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Abstract—This paper presents an analysis of the impact of manu-
facturing variability in PV modules when interconnected into a
large PV panel. The key enabling technology is a compact semi-
empirical model, that is built solely from information derived
from datasheets, without requiring extraction of electrical pa-
rameters or measurements. The model explicits the dependency
of output power on those quantities that are heavily affected by
variability, like short circuit current and open circuit voltage. In
this way, variability can be included with Monte Carlo techniques
and tuned to the desired distributions and tolerance. In the
experimental results, we prove the effectiveness of the model in
the analysis of the optimal interconnection of PV modules, with
the goal of reducing the impact of variability.

I. INTRODUCTION

As for any electrical device, photo-voltaic (PV) cells are
subject to the variability of the manufacturing process, which
results in mismatches of electrical parameters among different
devices. Such mismatches are usually disregarded because
considered marginal; however, the widened landscape of PV
panel manufacturers has increased competition due to reduced
margins. As a sample figure, there has been an 80% decline
in worldwide solar prices between 2008 and 2013, occurred
largely due to improvements in manufacturing costs in China
[1]. Competition in a market in large expansion has the
unavoidable consequence of an increase of the quality range of
the products; while quality of PV modules is usually measured
in terms of electrical failures, thermal cycling, mechanical
load, resistance to atmospheric events (e.g., hail) [1], [2], the
variability of the basic electrical parameter of a PV module is
seldom given as a figure of merit, although it can significantly
impact the total power output of a PV panel assembled by
interconnecting mismatched modules.
Several researchers have addressed the problem by proposing
different models that incorporate variability in various ways.
Most models refer to an individual cell, and focus on the
variability of the electrical properties (a non-ideal diode with
resistances), in analogy with the statistical variability analysis
done for generic semiconductor devices [3].
More practical approaches consider the variability of a PV
module (usually the series interconnection of 36–72 PV cells),
which is the building block of a PV panel, and whose electrical
properties can be easily measured even from a user. These
works demonstrate and quantify experimentally or analytically
the intuitive conclusion that “sorting” modules based on their
electrical characteristics (usually, measured output power in
standard conditions) and connecting them in series according
the resulting order provides best results [4], [5].

However, these methods generally have at least one of two
drawbacks. Firstly, many solutions build a model based on a
circuit-equivalent representation of the PV module, which is
the physical representation of a cell, not of a module; therefore
the linear scaling of the circuit parameter from a cell to a
module ignores possible shading of a cell or the presence of
bypass diodes within the module [4], [6]. A second drawback
is related to methods based on measurements: while results
are more reliable, they are tied to a specific type of module
and do not help to do comparative analysis (if not at the cost
of an intensive measurement campaign) [7], [8].
In this work, we try to address these two limitations by
providing a model for a PV module and by extension for a
PV panel that (i) is based only on publicly available data and
does not require any measurement for its derivation, and (ii)
adds variability as a random variation on the basic electrical
parameters of the module rather than on the output power
or on the parameters of the circuit-equivalent model. Our
simulations show that the model allows to estimate the impact
of manufacturing variability in large PV panels, and to take
into account PV module arrangement on power production.

II. BACKGROUND

A. Background on PV modules
A photovoltaic (PV) cell is basically a semiconductor diode
whose p−n junction is exposed to light [9]: the incidence of
light generates charge carriers that originate electric current.
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Figure 1. Circuit model of a PV cell (a), and characteristic I-V curve (b).

Given the complexity of the physics of PV cells, it is common
to think in terms of its electric equivalent, as in the circuit in
Figure 1.a: an equivalent current source IPV induced by the
light, shunted with a diode and resistor Rp and cascaded with
a series resistor Rs [10]. The basic equation is:

I = IPV − I0

[
exp
( qV
akT

)
− 1
]

(1)

where IPV is the current generated by the incident light, V
and I represent the output voltage and current of the solar



cell, respectively, I0 is the reverse saturation current of diode,
q is the electron charge, and a is a dimensionless constant that
depends on technology. The resulting I-V curve (in Figure 1.b)
is characterized by its short circuit current ISC (the current
at which the voltage is 0), its open-circuit voltage VOC (the
voltage at which the current is 0), and the maximum extracted
power (Maximum Power Point MPP) (VMPP , IMPP ).
PV cells are then interconnected according to a series/parallel
organization into a PV module, in order to increase the output
power. PV modules can be further interconnected together to
form a PV panel, again in series or in parallel, to achieve
the desired voltage and current levels. In general, the power
production of connected PV cells and modules is not simply
the sum of the single power productions: the cell or module
that, because of different irradiance or variability, has lower
voltage or current constraints the power output of the other
ones [11]. To reduce this impact, bypass diodes may be placed
across groups of series-connected cells (usually within a PV
modules) for bypassing these weaker cells.
The main limitation of Equation 1 is that manufacturers never
provide the values to populate it: they rather disclose a few
I-V curves, and derating factors describing the dependence
of power production on irradiance and temperature. Using
these limited information, it is unfeasible to reconstruct the
I-V function of Equation 1. Additionally, Equation 1 does not
make explicit the dependence of the I-V curve from ISC and
VOC (i.e., the easily measurable quantities).

B. Manufacturing variability for PV modules

Manufacturing variability is caused by the complexity of the
manufacturing process, e.g., by the presence of impurities in
the silicon material or approximation in the control of process
parameters. Efficient quality assurance can identify slight
defects, thus allowing to reduce tolerance at the Maximum
Power Point (MPP) [6]. However, even small variations of the
characteristics of the I-V curve can affect power production,
and manufacturing tolerance is still high, in the order of ±5%
up to ±10% for rated power [4], [6].
To minimize the impact of manufacturing variability, it is
necessary to reduce as much as possible the bottleneck effects
caused on the MPP of PV panels by those PV modules that
are more affected by variability. To face this issue, parameters
of the I-V curve (like ISC and VOC) are used to sort the
PV modules and to determine their arrangement. In [5], the
operating conditions at the MPP are used to analyse both
parallel and series power losses given uniform irradiance. [4]
compares the impact of using the operating conditions at the
MPP to sort PV modules: the outcome of the analysis is that
sorting by current is the most effective solution. [7] compares
a IMPP -based sorting with a random sort of the PV modules,
with the former solution being the optimal one.

III. MODEL OF A PV MODULE

The proposed model of PV modules is a semi-empirical one,
built based on information extracted solely from datasheets
(as the ones in Figure 2 for the Mitsubishi PV-MF165EB3
module) to derive an equation that yields module voltage and
current as a function of irradiance G and temperature T .

Figure 2. Datasheet graphs for Mitsubishi’s PV-MF165EB3 PV module [12].

The equation explicits VOC and ISC , so that it is possible
to simulate the impact of manufacturing variations.

A. Estimation of VOC and ISC

The value of VOC and ISC is strongly affected by irradiance G
and temperature T , as evident from the sensitivity coefficients
provided in datasheets (Figure 2).
To make this dependency explicit, cell temperature Tc is first
derived from ambient temperature T by using the relations in
[13], which correlate with G and with characteristic coeffi-
cients of the PV module, such as its temperature coefficient.
Then, the curves in the center and right plot of Figure 2 are
empirically fitted to the templates of Equations 2 and 3:

VOC(G,Tc) = VOC,nom(c1Tc + c2) · (c3Gc4 + c5) (2)

ISC(G,Tc) = α · ISC,nom(c6Tc + c7) · (c8G− c9) (3)

where VOC,nom and ISC,nom are the nominal VOC and ISC ,
ci are coefficients obtained through curve fitting, α is an PV
module aging factor (assumed to be 0.4%/year [14]).

B. Injecting Manufacturing Variability

Manufacturing variability may affect any or all of the cha-
racteristic values of ISC , VOC , and consequently the MPP
operating conditions. Sources of variability on each quantity
are statistically independent and random [15]. Therefore, it is
reasonable to model manufacturing variations as independent
random variables with a normal distribution [6], [8].
To emulate variability, we use Monte Carlo simulations to
generate the values of ISC,mv and VOC,mv according to a
normal distribution: the mean value is the value of ISC or
VOC calculated using Equations 2 and 3, and the variance is
expressed as standard deviation determined by manufacturing
tolerance (σIsc and σV oc, respectively):

ISC,mv = σIsc · r + ISC(G, t) (4)

VOC,mv = σV oc · r′ + VOC(G,T ) (5)

where r, r′ are the randomly generated variability factors.

C. I-V Curve Model of a PV module

The last step is to derive a function describing the I-V curve
for different values of G and T . We use an equation template
that matches the diode equation, but replacing ISC and VOC

with their randomized versions:

I = ISC,mv − a · (eb· V − 1) (6)



where a is obtained through curve fitting as explained in [16]
and b is derived by imposing that I(VOC) = 0:

b = V −1OC,mv · ln(1 + ISC,mv · a−1) (7)

D. Connecting PV modules
The expression of total power depends on the internal structure
of a module. PV modules generally contain one or more
bypass diodes that are used to “break” the long series strings
into shorter sub-strings to decrease the cost of shaded portions
of a module [11]. Our analysis considers the effect of cell (and
module) mismatches at a given, uniform irradiance condition;
therefore, partial shading is not considered. Since the magni-
tude of the mismatches is less than ±10%, such difference
would not be sufficient to trigger the activation of the bypass
diodes, which would require a significant difference of current
and voltage of a cell to activate the bypass. For this reason,
the presence of diodes in our analysis is immaterial, and the
following expressions do not consider the diode bypass effect.
Under these assumptions, the weakest (i.e., with the least
current) PV module acts as a bottleneck on current in case
of series connection, and on voltage in case of parallel
connection. The total power of the PV panel is thus obtained
as Ppanel = Vpanel · Ipanel, where:{

Vpanel = minj=1,...,p(
∑

i=1,...,s Vij)
Ipanel =

∑
j=1,...,p(mini=1,...,s Iij)

and Vij and Iij are voltage and current of the i-th PV module
of the j-th string [17], [18].

IV. EXPERIMENTAL RESULTS

This section demonstrates the effectiveness of the proposed
model in the context of the design of large PV panels, by
assessing the impact of variability on the operating conditions
on single PV modules and on their interconnection, and by
quantifying the impact of sorting the PV modules based on
the characteristic points of the I-V curves.

A. Simulation setup
We implemented the model in Matlab R2019a and characte-
rized it for two different PV modules:
• the PV-MF165EB3 PV module by Mitsubishi, a polycry-

stalline silicon module with rated power of 165W [12];
• a polycrystalline PV module by Centsys with rated power

of 250W [19].
To represent manufacturing I-V mismatch, we randomly gene-
rated nominal ISC and VOC that follow a normal distribution
with variance ±8% and ±4%, respectively.

B. Exhaustive Exploration for a Small PV Panel
As a first experiment, we considered a small 3×21 PV panel,
to quantify the impact of different interconnections of its PV
modules in the presence of mismatches. In order to focus on
manufacturing I-V mismatch, we assumed all the PV modules
are subject to the same solar irradiance (G = 1000W/m2),
and same ambient temperature (T = 25◦C), and we focused
only on Mitsubishi PV modules.

1A s× p PV panel is organized in p parallel strings of s PV modules.

To ensure consistency, we run the experiment twice on diffe-
rent random variability factors. We generated all the 6! = 720
possible interconnections of modules and analyzed the distri-
bution of the generated power: Figure 3 shows the histogram
of total power generation for the different arrangements of
PV modules for the two experiment runs. The two histograms
show that the proposed model allows to appreciate the impact
of variability on output power production, given the same G
and T for all PV modules. Additionally, note that the ranges
of power values are different for the two simulations, as an
effect of different variability factors.

Figure 3. Power generation from all different arrangements of 3 × 2 PV
panel.

The most interesting results provided by these histograms is
their distribution. The distribution and the difference between
the best and worst case do not differ much between the two
simulation runs (13.4W and 14.8W respectively). In both ca-
ses, the probability of worst case (leftmost bar) is significantly
higher than the best case: 432 configurations out of 720 (60%)
yield the lowest value of total power, whereas only 72 (10%)
configurations yielding the largest power value. Moreover, the
remaining 216 (30%) in the middle bar are much closer to
the worst case than to the best one. This means that it is
highly probable that a “random” arrangement that does not use
information about the variability mismatches will fall close to
the worst case.

C. Comparison of Sorting Strategies on Large PV Panels

As a second analysis, we evaluated two PV panels with
realistic sizes, 50 × 4 and 25 × 8 respectively, to assess the
distance of a “random” assignment from the optimal one.
An exhaustive exploration of all possible configurations is not
feasible, so we randomly generated 500 different arrangements
and compared them with the optimal solution adopted in
literature, i.e., based on sorting PV modules by ISC [4].
Figure 4 shows the histograms of the power generated by
the 500 random arrangements plus the optimal one for both
the Mitsubishi (top) and Centsys (bottom) PV modules and
for both panel topologies. Even if 500 is a small subset,
the randomly generated configurations tend to be clustered
around the lower end of the distribution, and relatively far
from the optimal value. Notice that for such large panel sizes
the absolute difference becomes sizable (1 to 2 KW depending
on the type of module), and that this result holds for both PV



Figure 4. Power generation difference between best and random arrangements
of 50× 4 and 25× 8 PV panel.

modules: the difference only gets amplified for the Centsys
modules, that generate more power.

D. Impact of Variable Irradiance

In order to assess the impact of different irradiance conditions
with mismatches, we ran a one-year long simulation for the
two above panels. Irradiance and temperature traces were taken
from the NREL datasets [20] and refer to recorded values at
the University of Arizona.

Table I
YEARLY ENERGY GENERATION: RANDOM VS. BEST TOPOLOGIES

(SORTED BY ISC ).

PV Module Panel
Config.

Random OptimalMax Min Avg [kWh][Kwh] [Kwh] [Kwh]

Mitsubishi 25× 8 62,155 61,471 61,896 64,569
50× 4 61,765 61,283 61,539 63,987

Censys 25× 8 123,547 121,903 122,885 128,941
50× 4 123,777 123,021 123,532 128,496

As in the previous experiment, we generated 100 random
interconnections of modules by using a given set of PV
modules, and compared the results of these 100 random runs
with the optimal arrangement (i.e., sorted by ISC). Table I
illustrates the distribution of total energy generation over the
year (min, max, and average over the 100 instances). Results
are consistent with those shown in Figure 4; even if in periods
of lower irradiance the variability in the modules translates into
smaller power penalties, the accumulated difference between
the best “random” arrangement and the one sorted by ISC

is in excess of 2 kWh and 5 kWh for the the two types of
modules, respectively.

V. CONCLUSIONS

This paper proposed a model for PV modules that takes into
account manufacturing variability and that is built solely from
available datasheets, thus being applicable to any PV module
and not requiring extraction of electrical parameters or me-
asurements. Our simulations show that the model effectively
includes variability: it allows to make statistical evaluations of
the impact of the resulting mismatch on power production, and
to evaluate the effectiveness of the sorting strategies adopted in
the literature. Future work will focus on the inclusion of more
refined statistical distributions for the modeling of variability.
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