
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

CNN-Based Camera-less User Attention Detection for Smartphone Power Management / Jahier Pagliari, D.; Ansaldi, M.;
Macii, E.; Poncino, M.. - ELETTRONICO. - 2019-:(2019), pp. 1-6. (Intervento presentato al convegno 2019 IEEE/ACM
International Symposium on Low Power Electronics and Design, ISLPED 2019 tenutosi a Lausanne, Switzerland nel
2019) [10.1109/ISLPED.2019.8824982].

Original

CNN-Based Camera-less User Attention Detection for Smartphone Power Management

Publisher:

Published
DOI:10.1109/ISLPED.2019.8824982

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2785763 since: 2020-01-30T11:44:33Z

Institute of Electrical and Electronics Engineers Inc.

CNN-Based Camera-less User Attention Detection
for Smartphone Power Management
Daniele Jahier Pagliari, Matteo Ansaldi, Enrico Macii and Massimo Poncino

Politecnico di Torino
Turin, Italy

name.first surname@polito.it

Abstract—The many sensors hosted by mobile electronic de-
vices are commonly used to recognize user activities and context,
in order to provide new functionalities, such as tracking physical
activity and sleep cycles. Despite its potential, such context
recognition is only employed for power management purposes
in very specific scenarios (e.g. in-pocket detection).

In this work we present a novel context recognition system able
to reliably identify whether a mobile device is not being looked
at, and to consequently trigger power management actions such
as turning off the display and moving to suspended mode. Our
method takes as input the readings from common low-power
sensors present in virtually all mobile devices and classifies them
using a Convolutional Neural Network. Most importantly, the
power-hungry camera sub-system is not used, resulting in an
extremely energy-efficient detection strategy.

Results show that our system is able to identify scenarios in
which a device is not being used with 95.6% accuracy, thus
reducing the energy overheads by 91% compared to a standard
timeout-based power management and by 58% compared to a
system relying on the camera.

Index Terms—Power Management; Neural Networks;

I. INTRODUCTION

The possibility of detecting the user context in sensor-rich
mobile devices has been used to provide novel functionalities
such as activity recognition, monitoring of elderly patients,
etc. [1]. However, context detection has only seldom been
used for power management, and mostly for simple tasks
such as turning off the screen when a smartphone is inside
a pocket or during a phone call [2]. Nonetheless, context
information provides very valuable knobs for optimally tuning
the power/performance tradeoff of these devices, e.g., by
immediately turning off the display when the phone is held
in one’s hand during a dynamic activity such as running, or
reducing the quality of audio/video playback based on the
noise and light conditions.

Among the several context detection methods studied in
literature, supervised learning based on neural networks has
been shown to provide the best quality results; moreover, it has
also been shown that these models can be affordably executed
on mobile devices, despite their complexity [3], [5], [6]. In
fact, the most computationally complex task involved with
neural networks, i.e. their training, can be performed offline
in the cloud using high-end GPUs. The mobile device should
only perform the final classification (inference) of inputs using
a pre-trained model, a task that can be easily handled by high-
performance mobile devices.

In this work we consider the use of context information to
improve the result of smartphones/tablets power management.
Specifically, we propose a new system able to automatically
detect if a device is being looked at or not, and consequently
trigger power management decisions, such as turning off the
display or transitioning to suspended state.

Our system is based on a Convolutional Neural Network
(CNN) classifier that takes as input the data coming from
common low-power sensors, i.e. accelerometer, ambient light,
proximity and touch. The key feature of our method is to avoid
the use of energy-hungry cameras, which results in significant
reduction of the energy overheads and, as a side effect, also
eliminates possible security concerns. Trained on data gathered
from a pool of volunteers, our system achieves a 96% accuracy
in detecting those scenarios that require a power management
action. Moreover, the energy overheads when the device is
unused are 58% lower than those obtained using the camera,
and 91% lower than those linked with a standard timeout-based
power management.

II. BACKGROUND AND RELATED WORK

There have been multiple attempts to use the array of sen-
sors available on today’s smartphones and tablets for activity
and context detection. The authors of [2] perform a thorough
review of the literature focusing on smartphone resource and
energy management by means of context detection. Their
survey clearly shows how most solutions focus only on spatial
(location) and temporal (time of the day/year) context, using
such information to disable or manage specific power-hungry
peripherals, such as the cellular interface, WiFi and GPS.
Examples include scanning for Wi-Fi more or less frequently
depending on location and based on the history of previous
connections, or tuning the frequency of GPS sensing depend-
ing on the state of charge of the battery.

Other works perform more advanced forms of context
and activity detection, but do not exploit them for energy
management. The authors of [7] propose a context-detection
system for Android able to detect a user’s location and activity
based on radio signals (GPS, UMTS, WLAN), camera for
light detection, microphone, accelerometer and compass as
inputs. Classification is performed using a neural network.
In [1], wearable inertial sensors are used to recognize human
activities using multiple shallow supervised and unsupervised
learning techniques. Data is collected using three inertial

units placed on the chest, right thigh and left ankle of the
participants. Twelve activities are classified including standing,
sitting, walking, etc. Classification is performed both using raw
data and extracted time/frequency domain features.

The authors of [3] analyse and compare multiple sensor
fusion approaches using both shallow and deep learning clas-
sifiers for context detection. Vanilla Deep Neural Networks
(DNN) and Convolutional Neural Networks (CNN) are com-
pared against Random Forests (RF) and Decision Trees (DT).
Furthermore, deep learning approaches are tested with two
different architectures; feature concatenation, where a single
NN receives all sensors inputs, and modality specific, where
each type of input is first pre-processed by dedicated network
layers, whose outputs are then concatenated and fed to a single
classifier. These approaches are compared on four different
activity datasets showing that deep classifiers yield a 27%
higher accuracy on average. Specifically, CNNs outperform
all other methods in most datasets, and modality specific
solutions are generally better than feature concatenation. An
even more recent work proposes Convolutional Long-Short
Time Memory (LSTM) networks for gesture detection [4].

Due to the detailed comparative analysis performed in [3]
on multiple datasets, we have used their results as an inspi-
ration for constructing the classifier required by our method.
However, the goal of our system is completely different; while
they aim at recognizing specific activities (e.g. biking, walking,
etc.), we target the novel task of recognizing user attention.
To the best of our knowledge, our work is the first to consider
this problem in a general way, not being limited to specific
corner cases such as detecting when the phone is in a pocket
or laying face-down on a table.

III. PROPOSED METHOD

We propose a system for detecting smartphone/tablet user
attention automatically, using the data collected by common
low-power sensors hosted in these devices. The most obvious
solution would be to use the front-facing camera to periodi-
cally capture an image, then perform a face detection algorithm
to infer the presence of users looking at the device screen.
Conversely, we proposed an alternative method with several
advantages. First and foremost, we only rely on data derived
from extremely low-power sensors, rather than on the power
hungry camera sub-system. Secondly, our approach is also
preferable from a security perspective, as the camera does not
need be constantly on in the background while the device is
used, thus not creating new opportunities for malicious third
parties to steal private user information.

Overall, the design flow at the basis of our method can be
split into three main parts, as depicted in Figure 1. Phase 1 is
the generation of training data, i.e. the collection and labelling
of sensor data corresponding to scenarios in which users
are/aren’t paying attention to their device. Phase 2 consists
of using these data to identify and train a classifier able to
distinguish the two types of scenario based solely on sensor
outputs. Finally, in Phase 3, the previously trained classifier
is deployed on the device. In this work, we focus mainly on

Fig. 1. Overall scheme of the proposed flow.

the first two phases, in order to prove the feasibility of our
proposed approach. The performance of the final classifier is
evaluated by simulations, and its actual deployment on the
device will be the objective of our future work.

A. Training Data Generation

The goal of our method is to emulate the user attention
detection that could be obtained by constantly monitoring the
front-facing camera, without the energy and security issues of
that approach. Therefore, the results of a camera-based system
can be seen as a golden reference for those of our classifier.
With this rationale, we can collect sensor readings associated
with a camera-based user attention detection event and label
them with the classification outcome (i.e. user looking/not
looking at the screen) to transform the design of our camera-
less classifier into a supervised-learning problem.

To perform this task, we designed an Android application
that spawns several services to continuously collect data from
sensors in background. At the same time, a separate service
periodically activates the front-facing camera and takes a
picture. The captured image is processed locally by Google’s
“FaceDetector” class, after being rotated multiple times to
account for all possible device orientations. The timestamped
sensor values and classification outcome are then anonymously
uploaded to a cloud server to be used as training data.

We asked a pool of 20 participants to install and activate
the application on their smartphones, both while not using
their device and while performing common activities such as
web browsing, messaging, fitness tracking, playing games, etc.
After a few days, we collected a total of 12524 samples, each
corresponding to one execution of the face detection algorithm.
As expected, these samples were strongly unbalanced with
respect to the two classes (device in use/not in use), with the
latter accounting for 10473 samples, i.e. 83% of the total.

B. Model Selection and Training

The second phase of our flow corresponds to the identifica-
tion and training of a classifier able to discern between samples
corresponding to devices with and without user attention.

1) Feature Selection: In Phase 1, we collected data from
all sensors available in each participant’s device, including
among others microphone, gyroscope, linear accelerometer,
etc. However, before starting Phase 2, we performed a manual
selection of “features” to be used as inputs for our classifier.
This selection was driven by two main observations. Firstly,
some sensors (e.g. gyroscope and linear accelerometer) are not
available in all smartphones/tablets and using them would limit
the applicability of our method to high-end devices. Secondly,
the amount of data generated by the microphone for a given
time window is orders of magnitude larger than that of the
other sensors, hence using these data would inevitably increase
the complexity of the classifier; moreover, using audio data
poses privacy and security concerns similar to those occurring
when using the camera, and definitely more critical than those
of other sampled quantities (e.g. acceleration or ambient light).
Based on these considerations, we finally trained our classifier
using inputs from the following 4 sensors only:

• Uncalibrated accelerometer: data collected for the x, y
and z axes, expressed in m/s2.

• Proximity: data expressed as binary near/far events1.
• Ambient light: data expressed in lux.
• Multi-touch: data expressed as touch/no touch events.
2) Data Pre-processing: The decision performed by our

classifier is based on a time window of recent sensor readings.
Given that all considered sensors generate readings with a fre-
quency in the order of tens of Hz, we simplified the design of
our classifier by pre-processing raw data. Specifically, we split
the time-window into slices of 0.1s (i.e. 10Hz) and generated
one datum per sensor for each slice. For periodically sampled
sensors (accelerometer and light) each datum is simply the
average of the readings in that slice. For event-based sensors
(proximity and touch) the latest sampled value is maintained
until the next event. For example, if a “near” event is captured
by the proximity sensor in one slice, all following slices
maintain that value until a “far” event is received. This eases
the design of the classifier, as all sensors generate exactly the
same number of inputs per time window, avoiding problems
related to multi-modal classification, as explained in [3].

Notice that, for periodically sampled sensors, the Android
OS only allows us to specify the sampling frequency as a
“hint”, so the data is not guaranteed to be exactly collected at
that rate (e.g. in case of high OS load). For this reason, we
actually sampled raw data at 20Hz and then averaged them as
explained. Nonetheless, there were still samples that did not
contain 1 value every 0.1s; those have been simply discarded.

3) Classifier Architecture: For selecting a machine learning
model to use for our classification, we considered the conclu-
sions drawn in [3] for a relatively similar task. As mentioned
in Section II, the authors of that work showed that CNNs
outperform other models for context detection. Consequently,
we trained a very simple CNN to recognize user attention.

1The proximity sensors present in some devices return more than two val-
ues, corresponding to different distances. However, to maximize the portability
of our method, all values different from 0 have been mapped to the “far” event.

Sensor data processed as explained in Section III-B2 are
rearranged to form a virtual “image” of size 6x10N, where N is
the length of the time window in seconds and each “pixel” is a
sensor reading. Each row corresponds to one sensor, as shown
on the left in Figure 2 and contains 10N readings. The order
of rows is relevant, especially for the accelerometer. In fact,
by placing the 3 axes data on adjacent rows, the local filters
that compose Convolutional layers will be able to capture
features that depend on the combination of acceleration values
on different directions (e.g. device orientation).

1x6x20 32x6x20 32x3x10 64x3x10 64x2x5 640

Conv 3x3
+ReLU

MaxPool
2x2

Conv 3x3
+ReLU

MaxPool
2x2

FC

Flatten

accel. x
accel. y
accel. z

amb. light
proximity

multi-touch

Input
“Image”

Fig. 2. Selected CNN Architecture.

The CNN shown in the rest of Figure 2 was selected after
a design-space exploration phase (i.e. model selection), in
which we evaluated and compared several variations of this
architecture. Among others, we varied the number and type of
layers, the number of feature maps/neurons in each layer, and
the size of convolutional and max pooling features. Moreover,
we also explored different training algorithm parameters such
as the batch size, the number of training epochs, the learning
rate and its variation policy, etc. The detailed results of this
exploration are not reported for sake of space.

Different architectures have been compared using 10-fold
Cross Validation, due to the relatively low number of samples,
and using the F1-Score metric [8]. The final architecture was
selected as the smallest (in terms of number of parameters)
among those that yielded the highest F1-Score average on the
10-folds, i.e. larger models were discarded as they did not
provide performance improvements.

Such architecture is composed of two Convolutional layers
(Conv) with 3x3 kernels and Rectified Linear Unit (ReLU)
activations, alternated with two 2x2 Max Pooling layers (Max-
Pool). The last MaxPool output is flattened and fed to a Fully
Connected (FC) layer with 640 nodes (64 · 2 · 5 = 640) and
with a Sigmoid activation function. The output of the FC layer
is the estimated probability that the device is receiving user
attention given the input. For all the details on the different
CNN layers, the reader can refer to [8].

Notice that the selected architecture falls in the feature
concatenation category according to the nomenclature used
in [3]. This choice was made because inputs are sampled by all
4 selected sensors with similar rates, which are then rendered
exactly equal by the preprocessing described in Section III-B2.
Modality specific solutions are preferable when input quanti-
ties have different time dynamics, whereas they would only
complicate the classifier architecture in this scenario.

The numbers on top of each layer in Figure 2 report its out-
put size expressed as (# of feature maps)x(width)x(height). As
evident by those numbers, a time window of N=2 seconds was

selected. This empirical choice represents a good compromise
between classification complexity and performance. Indeed,
although a larger window could allow the recognition of longer
and more complex user actions, it would also significantly
increase the input size, and hence the complexity of the CNN.

The CNN was trained using an Adam optimizer and the
Binary Cross-Entropy loss function [8]. Importantly, we dealt
with the class imbalance problem described in Section III-A
by weighing each training example with the inverse of its class
frequency. In other words, samples relative to devices in use
and not in use were given different weights in the loss function,
equal to 1

0.17 and 1
0.83 respectively. This corrects the inherent

bias problem of class-imbalanced trainings, i.e. that the CNN
would otherwise give more “importance” to errors on the not
in use class due the larger number of samples belonging to it.

IV. EXPERIMENTAL RESULTS

A. Classification Results

We trained and evaluated our CNN-based user attention
classifier using the PyTorch framework in Python 3.6 [9]. The
final CNN was trained with the parameters reported in Table I.

TABLE I
CNN TRAINING PARAMETERS.

of Epochs Mini-batch Size Learning Rate Weight Decay
200 100 3e-03 5e-07

The scores of the network have been computed as the av-
erage results of 10-fold Cross Validation (CV). The confusion
matrix obtained with the trained CNN on the validation set
is reported in Table II. The numbers in each matrix cell are
fractional because they are the average over the CV iterations.
A set of classification scores corresponding to such confusion
matrix are reported in Table III. As shown by these numbers,
the classification is more accurate when recognizing “Not
Looking” samples (as indicated by the large specificity) than
when recognizing “Looking” samples (slightly lower sensi-
tivity). However, this is probably mostly due to the smaller
number of training samples available for the positive class.

TABLE II
CNN CONFUSION MATRIX.

Actual Value Predicted Value TotalLooking Not Looking
Looking 161.8 42.4 204.2

Not Looking 45.4 1001.8 1047.2
Total 207.2 1044.2

TABLE III
CNN SCORES. (SENSITIVITY: PERCENTAGE OF “LOOKING” SAMPLES

CORRECTLY IDENTIFIED AS SUCH; SPECIFICITY: PERCENTAGE OF “NOT
LOOKING” SAMPLES CORRECTLY IDENTIFIED AS SUCH).

Accuracy [%] Sensitivity [%] Specificity [%] F1-Score [%]
92.98 79.23 95.66 78.66

Fortunately, specificity is much more important than sen-
sitivity for our energy management goals. In fact, smart-
phones/tablets waste energy when they are left in idle state,
possibly with their display on, while no one is looking at
them. A highly specific classifier will immediately identify
this situation and transition the device to suspended state,
thus significantly reducing the energy overheads. The opposite
scenario, i.e. the automatic exit from suspended state when
the phone starts to be actively used, would require a highly
sensitive classifier. However, this functionality would mostly
affect user experience rather than energy (in case of misclas-
sifications the phone would not turn on) and is therefore less
interesting for our purpose. In the following, we assume that
the exit from the suspended state is managed normally by the
user, for instance by pressing a button or tapping the screen.

Another possible malfunctioning of our system occurs when
the device is actively used, but the classifier erroneously infers
that it is not, and thus triggers a transition to suspended state.
While this could occasionally worsen user experience, it would
be very easy to avoid by simply creating OS “wake locks” for
those scenarios in which the device should never be suspended
(e.g. a video player could create a wake lock while a video is
playing and remove it when it is paused).

Finally, a last possible concern about our classifier is that,
rather than combining information from multiple sensors, the
CNN is actually mainly driven by multi-touch events (an
obvious indicators of user attention), and owes only to them
its good performance. To verify this possibility, we trained
the same CNN but excluding the multi-touch input. The final
F1-Score obtained does decrease, but only marginally from
78.6% to 77%, proving that most useful information is actually
provided by other sensors. A complete sensitivity analysis with
respect to all four inputs is part of our future work.

B. Energy Models

In the rest of the section, we analyse the energy benefits
and overheads of the proposed method. As mentioned in
Section IV-A, we focus on a scenario in which a device is
left in idle state and with the display on while unused.

In this scenario, an “oracle” policy would immediately
perform the transition to suspended state. Calling Poff the
power of the device in suspended state, and assuming that
the period in which the device remains unused is significantly
longer than the state transition time, such ideal policy would
consume Poff for the entire idle period. We compare this
ideal result and our camera-less detection against (i) a standard
timeout-based power management policy, and (ii) a hypothet-
ical method based on face detection. We assess the energy
overheads of each approach through the following models.

1) Timeout-based power management: A straight-forward
approach, implemented in most commercial devices is based
on fixed (possibly user-defined) timeouts. There are normally
two timeouts [10], one for turning off the display (Tto,1), and
another to perform the transition to suspended state (Tto,2 >
Tto,1). Let us define Pidle as the power of a device in idle state,
i.e. when the CPU and RAM are active, but no applications

are running and the display is off, and Pdisp the additional
power consumption of the display. The energy overhead of a
timeout-based approach compared to the oracle policy is then:

Eovr,to = Tto,2 · (Pidle − Poff) + Tto,1 · Pdisp (1)

2) Camera-based power management: One alternative is to
use the camera subsystem to detect the presence of a face in
front of the device and perform the transition to suspended
state otherwise. In a real context, a face detection algorithm
would have a non-zero probability of misclassification, which
should be accounted for. However, since our method uses the
camera-based classification as golden reference, we assume
that the latter has a 100% accuracy. We assume that the
presence of a face is sampled with a period Ts, and that
the camera must be on for a time Tcam in order to perform
auto-focus and capture a picture. During this time, the camera
subsystem consumes Pcam. We also call Pfd the additional
CPU power consumption (with respect to Pidle) required by
the face detection algorithm and Tfd its average execution
time. The energy overhead of this system is therefore:

Eovr,cam = Ts · (Pidle + Pdisp − Poff) + Tcam · Pcam

+ Tfd · Pfd (2)

3) CNN-based power management: As detailed in Sec-
tion IV-A, our CNN-based classification has a probability
p = 0.9566 of correctly inferring when a device is unused
(the Specificity result of Table III). For a fair comparison,
we assume that classifications are repeated with the same
period Ts used for the camera-based solution. Moreover, we
assume that different classifications do not have common
inputs and can therefore be considered independent. This is
true if Ts is greater or equal to the length Tsens of the data
window required by the CNN. In this setting, the probability of
correctly guessing the unused state in k tries can be modelled
with a geometric distribution:

P (X = k) = (1− p)(k−1) · p (3)

Therefore, the average time before a correct classification is:

Tavg = Ts · E(X) =
Ts
p

(4)

Despite not using the camera, our approach requires that the
sensors providing inputs to the CNN remain on for Tsens, con-
suming a power Psens. Calling Pcnn and Tcnn the additional
CPU consumption due to CNN inference and its execution
time, the energy overhead of the CNN-based solution is:

Eovr,cnn = Tavg · (Pidle + Pdisp − Poff) + Tsens · Psens

+ Tcnn · Pcnn (5)

C. Energy Analysis

Clearly, the exact power and time values for the quantities
defined in Section IV-B depend on the considered device. In
this section, we quantify the overheads of the different ap-
proaches using realistic assumptions, summarized in Table IV.

TABLE IV
REFERENCE TIME AND POWER VALUES FOR THE ENERGY ANALYSIS.

Time Values [s]
Tto,1 Tto,2 Ts Tcam Tsens Tfd Tcnn
10 30 2 1 2 ≈0 ≈0

Power Values [W]
Poff Pidle Pdisp Pcam Psens Pfd Pcnn

0.025 0.333 0.150 1.4 0 - -

Initially, we consider the case in which both machine
learning-based solutions perform a decision every Ts = 2s, so
that Ts = Tsens, i.e. the length of the data window required
by the CNN (see Section III-B). For the timeout-based policy,
we set Tto,1 = 10s and Tto,2 = 30s. Finally, we assume that
the camera must stay on for Tcam = 1s to take a picture.

For what concerns power data, we use figures reported in lit-
erature, referring to measurements performed on real devices.
According to [11], the power consumption of a Google Nexus
One in suspended state (i.e. the least consuming operational
state, in which CPU and RAM are in low-power modes and
all functionalities are disabled except for mobile connectivity)
is Poff ≈ 25mW . When the same device is in idle state,
the consumption becomes Pidle ≈ 333mW . An additional
Pdisp ∈ [38 . . . 257]mW is consumed if the device display
is on, depending on its brightness setting. For our analysis
we assume an average level of brightness and consumption
of Pdisp = 150mW . In [12], the power consumption of the
camera subsystem for a similar Nexus device during a low-
resolution recording is measured to be Pcam ≈ 1400mW .
Results consistent with this figure are obtained in [13].

As explained in [14], accelerometer and proximity sensor
are normally kept active during idle mode and are conse-
quently embedded in Pidle. The same applies for the touch
sensor, which must be active to manage events such as turning
on/off the screen by double-tapping or similar actions. Lastly,
the status of the ambient light sensor is typically linked to that
of the display. However, the datasheet of a commercial sensor
IC [15] reports an on-state power consumption of 0.65µA,
totally negligible compared to the previously reported values.
Therefore, we assume Psens ≈ 0.

Similarly, we also neglect energy contribution of the two
machine learning algorithms. The rationale in this case is that
both algorithms are likely to complete in a time that is orders
of magnitude smaller than the other operations involved in our
analysis. Therefore, regardless of the CPU power consumption
during classification, its energy impact would be negligible. To
validate this assumption, we profiled a single classification by
our CNN, executed in Python on a consumer laptop in single-
thread CPU mode, which completed in 1.19ms on average.
Even assuming a 10x slowdown on a mobile device, the energy
for the classification would still be negligible compared to the
other quantities involved in the models of Section IV-B.

Concerning the face-detection algorithm, its execution time
will definitely be longer than the CNN inference, if only for
the processing of a much larger input size (a high definition
image). Thus, neglecting classification energy does not signif-

TABLE V
ENERGY ANALYSIS RESULTS.

Method Reference Equation Energy Ovr. [J] Reduction w.r.t. Timeout [%]
Timeout Eovr,to = 30 · (0.333− 0.025) + 10 · 0.150 10.74 -
Camera Eovr,cam = 2 · (0.333 + 0.150− 0.025) + 1 · 1.4 + 0 2.316 78.4
CNN Eovr,cnn = 2

0.9566
· (0.333 + 0.150− 0.025) + 0 + 0 0.958 91.1

icantly alter the results of our analysis, and surely does not
favour our approach.

The results of our energy analysis are reported in Ta-
ble V. As shown, under the aforementioned assumptions, the
camera-based approach reduces the energy overheads of 78.4%
compared to a standard timeout. However, our CNN-based
alternative achieves a significantly larger reduction (91.1%)
with respect to timeout, and further reduces the overheads of
58.6% with respect to a system using the camera.

2 4 6 8 10
Ts [s]

60

80

En
er

gy
 O

ve
rh

ea
d

Re
du

ct
io

n
[%

] Camera
CNN

Fig. 3. Overhead reduction with respect to a timeout-based approach for
different values of Ts.

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Specificity (p)

80

85

90

En
er

gy
 O

ve
rh

ea
d

Re
du

ct
io

n
[%

]

Camera
CNN

Fig. 4. Overhead reduction with respect to a timeout-based approach for
different values of Specificity (p), with Ts = 2s.

Figures 3 and 4 show the variation of the energy gains with
respect to the timeout policy, as a function of two design
parameters: the classification period (Ts) and the specificity
of the model (p). The first graph shows that even if the
classification is performed more sporadically, both machine
learning methods still provide significant benefits compared
to a simple timeout; in particular, even with Ts = 10s, our
classifier still reduces the energy waste by more than 50%.
Moreover, the advantage over the camera-based method is not
affected by the timeout value.

In Figure 4, the result of the camera-based approach is
constant, as p is a parameter only of our method. This graph
demonstrates that a user attention detector based only on low-
power sensors would still provide significant benefits over a
camera-based approach, even at relatively low accuracies, due
to the elimination of the camera sub-system energy overheads.
This result opens to further work aimed at simplifying the

classifier, to further reduce the already limited CPU time spent
for classification by the device.

V. CONCLUSIONS

We have proposed a novel way to perform smart power
management in mobile devices. Our method is based on using
a CNN classifier to determine whether users are paying at-
tention to their device, and trigger power management actions
accordingly (e.g. suspend the device and turn off its display).

We have shown that this method significantly reduces the
energy waste when the device is unused but active, both
compared to a standard timeout-based power management and
to a solution that performs the same task using the front-
facing camera. Future improvements of this work will include
a more thorough design space exploration, to further simplify
the classifier and/or improve its performance, and the actual
deployment of the proposed system on a real mobile device.

REFERENCES

[1] F. Attal et al., “Physical Human Activity Recognition Using Wearable
Sensors”, Sensors 2015, 15, pp. 3131431338.

[2] N. Vallina-Rodriguez, J. Crowcroft, “The case for context-aware re-
sources management in mobile operating systems”, Springer Mobile
Context Awareness, pp.97–113, 2012.

[3] V. Radu et al., “Multimodal Deep Learning for Activity and Context
Recognition”, Proc. of the ACM on IMWUT, Vol. 1, No. 4, Nov. 2017.

[4] L. Zhang et al., “Attention in convolutional LSTM for gesture recogni-
tion”, Proc. NIPS’18.

[5] D. Jahier Pagliari et al., “Dynamic Bit-width Reconfiguration for
Energy-Efficient Deep Learning Hardware”, Proc. ISLPED 2018.

[6] D. Jahier Pagliari et al., “Energy-efficient Digital Processing via Approx-
imate Computing”, Smart Systems Integration and Simulation, pp.55–89,
Springer, 2016.

[7] U. Christoph et al., “Context Detection on Mobile Devices”, In Proc.
CoSDEO, 2010.

[8] I. Goodfellow et al., “Deep Learning”, MIT Press, 2016.
[9] A. Paskze et al., Automatic differentiation in PyTorch, In Proc. NIPS-W,

2017.
[10] https://source.android.com/devices/tech/power/platform mgmt
[11] A. Carroll and G. Heiser, “An analysis of power consumption in a

smartphone,” In Proc. USENIXATC’10, pp.21–21.
[12] X. Chen et al., “How is energy consumed in smartphone display

applications?,” In Proc. HotMobile ’13.
[13] S. S. K. Kasireddy and V. R. Bojja, “Measurements of Energy Con-

sumption in Mobile Applications with respect to Quality of Experience”,
Master Thesis, Blekinge Institute of Technology.

[14] I. Koenig, A. Q. Memon and K. David, “Energy consumption of the
sensors of Smartphones,” Proc. ISWCS 2013, pp. 1-5.

[15] Maxim Integrated, “MAX44007, Low-Power Digital Ambient Light
Sensor with Enhanced Sensitivity”, Rev 1, 2011

[16] Z. Zhuang, K.-H. Kim, J. P. Singh, “Improving energy efficiency of
location sensing on smartphones”, in Proc. ACM MobiSys 10, pp.
315330, 2010.

