
23 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Methodology to Recover RTL IP Functionality for Automatic Generation of SW Applications / Bombieri, Nicola; Fummi,
Franco; Vinco, Sara. - In: ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS. - ISSN
1084-4309. - ELETTRONICO. - 20:3(2015), pp. 1-26. [10.1145/2720019]

Original

A Methodology to Recover RTL IP Functionality for Automatic Generation of SW Applications

Publisher:

Published
DOI:10.1145/2720019

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2621689 since: 2020-02-22T22:03:20Z

ACM

A

A Methodology to Recover RTL IP Functionality for Automatic
Generation of SW Applications

Nicola Bombieri, University of Verona

Franco Fummi, University of Verona

Sara Vinco, University of Verona

With the advent of heterogeneous multi-processor system-on-chips (MPSoCs), hardware/software partition-
ing is again on the rise both in research and in product development. In this new scenario, implementing
intellectual-property (IP) blocks as SW applications rather than dedicated HW is an increasing trend to
fully exploit the computation power provided by the MPSoC CPUs. On the other hand, whole libraries of IP
blocks are available as RTL descriptions, most of them without a corresponding high-level SW implementa-
tion. In this context, this article presents a methodology to automatically generate SW applications in C++,
by starting from existing RTL IPs implemented in hardware description language (HDL). The methodology
exploits an abstraction algorithm to eliminate implementation details typical of HW descriptions (such as,
cycle-accurate functionality and data types) to guarantee relevant performance of the generated code. The
experimental results show that, in many cases, the C++ code automatically generated in few seconds with
the proposed methodology is as efficient as the corresponding code manually implemented from scratch.

Categories and Subject Descriptors: C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED SYS-

TEMS]

General Terms: Design, Performance

Additional Key Words and Phrases: RTL IP, IP reuse, Embedded Software Generation

ACM Reference Format:

Nicola Bombieri, Franco Fummi, and Sara Vinco, 2014. A Methodology to Recover RTL IP Functionality for
Automatic Generation of SW Applications. ACM TODAES V, N, Article A (January YYYY), 24 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Heterogeneous multi-processor systems-on-chips (MPSoCs) are increasingly being
used in both embedded and low-end general purpose systems to overcome poor per-
formance scalability and energy efficiency of single processor systems-on-chips (SoCs)
[Wolf et al. 2008].

The rising complexity of MPSoCs, which incorporate several programmable devices
(e.g., general purpose processors, digital signal processors, application specific instruc-
tion set processors) requires software and hardware designers together with system
architects to take into account new aspects for HW/SW partitioning [Martin 2006].
In fact, in this new context, HW/SW partitioning is influenced by the high comput-

Extension of Conference Paper: This article starts from the RTL abstraction technique presented in
[Bombieri et al. 2010]. The added novel contributions are listed at the end of the related work section.
This work has been partially supported by the European Project TOUCHMORE FP7-ICT-2011-7-288166.
Author’s addresses: Nicola Bombieri and Franco Fummi and Sara Vinco, Computer Science Department,
University of Verona.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM /YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Design automation of Electronic Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 N. Bombieri et al.

Reuse as

HW block
(standard

flows)

HDL-to-C++
translation
(automatic)

C++ IP

.h

C++ I/O

interface

.cpp

C++

functionality

Reuse as

SW block
(proposed

methodology)

RTL IP
(VHDL, Verilog,

SystemC)

PE1

RAM

PE2 PE3 PEn !

FPGA/

ASIC MPSoC

HDL I/O interface

RTL IP
(VHDL,

Verilog, SystemC)

HDL functionality

Concurrent
statements

Sequential
statements

Bus/NoC

Fig. 1. HW-to-SW migration of existing RTL IPs in modern HW/SW MPSoC partitioning

ing power of the multiple processing elements (PEs) throughout the MPSoC design
space exploration, where more and more system functionality is defined to become SW
applications rather than dedicated hardware blocks [ITRS 2011; Freescale 2009].

On the other hand, reuse of existing and already verified RTL IP components is a
key strategy to cope with the complexity of designing modern SoCs under ever strin-
gent time-to-market requirements. To achieve a 10x gain in design productivity by
the year 2020 is expected to require that a complex SoC will consist of 90% reused
components [ITRS 2011].

In this context, while new SoC designs are increasingly started at the system level,
there is a large body of RTL IP blocks which have been designed in VHDL or Verilog
by both industry designers and third-party vendors over the years. In standard flows,
reusability of such RTL IPs in hardware accelerators (see lower side of Figure 1) is
not always guaranteed since it depends on the designers’ ability to implement them
independently from a specific integration context. Still, their reuse often requires a
manual, time consuming end error prone customization which often eludes the advan-
tages of the IP reuse.

The motivation for this work is precisely the fact that it would be nice to recover the
core functionality of these designs and to make them suitable as SW applications. This
allows designers to use them for system-level design, to avoid their re-implementation
from scratch and, ultimately, to enhance their reusability.

The main target of the proposed approach is not RTL IPs that implement commonly
used algorithms (e.g., FFT, CRC, etc.), for which designers can usually rely on already
existing, tested and optimized C++ implementations. Rather, the approach targets IP
blocks like custom IPs (e.g., filters, controllers, etc.) for which designers have the RTL
model, but they do not have a corresponding high-level SW implementation. In these
cases, such a HW-to-SW migration would require a manual, time consuming end error
prone C++ implementation of such models. A similar situation exists when designers
have the SW implementation, but there is a disconnection between such high-level
specification and the actual RTL hardware. This may occur, for instance, when the
RTL has been corrected and refined, but the high-level specification has not.

For the best of our knowledge, reuse of RTL IPs as SW blocks has never been consid-
ered so far. Some techniques and tools have been proposed in literature [ALDEC 2014;
OSTATIC 2014; DIE.NET 2014; Snyder et al. 2014; Stoye et al. 2003; Carbon Design

ACM Transactions on Design automation of Electronic Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Methodology to Recover RTL IP Functionality for Automatic Generation of SW Applications A:3

Systems 2014] for translating VHDL/Verilog descriptions into C++ with the aim of ver-
ifying the accurate and cycle accurate RTL models. Nevertheless, all these approaches
generate C++ code that preserves the HW dependent details for accurate verification
through simulation, which is by far less efficient than a code manually implemented
from scratch.

On the contrary, this article presents a methodology to automatically generate high-
level C++ descriptions starting from existing RTL IPs and by abstracting the architec-
tural details typical of HW implementations. In particular, the proposed methodology
aims at generating efficient C++ code to be compiled and executed as SW applications
on the MPSoC CPUs.

Experimental results show that, as expected, the performance of the code automati-
cally recovered from RTL descriptions are in general not better than the performance
of the code manually implemented. However, the performance are similar in many
cases and, for these cases, the proposed approach allows designers to save manual
work for re-implementing and, especially, for verifying SW applications. An analysis
is presented to understand for which classes of RTL IPs the proposed methodology is
more effective and the characteristics of the RTL descriptions that can influence the
performance of the automatically generated C++ code. In HW/SW partitioning, this al-
lows designers to understand whether there is room for (and thus it is worth) improv-
ing the SW application through a manual re-implementation rather than maintaining
the IP as HW block.

The article is organized as follows. Section 2 summarizes the related work. Section 3
presents the overview of the methodology. Section 4 presents the formalization of the
IP models. An algorithm for merging HDL processes is presented in Section 5, while
the translation of HDL statements into SW statements is presented in 6. Section 7
describes how the interface and communication protocol of the SW model are gener-
ated. Section 8 reports the experimental results and, finally, Section 9 is devoted to
concluding remarks and future work.

2. RELATED WORK

Some works have been proposed in the past and different commercial tools exist for
translating RTL VHDL and Verilog models into C/C++ descriptions, targeting verifica-
tion of HW models via simulation [ALDEC 2014; OSTATIC 2014; DIE.NET 2014; Sny-
der et al. 2014; Stoye et al. 2003; Carbon Design Systems 2014]. In [ALDEC 2014], a
VHDL to C++ converter transforms VHDL testbenches to C++ source. During the con-
version, the C++ source is compiled into a small simulation kernel that runs the whole
simulation with the interconnected hardware board. In [OSTATIC 2014; DIE.NET
2014; Snyder et al. 2014], translation tools allow designers to use C++ executable
files in place of VHDL models for decreasing simulation time compared to the typi-
cal acceleration process with HDL simulators. All the previous works allow designers
to convert VHDL models described by a single process into C++ code, but they do not
support scheduling features and synchronization among processes.

In [Stoye et al. 2003], a methodology (consequently implemented in the tool VTOC) is
proposed to convert synthesisable Verilog into C++. It performs a synthesis-like trans-
formation of the input Verilog program, resolving the majority of scheduling decisions
statically and resulting in a representation of the execution of the Verilog program in
each clock cycle. VTOC tries to reduces the number of delta cycles by topological sorting
all processes and by applying process merging. Nevertheless, all the implementation
details related to HW models (e.g., clock accuracy, bit accuracy, etc.) are maintained
during the translation to the SW domain.

Carbon Design System [Carbon Design Systems 2014] provides commercial products
that convert Verilog or VHDL RTL models into cycle accurate and register accurate

ACM Transactions on Design automation of Electronic Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 N. Bombieri et al.

SystemC models. Carbon’s tools aim at creating complete virtual platforms in order to
gain both a fast and accurate system validation. In contrast, the approach proposed in
this article aims at generating fast C++ code to be used as SW application that does
not have any detail related to the HW implementation.

Different approaches are presented in [Herrera et al. 2003; Destro et al. 2007]. In
[Herrera et al. 2003] the authors present a method for systematic embedded SW gen-
eration that reduces the SW generation cost in a platform-based HW/SW co-design
methodology. In particular, C++ code is automatically generated from SystemC pro-
cesses. Such an approach relies on the overloading of a subset of SystemC constructs.
However, it imposes code modification when unsupported SystemC constructs are used
in the original description.

In [Destro et al. 2007], the authors present an approach for modeling HW/SW sys-
tems in C++. The work aims at evaluating different HW/SW configurations during
partitioning, by using an homogeneous SystemC-based environment. The main prob-
lem of this solution is that the co-routine execution model of SystemC is substituted by
a thread manager, thus leaving the control of SW threads to the underlying operating
system. This causes a decrease of simulation performance, since each signal update
and each scheduling task involve a system call.

Differently from all the techniques presented in literature, the proposed method
aims at generating high-level descriptions of IP blocks in C++ to be compiled as SW
applications. As discussed in the following sections, the different goal leads to impor-
tant differences in the approach of generating C++ code.

This article starts from the RTL abstraction technique presented in [Bombieri et al.
2010], but it extends such initial idea by adding:

— A more detailed explanation and analysis of the SW generation algorithm.
— A new C++ bit-accurate data type library, which has been designed to provide highly

optimized types in place of HDL types along the abstraction. It has been implemented
to exploit advanced optimization techniques, like compile-time optimizations based
on C++ templates.

— A data type abstraction methodology to abstract the multi-valued logic implementing
HW dependent details, such as, high impedance, unknown values, etc. (e.g., logic,
logic vector) into a more efficient two-valued logic.

— A detailed description of the SW application interface and communication protocol.
This extension allows the low level interfaces and communication protocols typical of
HDL descriptions to be abstracted into more efficient C++ interfaces and protocols.

— A new and more extended set of experimental results to better motivate and contex-
tualize the proposed approach. The experimental results have been organized into
two classes of benchmarks (standard IPs and custom IPs) to show when the proposed
approach finds the best applicability. The extended set of results allow us to present
a more detailed analysis of the characteristics of RTL descriptions that influence the
abstraction process and, thus, the generated code performance.

3. METHODOLOGY OVERVIEW

In a HDL model, there are three basic kinds of statements: declaration statements,
concurrent statements and sequential statements. Declaration statements are used to
define constants, types, object (i.e., signals, variables, and components) that will be
used in the design. Concurrent and sequential statements represent the actual logic of
the design and include signal assignments, component instantiations, and behavioral
descriptions [VHDL 1994; Verilog 2006; SystemC 2006]. Formally, the HDL model con-
sists of:

ACM Transactions on Design automation of Electronic Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Methodology to Recover RTL IP Functionality for Automatic Generation of SW Applications A:5

— An interface IF , with the sets of input and output ports (IN = {in 1, .., in n}, OUT =
{out 1, .., out m});

— A set of concurrent statements CS = {cs1, .., csk}, which includes the signal assign-
ment statements;

— A set of sequential statements SS = {ss1, .., ssh}, which includes the statements
contained in processes or subprograms;

— A set of synchronous processes PS = {ps1, .., psi}, each one containing a set of se-
quential statements;

— A set of asynchronous processes PA = {pa1, .., paj}, each one containing a set of
sequential statements.

For the sake of clarity and without loss of generality, components for which the HDL
semantics is easily mappable into the C++ semantics (e.g., variables, constants, sub-
programs, etc.) are not considered in the explanation of the SW generation algorithm.
Rather, this article focuses on the most important differences of syntax and semantics
between the two languages for modelling IP functionality.

IP functionality are modelled by HDLs through user-defined processes (i.e., PS and
PA) that interact each other and with the environment (by means of the interface IF).
Synchronization among processes is handled by the kernel of the HDL simulator. The
simulator kernel coordinates the activity of user-defined processes during a simulation
(by means of a scheduler process). It also causes the propagation of signal values to
occur and causes the values of signals to be updated. Furthermore, it is responsible
for detecting events that occur and for causing the appropriate processes to execute in
response to those events (by means of an event queue) as explained in Section 6.2.

Starting from this HDL model, the proposed methodology consists of four main steps
(see Figure 2):

(1) Extended finite state machine (EFSM) generation. The RTL IP code is parsed and
the EFSMs composing the HDL model are extracted (Figure 2.1), as described in
Section 4.

(2) Merge of processes. The processes in the HDL model that have the same sensitivity
list (i.e., processes that execute in response to the same event/events) are merged
into a single process (Figure 2.2). The many processes and concurrent statements
that represent the IP functionality in HDL are translated into a high-level SW
functionality, which is implemented through fewer functions and variables, as de-
scribed in Section 5.

(3) Mapping of HDL statements into C++ statements. A set of rules are proposed
for translating HDL statements into C++ statements, as explained in Section 6.
During translation, the HDL scheduling semantics based on concurrency is ab-
stracted into a more efficient C++ scheduling algorithm and the HDL data types
are mapped into efficient C++ bit-accurate data types (Figure 2.3). In addition, a
data type abstraction methodology is proposed to abstract the HW dependent de-
tails, such as, high impedance, unknown values, etc. of the HDL data types (e.g.,
logic, logic vector). The abstraction relies on the mapping of the multi-value
logic into the two-value logic of the C++ native data types, as described in Section
6.2.

(4) Definition of interface and communication protocol. The C++ model interface and
communication protocol are generated from the I/O ports and from the EFSM
states of the HDL model, respectively. They are defined by abstracting the pin
accurate RTL interfaces and clock accurate communication protocols of the HDL
model (Figure 2.4), as described in Section 7.

ACM Transactions on Design automation of Electronic Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 N. Bombieri et al.

RTL IP

in_1

in_n

out_1

out_m

ps1 pa1

clk

clk

clk
clk

clk(1)

(2)

e1
1

C++ IP

psi

clk

clk e1
v�

paj

�

ej
1

ej
w

pa1

e1
1

ps

clk

clk e1
v

paj-x

�

ej-x
1

ej-x
w

fpa1()

{//pa1stmts}

fpaj-x ()

{//paj-x stmts}�

Scheduler

process

HDL simulator

kernel

Event

queue

scheduler()

{�}

Update_event_queue()

{�}

in_1

in_n

out_1

out_m

clk

struct io_struct
{

el_typex in_1;

el_typey in_n;

el_typez out_1;

el_typet out_m;

}

main_IP (io_struct*);

(3)

(4)

RTL IP

main_IP (io_struct*)

{ � }

C++ IP

scheduler()

{�}

Scheduler

process

HDL simulator

kernel

Event

queue

C++

bit-accurate

datatype

fps()

{//ps statements}

fpa1()

{//pa1stmts}

fpaj-x ()

{//paj-x stmts}�

fps()

{//ps statements}

Update_event_queue()

{�}

I

I

I

C++

bit-accurate

datatype

Fig. 2. The C++ generation steps

4. EFSM GENERATION

An EFSM [Cheng and Krishnakumar 1996] is a transition system that allows a more
compact representation of the design states with respect to the more traditional finite
state machine (FSM). The EFSM model is widely used for modeling complex systems
like reactive systems [Koo et al. 1999], communication protocols [Katagiri et al. 2000],
buses [Zitouni et al. 2006] and controllers driving data-path [Guerrouat and Richter
2006].

DEFINITION 1. An EFSM is defined as a 5-tuple M = 〈S, I, O,D, T 〉 where: S is a
set of states, I is a set of input symbols, O is a set of output symbols, D is a n-dimensional
linear space D1× . . .×Dn, T is a transition relation such that T : S×D×I → S×D× O.
A generic point in D is described by a n-tuple x = (x1, ..., xn); it models the values of the
registers internal to the design.

A pair 〈s, x〉 ∈ S × D is called configuration of M , while an operation on an EFSM
M = 〈S, I, O,D, T 〉 is defined as follows:

DEFINITION 2. If M is in a configuration 〈s, x〉 and it receives an input i ∈ I, it
moves to the configuration 〈t, y〉 iff ((s, x, i), (t, y, o)) ∈ T for o ∈ O.

In an EFSM, each transition is associated with a couple of functions (i.e., an en-
abling function and an update function) acting on input, output and register data. The

ACM Transactions on Design automation of Electronic Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Methodology to Recover RTL IP Functionality for Automatic Generation of SW Applications A:7

clk’event &

if (clk’event) then

case STATE is

when A =>

if (reset==1) then

out1<=0;

out2<=0;

NEXT_STATE <= A;

else if (reset==0 and reg!=1) then

out1<=reg;

out2<=reg*2;

NEXT_STATE <= B;

else if (reset==0 and reg==1) then

out1<=in1*2;

out2<=in1;

NEXT_STATE <= B;

endif;

when B =>

if (reset==1) then

out1<=0;

out2<=0;

NEXT_STATE <= A;

else if (reset==0 and in1!=0) then

reg:=in1;

out1<=1;

out2<=1;

NEXT_STATE <= A;

endif;

when others =>

out1<=0;

out2<=0;

NEXT_STATE=STATE;

end case;

.VHDL

(a)

A B

clk’event & reset==0

& reg!=1

out1<=reg;

out2<=reg*2;

clk’event & reset==0

& in1!=0

reg:=in1;

out1<=1;

out2<=1;

clk’event &

reset==1

out1<=0;

out2<=0;

clk’event &

reset==1

out1<=0;

out2<=0;

clk’event & reset==0

& reg==1

out1<=in1*2;

out2<=in1;

Enabling function

Update function

(b)

Fig. 3. Example of VHDL model (a) and the corresponding EFSM representation (b)

enabling function expresses a set of conditions on data, while the update functions
consist of a set of statements performing operations on data.

DEFINITION 3. Given an EFSM M = 〈S, I, O,D, T 〉, s ∈ S, t ∈ T, i ∈ I, o ∈ O and
the sets X = {x|((s, x, i), (t, y, o)) ∈ T for y ∈ D} and Y = {y|((s, x, i), (t, y, o)) ∈ T for
x ∈ X}, the enabling and update functions are defined respectively as:

e(x, i) =

{

1 if x ∈ X ;
0 otherwise.

u(x, i) =

{

(y, o) if e(x, i) = 1 and
((s, x, i), (t, y, o)) ∈ T ;

undef. otherwise.

Figure 3 gives an example of VHDL code and its representation through EFSM. In
the state transition graph of Figure 3(b), a transition is fired only if all conditions in

ACM Transactions on Design automation of Electronic Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 N. Bombieri et al.

the enabling function are satisfied, bringing the machine from the current state to the
destination state and performing the operations included in the update function.

The EFSM representation of the RTL IP model can be automatically extracted from
the corresponding RTL description, as described in [Cheng and Krishnakumar 1996].

Figure 2.1 shows the representation of the HDL model by means of EFSMs, which
includes the interface I, the set of synchronous processes PS = {ps1, .., psi} and the
set of asynchronous processes PA = {pa1, .., paj}. The sequential statements have not
been reported in Figure 2 for the sake of clarity, but they have to be seen as update
functions of the process transitions, as described in Section 5.

Finally, each concurrent statement cs ∈ CS containing an expression e (e.g., a ⇐ b
AND c) is converted into an equivalent asynchronous process p that is sensitive to the
right-hand signals of the expression (e.g., b, c) and that has the expression e as the
unique sequential statement. For example, the following set of concurrent statements:

B: BLOCK BEGIN --concurrent area
a <= b AND c; --cs1
d <= a AND c; --cs2

END BLOCK b;

is converted into the equivalent set of asynchronous processes:

p_1: PROCESS (b, c) BEGIN
a <= b AND c; --ss1

END PROCESS p_1;

p_2: PROCESS (a, c) BEGIN
d <= a AND c; --ss2

END PROCESS p_2;

The model implemented by block B is equivalent to the model implemented by the
two asynchronous processes p 1 and p 2, as proved in [Mentor Graphics 1994]. Without
loss of generality, we refer to PA = {pa1, .., paj} as the set composed of the original
asynchronous processes and the asynchronous processes generated from concurrent
statements.

General events (ei) are the guards for the transitions of the asynchronous processes
pa1, .., paj, while a clock edge is the guard for all the transitions of the synchronous
processes ps1, .., psi. In both cases, each fired transition causes a set of sequential state-
ments ssi ∈ SS to be executed.

5. MERGE OF PROCESSES

This step of the methodology aims at optimizing the model structure, by reducing the
number of processes. Two HDL processes that are sensitive to the same set of events
behave as concurrent statements, and the two sets of sequential statements contained
in each process bodies are evaluated as if they occurred simultaneously1. Finally, they
always resume simultaneously in the same instant during simulation [VHDL 1994;
Verilog 2006; SystemC 2006].

The merging algorithm reduces the number of processes by following the principle
of concurrent statements run on a single processor system. With just one processor,
concurrent processes are not actually evaluated in parallel on the hardware simula-
tor. HDLs use the concept of delta delay to keep track of processes that should oc-
cur in a given timestamp but that are actually evaluated in different machine cycles.

1In general, this is true if no wait statement appears within the process bodies. However, the EFSM gener-
ation process guarantees this assumption, as it translates each process containing wait statements into an
equivalent process with no wait, by adding more EFSM states.

ACM Transactions on Design automation of Electronic Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Methodology to Recover RTL IP Functionality for Automatic Generation of SW Applications A:9

Concurrent processes are sequentially executed non-deterministically and the order of
execution does not affect the result [Mentor Graphics 1994; OSCI 2002].

It is important to note that, often, concurrent systems may have locally non-
deterministic properties that are intentional, still exhibiting deterministic global be-
haviour. As an example, at a very low level, individual packets transmitted over a
network may take unpredictable routes to reach their destination or may be lost alto-
gether, while, globally, reliable connections are established over the network.

On the other hand, it is possible that local non-deterministic behaviour may result in
undesirable global non-deterministic behaviour. An example is given by two HDL pro-
cesses that are scheduled to run at the same time and that simultaneously attempt to
update a global variable. In this case (i.e, a non-properly designed system) the variable
value is unpredictable.

In general, non-determinism may exist in any HDL model. In some cases this is
intentional since it represents a property of the system, while, in other cases, it is
undesirable since it represents a design flaw.

In this work, we assume that non-determinism is introduced in the RTL IP descrip-
tions since the execution order of processes within a particular simulation phase (or
part of a simulation delta cycle) is unspecified (or is ”non-deterministic”). In a properly
designed system, this aspect of the HDL does not affect the overall system behaviour.

The proposed merging algorithm exploits this concept to join all these processes
into macro-processes. The blocks of sequential statements composing the body of each
process are sequentially appended to a single body. The algorithm statically resolves
the non-determinism by choosing one of the possible orders of execution, without af-
fecting the execution correctness. For example, the following two concurrent processes:

p_1: PROCESS (a, b) BEGIN
c <= a AND b; --ss1_1
x := y + z; --ss1_2

END PROCESS p_i’ui1;

p_2: PROCESS (a, b) BEGIN
d <= a OR b; --ss2_1
x := y + z; --ss2_2

END PROCESS p_2;

are merged into the macro-process:

p_1_2: PROCESS (a, b) BEGIN
c <= a AND b; --ss1_1
x_1 := y_1 + z_1; --ss1_2
d <= a OR b; --ss2_1
x_2 := y_2 + z_2; --ss2_2

END PROCESS p_1_2;

where the merging algorithm solves naming, scope and visibility in case there is any
component (such as variables x, y, and z in the example above) with the same name
into both processes.

The algorithm iteratively merges processes until there are not two processes with
the same sensitivity list. As result, the initial set of processes (i.e., PS∪PA) is reduced
to {ps, pa1, .., paj−x} (see Figure 2.2), where ps is the synchronous macro-process in
which all the clocked sequential statements have been merged, while pa1, .., paj−x is
the minimum set of asynchronous processes.

ACM Transactions on Design automation of Electronic Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 N. Bombieri et al.

6. MAPPING OF HDL STATEMENTS INTO C++ STATEMENTS

Each HDL statement that composes the EFSM model of the IP is translated into a
corresponding C++ statement (see Figure 2.3). The translation algorithm relies on the
following set of rules, which define a mapping between HDL and C++ statements by
considering the syntactic and semantic differences between the two languages:

(1) Each HDL signal si is translated into a two variable structure sigi =
{sig.old, sig.new}. The two variables represent the old and the current values of
the signal in the C++ model simulation.

(2) Each set of HDL sequential statements SSi is translated into a set of C++ state-
ments. The translation of sequential statements is merely syntactic.

(3) The synchronous macro-process ps is translated into the C++ function fps(). The
function body contains the set of C++ statements translated from the sequential
statements of ps.

(4) Each asynchronous process pai is translated into a function fpai(). The function
body contains the set of C++ statements translated from the sequential statements
of pai. Each set of signals to which the process pai is sensitive (e.g., signal s) is
translated into a set of event flags (e.g., bool event s). Such flags give information
on the combinational path represented by any process p (that writes on s) and pai.
The flags will be exploited to execute the corresponding functions in the correct
sequential order during the C++ model simulation.

Besides statements mapping, the methodology aims at generating a structured C++
code that (i) relies on efficient and more abstract data types than the HDL ones, and (ii)
implements an internal scheduling kernel in order to make the C++ code independent
from any operating system. A bit-accurate data type library is defined to implement,
in C++, all the HDL data types and the corresponding operators that are not native of
C++ (e.g., logic vector), as explained in Section 6.1. Then, two additional functions
(i.e., scheduler() and update event queue()) are defined into the C++ model for imple-
menting an abstract version of the HDL scheduling algorithm, as explained in Section
6.2.

6.1. The C++ bit-accurate data type library

HDLs support hardware modeling with a large number of data types, which recreate
low level behaviors of the target physical circuit. SystemC is the de-facto reference
standard that implements such a bit-accurate data types in C++. Nevertheless, it has
been proven that the SystemC data type implementation does not guarantee the best
simulation performance [Ecker et al. 2007].

We propose a new C++ bit-accurate data type library that has been designed to
provide highly optimized HDL types and that has been implemented by exploiting
advanced optimization techniques, like compile-time optimizations based on C++ tem-
plates.

The library consists of two data types: a 4-valued logic vector class and a 2-valued
bit vector class. Both classes are templatized, taking one integer parameter which
indicates the bitwidth (i.e., the number of elements belonging to the vector).

In order to achieve a significant performance improvement, the following solutions
have been adopted when implementing these data types:

(1) No heap memory allocation. A statically allocated array of unsigned integers is
employed as underlying data structure used to store vector elements. The size of
such an array can be computed at compile time, since it depends only on the width
of the template argument. For example, a bit vector having width W contains the
following declarations:

ACM Transactions on Design automation of Electronic Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Methodology to Recover RTL IP Functionality for Automatic Generation of SW Applications A:11

// static constant that stores the number of
// chunks required to accommodate W bits:
static const unsigned int CHUNKS_NUMBER =

= W / (sizeof(chunk_t) * 8) +
+ (W % (sizeof(chunk_t) * 8) ? 1 : 0);

... unsigned int _chunks[CHUNKS_NUMBER];

This solution allows the heap memory allocation to be avoided, since it causes ad-
ditional overheads at runtime and prevents compiler optimizations, thus resulting
in a performance hit.

(2) Operations performed on words instead of single bits. The choice of unsigned inte-
gers as data structure allows data type operators to be implemented over words
as a whole, thus avoiding iterative operations on each single vector element. For
example, the bitwise negation for bit vectors is implemented as follows:

for (register unsigned int i = 0;
i < CHUNKS_NUMBER; ++i)

result._chunks[i] = ~(_chunks[i]);

This is achieved by carefully implementing operations on architecture-dependent
words by properly using bitwise operations and shifts. These are among the fastest
instructions to be executed on any machine, since they take advantage of word-
sized registers and optimized ALUs to be executed in a single CPU operation.

(3) Mapping of a logic value on two separate bits. Logic vectors have been implemented
by using two separate arrays of unsigned integers. Each logic value is associated
with two bits, one per array, to represent the four possible values. For example, the
logic vector class consists of the following variables:

unsigned int _lower_chunks [CHUNKS_NUMBER];

unsigned int _upper_chunks [CHUNKS_NUMBER];

In this way, operations on logic values are implemented in terms of bitwise and
shift operations on architecture-dependent words.

(4) Replacement of lookup tables with Karnaugh maps. Consistently with the previ-
ous choice, bitwise operations on logic values have been implemented by using
Karnaugh maps, instead of lookup tables. Karnaugh maps are faster than lookup
tables since they avoid accessing values that have not been fetched into cache. The
implementation of logic operations has been achieved by rewriting the truth tables
of such operators according to the two-bit encoding adopted for logic values into
Boolean functions. Then, these functions have been expressed in terms of their
minimal sum of products form. For example, the implementation of the bitwise
negation operator can be sketched as follows:

for (register unsigned int i = 0;
i < CHUNKS_NUMBER; ++i) {

result._lower_chunks[i] = _upper_chunks[i] &
& (~(_lower_chunks[i]));
result._upper_chunks[i] = _upper_chunks[i];

}

ACM Transactions on Design automation of Electronic Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 N. Bombieri et al.

VHDL C++

bit, boolean, std_logic bool

bit_vector<N>, std_logic_vector<N> bool[N]

char char

integer int/ long int/ long long int

unsigned unsigned int/ long int/ long long int

real float/double/long double

Verilog C++

reg, uwire, net{wire, wand, wor, etc.} bool

reg<N>, uwire<N>, net{ wire, wand, wor, etc.}<N> bool[N]

integer int/ long int/ long long int

real float/double/long double

(a)

(b)

SystemC C++

bool, sc_bit, sc_logic bool

sc_bv<N>, sc_lv<N> bool[N]

char char

sc_int<N> int/ long int/ long long int

sc_uint<N> unsigned int/ long int/ long long int

sc_fixed<wl, iwl, q, o, n> float/double/long double

(b)

(c)

Fig. 4. Mapping of HDL data types into C++ data types ((a) VHDL, (b) Verilog, (c) SystemC) data types

(5) Minimal class hierarchy. In order to reduce the impact of managing parent con-
structors and destructors at runtime, the class hierarchy has been kept to the bare
minimum.

Figure 4 shows the mapping of the most important HDL data types into the proposed
C++ bit-accurate data type library. For VHDL, the figure reports the native VHDL
types as well as the data types implemented into the IEEE 1164 library (e.g., std logic
and std logic vector<N>). SystemC presents a large set of HDL data types besides the
native ones (some of them omitted for the sake of clarity), while Verilog relies on a more
reduced set of data types.

Mapping HDL two-valued logic data types into C++ native data types is straightfor-
ward. For example, bit, boolean or bit vector of VHDL, reg, reg<N> of Verilog, and,
sc bit, sc bv of SystemC are mapped into the native two-valued logic types of C++
(i.e., bool or to C++ vectors of bool).

Integer data types are mapped into native integer data types according to their size.
All functions and operators are preserved. A new class (long integer class) has been
defined to implement integer with size bigger than 64 bits in terms of instances of
native integer types.

ACM Transactions on Design automation of Electronic Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Methodology to Recover RTL IP Functionality for Automatic Generation of SW Applications A:13

The HDL multi-valued logic types as well as the HDL fixed point types (in red italics
in Figure 4) are abstracted into more efficient C++ data types, as explained in the next
subsection.

6.1.1. The data type abstraction. The data type abstraction aims at abstracting the
multi-valued logic data types into the two-valued logic of the C++ native data types
and the fixed point types into floating point types.

The multi-valued logic extends the two-valued logic (i.e., ’0’,’1’) with a set of meta
values (i.e., ’U’, ’X’, ’Z’, ’W’, ’-’, ’L’, ’H’ in VHDL, and, ’X’, ’Z’ in Verilog
and SystemC). Meta values are used mainly for debugging purposes and for simulating
hardware-specific behaviors, such as, uninitialized, unknown, high impedance values,
and so on.
’X’ and ’Z’ are the most commonly used meta values and the key concepts of their

abstraction is explained in the following. Type abstraction of the other values is part
of our current and future work2.

The unknown value ’X’ is used to express that a value of a logic type is uncertain.
It is not explicitly used for implementing the RTL model behavior since it does not
map any actual circuit value. Rather, it is used for low-level debugging. If a ’X’ value
is observed after the design initialization (e.g., a reset phase) or during execution, it
means that the circuit most likely contains a bug, since a non-deterministic behavior
has been introduced. Therefore, an RTL model can have an explicit use of ’X’ only in
conditional statements introduced for verification. When applying the proposed type
abstraction methodology, such debugging statements are removed, still obtaining a
functionally equivalent design.

The high-impedance value ’Z’ is used for tri-state signals (i.e., signals with more
than one driver). When a driver writes a ’Z’ on a signal, it allows other drivers to set
the value. The explicit use of ’Z’ in a RTL model can occur in two cases only: in condi-
tional statements inserted for debugging or in write operations. Debugging statements
are removed (as done for unknown values) by obtaining a functionally equivalent de-
sign. Write statements that assign ’Z’ to a variable/signal can also be removed since
we assume that, in a correct design, there exist at least one statement that assigns a
value different from ’Z’ to such a variable/signal.

It is important to note that, by removing statements that make explicit use of ’X’
and ’Z’, the low level debugging features (e.g., concurrency debugging) of the IP code
are removed. However, the proposed methodology aims at automatically generating
C++ code implementing the high-level IP functionality rather than its low level debug-
ging features.

The ’X’ meta value can also be implicitly introduced during simulation by resolu-
tion functions [VHDL 1994; SystemC 2006]. A resolution function is a HDL-dependent
function which handles the multi-valued logic. In the most common case, a ’X’ can
be generated when more than one driver tries to set different values, which are not
’Z’. The generation of ’X’ notifies a design error as it represents a non-deterministic
behavior of the actual circuit (e.g., the SystemC kernel by default stops the simulation
whenever such a concurrent assignment happens). The concurrent behaviour and the
corresponding resolution functions are abstracted so that the C++ model generates ’0’
or ’1’ non-deterministically instead of ’X’ and it notifies a warning of possible design
errors. It is important to note that the reported analysis holds supposing that the RTL

2The current version of the methodology abstracts the ’X’ and ’Z’ meta values only (i.e., it fully supports
the Verilog and SystemC logic datatypes, while partially supports the VHDL logic datatypes). Currently,
if any other meta value (of VHDL) is explicitly used in the RTL description, the whole logic type class is
replicated into the C++ code with a partial impact on performance.

ACM Transactions on Design automation of Electronic Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 N. Bombieri et al.

1: - - Initialization phase
2: Initialize();
3: - - Simulation phase
4: while (simulation time < simulation end time) do

5: - - HDL simulation cycle
6: Tc := Tn;
7: Update signals();
8: for each process pi of the model to simulate do

9: if pi is currently sensitive to a signal s and an event es occurred on s in this simulation
cycle then

10: process queue.enqueue(pi);
11: end if

12: end for

13: for each pi ∈ process queue do

14: pi executes until it suspends;
15: process queue.dequeue(pi);
16: end for

17: Tn := earliest of{simulation end time,next event time, next process time};
18: // If Tn = Tc then the next simulation cycle (if any) will be a delta cycle.
19: end while

Fig. 5. HDL scheduling algorithm

model is synthesizable. In case of non-synthesizable RTL models, the C++ is generated
without data type abstraction.

Summarizing, the algorithm for abstracting the multi value types consists of the
following steps:

(1) Replace each single logic bit with a boolean.
(2) Replace each logic vector with a vector of bool.
(3) Remove any assignment statement containing an explicit ’X’ or ’Z’.
(4) Remove any condition statement and the corresponding branches containing an

explicit ’X’ or ’Z’.

Fixed point data types (e.g., VHDL or Verilog real and SystemC sc fixed) are gen-
erally used in signal processing algorithms to reduce the cost of hardware while in-
creasing throughput. Mapping them into C++ floating-point types (float) would lead
to better performance, since floating point types are efficiently handled by the major-
ity of today’s CPUs. Nevertheless, such a conversion involves an approximation that
depends on both the C++ compiler and the CPU architecture. As a consequence, in
specific cases, the fixed to floating point mapping may lead to functionally different
results (e.g., if (result == expectedResult). In the current version of the type ab-
straction methodology, the mapping is conservatively applied to RTL models that do
not have floating point comparisons (or comparison results) in conditional statements.
The whole HDL fixed point type class has been re-implemented through C++ double
and long double to support all the other cases.

6.2. Abstraction of HDL scheduler

By applying the four translation rules presented at the beginning of Section 6, the
abstraction algorithm automatically translates HDL statements (i.e., declaration, con-
current, and sequential) into equivalent C++ statements.

To preserve the RTL IP semantics, the C++ functions (fps(), fpa1(), ..., fpaj()) gen-
erated from the RTL processes (ps, pa1, ..., paj) have to be executed in the same
partial order as the corresponding RTL processes are executed in the RTL model. Con-

ACM Transactions on Design automation of Electronic Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Methodology to Recover RTL IP Functionality for Automatic Generation of SW Applications A:15

1: // C++ computational cycle
2: while (flag return = false) do

3: // C++ simulation cycle
4: fps() executes;
5: while (function queue is not empty) do

6: update event queue();
7: for each function fpai do

8: if at least one event of the corresponding set of event = true then

9: function queue.enqueue(fpai);
10: end if

11: end for

12: for each fpai ∈ function queue do

13: fpai executes;
14: function queue.dequeue(fpai);
15: end for

16: end while

17: end while

Fig. 6. C++ scheduling algorithm

current processes can execute in a non-deterministic order, while the order between
non concurrent processes must be preserved.

Figure 5 summarizes the main steps of a HDL scheduling algorithm. The algorithm
may differ in more than one detail according to the semantics of the specific HDL lan-
guage (e.g., immediate notification handling in SystemC, signal assignment handling
in VHDL, etc.). Since such differences do not alter the proposed methodology, without
loss of generality, this article refers to such an algorithm for explaining the scheduling
abstraction.

The execution of a HDL model consists of an initialization phase (which sets the
initial value of each signal and executes each process until it suspends) followed by the
simulation phase, which iteratively executes processes until the end of the simulation
(line 4 of Figure 5). Each such iteration is called simulation cycle. In each cycle, the
current time, Tc, is firstly set equal to the time of the next simulation cycle, Tn (line 6).
Then, the values of all signals of the model are updated (line 7). If, as a result of this
computation, an event occurs on a given signal, all processes sensitive to that signal
are added to the runnable queue (update step). Then, all runnable processes resume
and execute as part of the simulation cycle (lines 8 - 16) (evaluate step). Finally, during
the time update phase, time of the next simulation cycle Tn is determined (line 17) by
setting it to the earliest of (i) the time at which simulation ends, (ii) the next time at
which an event occurs, or (iii) the next time at which a process resumes. If Tn = Tc, the
next simulation cycle (if any) will be a delta cycle. The simulation stops when there are
no more timed notifications.

The C++ scheduler is implemented by abstracting away timing details (i.e., timed
events and clock) while preserving the dynamic scheduling semantics. That is, the
process (functions) execution order is known at run time and processes (functions) are
woke up when there has been an event to which they are sensitive.

Figure 6 summarizes the main steps of the C++ scheduling algorithm, which is im-
plemented as extra statements in the generated C++ model. The C++ scheduler exe-
cution consists of a C++ computational cycle, which runs one or many C++ simulation
cycles. The C++ computational cycle starts when the main IP() function of the C++
model is invoked, and returns when the flag return is set to true (line 2).

A C++ simulation cycle starts by executing function fps() (line 4) on new input val-
ues. Then, iteratively, an abstracted version of the event updating is executed. For each
signal si (i.e., internal signal or input port) if si.old 6= si.new then the corresponding

ACM Transactions on Design automation of Electronic Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 N. Bombieri et al.

!"#$

%&'()'*+,$$$$-./0$$$-.10$$$-.2$0$-.3$

456)('789$76+$

456:$;<=(+$

!>?=<=(+$/#$

@-A'*+,$$-./0$$$-.10$$$-.20$-.3$

%&'()'*+,$$$$-'/0$$$-'1$

@-A'*+,$$-'/0$$$-'1$

%&'()'*+,$$$$-'2$

@-A'*+$,$$-'2$

456:$=<=(+$

!>?=<=(+$1#$

456:$=<=(+$$

!>?=<=(+$2#$

456:$;<=(+$

!>?=<=(+$/#$

@-A'*+,$$-./0$$$-.10$$$-.2$0$-.3$$

;(8=B$

;<=(+$

5$

;(8=B$$

;<=(+$

5C1$
D$

%&'()'*+,$$$$-./0$$$-.10$$$-.2$0$-.3$

%&'()'*+,$$$$-'2$

@-A'*+,$$-'2$

%&'()'*+,$$$$-'/0$$$-'1$

@-A'*+,$$-'/0$$$-'1$456:$=<=(+$

!>?=<=(+$1#$

456:$=<=(+$$

!>?=<=(+$2#$

D$

!'#$

1:$&85A$6'59EFG!58E.*H)=*I#J$

2:$KL5(+$!M'NEH+*)H9OOP'(.+#J$

3:$$$QQ.=L+A)(59N?+R+=)789$.<9=L:$-H8=+..+.$

S:$$$P-.!#TQQP-.!#J$P-./!#T$

U:$$$$$$$$$$$$$QQ$$$$$$$$$$$$P-.1!#T$

V:$$$$$$$$$$$$$$$$QQ$$$$$$$$$$$$$$$$P-.2!#T$

W:$$$$$$$$$$$$$QQ$$$$$$$$$$$$P-.3!#TX$

Y:$$$)-A'*+E+&+9*EZ)+)+!#T$$$$$

[:$$$KL5(+!+&+9*EZ)+)+:-++B\O%]G^_#J

1/:$$$$$QQ.=L+A)(59N$'.<9=L:$-H8=+..+.,$

11:$$$$$P)9=789EZ)+)+`aO+&+9*EZ)+)+:N+*!#T$

12:$$$$$QQ+R+=)789$'.<9=L:$-H8=+..+.,$

13:$$$$$H)9E'.<9=L$!H)99'"(+E-H8=+..+.`a#T$$

1S:$$$$$)-A'*+E+&+9*EZ)+)+!#T$$$$$

1U:$$$X$
1V:$$

1W:$$$H)9E'.<9=L!#J

1Y:$$$$P8H$!5O/T$5b3T$5CC#J$

1[:$$$$$$$$5P$H)99'"(+E-H8=+..+.`5a$

2/:$$$$$$$$P-'5!#T$

21:$$$$$X$

22:XQQ+9A$KL5(+$M'NEH+*)H9$

23:X ;CCFG

!=#$

-./$

-'1$

-.1$ -'/$

-'2$

.5N1$

c^dFG

591$ 592$

8)*1$ 8)*2$
!;;$5C2#$!;;$5C9C2#$

!;;$5#$!;;$5#$

!!"#$%&$'#$($%)#

+#"#+(,$-.&,&/+#.&$)++#

0#"##0+(,$-.&,&/+#.&$)++#

.5N2$
.5N3$

.5NS$.5NW$

.5NV$

.5NU$
-.2$

-.3$

Fig. 7. (a) Process synchronization and communication graph of the RTL IP, (b) the corresponding process
execution order, (c) the dynamic scheduling of functions in the C++ code

event flag is set to true (see rule 4)(line 8). As a result, all functions fpai() with the
corresponding event flag set to true are put into the function queue (lines 7-11) and
are sequentially executed (lines 12-15).

Consider, for example, the IP block in Figure 7. Figure 7(a) represents the RTL IP
model of such a block through a graph, each process being a vertex and each signal
being an oriented edge. The graph represents the synchronization and communica-
tion net among processes. The RTL IP block consists of four synchronous processes
(ps0-ps3), three asynchronous processes (pa0-pa2), two input ports (in1, in2), two
output ports (out1, out2), and seven internal signals (sig1- sig7). Figure 7(b) repre-
sents the corresponding process execution order, by underlining update and evaluate
steps, simulation cycles, and delta cycles. Figure 7(c) shows an overview of the gen-
erated C++ code, which implements the IP functionality in terms of functions (fps(),
fpa1()− fpa3()) and scheduling.

A computational cycle of the C++ model (one invocation of main IP()) may perform
the functional activity of the RTL IP over one ore more simulation cycles. In partic-
ular, in case of one-to-one mapping (i.e., one C++ computational cycle for each HDL
simulation cycle), the C++ is said to be cycle accurate. A computational cycle may also

ACM Transactions on Design automation of Electronic Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Methodology to Recover RTL IP Functionality for Automatic Generation of SW Applications A:17

perform a number of clock cycles of functional activity of the RTL IP. When such a
number is equal to the latency of the RTL IP, the cycle-accurate behaviour of the RTL
model is said to to completely abstracted in the C++ model. The generation of the C++
communication protocol relies on such a mapping, as explained in the next section.

7. DEFINITION OF INTERFACE AND COMMUNICATION PROTOCOL

The generation of the C++ model interface and communication protocol is the last
methodology step.

The interface consists of the main function (main IP()) and a data structure
(io struct), as shown in the left-side of Figure 2(4).

A data table is firstly generated, which lists all the HDL model ports (IN =
{in 1, .., in n}, OUT = {out 1, .., out m}) as well as the corresponding data size and
type. A C++ data structure is generated by mapping all the elements of the data table
(with the exception of clock) into C++ structure fields (i.e., el typexin 1, .., el typeyin n,
el typezout 1, .., el typet out m), by exploiting the C++ data type extended library (see
Section 6.1) for mapping HDL types into C++ types.

The C++ communication protocol is an abstracted version of the HDL model com-
munication protocol, and may consist of one or more invocations of main IP() to read
inputs, elaborate, and return the results.

7.1. Mapping of HDL computational phases to C++ computational cycles

The generation of the C++ communication protocol via abstraction relies on the concept
of computational phase [Bombieri et al. 2007] and on the mapping of HDL computa-
tional phases into C++ computational cycles.

A computational phase of an RTL model is defined as a sequence of EFSM states
that must be consistently traversed to get the input data (input sub-phase), elabo-
rate them (elaboration sub-phase), and finally provide the related output result (out-
put sub-phase). During the input sub-phase, the update functions of the traversed
transitions read input data and control lines without performing any further elabo-
ration. Then, data is manipulated in the elaboration sub-phase without reading new
values from inputs neither writing on outputs. Finally, in the output sub-phase, the up-
date functions do not modify the computation result anymore, while control and data
output lines are written according to the communication protocol. The identification
of the computational phases in a EFSM is automatic [Bombieri et al. 2007]. Figure
8 shows three different examples of computational phase and the corresponding in-
put/elaboration/output sub-phases.

The C++ communication protocol is generated by mapping each computational phase
identified in the HDL model into one or more computational cycles of the C++ model.
During a C++ computational cycle, the C++ model can read one payload of new input
data (input sub-phase) and write one payload of output data (output sub-phase). The
structure io struct is used for exchanging data during the input and output sub-
phases. At the end of each output sub-phase, flag return is set to true to terminate the
computational cycle and to allow the main IP() to return (see Section 6.2).

Formally, given an input sub-phase in which the update function of the traversed
transition (R) reads data on input ports in1,..,i, an elaboration sub-phase in which
data is elaborated in the update function(s) (E) and an output sub-phase in which the
update function of the traversed transition (W) writes the result on ports out1,..,j, the
C++ communication protocol is defined as the sequence:

(R_in{1,..,i} -> E -> W_out{1,..,j}) (1)

which is performed by one C++ computational cycle (i.e., one invocation to
main IP()).

ACM Transactions on Design automation of Electronic Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 N. Bombieri et al.

A B
x<=in_1;

clk

Input sub-phase Output sub-phase

HDL computational phase (5 clock cycles)

C
y<=in_1;

clk

V
z<=x+y;

clk

Elaboration sub-phase

out_1<=z;

clk

W
out_1<=v;

clk

Z

C++ computational cycle

(one main_IP() invoc.)

(b)

(c)

A B

x<=in_1;

y<=in_2;

z<=x+y:

out_1<=z;

clk

Input + Elaboration + Output sub-phases

C++ computational cycle

(one main_IP() invocation)

HDL computational phase

(1 clock cycle)

(a)

A B x:=in_1;

y:=in_2

z:=0;

t:=0;

clk

C

z:=z+x;

clk

out_1<=z;

clk & t≥y

D

Input sub-phase Elaboration sub-phase Output sub-phase

HDL computational phase

(2*y+3 clock cycles)

t++;

clk & t<y

C++ computational cycle (one main_IP() invocation)

C++ computational cycle

(one main_IP() invoc.)

C++ computational cycle

(one main_IP() invoc.)

Fig. 8. HDL computational phases vs. C++ computational cycles

Figure 8 shows some examples. Given an RTL model that performs the input, elab-
oration, and output sub-phases in one clock cycle (Figure 8(a), the HDL computational
phase (one clock cycle long) is mapped into one C++ computational cycle. When the
input, elaboration, and output sub-phases are triggered in different clock cycles (e.g.,
three clock cycles in Figure 8(b)), one HDL computational phase (three clock cycles
long) is mapped into one C++ computational cycle.

One HDL computational phase must be mapped into more C++ computational cycles
when, for example, an input sub-phase consists of more than one consecutive transi-
tions to read data on the same input port before moving to the elaboration sub-phase:

(R_in{i} -> .. -> R_in{i} -> E -> W_out{j}) (2)

The same concept applies to the output sub-phase:

(R_in{i} -> E -> W_out{j} -> .. -> W_out{j}) (3)

Figure 8(c) shows an example of sequence (2) combined with sequence (3), which
requires three computational cycles to complete the communication protocol. The input
sub-phase performs two read transitions, that must be mapped into two different C++
computational cycles. The same applies to the output sub-phase. As a result, an HDL
computational phase is mapped into three C++ computational cycles.

ACM Transactions on Design automation of Electronic Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Methodology to Recover RTL IP Functionality for Automatic Generation of SW Applications A:19

// C++ computational cycle 1 (A -> B)
// set input values
io_struct.in_1=v1;
io_struct.in_2=v2;
//main_IP call
main_IP(io_struct);
// get results
vr=io_struct.out_1;

// C++ computational cycle 1 (A -> B)
// set input values
io_struct.in_1=v1;
//main_IP call 1
main_IP(io_struct);

// C++ computational cycle 2 (B -> W)
// set input values
io_struct.in_1=v2;
//main_IP call 2
main_IP(io_struct);
// get results
vr1=io_struct.out_1;

C
+

+
 s

o
ft
 d

ri
v
e

r
C

+
+

 s
o

ft
 d

ri
v
e

r

(a) – (b)

// C++ computational cycle 3 (W -> Z)
//main_IP call 3
main_IP(io_struct);
// get results
vr2=io_struct.out_1;

C
+

+
 s

o
ft
 d

ri
v
e

r

(c)

Fig. 9. C++ soft drivers of the examples of Fig. 8

Other similar situations are represented by HDL computational phases in which
input and elaboration sub-phases alternate before moving to the output sub-phase (or
elaboration and output sub-phases alternate after an input sub-phase), as follows:

(R_in{i} -> E_1 -> R_in{j} -> E_2 -> W_out{t} (4)

(R_in{i} -> E_1 -> W_out{t} -> E_2 -> W_out{u} (5)

7.2. Generation of the communication protocol

The original HDL communication protocol may be composed of more than one HDL
computational phase, each one corresponding to one or more C++ computational cy-
cles. As a result, the C++ communication protocol may force the code to traverse a
sequence of C++ computational cycles before completing execution and reaching the
final result. This results in an atomic sequence of invocations of the main IP(), neces-
sary to complete C++ execution corresponding to the whole HDL simulation.

This sequence of invocations is produced as an additional SW layer, called soft driver.
The soft driver of each C++ abstracted model consists of a number of main IP() invo-
cations that can be exploited by the external caller (i.e., the application) to activate the
device. The software driver is automatically generated by the abstraction algorithm as
in the following. Starting from the HDL communication protocol, C++ computational
cycles are built by analyzing input-elaboration-output sub-phases. Whenever a new
C++ computational cycle starts, a main IP() invocation is performed and thus the soft
driver code is enriched with a new invocation for each computational cycle. As a result,

ACM Transactions on Design automation of Electronic Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 N. Bombieri et al.

the soft driver will contain a main IP() invocation for each C++ computational cycle of
the C++ abstracted code.

Figure 9 shows the soft drivers of the examples of Figure 8. The soft drivers of the
examples (a) and (b) are equal as both are related to an HDL communication proto-
col with one HDL computational phase. An external caller exploits the driver to set
the input values, to call the main IP(), and to get back the results. Figure 8.c repre-
sents a soft driver related to an HDL communication protocol with three computational
phases. In this case the external caller invokes the main IP() to set the first input value
(v1) and to move the computation from state A to B. Then, since the second input value
(v2) must be passed through the same input port (in 1) the caller must set again the
io struct and call the main IP(), thus moving the computation from B to W . Since W
is an output state, the caller can read the result values on the io struct. Finally, the
computation phase ends with a third call to main IP() (W to Z) to get other results
since Z is an output state. The third call is due to the fact that the second result value
is given back by the module on the same output port (out 1).

8. EXPERIMENTAL RESULTS

The proposed methodology has been implemented in H2C++, a tool built on the top
of HIFSuite [EDALAB 2014], which parses RTL IPs implemented in VHDL or Verilog
and generates C++ code.

H2C++ has been applied to a set of RTL IPs provided by industrial partners in the
context of the ToucHMore European Project [ToucHMore 2013]. The RTL IPs have
been grouped into two classes:

(1) Custom RTL IPs. This class includes IP blocks originally developed in
VHDL/Verilog, and for which a C/C++ implementation was not available. They
mainly implement filters and controllers. For all these blocks, we manually imple-
mented a C++ version from scratch. We compared the performance of such a C++
code versus the C++ code automatically generated by H2C++.

(2) Standard RTL IPs. This class includes IP blocks originally developed in
VHDL/Verilog for which there was also a C/C++ implementation. For these blocks,
we compared the existing C/C++ code versus the C++ code automatically generated
by H2C++.

Table I reports the structural characteristics of each RTL IP in terms of primary
inputs and outputs (PIs, POs), gates, flip flops (FF), and lines of HDL code (HDL). Col-
umn RTL EFSM reports the number of states and transitions of the EFSMs extracted
from the RTL IPs (see Section 4). Latency and throughput are reported in terms of
clock cycles and output data per clock cycle, respectively. Columns Synchronous and
Asynchronous processes report the number of processes composing the HDL model
(asynchronous processes include concurrent assignments).

Table II reports the characteristics of the C/C++ code, both manually and automat-
ically generated by H2C++, in terms of C++ code lines and simulation time. Experi-
ments have bee conducted on a AMD A8 3870 with a Linux Ubuntu 11.04 Operating
System. The C++ code was compiled with GCC 4.4.5 (-O3).

For the C++ code generated by H2C++, Table II also reports the number of C++
computational cycles (see Section 7.1) and the C++ code lines to implement the SW
driver (if needed). Column Data type abstraction reports the HDL data types used in
the RTL IP implementation and that have been mapped or abstracted into data types
of the C++ bit-accurate library presented in Section 6.1.

All Bit and Integer data types of the VHDL blocks have been mapped into the na-
tive C++ types of the proposed library. The multi-valued VHDL standard logic and
standard logic vector types and Verilog types have been abstracted into the two-

ACM Transactions on Design automation of Electronic Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Methodology to Recover RTL IP Functionality for Automatic Generation of SW Applications A:21

Table I. Characteristics of the RTL IPs

CL
RTL IP PIs POs Gates FF HDL RTL EFSM Latency Throughput Processes (#). HDL
block (#) (#) (#) (#) (loc) st(#) tr(#) (#cc) (outdata/cc) Syn. Asyn. source

1

Low pass IIR Filter 31 16 2,990 802 972 9 10 8 0.125 98 38 VHDL
BM Lambda 159 89 811 238 335 508 532 502 0.002 1 2 Verilog

Lambda roots 99 100 1,066 198 329 794 802 790 0.001 0 5 Verilog
Omega phy 228 193 8,735 1,322 1,595 302 308 294 0.003 17 4 Verilog
Out stage 11 20 498 177 274 10 10 8 0.125 2 0 Verilog

Error correction 301 83 7,736 1,855 1,666 156 172 130 0.008 6 11 Verilog
DIV FRS 35 33 248 19 58 15 21 2 0.5 4 4 VHDL

DIST Filter FRS 34 66 400 35 84 7 8 1 1 3 5 VHDL

2

JPEG 20 27 92,056 1,435 7,103 118 136 92 1 241 826 Verilog
FFT 92 114 87,397 1,359 3,335 54 212 3 1 16 11 VHDL
DSPI 25 21 1,335 132 1,171 8 10 16 0.062 8 18 VHDL

ADPCM 66 35 24,412 364 305 8 15 2 0.5 1 0 VHDL
CRC 56 34 9,213 385 492 6 7 16 1 3 6 VHDL

Root FRS 35 33 682 59 119 6 7 16 0.063 3 3 VHDL
GCD 67 65 636 51 100 3 4 1 1 1 21 VHDL
ECC 25 32 993 79 175 5 6 1 1 4 0 VHDL

Table II. Characteristics and performance of the C/C++ code, both manual and generated by H2C++

CL
C++ IP

Manual
H2C++ code Simul.

C/C++ code
overhead

block C++ Simul. C++ Comp. SW
Data type

Simul.
(%)

(loc) time code cycles driver
abstraction

time
(ms) (loc) (#) (loc) (ms)

1

Low pass IIR Filter 1,337 1,162 1,442 1 - Bit, Int, Std logic/lv 1,341 15.40
BM Lambda 277 733 312 2 31 Logic/Logic vect.(4values) 772 5.32

Lambda roots 202 231 291 1 - Logic/Logic vect.(4values) 239 3.46
Omega phy 1,122 2,695 1,343 3 48 Logic/Logic vect.(4values) 2,930 8.72
Out stage 211 181 237 1 - Logic/Logic vect.(4values) 185 2.21

Error correction 989 1,242 3 39 Logic/Logic vect.(4values) 1,039 5.06
DIV FRS 22 1,450 42 1 - Int, Std logic/lv 1,551 6.97

DIST Filter FRS 37 1,460 72 1 - Int, Std logic/lv 1,635 11.98

2

JPEG 1,142 1,952 40,295 1 - Logic/Logic vect.(4values) 2,203 12.85
FFT 876 410 3,2.46 4 42 Bit, Int, Std logic/lv, Real 1,280 212.20
DSPI 353 2,130 980 3 32 Bit, Int, Std logic/lv 3,870 81.69

ADPCM 271 3,960 262 2 18 Bit, Int 4,330 9.34
CRC 235 3,490 420 4 46 Bit, Int, Std logic/lv 5,360 53.58

Root FRS 18 260 98 1 - Bit, Int, Std logic/lv 370 42.31
GCD 25 1,580 80 1 - Bit, Int 1,770 12.03
ECC 224 310 169 4 38 Bit, Int, Std logic/lv 340 9.67

valued C++ native types (see Section 6.1.1). We found the explicit use of the ’X’ and
’Z’ meta-values in some components of the Low pass IIR Filter and FFT benchmarks.
They are used in reset states and in condition statements for debugging purpose. They
have been abstracted, as explained in Section 6.1.1 without perturbing the IP func-
tionality. The functional verification of the generated C++ IP models versus the orig-
inal RTL IPs has been performed via simulation through an automatic test pattern
generator.

The Real data type was used in the RTL FFT benchmark. In particular, it was used
for data comparisons in conditional statements and, thus, it has been mapped into the
re-implemented class real rather than into floating point types.

Table II reports the comparison of performance between the C/C++ code imple-
mented by hand and the C++ code generated by H2C++. The comparison is expressed
in terms of simulation overhead introduced by running the automatically generated
code with respect to the manual one.

In general, and as expected, the results show that the code implemented by hand
is more efficient than the H2C++ code. The difference of performance is more evident
for the code implementing standard algorithms (class 2), for which the several and
optimized implementations are available both in the industry IP libraries and third-

ACM Transactions on Design automation of Electronic Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 N. Bombieri et al.

party vendors. The difference is mainly due to the fact that the functionality of such IPs
have been implemented at high-level of abstraction from scratch, by adopting native
C/C++ data types, not bit-accurate operations, by disregarding interface and protocol
constraints (size of I/O data interface), and with no temporal constraints for statement
executions (e.g., critical paths handling, etc.).

The difference of performance between the manually and automatically generated
codes is less evident for the RTL blocks implementing customized IPs (class 1). This
is due to the fact that, even though the code has been implemented at high-level of
abstraction from scratch, there were not many optimization alternatives for imple-
menting the IP functionality. Starting from scratch to implement the IP block, the
main differences between a manual C/C++ and a RTL code that may sensibly affect
performance are related to (i) the partitioning of the IP functionality into HDL pro-
cesses and (ii) the used data types and corresponding operators. In both cases, the
merge of processes (Section 5) and the data type abstraction (Section 6.1) were fully
applicable to all the benchmarks of class 1, thus generating a C++ code structurally
similar to the code implemented by hand. In these cases, the simulation overhead is
mainly due to the scheduling of the asynchronous processes, which consists of mem-
ory access statements to check for new events (see Section 6.2). We found that the
overhead increases proportionally to the number of asynchronous processes (see for
instance Low pass IIR Filter versus Lamda roots or Out stage).

For smaller RTL IPs (i.e., with few HDL processes), we found that the complexity
of interface and communication protocol (e.g., handshaking phases longer than a clock
cycle) are the main causes of the simulation overhead (see for instance BM lambda).
This is due to the fact that a RTL computational phase is implemented by more C++
computational cycles and a corresponding SW driver, thus slowing down the I/O data
exchange.

In general, we experimented that the efficiency of the automatic abstraction method-
ology and, thus, the performance of the generated code are not related to the size of the
RTL model. Rather, they are related to the RTL IP structure (i.e., number and types of
processes), interface, and communication protocol (number of computational phases).

For the RTL IPs of class 1, we obtained a simulation overhead ranging from a mini-
mum of 2.21% of the Out stage block to a maximum of 11.98% of the DIST Filter FRS.
We consider such an overhead negligible, considering that the code has been generated
automatically.

The methodology has been applied also to standard RTL IPs (class 2) to understand
how much the simulation overhead may increase in the worst cases. As shown in Table
II the overhead ranges from a minimum of 9.34% of the ADPCM to a maximum of 212%
of FFT. The worst results obtained with FFT and DSPI are due to two main reasons.
First, the starting RTL and manual C/C++ models differ in some sub-functionality.
That is, the manual C/C++ code implements a reduced set of features that, in contrast,
are implemented in the RTL model and thus maintained in the C++ code generated
by H2C++. For instance, the manual C/C++ code does not implement reconfigurabil-
ity features (e.g., normalization power for FFT and transfer format for DSPI). This
underlines the fact that, in many cases, it is hard to find an existing C/C++ fully com-
patible to the RTL model. The proposed methodology is more motivated when such a
compatibility is a constraint.

Second, the number of asynchronous processes, the articulated protocol handshak-
ing and, for FFT, the use of real types in conditional statements make both FFT and
DSPI structurally hard to abstract.

In several other cases (i.e., ADPCM, GCD, ECC), the small difference between man-
ual and automatically generated code is, in our opinion, reasonable.

ACM Transactions on Design automation of Electronic Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Methodology to Recover RTL IP Functionality for Automatic Generation of SW Applications A:23

9. CONCLUSIONS

This article presented a methodology to automatically generate high-level C++ descrip-
tions starting from existing RTL IPs. The methodology aims at abstracting the archi-
tectural details, which are typical of the HW implementations, to generate efficient
C++ code to be compiled and executed as SW applications on MPSoC CPUs. The exper-
imental results showed that the performance of the code automatically recovered from
RTL descriptions are in general not better than the performance of the code manually
implemented. However, the performance are similar in many cases. For these cases,
the proposed approach allows designers to save manual work for re-implementing and,
especially, for verifying such a code. The article presented an analysis to understand
for which classes of RTL IPs the proposed methodology is more effective and the char-
acteristics of the RTL descriptions that can influence the performance of the automati-
cally generated C++ code. In HW/SW partitioning, this allows designers to understand
whether there is room for (and thus it is worth) improving the SW application through
a manual re-implementation rather than maintaining the IP as HW block.

ACKNOWLEDGMENTS

The authors would like to thank Giovanni Auditore of STMicroelectonics, Massimo Piras of Akhela, and
Romain Lemaire of CEA for providing the industrial set of benchmarks and supporting the analysis of the
application results.

REFERENCES

ALDEC. 2014. HES-DVM. http://aldec.com (2014).

Nicola Bombieri, Franco Fummi, and Graziano Pravadelli. 2010. Abstraction of RTL IPs into Embedded
Software. In ACM/IEEE Proceedings of the 47th Design Automation Conference (DAC ’10). 24–29.

Nicola Bombieri, Franco Fummi, Graziano Pravadelli, and Joao Marques-Silva. 2007. Towards Equivalence
Checking Between TLM and RTL Models. In Proceedings of the 5th IEEE/ACM International Confer-
ence on Formal Methods and Models for Codesign (MEMOCODE ’07). 113–122.

Carbon Design Systems. 2014. Carbon Model Studio. http://carbondesignsystems.com/ (2014).

Kwang-Ting Cheng and A. S. Krishnakumar. 1996. Automatic Generation of Functional Vectors Using the
Extended Finite State Machine Model. ACM Trans. Des. Autom. Electron. Syst. 1, 1 (Jan. 1996), 57–79.

Paolo Destro, Franco Fummi, and Graziano Pravadelli. 2007. A Smooth Refinement Flow for Co-designing
HW and SW Threads. In ACM/IEEE Proceedings of the Conference on Design, Automation and Test in
Europe (DATE ’07). 105–110.

DIE.NET. 2014. FreeHDL-V2CC. http://linux.die.net/man/1/freehdl-v2cc (2014).

Wolfgang Ecker, Volkan Esen, Lars Schönberg, Thomas Steininger, Michael Velten, and Michael Hull. 2007.
Interactive Presentation: Impact of Description Language, Abstraction Layer, and Value Representation
on Simulation Performance. In ACM/IEEE Proceedings of the Conference on Design, Automation and
Test in Europe (DATE ’07). 767–772.

EDALAB. 2014. HIFSuite: Tools for HDL code conversion and manipulation. http://hifsuite.edalab.it (2014).

Freescale. 2009. Embedded multicore: an introduction. http://www.freescale.com/files/32bit/doc/
ref manual/EMBMCRM.pdf. (2009).

Abdelaziz Guerrouat and Harald Richter. 2006. A component-based specification approach for embedded
systems using FDTs. ACM SIGSOFT Softw. Eng. Notes 31, 2 (2006), 14–18.

Fi Herrera, Hi Posadas, Pi Sanchez, and Ei Villar. 2003. Systematic Embedded Software Generation from
SystemC. In ACM/IEEE Proceedings of the Conference on Design, Automation and Test in Europe
(DATE ’03). 142–147.

ITRS. 2011. International Technology Roadmap for Semiconductors - 2011.
http://www.itrs.net/Links/2011ITRS/2011Chapters/ 2011SysDrivers.pdf.

Hisaaki Katagiri, Keiichi Yasumoto, Akira Kitajima, Teruo Higashino, and Kenichi Taniguchi. 2000. Hard-
ware Implementation of Communication Protocols Modeled by Concurrent EFSMs with Multi-way Syn-
chronization. In ACM/IEEE Proceedings of the 37th Annual Design Automation Conference (DAC ’00).
762–767.

ACM Transactions on Design automation of Electronic Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 N. Bombieri et al.

T. John Koo, Bruno Sinopoli, Alberto Sangiovanni-Vincentelli, and Shankar Sastry. 1999. A Formal Ap-
proach to Reactive System Design: Unmanned Aerial Vehicle Flight Management System Design Ex-
ample. In IEEE Proceedings of the 1999 IEEE International Symposium on Computer Aided Control
System Design. 522–527.

Grant Martin. 2006. Overview of the MPSoC Design Challenge. In Proceedings of the 43rd Annual Design
Automation Conference (DAC ’06). 274–279.

Mentor Graphics. 1994. Introduction to VHDL. http://pages.cs.wisc.edu/ sohi/cs552/Handouts/MentorDocs/
mentor graph ics instroduction to VHDL.pdf. (July 1994).

OSCI. 2002. Functional specification for SystemC 2.0. http://www.systemc.org. (April 2002).

OSTATIC. 2014. VHDLC. http://ostatic.com (2014).

W. Snyder, P. Wasson, and D. Galbi. 2014. Verilator - Convert Verilog code to C++/SystemC.
http://www.veripool.org/wiki/verilator (2014).

Wi Stoye, Di Greaves, Ni Richards, and Ji Green. 2003. Using RTL-to-C++ Translation for Large SoC Con-
current Engineering: A Case Study. IEEE Electronics Systems and Software 1, 1 (2003), 20–25.

IEEE SystemC. 2006. Standard SystemC Language Reference Manual. http:///ieeexplore.ieee.org. (2006).

ToucHMore. 2013. Automatic Customizable Tool-Chain for Heterogeneous Multicore Platform Software De-
velopment (FP7 ICT-288166). http://www.touchmore-project.eu. (2013).

IEEE Verilog. 2006. Standard for Verilog Hardware Description Language. http:///ieeexplore.ieee.org. (2006).

IEEE VHDL. 1994. Standard VHDL Language Reference Manual. http:///ieeexplore.ieee.org. (1994).

W. Wolf, A.A. Jerraya, and G. Martin. 2008. Multiprocessor System-on-Chip (MPSoC) Technology. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 27, 10 (October 2008), 1701–
1713.

Abdelkrim Zitouni, Sami Badrouchi, and Rached Tourki. 2006. Communication Architecture Synthesis for
Multi-bus SoC. Journal of Computer Science 2, 1 (2006), 63–71.

ACM Transactions on Design automation of Electronic Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

