed the a-cut and the generalization to fuzzy-valued functions

Table 2. Criteria for Classifying the Flood Magnitudes for the River Tisza at Szegeda

Level Classification Primary Indicators Secondary Indicators

1 Flood only slightly
exceeding the limit
of a usual flood event

Before 1879: Inundation area is filled up by water around the town; floodplain pastures
and some cultivated fields of the town are flooded and damaged. The town is not
flooded. After 1879: water more significantly exceeds the quay (low lying road along
the shoreline)

Short or longer flooding; water partly
exceeds the inundation area of
normal flood events, but not
significantly

2 Great flood,
extraordinary flood

Before 1879: Cultivated lands heavily damaged. Travel is significantly obstructed. Part of
the town is affected by the flood: damage to buildings/houses in some parts of the
town. In the period with advanced flood protection, high alert of flood protection
applied. May be combined with significant dyke breaches (but not complete dyke
destruction). Neighboring settlements flooded. After 1879: water reaches significant
depths over the quay, exceeds the upper section of the dykes. Buildings in the
inundation area heavily flooded.

Flood of average or long duration, even
months; severe damage to pasture
and cultivated lands, combined with
loss of animals and maybe people

3 Flood on a disastrous or
catastrophic scale

Before 1879: Large part of the town severely damaged, many streets or even entire
districts completely demolished, dykes severely damaged. The town has to be partly or
entirely evacuated, and rebuilt after flood. Significant upgrade of flood protection
system, increase of ground levels. After 1879: water is close to the crest of the dykes for
several days (or even flows over them), may be combined with dyke breaches. Flood
may not significantly affect the town, but ground water inundates cellars. Great
damages/destruction in buildings in the inundation area. The state and army
significantly intervene in flood defense.

Before 1879: Duration of flood: several
weeks or longer; severe damage to
the town, loss of animals and people.
After 1879: flood protection on full
capacity, no great damages in town.

aThis is an example for a tailor-made table of criteria for a specific case study [taken from Kiss et al., in prep.]. Note that the criteria change before and after 1879, as significant flood
protection measures were introduced (new levee system built, and raising of the ground level close to the river).
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is termed a-levels. In this hypothetical example, a ‘‘large flood’’ would surely include discharges between
900 and 1050 m3s21, corresponding to the a-cut for a 5 1, but smaller and larger discharges are more
vaguely associated with the term ‘‘large flood.’’

Fuzzy probability distributions are fuzzy-valued functions with some normalizing properties, analogous to
the unit integral of traditional probability distributions. Denoting the fuzzy posterior probability distribution
as p� hjD�ð Þ, the fuzzy-valued likelihood of the fuzzy sample D� as l� D�jhð Þ, and the fuzzy prior probability
distribution as p� hð Þ, the generalized Bayes’ theorem for their respective lower a-level curves reads

p
a

hjD�ð Þ5
la D�jhð Þ � pa hð Þð

H

1
2

la D�jhð Þ � pa hð Þ1�la D�jhð Þ � �pa hð Þ
h i

dh

(2)

where p
a

hjD�ð Þ is the lower a-level curve for the fuzzy-valued posterior probability p� hjDð Þ; la D�jhð Þ is the
lower a-level curve for the fuzzy-valued likelihood function l� D�jhð Þ defined in equation (3), and pa hð Þ is the
lower a-level curve for the fuzzy-valued prior probability density function p� hð Þ. The expression for the
upper a-level curve �pa hjD�ð Þ is analogous, i.e., taking the upper a-level curves in the numerator and keeping
the same denominator. The normalizing constant in the denominator must be equal for �pa hjD�ð Þ and
p

a
hjD�ð Þ, in order to keep the sequential nature of the updating procedure in Bayes’ theorem [see e.g.,

Viertl, 2011a].

Since the integral in the denominator cannot be generally expressed in closed form, application of the theo-
rem requires simulation-based Monte Carlo sampling techniques such as the Markov chain Monte Carlo
(MCMC) approach. In this paper, we use a particular variant of the MCMC method, the delayed rejection
and adaptive Metropolis algorithm [Haario et al., 2006; Soetaert and Petzoldt, 2010] to obtain a given a-level
curve of the fuzzy posterior probability density function p� hjD�ð Þ. In this paper, for clarity, the MCMC algo-
rithm is used to estimate only the a-level curves of the fuzzy posterior distribution corresponding to a 5 0,
a50:33; a50:66, and a 5 1. Once the sample space of the parameters is obtained by the MCMC algorithm,
we use it as an input to the inverse cumulative distribution function of peak discharges to map the uncer-
tainty in the parameters into the credible bounds of the flood quantiles.

The fuzzy likelihood function is expressed as

l� D�jhð Þ5l�H D�histjh
� �

� lS Dsystjh
� �

(3)

where Dhist
� is the fuzzy sample containing the nonprecise historical discharges, and Dsyst is the systematic

series, i.e., the discharges directly measured during the instrumental period. Note that the function l�H �ð Þ is

Figure 2. Hypothetical example of a trapezoidal membership function nQ� �ð Þ associated with the fuzzy discharge Q� . For illustration, the
a-cut for a50:3 is shown as the red closed interval.
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fuzzy-valued, while lS �ð Þ is not, as the fuzziness of the systematic discharges are considered negligible as
compared to the historical period.

Conceptualizing single historical events as fuzzy numbers representing the fuzzy peak discharges and
merging them into a fuzzy sample, the fuzzy likelihood function for the historical discharges is simply a gen-
eralization of the non-fuzzy case as used in the literature [see e.g., Stedinger and Cohn, 1986; Neppel et al.,
2010; Viglione et al., 2013], which is evaluated as

l�H D�histjh
� �

5
h

k

 !
FQ Q0jhð Þ h2kð ÞYk

j51

f �Q Q�j jh
� �

(4)

where h stands for the number of years of the historical period considered, k is the fuzzy sample size (i.e.,
number of historical discharges), FQ �ð Þ is the cumulative distribution function of the peak discharges, Q0 is
the flood perception threshold, and f �Q �ð Þ is the probability density function for the peak discharges, taken
as a fuzzy function, as it is evaluated for each historical fuzzy peak discharge Q�j . The flood perception
threshold Q0, as introduced by Franc�es et al. [1994], defines the censoring discharge above which all histori-
cal flood peaks are assumed to have been recorded, while smaller floods have not. Perception thresholds
are often used in flood frequency studies dealing with historical or paleoflood information, as the peak dis-
charge time series during the historical period is rarely complete, and so is considered to be censored by an
exceedance threshold (for more detail, see Botero and Franc�es [2010]).

In this paper, the Generalized Extreme Value (GEV) distribution is used as the statistical model for the annual
peak discharges. Its cumulative distribution function is

FQ qjhð Þ5exp 2 12h3 �
q2h1

h2

� �1=h3
" #

(5)

if h3 6¼ 0, while the distribution converges to the Gumbel model for h3 ! 0. The GEV model has been cho-
sen, as it has recently been reported to better represent the average flood regime of European rivers than
alternative distributions [see e.g., Salinas et al., 2014a, 2014b], but any other extreme value distribution
could be equally well used here. The only requirement in the model choice, related to the derivation of the
informative prior distribution described in section 3.3.2, is that the flood frequency distribution should be a
three-parameter distribution.

All data (historical and systematic) are used here as annual maxima series (one value per year). In case the
flood perception threshold varies during the historical period, we divide the historical period into q subper-
iods with different perception thresholds, such that h5h11h21 . . . 1hq, apply the expression for the likeli-
hood function to each subperiod with its own perception threshold, and multiply the values of all
subperiods to obtain the expression for the fuzzy likelihood function for the entire period.

The expression of lS Dsystjh
� �

does not require any special treatment, as the systematic discharges are con-
sidered as precise (i.e., non-fuzzy), and corresponds to the product of the probability density function fQ �ð Þ
evaluated at all measured peak discharges.

3.2. Design of Case Studies
To illustrate the feasibility of the approach for real world situations we present three case studies in this
paper. The case studies were selected to cover a variety of hydromorphological conditions and historical
source material types, and consequently different degrees of fuzziness.

The first case study is the Rhine at Basel (Switzerland), an Alpine river with a bedrock profile at Basel. This
facilitates discharge reconstructions from water levels. These discharges are used along with historical nar-
ratives and systematic discharge observations. We use a noninformative prior and combine all the informa-
tion in the likelihood function.

The second case study is the Werra at Meiningen (Germany), a midland river with a less well defined profile.
Therefore, magnitude indices of historical floods are used instead of discharge reconstructions. The indices
are incorporated in an informative prior. The likelihood function combines narratives of selected flood
events through their membership functions, as well as systematic discharge observations.
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The third case study is the Tisza at Szeged (Hungary), a flat lowland river with extensive flood plains. There
are fewer permanent landmarks throughout the entire historical period which, together with the flat topog-
raphy, contributes to a larger vagueness of the historical floods than in the other case studies. The presence
of an extensive floodplain with small elevation differences around Szeged makes discharge reconstruction
difficult. Therefore, no discharge observations are used here. Instead, the magnitude indices of historical
floods are incorporated into the likelihood function through their membership functions in an analogous
way as the discharges in the Rhine case, and a noninformative prior is used.

The type of information included in the prior distribution and the likelihood function for the three case
studies is summarized in Table 3.

3.3. Fuzzy Prior Distributions
3.3.1. Noninformative Prior Distributions–Rhine and Tisza
For the Rhine and Tisza case studies, there is no need to specify an informative prior since both historical
and systematic data can be straightforwardly included in the likelihood function. Therefore we assumed a
noninformative flat prior, i.e., p hð Þ / 1 for all values of h. If additional, independent information is available,
it can be easily used in an informative prior. Note that p hð Þ is non-fuzzy (precise).
3.3.2. Informative Prior Distributions–Werra
For the Werra case study, we use a fuzzy valued informative prior related to the threshold discharges
between the flood magnitude indices (0 to 1, 1 to 2, 2 to 3). The prior distribution is fuzzy valued because
we define the censoring discharges between magnitude classes as imprecise (fuzzy) numbers. It is con-
structed in the following way.

For a stationary stochastic process, consisting of a sequence of independent and identically distributed ran-
dom variables (in our case, the flood peak time series, modeled as a sequence of independent GEV realiza-
tions), the mean inter-arrival time of events larger than a given threshold has an Inverse-Gamma sampling
distribution [Kottegoda and Rosso, 1997]. The estimated sample means of the inter-arrival times between
events inside each index therefore define three Inverse-Gamma sampling distributions. Using these as mar-
ginals and a Gaussian copula for the correlation structure, we construct the trivariate distribution of the
inter-arrival times. The correlation parameter of the copula is estimated by simulations based on the sys-
tematic sample, i.e., the measured discharges during the instrumental period. This trivariate distribution can
be interpreted as a trivariate sampling distribution for the three return periods associated with the three
threshold (censor) discharges. The trivariate distribution of the inter-arrival times is then transformed into a
trivariate fuzzy valued distribution for the parameters of the parent GEV distribution (i.e., the prior distribu-
tion p� hð Þ as in equation (2)) based on the Jacobian of the transformation from return periods T5

T1; T2; T3ð Þ to parameters h5 h1; h2; h3ð Þ, which is a function of the fuzzy valued threshold discharges. These
discharges are estimated here by a simple method. Taking the annual peak discharges from the overlapping
period between available flood indices and measured flows, we assign to each discharge value an index of
0, 1, 2 and 3 (an index of 0 represents years that have not been classified as 1, 2, or 3) and estimate the dis-
charge averages for each index. These index averages are assumed to correspond to membership values of
0 of the fuzzy thresholds, and the membership function is assumed to be trapezoidal. For example, the
fuzzy threshold between indices 1 and 2, as seen in Figure 3, is a trapezoidal fuzzy number whose a-cut for
a 5 0 ranges from 141 m3s21 (average discharge for flood events classified as index 1, dark yellow points in
Figure 3) to 170 m3s21 (average discharge for flood events classified as index 2, dark red points in Figure 3).

Table 3. Design of Case Studies in This Paper, Classified According to the Choice of the Likelihood Function and the Prior Distribution

Case Study Prior Distribution Likelihood Function

Rhine at Basel � Noninformative, non-fuzzy prior � Membership functions for discharges based on
historical discharge reconstruction and narratives
(fuzzy)
� Systematic discharge observations (non-fuzzy)

Werra at
Meiningen

� Informative fuzzy prior based on historical flood
magnitude indices and discharge threshold
between magnitude classes

� Membership functions for discharges based on
historical narratives for selected events (fuzzy)
� Systematic discharge observations (non-fuzzy)

Tisza at Szeged � Noninformative, non-fuzzy prior � Membership functions for magnitude index based
on narratives (fuzzy)
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The a-cut for a 5 1 is then computed as one third (lower bound) and two thirds (upper bound) of the range
defined by the a-cut for a 5 0.

3.4. Fuzzy Likelihood Functions–Parameterization of Membership Functions
For all case studies, membership functions associated with the historical event discharges Q�j (indices for
the Tisza) were constructed from the historical descriptions. These were used in the likelihood functions.
The two main characteristics of the membership functions are their location and their width. The location
represents the magnitude of the floods, and the width represents the vagueness or imprecision.
3.4.1. Magnitudes, i.e., Midpoints of Membership Functions
Table 4 contains, for each case study, text examples for the three magnitude categories of Tables 1 and 2.
For the Rhine at Basel and the Werra at Meiningen they reflect the kind of information Wetter et al. [2011]
and Deutsch and P€ortge [2003] used to assign water levels and indices, respectively. For the Tisza at Szeged,
they reflect the information used in this paper to assign indices.

The first three descriptions in Table 4 (Basel 1445, Werra 1820, and Szeged 1718) correspond to flood events
of a small magnitude. In all three cases, the flooding caused a disturbance in the settlement activities, econ-
omy, (e.g., ‘‘. . .it took a beam to the watermill. . .’’), without specific mention of any considerable damage.
This is a characteristic feature of historical floods of magnitude 1 (see Table 1), i.e., small. The following three
events (Basel 1511, Werra 1816, and Szeged 1784) belong to the intermediate magnitude category. Larger
disturbances than in the previous case are explicitly present in the descriptions (e.g., ‘‘. . .it took away half of
the long jetty. . .’’) and the flood extent is reported in a more precise way (e.g., ‘‘. . .the town is not yet stand-
ing in water except for some houses, those lying lower, close to the bank of the Tisza. . .’’), as is common in
the intermediate flood category. The last three descriptions in Table 4 (Basel 1480, Werra 1784, and Szeged
1816) portray large magnitude flood events. In all three texts there is mention of the extraordinary magni-
tudes of the flood events (e.g., ‘‘. . .ingens fuit aquarum inundatio/there was huge inundation of waters. . .’’).
These wordings are not usually found in this kind of descriptions unless the damage, extent and duration of
the flood were considerably larger than those of previous floods.

For the Rhine case study we used only the discharges from the reconstructions of Wetter et al. [2011] to
determine the midpoint of the membership functions. Figure 4 illustrates their method of analyzing water
levels reaching different locations in the vicinity of the river, which were systematically reported in historical
documents. For example, during the 1690 flood it has reached the fish market while during the 1801 flood
it has reached the Guesthouse ‘‘Tete D’Or’’. Equally important is the information (or the inference) that a par-
ticular location has been reached, but the next higher location has not. For example, the 1764 event was
reported to reach the lower corner of the Guesthouse ‘‘Krone’’, which allowed Wetter et al. [2011] to infer
that the building itself was not flooded, and therefore gave an indication of the maximum water level of
this flood. Wetter et al. [2011] estimated the stage-discharge relationship (Figure 4) by hydraulic modeling,

Figure 3. Trapezoidal membership functions (blue lines) for the three fuzzy discharge thresholds between flood indices. Data correspond
to the river Werra case study. Grey, dark yellow, dark red, and green circles represent years with index values 0, 1, 2, and 3, respectively.
Red dashed vertical lines represent the average discharges for each flood index.
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assuming no change in the river cross section. Given that the cross section at Basel consists of bedrock this
seems to be a reasonable assumption. In this paper, these discharges were assumed to correspond to the
midpoints of the membership functions for the historical floods in the period 1256–1867.

For the Werra case study we used the indices presented by Mudelsee et al. [2006] (that are based on source
material compiled by Deutsch and P€ortge [2003] and Deutsch et al. [2004]), transformed them into dis-
charges (on the basis the measured discharges of the systematic period), and used them for the informative
prior distribution. Since the cross sections are less well defined than for the Rhine, no hydraulic discharge
reconstructions of historical floods were performed. In the likelihood function we only use five historical
events represented by fuzzy discharges, the midpoints of which are taken as the average discharges of the
index classes (red vertical lines in Figure 3).

For the Tisza case study we used directly the criteria in Table 2 to obtain the indices from source material.
Due to the flat terrain of this lowland river a choice was made to perform the analysis on the basis of indices

Table 4. Representative Examples From the Three Case Studies of Textual Descriptions of Flood Events Corresponding to Three Magnitude Levels (as in Table 1)

Magnitude Event Original Text English Meaning

Basel, Nov. 1445 ‘‘Am sonntag vor sant Catherinen tag vor sunnen uffgang was der
Ryn grosz; f€ur ein boum an ein Rinm�ule und stiesz die m�ulin
hinweg, und by Merckt gieng das schiff mit der m€uli under.’’
[Bernoulli, 1895, p. 386]

On Sunday before Saint Catherine’s day, before sunrise the Rhine
was large; it took a beam to the watermill and dragged away
the mill, and the boat with the mill went down near the
market.

small Meiningen, Jan. 1820 ‘‘Nachdem (18. Jan.) mehrere Tage strenge K€alte gewesen war,
trat Thauwetter ein und am 20. Jan. war in Folge desselben die
Werra aus den Ufern getreten daß das Wasser die Chaussee
am obern Rafen €uberstieg.’’ (Chronik)

After that for some days strong coldness occurred, and then
melting, and as a consequence on 20 January the Werra left its
bed and the water exceeded the promenade on the upper
stage.

Szeged, Nov. 1718 Visitatio in Gy}o, die 14. Novembr(is). ‘‘Ob impedimentum Navis
pro transitu Tibisco, Praedicantem cum Judicae, et Juratis Pagi
Gy€o in eodem Comitatu (Csongrad) existentis ad Nos
evocavimus,. . .’’

As the ship was obstructed by the flood of the Tisza, (we did not
go there, but) we invited to us the preacher with the judge
and other leaders of the settlement/land Gy}o located in the
same (Csongrad) County.

Basel, Jul. 1511 ‘‘Anno dom. 1511. sabbato ante Mariae Magdalenae was der Rin
zu Basel also groß, das in niemant in 31 j€aren großer
verdacht,. . ..’’ (Anzeiger)

In 1511 on Saturday before (the day of) Maria Magdalena the
Rhine at Basel was so large that nobody has seen it larger for
31 years,. . .

medium Meiningen, Jun. 1816 ‘‘Am 28. Jun. h€orte es nicht auf, stark zu regnen; die Werra wuchs
und nahm vieles Holz auf dem obern Rafen und die H€alfte des
langen Stegs am mittleren Rafen hinweg. Viele G€arten um die
Stadt standen im Wasser, auch Heu auf den Wiesen ward
fortgeschwemmt.’’ (Chronik)

On 28 June it was heavily raining as was not heard before; the
Werra increased and took much wood from the upper stage,
and it took away half of the long jetty. Many gardens in the
town were inundated, and also the hay on the meadow was
taken by the flood.

Szeged, Apr. 1784 Magyar Hirmond�o, 28 April 1784, p. 269: ‘‘Szegedr}ol eme’ h�onak
tizen harmadik�an (13 April) k€olt lev�elbenn�ırj�ak: hogy a’ Tisza
kitsiny id}o alatt nagy sebesen anynyira meg �aradott: hogy a’
szomsz�ed faluk, T�ap�e, �es (Al)Gy}o eg�eszen v�ızbe mer€ultek. Az
�utakat is �ugy el folyta a’ v�ız, hogy egy helys�egb}ol a’ m�asik�aba
sz€orny}o tsavarg�o ker€ulettel kelletik b�e kotsizni. A’ V�aras mind
azon �altal m�eg nem �all v�ızbenn, egyneh�any h�azakat ki v�ev�en,
melylyek al�abb fekszenek szinte a’ Tisza parton.’’

Letter written on 13 of this month, from Szeged: that the Tisza
within a short period of time rather suddenly increased so
much that the neighbouring villages, namely T�ap�e and (Al)Gy}o
have been entirely submerged in the water. Water washed
away roads so much that a great detour has to be made to
travel by coach from one settlement to another. Still, the town
is not yet standing in water except for some houses, those
lying lower, close to the bank of the Tisza.

Basel, Jul. 1480 ‘‘Anno 1480 circa Magdalenae ingens fuit aquarum inundatio.
Rhenus in tantum crevit, quod ad lateres usque inferioris muri
Minoris Basileae circa litus ascendit. Etiam homines in ponte
stantes facile in Reno manus lavare poterunt.’’ [Bernoulli, 1915,
p. 210]

In 1480, around Magdalena(’s day) there was a huge flood of
waters. The Rhine rose to the sides of the lower walls of Lesser
Basel, near the shore. People standing on the bridge could
wash their hands in the Rhine.

large Meiningen, Feb. 1784 ‘‘Am 27. Febr. brach das Eis, die Werra wurde sehr groß: das
Marktwasser trat vom untern Thore herein, lief in der untern
Marktgasse in die H€auser und stieg bis auf den Markt. Aus
dem Marstall wurden die Pferde in die Stadt gebracht.’’
(Chronik)

On 27 Feb. the ice broke and the Werra was very large: the water
entered through the lower Gate, poured into the houses of the
lower Marktgasse and reached the market. The horses were
brought into the city from the stables.

Szeged, Feb. 1816 ‘‘. . . m�ar a V�aros nagyobb r�esze v�ızben vagyon, a mennyire a
Conscriptio meg t�etethetett, s-ez�uttal b�e adatott 1495.
alacsonyabb fekv�es€u h�azak €oszve rogytak, a K. �El�est�ar-is v�ızzel
k€or€ul vagyon, a kocsival val�o j�ar�as sok utcz�akban lehetetlen, a
v�ız ereszt�es, m�eretes szakadatlanul, de sikertelen€ul folytat�odik,
azon fe€ol€ul hogy az h�azaikbul ki-szoroultaknak �ıgy magasabb
helyeken kell mened�eket szerezni, m�eg minden rem�enys�eg
csak a fe€o t€olt�esek meg tart�as�aban vagyon,. . .’’

. . . most parts of the Town are already in water, and when it was
possible a Conscription was made and submitted: 1495 houses
in lower-lying areas have collapsed; the Royal Granary is
surrounded by water, it is impossible to travel by coach in
many streets, the drainage unsuccessfully continues, and
beyond the fact that those lost their houses have to find
refugee on higher terrain, all hope is in maintaining and
supporting the main dykes,. . .
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only. The integer indices were modified by a small fraction of up to 10% (e.g., from 2 to 2.1) to adapt to
nuances of the narrative that provided more detail than can be captured by an integer index. These
adapted flood indices were then used as the midpoints of the membership functions representing flood
magnitudes.
3.4.2. Vagueness, i.e., Widths of Membership Functions
The main strength of the fuzzy approach is that it is not only able to capture the magnitude of the events,
but also their degree of imprecision or vagueness. Table 5 contains, for each case study, examples of textual
descriptions for three degrees of imprecision. We used this kind of information to classify events of all case
studies according to their level of vagueness from which we assigned the widths of the membership
functions.

For the events with small imprecision (Basel 1480, Werra 1820, and Szeged 1816) there is explicit mention
of the water level that was reached during the flood (e.g., ‘‘. . .on 20 January the Werra left its bed and the
water exceeded the promenade on the upper stage. . .’’). The water levels provided in these three descrip-
tions are quite precise, up to the point that one could perform flood discharge reconstructions, given an
elevation model at the time of the flood and some assumptions about the roughness of the terrain. The
intermediate precision category (Basel 1570, Werra 1816, and Szeged 1741) also provides information about
the maximum water levels, but these are given in a vaguer manner (e.g., ‘‘. . .the bridge looked like a wood-
en raft on the river. . .’’), and there is a stronger focus on the flood extent (e.g., ‘‘. . .water was on the whole
ground covering the stalks and the little grain. . .’’ or ‘‘. . .the same inundation completely flooded the arable
lands [. . .], pastures, vineyards and orchards. . .’’). These pieces of information will result in wider member-
ship functions. In the large imprecision examples (Basel 1268, Werra 1818, and Szeged 1731) there is no
mention of water levels or the spatial extent of the flooding. There is a vague mention of large damages
(e.g., ‘‘. . .it destroyed all bridges. . .’’ or ‘‘. . .the house of Janos Heged€us has been destroyed. . .’’).

For the Rhine case study, there are two groups of events with different types of information. The first group
consisted of floods where we derived the vagueness from the spatial extent of the locations (e.g., market
square) mentioned, and Table 5 was not used. A membership value of 0 was given to the water levels of
the previous and following locations to the one described as flooded as illustrated in Figure 4 where the
imprecision associated with the water level of 250.4 (Guesthouse Krone fully flooded) ranges from 250.3

Figure 4. Rating curve (blue line) for the river Rhine at Basel, cross section at the Rheinbr€ucke (taken from Wetter et al. [2011]). Blue points
indicate locations mentioned systematically in the documentary evidence. An example of the construction of the membership function for
the fuzzy water level corresponding to the description ‘‘. . .Guesthouse Krone fully flooded’’ is depicted in red.
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(Guesthouse Krone, centre of building) to 250.5m (Guesthouse Tete D’Or’). Membership values of 1 were
given within half of the water level ranges between locations. The second group of events were floods
where such information on the extent was not available. For these floods we directly used the linguistic
information as of Table 5. For some of these floods clear information about the vagueness was
available. For example, the description of the 1424 flood has ‘‘. . . people could wash their hands in the river’’
(Figure 5). On the one hand, the peak water level most likely did not exceed the level of the bridge, as this
would have been reported. On the other hand, if people could wash their hands in the river while standing
on the bridge, the water level could not have been lower than 20–40 cm below the level of the bridge itself.
While the quote represented in Figure 5 may sound like a hyperbole, it should be noted that the historical
sources used in this study were contemporary and written by local reliable authors, which suggests that the
description can be taken in a literal sense. Some minor changes probably occurred over time, and these are
accounted for by the membership function.

For other floods the descriptions were less clear. For example, the description of the 1570 flood has
‘‘. . .boats were boarded through the windows of the Guildhouse’’. For such events the vagueness was
grouped according to Table 5. The widths were selected as 3, 6, 9% of the midpoint (a-cut of 1) and 10, 15,
20% of the midpoint (a-cut of 0) (in terms of discharges), for small, medium and large imprecision, respec-
tively. The membership function was assumed to be trapezoidal with a few exceptions (e.g., 1268) where
the upper limb was assumed to consist of two linear sections reflecting detailed historical descriptions. All
water levels were transformed to discharges by the same rating curve as the midpoints.

Table 5. Representative Examples From the Three Case Studies of Textual Descriptions of Flood Events Corresponding to Three Imprecision Levels

Imprecision Event Original Text English Translation

Basel, Jul. 1480 ‘‘Anno 1480 circa Magdalenae ingens fuit aquarum inundatio.
Rhenus in tantum crevit, quod ad lateres usque inferioris muri
Minoris Basileae circa litus ascendit. Etiam homines in ponte
stantes facile in Reno manus lavare poterunt.’’ [Bernoulli, 1915,
p. 210]

In 1480, around Magdalena(’s day) there was a huge flood of
waters. The Rhine rose to the sides of the lower walls of Lesser
Basel, near the shore. People standing on the bridge could
wash their hands in the Rhine.

small Meiningen, Jan. 1820 ‘‘Nachdem (18. Jan.) mehrere Tage strenge K€alte gewesen war,
trat Thauwetter ein und am 20. Jan. war in Folge desselben die
Werra aus den Ufern getreten daßdas Wasser die Chaussee am
obern Rafen €uberstieg.’’ (Chronik)

After that for some days strong coldness occurred, and then melt-
ing, and as a consequence on 20 January the Werra left its bed
and the water exceeded the promenade on the upper stage.

Szeged, Jul. 1816 ‘‘Al�abb in a Te(kinte)tes N(eme)s Tan�acsnak Kegyes rendel�es�ehez
k�eppest al�azatossan jelentem hogy a Tisza vize, a Maros
v�ız�enek sz€orny€u �es az idein legnagyobb mostani ki€ont�ese mi�all
sz€untelen �arad �ugy hogy a m�ult Julius 8ik napj�at�ul fogva 2
H€uvelknyire F€olmagossodott melly szer�ent a Tisz�anak az idei
legnagyobb arad�as�at�ul fogva esett apad�asa 20 H€uvelknyit
t�eszen. Szeged 12ik Julii 816. Vedres Istv�an’’

Letter to the Locumtenential Council: Below, following the order
of the esteemed noble council, I report that the water of the
Tisza, due to the horrible and in this greatest present
inundation of the waters of the Maros, is constantly increasing,
and so from the (past) 8 July it increased with 2 inches and
thus, the total decrease of the water level of the Tisza
compared to the highest levels takes 20 inches. Szeged, 12
July 1816. Istvan Vedres

Basel, Jul. 1570 ‘‘Umb dise zeit ist auch der Rhein so großworden/daßer innerhalb
der Statt von dreyen Rhein-Thoren under der Bruck zusamen
geflossen/und die Brucken einem Holz-floßauff dem Wasser
gleich gesehen.’’ [Groß, 1624, p. 210]

Around this time the Rhine was also so large that it flowed
together under the bridge through the three Rhine-gates in
the downtown, and the bridge looked like a wooden raft on
the river.

medium Meiningen, Jun. 1816 ‘‘Dreimal trat die Werra aus den Ufern; der ganze Grund stand
gegen 14 Tage auf dem Halme aus und die wenige Frucht, die
man €arndtete und feucht einfuhr, gab schlechtes Brod.’’
(Chronik, p. 197)

The Werra left its banks three times; water was on the whole
ground covering the stalks and the little grain people
harvested, gave bad bread.

Szeged, 1741 ‘‘. . . preter quod enim quod eadem exundatio agris seminaturas
Prata et Pendentes in Vinejs agris fructus in Locis praeterea
Marusio et Tibisco Vicinis totaliter perfuderit, et in nihilum
redegerit etiam in forejs quod Miser Incola n(on) sui
sustentatione conservabat inundavit et Usui humani redidit
inutile’’ (CsCP)

. . ., and beyond that the same inundation completely flooded
the arable lands (with crops), pastures, vineyards and orchards
along the Maros and Tisza rivers, and gave nothing to people,
and became useless for human use.

Basel, 1268 ‘‘Renus crevit usque adeo, quod omnes pontes destruxit.’’ (Ann.,
p. 193)

The Rhine rose so much that it destroyed all bridges.

large Meiningen, May 1818 ‘‘Nach anhaltenden Regenwetter trat die Werra aus den Ufern.
Am 18. Mai war die Ueberschwemmung am bedeutendsten.’’
(Chronik, p.205)

After persistent rainy weather the Werra left its banks. The
flooding was the most significant on 18 May.

Szeged, 1731 3o. ‘‘Ioanni Heged€us, ex quo exundatio aquarum modernam
Domum residentionalem destruxisset,. . .’’ (SzCP)

The house of Janos Heged€us has been destroyed by the recent
flood,. . .
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For the Werra case study, Table 5 was always used for the selected five events. The widths were selected as
3, 6, 9% of the midpoint (a-cut of 1) and 10, 15, 20% of the midpoint (a-cut of 0) (in terms of discharges), for
small, medium and large imprecision, respectively. The membership function was assumed to be
trapezoidal.

For the Tisza case study, Table 5 was used for all events. The widths were selected as 3, 6, 9% of the mid-
point (a-cut of 1) and 10, 15, 20% of the midpoint (a-cut of 0) (in terms of indices), for small, medium and
large imprecision, respectively. The membership function was assumed to be trapezoidal.

4. Case Studies

4.1. Reconstruction Based on Maximum Water Level Descriptions Since 1256 (Rhine at Basel,
Switzerland)
The Rhine at Basel drains an area of about 36,000 km2, and elevations range from 244 to 4274 m. Floods
typically occur in late spring and summer as a result of extensive rainfall of 1 or 2 days. Snowmelt may
increase the antecedent soil moisture [Scherrer et al., 2008].

The historical flood discharge series of Wetter et al. [2011] used here contains 36 events from the period
1256–1867, making up the fuzzy sample. Additionally, 142 measured annual peak discharges from the
instrumental period (1869–2010) are used which make up the non-fuzzy sample. As noted in section 3.4.1,
the rating curve shown in Figure 4 is taken as constant during the entire historical period. This assumption
is supported by the local geology of the river bed along the city of Basel, which mainly consists of bedrock
[Wetter et al., 2011]. Two important river diversions reducing the flood magnitudes took place in 1714 and
1877. Wetter et al. [2011] estimated the peak discharge reductions as 630 and 900 m3s21 for the first and
second diversion, respectively. In this paper we harmonized the entire time series to present day conditions
by subtracting the estimated peak discharge reductions in the corresponding periods (Figure 6). During the
historical period the flood perception threshold is considered to have changed three times, given the evi-
dence presented in Wetter et al. [2011] (in 1500, 1650, and 1780), and in each subperiod the perception
threshold is taken as the lower bound of the smallest fuzzy discharge (5611, 5261, 4816, and 4300 m3s21)
(with two exceptions which were considered not typical).

Figure 7 shows the estimated fuzzy flood frequency curve (a-level curves represented by blue transparent
polygons) in panel (a) and its fuzzy 5% and 95% Bayesian credibility bounds (cyan) in panel (b). As com-
pared to the non-fuzzy estimates from the systematic data alone (red line), the discharges associated with
large return periods are somewhat higher. The imprecise 100 year flood discharge (without stochastic

Figure 5. Trapezoidal membership function (blue line), representing the fuzzy water level for the flood event of 1424 in Basel, described
as ‘‘. . .people could wash their hands in the river. . .’’ in the chronicles of Kaplan Hieronymus Brilinger [Bernoulli, 1915].
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uncertainty) (a-cut for a 5 0) is 4483–4905m3s21 while the estimate from the systematic data alone
is 4480m3s21. The steeper tail is more consistent with the largest measured flood discharges (points in Fig-
ure 7) which is a reflection of the additional information obtained from the historical data. Based on a com-
bination of rainfall runoff modeling and flood statistics Scherrer et al. [2008] suggested that a discharge of
5000 m3s21 in Basel is associated with a return period between 100 and 300 years. This is similar to the
range that is obtained in this study for the imprecision (without stochastic uncertainty) of that discharge for
an a-cut for a 5 1 (120–360 years) (Figure 7a). It is interesting that the fuzziness is small at small return peri-
ods and increases substantially as the return period increases. This behavior is related to the choice of a
non-fuzzy (precise) prior distribution which, in combination with the non-fuzzy (precise) systematic data,
controls the fuzziness of the small return periods. For larger return periods, the fuzzy component of the like-
lihood function associated with the historical events becomes more important.

Figure 7b shows that the imprecise credibility bounds have a similar imprecision as the best estimates in
Figure 7a. If one compares the midpoints of the estimated membership functions of the credibility bounds

Figure 6. Fuzzy sample of the historical floods in the period 1256–1867 (membership functions in blue) and systematic flood peak dis-
charges (black), Rhine at Basel. The green line indicates the perception threshold, the vertical grey lines indicate years of diversion.

Figure 7. Flood frequency curves for the Rhine at Basel. Points are the observed discharges (systematic sample). Red lines are estimates from the systematic sample alone. Shaded areas
are the fuzzy estimates obtained by combining the fuzzy historical sample and the systematic sample. The color intensities of the shaded areas represent the a-levels of the fuzzy flood
frequency curves for a 5 0, a50:33; a50:66, and a 5 1. (a) The posterior mode estimates and (b) the 5% and 95% credibility bounds.
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with their non-fuzzy counterparts from the systematic data alone, there is a significant reduction in the
width of the bounds resulting from the use of historical information which is not surprising given that the
historical sample covers 612 years. However, this is at the cost of introducing imprecision.

4.2. 500 Year Series Based on Mixed Source Evidence (Werra at Meiningen, Germany)
The Werra at Meiningen drains an area of about 1170 km2, and elevations range from 282 to 982 m. Floods
may occur throughout the year but large winter floods are more frequent, often associated with rain-on-
snow, and sometimes with ice jams.

The historical flood magnitude index series published by Mudelsee et al. [2006] used here is based on vari-
ous types of local sources (e.g., chronicles, annals, diaries, newspapers, pamphlets etc.). It contains 128
indexed floods from the period 1500–2003 (Figure 8) which were used here to estimate the fuzzy prior dis-
tribution. On the basis of an assessment of the source material a judgment was made that approximately
20% of index 1 floods were not identified. Therefore, 20% of the years with index 0 (no flood observed)
were randomly assigned index 1 (small flood observed). Additionally, the membership functions of five his-
torical events (1720, 1784, 1816, 1818, and 1820) were used in the likelihood function along with (non-
fuzzy) measured annual peak discharges from the instrumental period (1918–2012). The information con-
tained in the membership functions of the five historical events is assumed to be independent from the
inter-arrival times estimated from the 128 indexed floods.

Figure 9 shows the results of the analysis. The fuzzy estimates (blue polygons in Figure 9a) are quite consis-
tent with the non-fuzzy estimates from the systematic data alone (red line). The imprecise 100 year flood
discharge (without stochastic uncertainty) (a-cut for a 5 0) is 213 – 245 m3s21 and the estimate from the
systematic data alone is 227 m3s21. It is interesting that the imprecision grows less with the return period
than for the Rhine case study. This is because a fuzzy prior distribution is assumed here which propagates
to the fuzziness of all return periods to a similar extent. The membership functions of the estimates are
almost triangular which is a reflection of the shape of the membership functions of the threshold dis-
charges. As the discharges are derived from the thresholds between the indices, the range of the a-cut for
a 5 1 becomes narrow.

Figure 9b shows that the imprecise credibility bounds are slightly overlapping but the a-cuts for a 5 1 are
quite distinct. If one compares the midpoints of the estimated membership functions of the credibility
bounds with their non-fuzzy counterparts from the systematic data alone, there is a clear reduction in the
width of the bounds resulting from the use of historical information.

Figure 8. Fuzzy sample of the historical indexed floods in the period 1500–2003 (blue) and systematic flood peak discharges (black), Werra
at Meiningen. Membership functions of the five selected events are shown.
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4.3. Combination of Flood Indices and Contemporary Institutional Source Evidence (Tisza at
Szeged, Hungary)
The Tisza at Szeged drains an area of about 157,200 km2, and elevations range from 79 to 2500 m (median
of 220 m). Floods tend to occur from spring to summer, and some floods may linger around in Szeged for
months because of the extremely flat terrain. The flat terrain also contributes to the greater vagueness of
the historical information than in the other case studies. Compilation of the historical flood index series of
Szeged started from documentary evidence collected from the local historical literature which was then
double checked against original sources (e.g., administrative, private correspondence and newspapers).
Additionally, continuous information was collected from the systematic protocols of the Szeged town coun-
cil, and those of the county meetings [HNA-CsML, 1849], and/or in general town and county documentation
such as tax release records, and sometimes also in the form of separate archival fonds on floods (e.g., 1816
or the 1879 floods: HNA-CsML [1819, 1879]). From 1833 daily water level measurements and descriptions of

Figure 9. Flood frequency curves for the Werra at Meiningen. Points are the observed discharges (systematic sample). Red lines are estimates from the systematic sample alone. Shaded
areas are the fuzzy estimates obtained by combining the fuzzy historical sample and the systematic sample. The color intensities of the shaded areas represent the a-levels of the fuzzy
flood frequency curves for a 5 0, a50:33; a50:66, and a 5 1. (a) The posterior mode estimates and (b) the 5% and 95% credibility bounds.

Figure 10. Fuzzy sample of the historical indexed floods in the period 1700–2005 (blue), Tisza at Szeged.
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dike breaches were used to check the index classification. To complement this information, some narratives
from the Szeged region were used.

The index classification is based on Table 2. Indices were preferred for the series over explicit water levels
due to river training measures, morphological changes and the unavailability of water levels before 1833.
Although presumably all extreme and catastrophic flood events were documented, the detection of index 1
flood events is probably not systematic until the early 19th century. Similar to the Werra case study, a judg-
ment was made that approximately 20% of index 1 floods were not identified and 20% of the years with
index 0 where randomly assigned index 1. The length of the historical flood series is limited by the begin-
ning of the 18th century due to the wars associated with the end of the Ottoman occupation, so the record
is from 1700 to 2005 (Figure 10).

Figure 11 shows the results of the analysis in terms of imprecise magnitude frequency curves. The imprecise
100 year flood index (without stochastic uncertainty) (a-cut for a 5 0) is 3.15 - 4.32. While the indices of
Table 2 have only been specified for a range from 1 to 3, larger events are possible. This is because Table 2
relates to the sample while the estimates in Figure 11 relate to possible future floods that may be bigger
than any flood that has been observed in the past. The vagueness (or imprecision) of the 100 year estimates
is larger than that of the other case studies. The range of the a-cut for a 5 0 is 1.17, which is 32% of the mid-
point of the cut. In contrast, the corresponding percentages of the Rhine and Werra case studies are 9%
and 14%, respectively. Similar to the Rhine case study, the fuzziness increases with the return period as a
result of the non-fuzzy prior distribution and the inclusion of fuzzy historical information in the likelihood
function.

Figure 11b shows that the imprecise credibility bounds are distinct for larger return periods, particular for
the a-cut for a 5 1. Clearly, for this case study, the index estimates are both quite uncertain and imprecise
due to a 300 year coverage of rather imprecise index values from the historical information.

5. Discussion

5.1. Value of Fuzzy Historical Information
The methodology proposed for transforming historical records into fuzzy numbers representing peak dis-
charges of historical flood events, seems to be flexible in terms of being able to be adapted to diverse types
of linguistic evidence and hydromorphological conditions. The evidence used ranges from descriptions of
the water level to damage descriptions, and was drawn mainly from narratives and institutional archival

Figure 11. Magnitude frequency curves for the Tisza at Szeged. The color intensities of the shaded areas represent the a-levels of the fuzzy flood frequency curves for a 5 0,
a50:33; a50:66, and a 5 1. (a) The fuzzy posterior mode estimates and (b) the fuzzy 5% and 95% credibility bounds. Membership functions of the plotting positions associated with the
indices are shown.
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records. This information was included in the likelihood function (Rhine and Tisza) or both the prior distribu-
tion and the likelihood function (Werra). The hydromorphological conditions range from an Alpine river
with bedrock profile (Rhine) to a flat lowland river with extensive flood plains (Tisza) which, together with
different linguistic evidence, resulted in different degrees of fuzziness.

In order to understand the stochastic uncertainty reduction due to historical information we defuzzify the
fuzzy credibility bounds by taking the centroids of the membership functions. Table 6 evaluates the defuzzi-
fied 5% and 95% Bayesian credibility bounds of the cases shown in Figures 7b and 9b, and compares them
with the credibility bounds that only use systematic discharge data. The range of the credibility bounds
(shown in brackets) is a measure of the stochastic uncertainty associated with the estimates.

For the Rhine case study and a return period of 10 years, the range between the 5% and 95% credibility
bounds decreases from 331 to 187 m3s21 if fuzzy historical information is included. This conforms to a 35%
reduction in the stochastic uncertainty. As the return period increases, the percent reduction slightly
increases (to 45% for 100 years) and returns to 35% for 1000 years. The larger reduction for 100 years may
be related to the typical magnitudes of large floods in the historical period. For the Werra case study the
reduction in the stochastic uncertainty is slightly larger than for the Rhine (37%, 61% and 39% reductions
for 10, 100 and 1000 years, respectively). The larger reduction is due to the shorter record length of the sys-
tematic sample (95 years for the Werra as compared to 142 years for the Rhine). Clearly, as the length of the
systematic sample decreases, the historical information will become more important.

It is now of interest to compare the new fuzzy method with more traditional methods of including historical
information that associate each historical sample with an uncertainty distribution (rather than with impreci-
sion). Irrespective of the method used one would expect the uncertainty reduction to increase with the record
length of the historical sample, decrease with the record length of the systematic sample, and decrease with
the uncertainty of the historical data [Franc�es et al., 1994; Hosking and Wallis, 1986]. Using a similar Bayesian
(but non-fuzzy) framework, Viglione et al. [2013] found the range of the 5–95% credibility bounds of the 100
year flood to decrease by 60.9% when including historical data from a period of 350 years with a systematic
record of 55 years in an Austrian catchment. For generated data, Reis and Stedinger [2005] found a reduction
of 68% of the range of the 2.5–97.5% credibility bounds of the 100 year flood when including 100 years of his-
torical data (without stochastic uncertainty) with a systematic record of 20 years. For a study set in southern
France Neppel et al. [2010] found a 24% decrease in the stochastic uncertainty (150 years of historical data
(without stochastic uncertainty) with a systematic record of 115 years). However, they also noted that there
were cases when the uncertainty increased (between a 49% and a 69% increase of the range of the 5–95%
credibility bounds of the 100 year flood) because of the high level of uncertainty affecting the highest histori-
cal floods and the model used for the systematic errors of the rating curve. While a formal comparison with
alternative methods is beyond the scope of this study, the reductions we find here are consistent with the
non-fuzzy studies in the literature. In addition to the reduction in the credibility bounds, we account for
the imprecision of the historical data and its propagation to the flood estimates. It has been checked that, in
the limiting case where the fuzziness approaches zero (i.e., the membership functions collapse to a singe val-
ue and the fuzzy floods become crisp numbers), the quantiles obtained by the Fuzzy Bayesian Inference are
identical to those of the Bayesian approach of Reis and Stedinger [2005] and Viglione et al. [2013]. In order to
fully assess the accuracy of the presented method relative to other approaches, a cross-validation including
several combinations of historical and systematic periods in the sample, a comparison with other methods

Table 6. Uncertainty of the Flood Quantiles for the Rhine and Werra Case Studies When Using Systematic Discharge Data Only and When Including Fuzzy Historical Informationa

Rhine at Basel Werra at Meiningen

10 years 100 years 1000 years 10 years 100 years 1000 years

Systematic data only 5%–95% (range) 3355–3686 (330.7) 4223–5045 (821.7) 4817–6447 (1631) 160.8–189.2 (28.4) 210.2–288.6 (78.4) 237.9–359.3 (121.4)
Systematic and historical data

(defuzzified) 5%–95% (range)
3370–3557 (187.2) 4481–4934 (453.1) 5347–6402 (1055) 165.4–183.2 (17.8) 220.7–251.5 (30.8) 248.2–322.4 (74.2)

Reduction in range 234.9% 244.9% 235.3% 237.3% 260.7% 238.9%

aThe table shows the 5% and 95% Bayesian credibility bounds (m3/s) associated with the return periods of 10, 100 and 1000 years, their ranges as well as the percent reduction of
the ranges when including historical information.
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that use historical floods in the frequency estimation, and perhaps synthetic realizations where the flood sam-
ples are simulated with known properties, would be of interest.

5.2. Potential Biases
When estimating floods of a given return period one is equally interested in minimizing the biases as mini-
mizing the uncertainty. Biases depend on the estimation method and the data used. The most critical issues
when using historical, documentary evidence are probably observation biases, and in particular the difficul-
ty of distinguishing whether, in a particular year, no flood has occurred or no flood has been reported even
though a flood has occurred. The observation biases usually increase as one goes back in time because of
the less systematic recording in earlier times and the increased likelihood that the information has been
lost in the meantime. If information on the percentage of missed floods is available one can make adjust-
ments by assuming that part of the years without observed floods have actually had a small flood. Informa-
tion on missed floods can be obtained by comparative studies, e.g., by comparing archival information with
measured discharges. However, this is only possible for the instrumental period while further back in histo-
ry, when observational biases are likely larger, this is more difficult. Another possibility is to use the seasonal
weather conditions from documentary evidence to assess the potential for observation biases, although
this only gives a very approximate estimation. There are counterexamples where a drought was suddenly
followed by a flood such as was the case in 1362 on the Hungarian Danube. More research is needed on
this issue.

As noted by Neppel et al. [2010] and Viglione et al. [2013], the perception threshold is one of the most sensi-
tive parameters in the estimation procedure. The perception threshold is usually set as the smallest flood
discharge (or magnitude index) in the historical period, but this may imply missing floods above the thresh-
old. Alternatively, as in the Rhine case study of this paper, a time varying threshold can be used. A time
varying threshold can account for lower thresholds further back in history as is usually the case, but it does
require more detailed information on the reliability of the historical sources over time and multiple subjec-
tive choices.

One of the motivations of using historical information in flood frequency estimation is the reduction in bias
for the case the systematic period may happen to lie in a flood-poor or in a flood-rich period [Hall et al.,
2014]. For example, for a study in the Ebro basin in Spain (300 years of historical data with a systematic
record of 85 years), Ruiz-Bellet et al. [2015] reported a 35–100% decrease in the best estimate of the 100
year flood when including historical data. However, this reasoning is based on the assumption that the his-
torical period is more representative of the future than the systematic period. Flood-poor and flood-rich
periods have indeed often been reported in the literature which are related to the low frequency variability
of the hydrological cycle in the climate system [e.g., Koutsoyiannis and Montanari, 2007; Schmocker-Fackel
and Naef, 2010; Szolgayov�a et al., 2014]. Nonstationarity may also occur in the catchment and the river sys-
tem, such as land use change, river training and diversions [Hall et al., 2014]. If known, such changes can
easily be accounted for in the historical data as in the Rhine case study of this paper. If they are not known,
they add to the uncertainty of the flood estimates.

5.3. Practical Applicability of the Method and Outlook
The main motivation of the proposed fuzzy Bayesian inference framework has been the perfect match to
the nonprecise nature of linguistic information on historical floods as available in archives and other histori-
cal sources. However, this comes at the cost of the flood estimates being fuzzy-valued, i.e., one obtains a
range of best estimates, including a range for each credibility bound. This information may not be easy to
use in practice, as practitioners tend to find it difficult to deal with stochastic uncertainty, let alone with
both stochastic uncertainty and imprecision [e.g., Bl€oschl, 2008]. For some applications, such as flood design,
one would probably defuzzify the estimates. The imprecision could be useful as additional information on
deciding on design characteristics such as free boards. For other applications, such as risk mapping, one
could in fact use the imprecision to produce fuzzy risk maps similar to uncertain risk maps [e.g., Di Baldas-
sarre et al., 2010]. More generally speaking, imprecision could contribute to more informed decision making
in a similar way stochastic uncertainty estimates do, even though stochastic uncertainty and imprecision
are completely different concepts.
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The proposed framework competes with alternative, traditional approaches of including historical informa-
tion that are based on assigning stochastic uncertainty (rather than imprecision) to historical floods. While,
conceptually, the fuzzy approach is appealing as it represents imprecision, in practical terms there is an ele-
ment of similarity in that both approaches provide ranges for the estimates. Stedinger and Cohn [1986],
Franc�es et al. [1994], and Reis and Stedinger [2005], e.g., consider historical floods as either perfectly known
or as being larger than the perception threshold. Botero and Franc�es [2010] present a classification of cen-
sored historical information according to the exceedance of a perception threshold, and the presence of
upper and lower bounds. In contrast, Neppel et al. [2010] and Viglione et al. [2013] consider a single historical
flood as uniformly distributed between a lower and an upper threshold. This probabilistic approach could
be extended to fuzzy-valued distributions representing single historical events.

For the Tisza case study, magnitude frequency curves were estimated because it was difficult to estimate
discharges for the flood events. While magnitude frequency curves cannot be used directly for flood risk
management, they could contribute to enhance public awareness, and to put risk estimates (from other
sources) into a qualitative long-term context. Alternatively, discharges could be introduced in the analysis,
but more information on the changes that the city and the catchment have undergone would be required.

Some of the assumptions of the proposed framework could be relaxed and some of the methods could be
refined. For example, the simple threshold method used for the Werra case study to transform indices into
discharges could be replaced by kernel density estimation [Rosenblatt, 1956] although preliminary tests (not
shown here) suggest that the estimates thresholds did not differ by more than by 5%. Trapezoidal member-
ship functions were used here, but other expressions could be used (e.g., general fuzzy numbers [Viertl,
2011b]). Future lines of research could include more formal sets of rules or mappings between textual
descriptions of historical flood events and the corresponding fuzzy membership functions. Finally, the
framework proposed here could be expanded to include regional and causal information in the spirit of Vig-
lione et al. [2013].

6. Conclusions

This paper proposes a novel fuzzy Bayesian inference framework for flood frequency estimation that com-
bines nonprecise historical flood information and systematic discharge observations. The following conclu-
sions can be drawn from the application of the framework to the three case studies:

1. The proposed method is flexible in that it is able to account for different types of historical flood informa-
tion as illustrated by three diverse case studies.

2. Depending on the historical source material, descriptions provide information with different levels of
vagueness. These can be encapsulated in the membership functions with different widths for each flood.

3. Historical flood time series are usually given as three-scaled magnitude index series. These lend them-
selves conveniently to be transformed into three-parameter distributions.

4. Hydraulic reconstructions of discharges may have the narrowest membership functions. Their width can
be based on the spatial extent of the flood waters reflected in the linguistic descriptions these recon-
structions are built from.

5. If the historical and systematic records overlap, information on the historical floods can be included as a
fuzzy prior distribution.

6. Inclusion of fuzzy historical information reduces the estimation stochastic uncertainty over only using
systematic data. For the Rhine and Werra case studies, the stochastic uncertainty of the estimated 100
year flood was reduced by 45 and 61%, respectively.

7. If the historical flood records are not complete, observational biases are introduced. Similarly, if the
catchment or river conditions change, biases are introduced. The latter can be easily accounted for if
known, the former are more difficult to address.

References
Baethgen, F. (1924), Monumenta Germaniae Historica.Scriptores rerum Germanicarum, Nova series. vol. 3, Weidmann, Berlin (Chronica

Iohannis Vitodurani).
B�ardossy, A. (2008), Fuzzy rule-based flood forecasting, in Practical Hydroinformatics, Water Science and Technology Library, vol. 68, edited

by R. J. Abrahart, L. M. See, and D. P. Solomatine, chap. 13, pp. 177–187, Springer, Berlin, doi:10.1007/978-3-540-79881-1.

Acknowledgments
Financial support for this study was
provided by the Austrian Science
Funds (FWF) as part of the Vienna
Doctoral Programme on Water
Resource Systems (DK-plus W1219-
N22), the FWF Project P23723-N21, the
Innovative Ideas program of the TU
Wien, and the ERC FloodChange
project (ERC Advanced Grant FP7-
IDEAS-ERC-AG-PE10 291152). The
systematic data for the Rhine and
Werra were provided by the Wasser-
und Schifffahrtsverwaltung des
Bundes, Bonn, and the Th€uringer
Landesanstalt f€ur Umwelt und
Geologie, Jena, respectively, from
where they are available. The historical
data of the first and second case
studies have been published in Wetter
et al. [2011] and Mudelsee et al. [2006].
The data of the third case study are
available from the authors on request
and in a forthcoming publication (A.
Kiss et al., A 330-year series of Tisza
floods in the Szeged area: Flood
frequency, magnitude and seasonality
analysis, Hydrological Science Journal,
in preparation, 2016) The source code
for implementing the fuzzy MCMC
algorithm, written in R programming
language [R Core Team, 2016], is
available upon request from the
corresponding author.

Water Resources Research 10.1002/2016WR019177

SALINAS ET AL. FUZZY BAYESIAN FLOOD FREQUENCY ESTIMATION 6748

http://dx.doi.org/10.1007/978-3-540-79881-1


B�ardossy, A., I. Bogardi, and W. E. Kelly (1990), Kriging with imprecise (fuzzy) variograms. I: Theory, Math. Geol., 22(1), 63–79, doi:10.1007/
BF00890297.

Benito, G., and V. R. Thorndycraft (2005), Palaeoflood hydrology and its role in applied hydrological sciences, J. Hydrol., 313(1–2), 3–15,
doi:10.1016/j.jhydrol.2005.02.002.

Benito, G., A. D�ıez-Herrero, and M. Fern�andez de Villalta (2003), Magnitude and frequency of flooding in the Tagus Basin (Central Spain)
over the Last Millennium, Clim. Change, 58(1-2), 171–192, doi:10.1023/A:1023417102053.

Bernoulli, A. (1895), Die Chroniken Heinrichs von Beinheim: Basler Chronik 1444–1451, Basler Chroniken, 5. Hirzel, Leipzig (Kaplan Hierony-
mus Brillinger).

Bernoulli, A. (1915), Basler Chroniken, vol. 7, Hirzel, Leipzig (Kaplan Hieronymus Brillinger).
Bl€oschl, G. (2008), Flood warning-on the value of local information, Int. J. River Basin Manage., 6(1), 41–50.
Botero, B., and F. Franc�es (2010), Estimation of high return period flood quantiles using additional non-systematic information with upper

bounded statistical models, Hydrol. Earth Syst. Sci., 14, 2617–2628, doi:10.5194/hess-14-2617-2010.
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