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Abstract 

 In the context of Solar System exploration, autonomous planetary surface missions represent, nowadays, an 

important step in scientific research. Nevertheless, the design of landing Guidance, Navigation and Control sub-systems 

is one of the most challenging and complex tasks. Indeed, during the propelled landing phase, the system must be 

controlled in closed-loop, ensuring the stability of the lander motion with a certain level of robustness. This paper proposes 

a novel procedure for the verification of the lander nominal and robust stability. The first step is to perform a model 

simplification, in order to reduce the involved degrees of freedom and allow a decoupled analysis of the rotational and 

translational dynamics. Then, the classical stability theorems are applied, taking also into account the uncertainties due 

to actuators and sensors. Next, a robustness stability verification is performed by means of µ-Analysis. Finally, a Monte 

Carlo campaign is carried out, using an End-to-End simulator in order to verify, in the time domain, the reliability of the 

analytical stability analysis. The procedure is applied to a case study representing a descent module during the controlled 

landing phase on the Mars surface. 

 

Keywords: Landing; Control; Stability; Robustness; Monte Carlo; µ-Analysis. 

 

Notation 

The bold type is referred to vectors and the capital bold type is referred to matrices, where not differently specified. Force 

and Torque vectors are represented with a capital bold type. 
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𝜃: Off-Vertical Angle 

𝑣 = [𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧]
𝑇

: Velocity 

𝜔 =  [𝜔𝑥 , 𝜔𝑦 , 𝜔𝑧]
𝑇
: Angular Rate 

𝜇𝐿: Gain Margin 

𝜑𝑚: Phase Margin 

𝜇𝜟: Structured Singular Value 

𝜛: Frequency 

ℋ: Generic Transfer Function 

𝐼: Inertia 

𝑚: Mass 

𝑀: Torque 

𝑇: Thrust 

 

Acronyms/Abbreviations 

BE: Braking Engines 

BIBO: Bounded-Input Bounded-Output  

CoG: Center of Gravity 

DM: Descent Module 

DoF: Degree of Freedom 

E2E: End-to-End 

EDL: Entry, Descent and Landing 

GNC: Guidance, Navigation and Control 

IMU: Inertial Measurement Unit 

LFT: Linear Fractional Transformation 

LTI: Linear Time Invariant 

MIMO: Multi Input Multi Output 

PI: Proportional-Integral 

PID: Proportional-Integral-Derivative 

RDA: Radar Doppler Altimeter 

SISO: Single Input Single Output 



  

SSV: Structured Singular Value 

T/W: Thrust-to-Weight Ratio 

1. Introduction 

 The Entry, Descent and Landing phase for an autonomous space vehicle toward any extra-terrestrial surface, 

nowadays, is a complex procedure which involves an important effort in designing and developing engineering systems, 

which can ensure a safe touchdown and guarantee the success of a mission [1, 2, 3, 4, 5]. These considerations hold in 

particular for those celestial bodies with a thin (or absent) atmosphere for which a full ballistic landing, exploiting only 

parachute systems, is not performable. Indeed, when dealing with descent and landing, the trajectory of CoG is strongly 

coupled with the lander attitude. The problem is noticeably worth of interest when atmospheric drag is negligible or 

absent. Indeed, drag friction has an attitude stabilizing effect since it tends to reduce the horizontal velocities with a 

consequential total off-vertical angle stabilization. 

 Over the last years, many researches were focused in design GNC algorithms for attitude and landing.  

Concerning the attitude GNC, [6, 7] propose nonlinear sliding mode techniques, [8, 9] provide both optimal and robust 

classes of nonlinear controllers, [10] designs a linear feedback regulator after a proper state transformation, [11] exploit 

a gain scheduling strategy, and a design of a fault tolerant sliding mode attitude observer is provided by [12]. On the other 

hand, the landing GNC design is deeply dealt by [13, 14, 15]. Nevertheless, a fundamental feature of the controlled 

landing, managed by the GNC sub-system working in closed-loop, is the stability of both rotational and translational 

kinematics [16]. The stability verification in nominal condition and in the presence of uncertainties represents a critical 

task which must be taken into account.  

This paper proposes a novel procedure for the verification of the lander nominal and robust stability. This 

approach differs from the methods developed over the last years for the robust stability verification of the nonlinear 

systems (Integral Quadratic Constraint [17] and Popov [18, 19, 20, 21] methods). Indeed, the presented procedure is based 

on the linear fractional transformation of the system, as proposed in [22], and the system stability verification by means 

of µ-Analysis [23, 24], by accounting the nonlinearities in a novel manner. However, the great complexity of the GNC 

model requires the creation of a simplified model which allows the verification of the stability performance, in both the 

time and frequency domains. The approach is to decouple the translation plant from the rotational plant in order to create 

a couple of connected SISO structures. Then, the coupled SISO models can be analysed by exploiting the classic 

frequency response approach through Bode diagrams and criteria [25].  



  

 Among the Solar System Celestial bodies, Mars represents a great challenge in EDL GNC design [26, 27]. 

Therefore, Mars is assumed the target planet along all the paper, fitting the test case on its physical features (i.e. 

atmosphere, gravity, etc.).  

 In the first part of this paper (Section 2) the dynamic equations involved during planetary landing are discussed 

and simplified. In Section 3, the GNC architecture is described, with associated sensors. In Section 4, a standard 

methodology for robust stability verification is discussed, including the classical approach in frequency domain given by 

the Bode criterion and the µ-Analysis and in time domain verification through a 6 DoF Monte Carlo campaign. The 

methodology is applied in Section 5, where a test case is presented and its results are shown and discussed.     

2. Lander Mathematical Model 

2.1. Full Dynamics Model 

 The mathematical model of a descent module can be described by two sets of vectorial differential equations, 

one for translational motion and the other for the rotational motion, with respect to an inertial reference frame. On the left 

hand side of each equation, the aerodynamic and propulsion forces and torques are taken into account; on the right hand 

side, the inertial contributions are accounted for. The equations are as follows: 

 

𝑻 = 𝑚(�̇�𝑳 + 2𝛚 × 𝒗𝑳 + 𝛚 × 𝛚 × 𝒓𝑳 − 𝒈),  (1) 

 

𝑴 = 𝑰�̇�𝑳 + 𝝎𝑳  × 𝑰𝝎𝑳 ,   (2) 

 

where 𝑚 and 𝑰 are the lander mass and the inertia matrix respectively, 𝒗𝑳 is the lander velocity with respect to an inertial 

reference frame, 𝛚 =  𝛚𝐌 + 𝛚𝐂 is the total angular velocity, taking into account the Mars’ angular velocity (𝛚𝐌) and the 

lander angular velocity due to Mars’ curvature (𝛚𝐂), 𝒓𝑳 is the vector joining lander CoG and planet centre, 𝝎𝑳 is the 

lander angular rate in the lander body reference frame and 𝒈 is the gravity acceleration vector. The state variables are 

𝒙, 𝒗, 𝜸, 𝝎 ∈ ℝ3, they represent the position, the velocity, the attitude and the angular rate, respectively, in an inertial 

reference frame. The system is non-linear and MIMO: the inputs are the force (𝑇 ∈  ℝ3) and the torque (𝑀 ∈  ℝ3) vectors 

delivered by the engines and the outputs coincide with the states variables (𝒙, 𝒗, 𝜸, 𝝎 ∈ ℝ3) previously mentioned.  



  

2.2. Simplified Dynamics Model  

 The purpose is to create a couple of connected SISO LTI systems, in order to separately study the vertical 

translation and rotation stability. Hence, both loops can be studied with the classical SISO LTI systems methodology. 

The approach represents only a practical strategy to decouple the translation and rotation parts of GNC algorithm, but the 

dynamics remains completely coupled. The following simplifications are applied: 

• The planet (Mars) is considered flat and not-rotating. 

o When assuming short navigation time horizon, the simplification has not consequences on lander 

stability analysis.  

o It is assumed 𝛚𝑴 = 𝟎, Coriolis’ and centripetal contributions are neglected.  

• Two-dimensional dynamics. 

o The dynamics of the second planar rotation axis around Y is equivalent to the one of the first axis 

because the relevant momentum of inertia is almost the same. The same consideration is applicable for 

the second horizontal DoF along the Y axis.  

o Neglection of the contribute of the gyroscopic term from Euler’s equation. 

• Atmospheric drag is neglected. 

o The contribute in forces and torques are negligible with respect to the ones provided by thrusters. 

o Drag has stabilizing effect on attitude and vertical velocity. The assumption drives to a more 

conservative scenario. 

• Lander Mass is kept constant. 

o The amount of propellant needed for landing is a small fraction of the overall DM mass.  

 

 When dealing with the first two assumptions, a pseudo-inertial reference frame can be defined (as in Figure 1) 

centred on the planet surface by freezing the DM CoG projection on ground when the propelled phase starts. The 

𝑍𝑋𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑙  plane also is parallel to the   𝑍𝑋𝐵𝑜𝑑𝑦  plane. Since the lander has been already de-spun before the controlled 

phase, this statement is correct throughout the whole landing phase. Under the assumptions of flat and not-rotating planet, 

when assuming a short time horizon, the rotation of the planet about its own axis is negligible and the reference frame 

can be considered as an inertial one. Hence, the model for analytical verification is a 3-DoF one (Figure 1) including: 

• The horizontal DoF along the X axis. 

• The vertical DoF along the Z axis. 

• The rotation DoF about the Y axis (described by the off-vertical angle 𝜃 and its time derivatives). 



  

 

 

Fig. 1: Dynamics of the Simplified Model for 3-DoF Analysis  

 

 Moreover, the rotation about the Z axis (the symmetry axis) is decoupled from the others and not worth of interest 

for the GNC stability verification. Given the above assumptions, the dynamics equations can be rewritten as follows: 

 

𝑻 = 𝑚(�̇�𝑳 − 𝒈) ,   (3) 

 

𝑀 = 𝐼𝑦�̈� .   (4) 

 

 The simplified model consists in a closed-loop system with the architecture shown in Figure 2. Starting from the 

initial conditions, the navigation module provides the estimated values of kinematic variables. The guidance segment 

receives the estimated values as input and provides the reference values feeding the controller. Thus, the control command 

feeds the BE, which delivers forces and torques to the plant. The loop is also closed by the navigation block that 

reconstructs the state vector from the measured kinematic quantities. The navigation module feeds also the guidance, 

which generates the reference profiles by exploiting the navigation measurements.  

 

  

Fig. 2: Simplified Model Architecture 

 



  

 In this diagram the variables 𝑋𝑅𝐸𝐹 , 𝑋𝑀𝐸𝐴𝑆, and 𝑋𝐸𝑆𝑇  may be identified as: 𝑋𝑅𝐸𝐹 = [�̅�, �̅�𝑧], 𝑋𝑀𝐸𝐴𝑆 = [𝜃, 𝑣𝑧], and 

𝑋𝐸𝑆𝑇 = [�̂�, �̂�𝑧]. Note that, the guidance does not compute a reference profile for the horizontal velocity.  Nevertheless, 

the estimated horizontal velocity is used for the computation of the reference attitude profile. 

 

 

3. GNC Architecture 

 The landing phase is organized and divided in different sub-phases in order to perform a sort of gains/poles 

scheduling. During the landing mode, the GNC must be able to adapt its features in order to satisfy different constraints 

based on guidance policy. The duration of landing phase with activated thrusters is in the order of 25 𝑠.  

3.1. Navigation Module 

 The navigation filter aims to determine the state of the system to be controlled. The filter works at 100 𝐻𝑧 in the 

rotation loop and at 20 𝐻𝑧 in translation loop, being the fastest segment of GNC sub-system, since it must process the 

RDA and IMU measurements and ensure their prediction. Figure 3 describes in general how the navigation filter works. 

 

 

Fig. 3: Schematic Architecture of the Navigation Module 

 

 The filter is made up by a kinematic predictor and a disturbance predictor. Indeed, with respect to classical 

observer structures, a disturbance predictor has been introduced. This approach admits non-stationary disturbance 

dynamics and the assumptions on the noise statistics are not required. Moreover, the horizontal and vertical navigation 

modules are provided with a function for pole shift during the propelled phase. The modification of the poles allows the 

optimization of the performances based on guidance policy.  

3.1.1. Kinematic Predictor 



  

 Let us assume the classical prediction-correction approach, for a discrete-time system, described by the following 

set of equations.  

 

𝒙𝒑𝒊+1
= 𝑨𝒙𝒊 + 𝑩𝒖𝒊 ,    (5)   

 

�̂�𝒊 = 𝑪𝒙𝒊 + 𝑫𝒖𝒊 ,               (6) 

 

𝒙𝒊+1 = 𝒙𝒑𝒊+1
+ 𝑮(𝒚𝒎𝒊

− �̂�𝒊) ,    (7)  

 

where �̂� is the estimated state vector, 𝒙𝒑 is the predicted state vector, 𝒚𝒎 is the measurement vector and �̂� is the expected 

measurement vector based on the estimated states. We must take into account the influences, on the states, of the 

discrepancies between new measurements and expected measurements. The relationship is defined by matrix 𝑪. The 

relationship between measurement errors and states is defined through the gain matrix 𝑮. The correction process takes 

into account the potential influence of each measurement on the states. The combination of these equations drives to a 

formulation in which the fundamental characteristic matrix (𝑨 − 𝑮𝑪) is highlighted, whose eigenvalues are chosen such 

to ensure the stability of the navigation module and the asymptotically convergence of estimation error: 

 

𝒙𝒊+1 = (𝑨 − 𝑮𝑪)𝒙𝒊 + 𝑩𝒖𝒊 + 𝑮𝒚𝒎𝒊
 .     (8) 

3.1.2. Disturbance Predictor 

 The disturbance predictor has a structure similar to a kinematic predictor but it works on the residuals of the 

kinematic predictor process, and hence on the error on the measurement innovation. The states of this process may be 

considered as the errors on the states of the former process. The combination of the disturbance and kinematic predictors 

works accordingly to the following transfer function ℋ𝑃𝑟𝑒𝑑 , from the new measurement to the state estimation: 

 

ℋ𝑃𝑟𝑒𝑑 =
1−𝐾𝑆

1+𝑊(1−𝐾𝑆)
 ,    (9) 

 

where: 

• 𝑊 is the open loop function of the kinematic predictor. 

• 𝐾 is the fusion gain, mixing a-priori innovation with the filtered contribution in the a-posteriori innovation. 



  

• 𝑆 is the sensitivity function of the disturbance predictor. 

3.2. Guidance Module  

 The guidance module task is to generate, with a frequency of 10 𝐻𝑧, a reference profile for the control loop 

based on the measurements estimated by the navigation filter. The vertical translation guidance follows different profiles, 

depending on each landing phase. In this paper, we consider throttable engines for control, offering the opportunity to 

change the 𝑇/𝑊 in a proper larger range between 0 and 3. During the avoidance maneuver, the guidance imposes the 

vertical velocity kept almost constant by achieving 𝑇/𝑊 ≈  1. The second landing phase aims to strongly reduce the 

vertical velocity, in order to achieve the minimum speed necessary to perform a safe landing. During this full braking 

maneuver, the engines provide a 𝑇/𝑊 between 2 and 3. Nevertheless, in the very last phase of the landing, the thrust 

profile is smoothly reduced until it reaches a 𝑇/𝑊 close to 1 with a bounded vertical velocity when the module is close 

to the ground. The tasks of rotation guidance also depend on the relevant descent profile activated in the landing phase. 

Indeed, during the back-shell avoidance, the guidance is programmed to sensibly reduce the horizontal velocity through 

a sudden attitude change. Following this logic, the back-shell moves orthogonally with respect to the descent vehicle 

following its inertial path. During the full braking phase, the attitude is smoothly verticalized in order to touch the surface 

with a small off-vertical angle.  

3.3. Control Module 

 The main task of the control module is to provide the command to the thrusters in order to track the guidance 

kinematic profiles, working at 10 𝐻𝑧. The vertical translation controller is a PI controller and the attitude controller is a 

PID regulator. The gains are not constant throughout the landing phase, but they change on the basis of the different 

constraints to be achieved during the landing. 

 In the paper, the engines mathematical model and description is skipped since it does not influence the overall 

stability of the model. Nevertheless, few notes on its functionality are mandatory for the comprehension of the control 

scheme. Briefly, the vertical translation and attitude control loops provide to the thrusters two different commands, related 

to the necessary thrust to track the reference guidance. In fact, the vertical translation control selects the overall thrust 

level supplied by the thrusters, allowing the reference vertical velocity tracking. Then, the command from attitude control 

splits the overall thrust among the engines nozzles, in order to produce a proper torque for attitude stabilization.  

3.4 Sensors 



  

 In a real EDL system, the sensors for attitude, velocity and altitude determination must be accounted for, in order 

to provide to the navigation segment the measurements to be processed. A classical choice in EDL design expects the 

usage of RDA and IMU for a complete set of state variables measurements. In this section, a brief description of the 

sensors is given in order to better clarify the subsequent discussion on uncertainties for robust stability. Notice that, in 

our GNC simplified simulator, the RDA and IMU are not present. Nevertheless, their functionalities are accounted for. 

3.4.1 Radar Doppler Altimeter 

 Based on the heritages of a previous Mars landing mission [28], the functionalities of a four-beams pulsed RDA 

(one central and three lateral 120° apart each other), working at 20  𝐻𝑧, are hereafter described. The minimum number 

of beams used for computation must be three. With this configuration the oldest datum is two samples older (i.e. 100 𝑚𝑠) 

than the most recent datum in the combination. A further combination with four beams can foresee a delay of 150 𝑚𝑠, 

since the oldest datum is three samples old. Such delays are compensated, through the IMU-provided angular rates and 

accelerations, and included within the already described navigations tasks. 

3.4.2 Inertial Measurement Unit 

 The IMU is made up by accelerometers for linear kinematics variables determination and gyroscopes for angular 

rate measurement. In a real EDL sub-system, two differently oriented IMUs are employed, working at 100 𝐻𝑧. Within a 

simplified GNC simulator, data fusion between the different measurements of two IMUs is managed and processed.  

4. Methodology for Robust Stability Verification 

 In this section, a methodology for robust stability verification is proposed. In general, a feedback control system 

must ensure the closed loop stability with a sufficient level of robustness, an effective disturbance rejection and a fast set-

point tracking. The transfer function of the rotation loop is: 

 

 ℋ𝑅𝑜𝑡(𝑧) =  �̂�(𝑧)/�̅�(𝑧).   (10) 

 

The transfer function of the vertical translation loop is:  

 

ℋ𝐷𝑒𝑠(𝑧) = �̂�𝑧(𝑧)/�̅�𝑧(𝑧) ,   (11)  

 



  

where the estimated values (�̂� and �̂�𝑧) are the outcomes of navigation segment and the reference values (�̅� and �̅�𝑧) are 

the ones provided by the guidance block. 

 

 

Fig. 4: Methodology for Stability Verification 

 

 In Figure 4, the flow chart of the proposed methodology is shown, following two different approaches: an 

analytical one (on the left branch) and an empirical one represented by Monte Carlo simulations. Indeed, the Monte Carlo 

campaign has a twofold purpose: the verification of the results out-coming from analytical procedure and the robust 

performance verification of the system. Indeed, if the time histories of the Monte Carlo campaign do not show any 

inchoate instability, the final values of state variables at touch-down may be outside any reasonable boundaries, so that 

no safe landing is performable. Thus, the Monte Carlo campaign is also aimed to verify the robustness of performances 

by evaluating the reasonability of the values of the controlled variables at touch-down. On the other hand, the analytical 

methodology can ensure stability of the system (at least local) in a rigorous way, not based on the stochastic behaviour of 

the Monte Carlo simulations. 



  

4.1. Bode Criterion 

 A strictly proper discrete-time open-loop transfer function is considered, and it is assumed that the open-loop 

frequency response has only a single critical frequency 𝜛𝑐 and a single gain crossover frequency 𝜛𝑔. Moreover, the open-

loop transfer function does not have poles outside the unit circle of the Argand plane. The Bode Criterion ensures the 

asymptotic stability of the closed-loop if and only if the gain margin 𝜇𝐿 and the phase margin 𝜑𝑚 are both positive. For 

robustness reasons, the following gain and phase margins must be ensured: 𝜇𝐿 > 6 𝑑𝐵 and 𝜑𝑚 > 30°, respectively. This 

latter is a standard criterion, see, e.g., [29, 30].  

4.1.1. Bode Analysis with Variable Delays 

 The delays in the plant should not affect the stability of this system and the control law should ensure the required 

performance in the complete range of variations. In presence of uncertainties and delays, the system should still satisfy 

the Bode Criterion. The approach is the classical one based on Bode plot and criterion and the results will be a set of Bode 

diagrams.  

 Engines Action Delay: two different scenarios are considered in order to model different levels of delays: 50𝑚𝑠 

and 60𝑚𝑠. The thrusters delay is modelled through the Padè approximation [31]. The Padè approximation of a time delay 

is obtained by means of a Taylor series expansion, as described in [32]. The rational function expressing the Padè 

approximation of order (𝑚, 𝑛) of 𝑒−𝜏𝑠  in the frequency domain is: 

 

𝑃𝑛,𝑚(𝜏, 𝑠) =  
𝑞0+𝑞1(𝜏𝑠)+ … +𝑞𝑚(𝜏𝑠)𝑚

𝑝0+𝑝1(𝜏𝑠)+ … +𝑝𝑛(𝜏𝑠)𝑛  , 𝑚 ≤ 𝑛      (12) 

 

where 𝑃𝑛,𝑚(𝜏, 𝑠) is the transfer function for the Padè delay model and 𝑞𝑚 and 𝑝𝑛 the relevant coefficients. In the analysis, 

a symmetrical Padè approximation is chosen (i.e. 𝑚 = 𝑛), such that 𝑞𝑖 = (−1)𝑖𝑝𝑖 , ∈ {0, 1, 2, … , 𝑛}, where 

 

𝑝𝑖 =  
(2𝑛−𝑖)!𝑛!

(2𝑛)!(𝑛−𝑖)!𝑖!
, 𝑖 ∈ {0, 1, 2, … , 𝑛} .    (13) 

 RDA Measurement Delay: the system should be stable also in presence of the delay of the RDA measurements. 

Indeed, the RDA provides measurements which are a fusion of data collected in the past. Generally, the result of data 

processing has an average delay that can be larger than 100𝑚𝑠. However, the navigation algorithm is also able to 

compensate most of this delay effect through the anticipation of the translation states gathered by the accelerometers. 



  

Therefore, a study of effect of the RDA measurement delay can be tackled by considering values equivalent to the average 

age of the last, of the older and of the second older samples (i.e. 30𝑚𝑠, 80𝑚𝑠 and 130𝑚𝑠).  

4.1.2. Resonance Rejection Analysis 

 In order to guarantee the simplified SISO system stability with respect to system critical frequency, a resonance 

rejection analysis is carried out, based on a list of frequency and modal effective mass associated to the first vibration 

mode. The analysis is important since it allows to exclude that possible undesirable vibration modes affect the GNC loop 

driving the state variables to divergence. Those critical frequencies must be much higher than the cut-off frequencies of 

global system. Then, the GNC must reject the first vibration mode frequency, guaranteeing at least 20 𝑑𝐵 of margin on 

Bode diagram.  

 

4.2. µ-Analysis 

 In Section 2.2. the non-linear dynamics model has been simplified in order to exploit the classical linear tools 

for stability verification. Nevertheless, from the robust stability points of view, such nonlinear contributions cannot be 

neglected, since their effects may drive the system outside the linearization domain. Over the last decades, several 

methods for robust analysis of non-linear systems were developed, such as the Popov criterion [18, 19, 20] and the Integral 

Quadratic Constraints (IQC) [17]. Even though such methods are extremely powerful, they may need a considerable 

computational time effort [33]. In this paper, a novel simplified method for µ-Analysis is proposed, able to account for 

the non-linearities present in a physical plant.  

 The uncertainties affecting the plant may be grouped into two main classes: 

• Parametric uncertainties: real or complex are due to a non-precise knowledge of the system parameters. 

• Uncertainties due to neglected dynamics: due to a lack of knowledge or a simplification of the physical behavior 

of the system of interest.  

 By introducing the LFT formalism [22], the uncertainties matrix Δ(s) is connected to a given system 𝑴(𝑠), as 

represented in Figure 5. In the case of LTI systems, the different perturbations are lumped in a unique perturbed system. 

In our case Δi(s) =  𝛿𝑖𝑰 is a time invariant diagonal matrix, where 𝛿𝑖 denotes a real of complex structured uncertainty or, 

in the case of neglected dynamics, a proper, stable and rational transfer function. We introduce the notation Δ(s) ∈ 𝚫, 

where 𝚫  accounts all the variations of Δ for the whole frequency range of interest. Then, introducing the largest singular 

value 𝜎, a normalized set of structured uncertainty is defined as follows: 



  

 

 𝑩𝜟 = {𝛥 ∈ 𝜟 ∶ 𝜎(𝛥) < 1} .       (14) 

 

 

Fig. 5: Standard 𝑴 − 𝚫 Configuration 

 

 Therefore, the uncertainties set has the following structure: 

 

𝜟 = {𝑑𝑖𝑎𝑔[𝛿1𝑰𝑠1, … , 𝛿𝑟𝑰𝑠𝑟 ,  𝜑1𝑰𝑠1, … , 𝜑𝑐𝑰𝑠𝑐 ,  𝛥1, … , 𝛥𝐹]: 𝛿𝑖 ∈ ℝ, 𝜑𝑖 ∈  ℂ, 𝛥𝑗  ∈  ℂ𝑚𝑗×𝑚𝑗  } .         (15) 

 

 The feedback connection 𝐹(𝑴, 𝚫) is stable if and only if, at each given frequency 𝜛: 

 

sup
𝜛∈ ℝ

(𝜇𝜟(𝑴(𝑗𝜛)) ≤ 1) ,   (16)  

 

where 𝜇𝜟 is the structured singular value as in equation (17): 

 

𝜇𝜟(𝑴)−1 = inf
𝛥 ∈ 𝜟

{‖𝛥‖ ∶ det(𝑰 − 𝑴𝛥) = 0}.    (17) 

 

 In general, the computation of the margin introduced in (16) and (17) cannot be tackled analytically. A more 

comfortable way of accomplishing µ-Analysis is to find the upper and lower margins of structured singular value. 

Nevertheless, also computing these bounds may be a challenging problem as showed in [34] where numerical approximate 

methods for 𝜇 margins computation are provided. The analysis carried out in this paper is based on the numerical 

procedure described in [34] and [35]. 

 Remark. µ-Analysis guarantees robust stability of the closed-loop linearized system, which implies local robust 

stability of the closed-loop nonlinear system. This is not sufficient to guarantee that the nonlinear system has bounded 

state and output signals for all possible disturbance and reference signals. Nevertheless, local robust stability is important 

to avoid that arbitrarily small disturbance or reference signals make the nonlinear system diverge. In other words, robust 



  

stability of the linearized system can be seen as a sort of necessary (but not sufficient) condition for having bounded 

solutions of the nonlinear system, in the presence of not too large disturbances. 

 Remark. The above formulation of µ-Analysis and subsequent considerations are standard. The topics presented 

in the following are not standard. They are developed ad hoc for planetary landing problems and, to the best of our 

knowledge, they represent a novel contribution beyond the state of the art.  

4.2.1. Structured Uncertainties 

 The following structured uncertainties are taken into account for the µ-Analysis: 

• Mass and Inertia Uncertainties: The mass uncertainty is computed as the difference between the initial and final 

mass of the vehicle at each landing mode considered. As far as inertia uncertainty, it is larger due to the error 

introduced by the inertia measurement instrumentation. It is estimated as the mass uncertainty plus 1%. 

• Force and Torque Uncertainties: the thrusters uncertainty may be addressed to the harmonic pulsation in the 

combustion chamber. For the sake of conservativeness, the thrusters uncertainties are declared constant. 

• Angular Uncertainty: The error allocation has been performed based on the gyroscopes bias stability over 3𝜎, 

where 𝜎 is the standard deviation, discussed in [36].  

• Slant and Doppler Velocity Uncertainties: The uncertainties for the Doppler velocity and the slant range are 

estimated on the basis of [28]. 

4.2.2. Neglected Dynamics 

 The nonlinear dynamics of a landing spacecraft is treated as neglected dynamics. Indeed, a non-linear system 

can be seen as a linear plant connected in feedback with a nonlinear block (Figure 6). 

 

                                              

  

Fig. 6: Linear Plant with Non-linear Contributions 

 



  

 

Fig. 7: Linear Plant with Non-linear Uncertainties 

  

 In the figure, 𝑑(𝑡)  ∈ 𝑆𝐷  is a bounded disturbance and 𝑟(𝑡)  ∈ 𝑆𝑅 is a bounded reference signal, with 𝑆𝐷 , 𝑆𝑅  ⊂

 ℝ𝑛. By recalling the LFT notation, the above system may be recasted in the form of Figure 7, where Δ𝑁𝐿  is a static 

function collecting all the involved nonlinearities. A cut-off frequency is identified in order to neglect nonlinear effects 

at very high frequencies. The model is sampled at 100 𝐻𝑧, in order to fulfill the Nyquist-Shannon theorem. Then, a simple 

pole is placed at 20 𝐻𝑧. Such a value is large enough not to reject resonance phenomena coming from the GNC loop. The 

input-output gain of Δ𝑁𝐿  is evaluated as a suitable induced norm of the non-linear uncertainty, by opening the loop as in 

Figure 8 and injecting the contributions given by the linear plant. 

 

 

Fig. 8: Linear Plant with Non-linear Uncertainties Open-loop  

 

Considering the signals in Figure 8, the induced norm is defined as follows: 

 

‖ΔNL‖∞ =  sup
𝑧≠0

‖𝑤‖∞

‖𝑧‖∞
  .    (18)  

  

 The non-linearities accounted in Δ𝑁𝐿  are the Coriolis and centripetal accelerations in the Newton’s law (taking 

into account the Mars’ rotation angular velocity) and the gyroscopic term in the Euler’s equation. Moreover, the controlled 

thrust must be projected along the z-axis of inertial reference frame, introducing a non-linear term equal to 𝑇𝑐𝑜𝑠𝜃 within 

the vertical translation dynamics equation. Then, the Δ𝑁𝐿  infinity norm is computed numerically by exploring the whole 

domains of 𝑆𝐷 and 𝑆𝑅.  

 Let us now characterize the disturbance signals. The main a-priori hypothesis concerns the bounds of their 

variation domain. In this paper, two different kinds of perturbations are taken into account: 

• Perturbation of dispatched forced and torques 



  

• Perturbations due to wind gust. 

 The last perturbation type is supposed to affect both the angular and linear velocities. Then, although the lander 

has been already de-spun, this hypothesis allows not to nullify the gyroscopic torques, 𝜔𝑥𝜔𝑧(𝐼𝑥 − 𝐼𝑧)/𝐼𝑦  and 𝜔𝑦𝜔𝑧(𝐼𝑧 −

𝐼𝑦)/𝐼𝑥, depending on 𝜔𝑧, which is nominally null. The vertical and horizontal gusts are modelled as random uniform 

(bounded) signals, affecting vertical and horizontal velocities and spinning and transversal angular rates. 

 Concerning the disturbances outcoming from the thrusters, they are modelled as a sinusoidal signal with a 

bounded amplitude with a frequency of 1 𝐻𝑧. This choice is aimed to represent the fluctuating pressure within the 

combustion chamber due to an unperfect combustion of the propellant.  

4.3. Monte Carlo Analysis 

 The purpose of the Monte Carlo analysis is to complete the overall stability verification process, in order to 

verify the reliability of the methodology depicted in previous sections. The analysis is performed through a 6 DoF E2E 

simulator which takes into account the full dynamics and the full modeling of the sensors involved in the landing 

architecture. Moreover, the Monte Carlo simulations allow to verify, empirically, the system robust performance, that 

could have been also verified through the theoretical µ procedure. 

 Indeed, the campaign allows to study the 6 DoF kinematics in the presence of randomized uncertainties on input 

parameters. In the case, the verification of possible inchoate instability is a critical task which shall confirm the results 

coming from the Bode diagrams and µ-Analysis.  

 Remark. If a linear parameter varying (LPV) or gain-scheduling controller is used, it may happen that the change 

of controller parameters destabilizes the closed-loop system. A huge number of applications can be found in the aerospace 

field where this problem arises. However, the theoretical stability verification in the presence of time-varying parameters 

is difficult from a mathematical point of view. Monte Carlo simulations are typically used to perform a “numerical” 

stability verification. In this paper, we follow such an approach. 

5. Test Case 

 Now, the methodology is applied to a real test case representing a descent module achieving a planetary soft 

landing. Mars is the target planet for the test case. Therefore, focusing the attention on the landing propelled phase, three 

different phases are identified, each one with different goals to be achieved. In summary, during the first phase, the aim 

is to let the back-shell to turn away from the landing vehicle, keeping the 𝑇/𝑊 equal to unit value. In second phase, 

engines provide more thrust as possible in order to sudden reduce the vertical velocity. In the last phase, 𝑇/𝑊 reduces 

again in order to perform a safe soft landing.  



  

 Let us now define the mass and inertia configuration for test case. Such values are based on the heritage of heavy 

Mars lander designs [26, 27]. 

 

Mass [𝒌𝒈] Inertia 𝑰𝒚𝒚 [𝒌𝒈𝒎𝟑] Thrust Range [𝒌𝑵] 

1220 1030 0 ÷ 13 

Table 1: Summary of Lander Configuration Parameters 

 

 The initial conditions for the different three phases are listed in Table 2. The phase switching is automatically 

managed by the guidance, on the basis of the estimated altitude and vertical velocity values. Note that, the last phase is 

stopped (and the braking engines are switched-off) when the first one of the landing appendages, used by the descent 

module to lean on the terrain, touches the Martian surface. This condition is hard to be implemented in a simplified 

simulator: an altitude of 1.5 𝑚 is imposed as switching-off condition. This value is a reasonable choice which accounts 

the lander CoG distance from the appendage extremity, the terrain slope and the attitude at the touchdown. Finally, the 

control gains (which are the worthiest of interest GNC parameters) are listed in Table 3. 

 

 PHASE 1 PHASE 2 PHASE 2 

Altitude [𝒎] 595.90 195.42 16.24 

Vertical Velocity [𝒎/𝒔] 37.97 34.43 7.07 

Off-vertical Angle [𝒓𝒂𝒅] 0.1905 -0.0021 -0.0026 

Angular Rate [𝒓𝒂𝒅/𝒔] 0.0140 -0.0174 -0.0054 

Table 2: State Variables Initial Conditions of the Descent Phases for a reference landing realization 

 

 CONTROL GAINS PHASE 1 PHASE 2 PHASE 3 

Vertical Translation 

Control 

𝑲𝑷 10 20 40 

𝑲𝑰 0.5 0.5 0.5 

Attitude Control 

𝑲𝑷 2 1 1 

𝑲𝑰 0.25 0.25 0.25 

𝑲𝑫 6 3 3 

Table 3: Control Gains 

5.1. Time Domain Verification  



  

 This subsection is dedicated to verify the consistency of the linearized system with respect to the complete one 

as introduced in Section 2.2. for the considered test case. The profile of kinematics, the control actions, the estimate values 

of the state vector, with respect to the reference profiles as well, can be observed for the overall landing period. The 

evaluation of time-histories allows a preliminary observation and a first level of assessment of each physical state, as well 

as of the coherence of the estimated values with the reference ones. Note that, small jittering behavior (Figure 9 and 

Figure 10) may be due to the transition between two different phases, where sudden changes of reference profiles occur. 

 

 

  

Fig. 9: State Variables Time-History and Output Tracking Error 

 



  

   

Fig. 10: Force and Torque Time-History 

 

 The figures above show the consistency of the results with the aims of GNC in the landing phases previously 

described. Indeed, a first remark can be addressed to thrust profile which is perfectly in line with the 𝑇/𝑊 requirements 

sketched in previous sections.  

5.2. Bode Criterion Verification 

 Bode open-loop diagrams where extrapolated by linearizing the loops, in order to extract the values of gain and 

phase margins for nominal stability.   

 



  

 

Fig. 11: Bode Diagrams of Landing Phases 

 

 In Table 4, the minimum margins for nominal stability are summarized. Both configurations are widely stable. 

The system, in all phases, is compliant with the robust margins threshold cited in Section 4.1. (i.e. 𝜇𝐿 > 6 𝑑𝐵: and 𝜑𝑚 >

30°). 

  

  Vert. Transl. Rotation 

PHASE 1 

Gain Margin [dB] 19.8 35.8 

Phase Margin [°] 77 114 

PHASE 2 

Gain Margin [dB] 13.2 37.7 

Phase Margin [°] 83.4 105 

PHASE 3 

Gain Margin [dB] 6.47 36.6 

Phase Margin [°] 53.5 89.6 

Table 4: Summary of Stability Margins 

 

5.2.1. Bode Verification with Variable Delays 

 The Bode verification with variable delays is based on the theory explained in Section 4.1.1. The margins are 

picked only during the landing Phase 2. Indeed, in that phase, the thrusters provide the maximum thrust (force and torque) 

possible, thus, the study on its delays, in that landing mode, is worthier of interest.  



  

 

 

Fig. 12: Landing Phase 2: Bode Diagrams with Engines Delays 

 

 

 



  

Fig. 13: Landing Phase 2: Bode Diagrams with RDA Delays 

 

 Delays and uncertainties, applied to the GNC loops, does not affect widely the system stability. The curves are 

almost overlapped, and the margins variations range is quite narrow. The observations are confirmed by matching the 

results in Table 5 with the data in Table 4. Therefore, all margins are fully compliant with Bode requirements: both 

vertical translation and rotation loops are widely stable. 

 

PHASE 2 

 Minimum Margins Vert. Transl. Rotation 

Engines 

Delays 

Gain Margin [dB] 11.5 28.6 

Phase Margin [°] 80.3 105 

RDA 

Delays 

Gain Margin [dB] 13.2 37.6 

Phase Margin [°] 77.1 105 

Table 5: Summary of Minimum Stability Margins with Delays 

5.2.2. Resonance Rejection Verification 

 From Figure 11 is possible to evaluate the rejection margins relevant to critical frequencies for all landing modes. 

In the fact, the rotation shall withstand a possible resonance at 13 𝐻𝑧, whilst the vertical translation loop shall withstand 

a resonance located at 22.5 𝐻𝑧.  

 

  Critical Frequency [Hz] Rejection Margin [dB] 

PHASE 1 Vert. Transl. 22.5 34.2 

 Rotation 13 32.7 

PHASE 2 Vert. Transl. 22.5 33.6 

 Rotation 13 27.7 

PHASE 3 Vert. Transl. 22.5 32.6 

 Rotation 13 21.0 

Table 6: Summary of Resonance Rejection Margins  

In Section 4.1.2. the minimum threshold for robustness rejection of resonance phenomena was set at −20 𝑑𝐵. Therefore, 

the system is fully robust versus resonance phenomena. 



  

 

5.3 µ-Analysis Results 

 The following figures are representative of the theory and methodology described in Section 4.2. Indeed, for 

each landing phase the bounds of the SSV are plotted in order to verify that their values never cross the unit threshold. 

Therefore, the robust stability of the linearized system is fundamental since it can be seen as a sort of necessary (but not 

sufficient) condition for having bounded solutions of the nonlinear system, in the presence of not too large disturbances. 

These disturbances account the configuration, sensors, and actuators uncertainties, but mostly the nonlinearities 

(centrifugal and Coriolis’ acceleration, descent/control coupling, and gyroscopic effects) are treated in a novel manner, 

enforcing the results and the consistency of the µ-Analysis. 

 The following values of the induced norms have been estimated, numerically, for the three phases: 

 

‖∆𝐷𝐸𝑆‖∞  = 0.2059 (𝑝ℎ𝑎𝑠𝑒 1), 0.4831 (𝑝ℎ𝑎𝑠𝑒 2), 0.4867 (𝑝ℎ𝑎𝑠𝑒 3),  

 

‖∆𝑅𝑂𝑇‖∞  = 0.0099 (𝑝ℎ𝑎𝑠𝑒 1), 0.0110 (𝑝ℎ𝑎𝑠𝑒 2), 0.0118 (𝑝ℎ𝑎𝑠𝑒 3).     

 

They represent the magnitude of the nonlinearities accounted for the µ-Analysis and treated as neglected dynamics. By 

observing the SSV behavior in all landing phase, the system robustness stability is guaranteed. 

 

Fig. 14: Landing Phase 1: Bounds of SSV 



  

 

Fig. 15: Landing Phase 2: Bounds of SSV 

 

 

Fig. 16: Landing Phase 3: Bounds of SSV 

5.4 Monte Carlo Campaign 

 Looking at the time histories of the 6-DoF dynamics state variables, it is important to verify that no inchoate 

instability is noticeable. Moreover, when dealing off-vertical angles and lateral rates in full kinematics, the terminology 

stands for the overall contribute of angular variable, meant as the Euclidian norm. The remarks explain why in Figure 18 

angular values do not assume any negative value. 

 Therefore, the full robustness stability of landing system is confirmed by Monte Carlo simulations too. In fact, 

no inchoate instability is present, and the system is kept stable for a large variation of uncertainties.  

 



  

 

 

Fig. 17: Time Histories of the Vertical Translation State Variables 

 

  

 

Fig. 18: Time Histories of Rotation State Variables 

6. Conclusion  



  

 In this paper, a methodology for robust stability assessment related to a complex GNC problem has been 

presented. The methodology allows, after model simplifications, to study the stability of an autonomous planetary lander 

exploiting the items relevant the classical control theory framework. Eventually, the evaluation of system behavior was 

matched with the results of Monte Carlo campaign (performed with an E2E simulator) in order to verify the consistency 

of stability margins with the time history of state variables in 6 DoF dynamics in presence of random bounded 

uncertainties.  

 Moreover, the test cases have been deeply analyzed. The stability of nominal system is ensured through gain and 

phase margins highlighted by Bode diagrams. The same approach has been exploited in presence of uncertainties and 

delay in the frame of a preliminary robustness assessment. The Bode plots allow to identify the minimum stability margin 

during the most stressful landing phase, when the thrusters supply the maximum available thrust. Eventually, µ-Analysis 

confirmed the goodness of those margins ensuring system robustness stability for each landing phase, in presence of the 

identified structured uncertainties and system delays. The last step allowed to identify the rejection guaranteed by GNC 

at the first mode frequencies. Since the resonance frequency is rejected in all cases beneath the prescribed threshold, the 

system is considered robustly stable. Monte Carlo results in Section 5.4. assessed that the model simplifications did not 

modify the system stability and confirmed the goodness of the depicted methodology.  
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