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Abstract This paper provides an overview of the modeling approaches adopted
over the years to develop shell theories for composite structures. Furthermore,
it presents a method to assess any structural theory concerning the accuracy
and computational efficiency and trigger informed decisions on the structural
theory to use for a given problem. This method exploits the synergies be-
tween the Carrera Unified Formulation (CUF) and the Axiomatic/Asymptotic
Method (AAM). Typical outcomes are the Best Theory Diagrams (BTD) or
the estimation of accuracy of a theory as compared to quasi-3D solutions. The
proposed framework can be useful to provide guidelines on the construction of
structural theories and can serve as a trainer for the deep learning of neural
networks.

Keywords Shell · FEM · Composites · Shear deformation · Transverse
stretching

1 Introduction

Shell theories are two-dimensional (2D) mathematical models based on as-
sumed variable distributions acting along the thickness direction. The use of
shells leads to reduced computational costs if compared to 3D models. A com-
mon solution strategy for engineering problems is the finite element method
(FEM). The computational cost of a shell finite element stems from the num-
ber of nodes on the reference surface and the nodal unknowns depending on the
assumed distribution along the thickness.Shell elements in commercial codes
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rely on the classical theories of structures [1–6]. Focusing on the use of classical
2D elements, such as four, eight and nine node ones, i.e., those elements widely
adopted in non-academic realms, the maximum number of degrees of freedom
(DOF) is six, namely, three displacements and rotations. Such theories consider
unstretchable normals, are not reliable to consider the transverse mechanical
characteristics of the material and fail at meeting the boundary conditions on
the external surfaces. The validity of such structural models depends upon
the problem in hand and the physical characteristics of the structure [7, 8]. To
determine the applicability of classical models, one should consider several pa-
rameters, such as the thickness ratio, gradients in the strain and stress fields,
anisotropy, and inhomogeneity. The reliability of classical models is high as
soon as the structure is thin, there are no local effects, and in-plane stress,
and transverse displacements are of interest. On the other hand, caution is
necessary whenever the focus is on edge-effects, local distortions, higher-order
oscillations, cracks, and contacts as transverse stresses and normal stretch be-
come primarily important. Other examples of critical problems are those with
multifield interactions such as thermal problems in which the material charac-
teristics can change significantly and in an anisotropic manner. In the case of
composite structures, typical features undermining classical assumptions are
the following:

1. Moderately thick or thick structures, i.e., a
h < 50, where a is the charac-

teristic length of the structure and h is the thickness.
2. Materials with high transverse deformability, e.g., common orthotropic ma-

terials, in which EL
ET

, ELEz > 5, and G
EL

< 1
10 , where E and G are the Young

and shear moduli, and L is the fiber direction of the fiber and T, z are
perpendicular to L.

3. Transverse anisotropy due to, for instance, the presence of contiguous layers
with different properties.

As it is well-known, such factors require the proper modeling of shear and nor-
mal transverse stresses, and variations of the displacement field at the interface
between two layers with different mechanical properties, i.e., the zig-zag effect.
Most of the features are not present in isotropic materials; hence, the classical
models can handle such structures. Since the last mid-century, scientists have
become increasingly aware of the necessity of refining the classical models to
provide more reliable predictions concerning composites [9–20].
The development of a structural theory aims at reducing the starting 3D prob-
lem to less cumbersome 2D or 1D ones. In 2D, the approximation acts via a
through-the-thickness integration, and, in 1D, via an integral over the cross-
section. The integration makes the unknown field dependent on the in-plane
coordinates in the 2D case and the axial coordinate in the 1D case. Over
the years, many approaches have emerged, and a tentative classification is as
follows:

1. The method of hypotheses or axiomatic approach in which the mechanical
behavior of a structure is postulated and then translated into mathematical
constraints acting on the unknown variables, e.g., displacements, stresses,
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stress resultants. The classical models, known as the Classical Lamination
Theory (CLT) and the First Order Deformation Theory (FSDT), are the
most known examples [4–6].

2. The method of expansions defines the unknown fields via thickness or cross-
section expansions. Typically, this method uses polynomials and leads to
higher accuracy and computational costs as the number of expansion terms
augments [21]. However, the addition of new terms can be detrimental as
soon as other equally important ones are not present. Also, some terms can
have very little influence and lead to a pointless increase in the computa-
tional cost [22, 23], and it is not always possible to prove the convergence
to the exact solution.

3. The asymptotic method [24, 25] starts from the 3D equations, identifies one
or more characteristic parameter, e.g., the thickness ratio, and builds 2D
or 1D expansions of the governing equations via that parameter to retain
the terms up to a given order. Such a method provides a direct estimation
of the accuracy of the solution as compared to the 3D exact one, but it may
be very cumbersome as soon as, for example, the expansion must consider
many problem parameters at the same time.

The expansion method, in a way, is a generalization of the hypothesis one as
the addition of terms to the expansion can remove the assumptions and widen
the applicability of the theory.
This paper aims at providing guidelines on the choice of structural models in
the 2D case and for the linear analysis of composite structures. The first part
of the paper is a literature overview of the most significant contributions con-
cerning the development of structural theories. Given the significant number
of papers on this topic, the authors preferred to focus on those works in which
the development of the shell theory or the analysis of the higher-order terms
is the primary aim. A review of the solution methods is not a scope of this
paper but given, the importance of the topic, a brief overview follows.
Many efforts focused on the development of exact, analytical or semi-analytical
solutions to verify numerical approaches. Leissa and Reddy are among the
main contributors with special attention paid to 3D solutions and shear defor-
mation theories [14, 26–33] or directly provide 3D solutions [34–39]. Other sig-
nificant contributions are in [40–46]. The extension of exact solutions to wider
cases focused on general boundary conditions and laminations [47–53], shells
with cutouts [54], conical shape geometries [55], stiffened and damaged struc-
tures [56], and non-homogeneous properties [57]. Other solution schemes make
use of various approaches. An example is the Galerkin method for higher-order
models [58, 59], with mixed models based on the Reissner mixed variational
method (RMVT) [60], and for conical shapes [61]. Another common solution
is the Ritz and Rayleigh-Ritz with contributions on local boundary conditions
[62, 63], arbitrary boundary conditions and complex shapes [64–68], 3D-like
models [69, 70], sandwich structures [71], and comparisons with experimental
results [72]. Other approaches are the spectral method for arbitrary boundary
conditions and shapes [73], domain decomposition method [74–76], and the
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differential quadrature method [77]. FEM has a great variety of contributions
starting from early works a few decades ago [78–80]. Then, research focused
on the element type, i.e., four- [81–83], eight- [84, 85], and nine-node elements
[86, 87], the order of the structural model [88–93], the inclusion of transverse
stretching and continuity [94–96], the development of solid-shell elements [97–
105], and the improvement of FE performances regarding membrane and shear
locking [106, 107], mesh accuracy [108], and distortion [109].
The second part of this paper is a proof of concept concerning a methodology
for the evaluation of the accuracy and computational efficiency of a structural
theory. The second part aims to answer the following questions:

1. Given a structural problem, what is the computationally cheapest and most
accurate structural theory to use?

2. Given a structural theory, how does it compare to quasi-3D solutions con-
cerning computational costs and accuracy?

3. Given an expansion of unknown variables, what are the terms to retain?

The assessment method stems from the latest developments concerning the use
of the axiomatic/asymptotic method (AAM) [22, 23] to evaluate the accuracy
of any-order shell model. The AAM leads to two primary outcomes, the best
Theory Diagram (BTD) [110] and the Relevance Factor (RF) [111]. The former
is a 2D plot to localize a shell model via its nodal degrees of freedom and
accuracy. The latter is a parameter providing the relevance of a generalized
variable or a set of variables. The present paper shows, for the first time, results
concerning the AAM for the free vibration analysis via shell finite elements. In
the past, AAM results on structural dynamics focused on beam finite elements
[112] and the static analysis of shell elements [111]. In all cases, the Carrera
Unified Formulation (CUF) [113] is the theoretical framework providing the
governing equations for all the structural models, independently of the order
of the theory or the completeness of the expansions.
This paper is organized as follows: the review of existing theories is in Section 2,
CUF for FE shell in 3, the AAM and BTD in 4 and 5, the numerical examples
in Section 6, the perspectives on the use of neural networks in Section 7, and
conclusions in Section 8.

2 Challenging features of composites and review of shell theories

The development of structural theories for composites moved from the already
available models for metallic structures to incorporating mechanical features
typical of commonly used layered structures.
The first material property to handle is the in-plane anisotropy, i.e., the prop-
erties of each layer can change significantly depending on directions. The
anisotropy may coexist with high transverse shear and normal flexibility and
couplings between axial and shear strains. As mentioned above, there may be
one order of magnitude of difference between Young’s moduli for different di-
rections and two orders between Young’s and shear moduli. Further couplings
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can arise between in-plane and out-of-plane strains, e.g., in the case of non-
symmetric stacking sequences.
The second material feature requiring proper structural modeling is the trans-
verse anisotropy stemming from layer-wise discontinuous physical properties
along the thickness leading to compatibility and equilibrium conditions chal-
lenging to model. The compatibility requires the discontinuity of the slopes
of displacement components at the layer interfaces, i.e., the zig-zag shape of
the displacement field. Such a zig-zag shape must coexist with the equilibrium
conditions dictating the continuity of the transverse stresses at the interfaces,
i.e., transverse shear and axial stresses must be interlaminar continuous. The
literature refers to the sum of the two conditions as to the Cz0 requirement.
The modeling challenges concerning such critical features can grow further in
many scenarios, among others, the analysis of residual stress from the curing
process, the analysis of damaged structures, the presence of singularities such
as free-edges, the use of tens of layers, and the use of sandwich structures with
soft cores.
This section provides an overview of the main approaches proposed in the
last decades to use shell models for composites. After introducing first-order
models, the aim is to present the main features of more sophisticated theories.
One of the tools adopted to evaluate a theory is the Koiter recommendation
[11] stating that refinements of structural theories have to consider the effects
of transverse shear and normal stresses at the same time as these two effects
have comparable importance. As analytically proved by Vetyukov [114], the
curvature of the structural component leads to shear and normal stress distri-
butions of the same asymptotic order of smallness.
The introduction of shell theories will follow a common notation in which the
displacement field u has three components - uα, uβ , and uz - according to the
reference system is in Fig. 1.

2.1 Classical Lamination and First-Order Shear Deformation Theories, CLT
and FSDT

CLT stems from the use of the Kirchhoff theory [1–4]. An alternative way to in-
dicate this theory is as Love First Approximation Theory (LFAT) [115] group-
ing all those models neglecting transverse shear stress and normal stretching.
The displacement field of CLT has 3 unknowns, namely, the displacements
uα1

, uβ1
, and uz1 ,

uα = uα1
− z uz1,α

uβ = uβ1 − z uz1,β
uz = uz1

(1)

The derivatives of the transverse displacement have the physical meaning of
rotations of the normals, i.e., φα = -uz1,α and φβ = -uz1,β . The first hypoth-
esis removed concerns the transverse shear and, considering a constant shear
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distribution along the thickness, the displacement field becomes

uα = uα1
+ z uα2

uβ = uβ1 + z uβ2

uz = uz1

(2)

This is the FSDT model falling in the Love Second Approximation Theory
(LSAT) class. The FSDT has 5 unknowns and the additional two terms are
rotations of the normals corrected by shear, i.e., uα2

= φα = εαz-uz1,α. FSDT
is commonly available in commercial codes due to its computational efficiency
and reliability in many engineering applications. Over the years, modified ver-
sions of FSDT allowed to fulfill the homogeneous top/bottom boundary con-
ditions [116]. Other significant contributions based on FSDT are reported in
[26, 30, 43, 61, 117, 118].

2.2 Higher-order theories

The enrichment of the displacement field is one of the most successful ap-
proaches to refine a structural theory. As pointed out by Washizu [21], a 2D
or 1D model based on an infinite expansion would guarantee the exact 3D
solution. Infinite expansions are not feasible. Therefore, truncated ones are of
practical interest. The selection of the terms to retrieve is not a trivial task,
and one of the aims of this paper is to propose an approach to handle this
task.
Using a third-order polynomial expansion, referred to as N=3, the displace-
ment field is as follows:

uα = uα1
+ z uα2

+ z2 uα3
+ z3 uα4

uβ = uβ1
+ z uβ2

+ z2 uβ3
+ z3 uβ4

uz = uz1 + z uz2 + z2 uz3 + z3 uz4

(3)

All three displacement components have complete expansions and, overall,
twelve unknowns. In FE, such a model leads to twelve DOF per node. N=3
improves FSDT by allowing parabolic distributions of transverse shear and
thickness stretching. Many third-order models do not consider the thickness
stretching, e.g.,

uα = uα1
+ z uα2

+ z2 uα3
+ z3 uα4

uβ = uβ1 + z uβ2 + z2 uβ3 + z3 uβ4

uz = uz1

(4)

Other examples of higher-order expansions enhance FSDT via parabolic trans-
verse displacements, such as the following seven DOF model:

uα = uα1
+ z uα2

uβ = uβ1 + z uβ2

uz = uz1 + z uz2 + z2 uz3

(5)

The inclusion of the parabolic distribution is significant in many cases, such
as non-symmetric laminations.
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Based on this approach, many important papers are in the literature. A tenta-
tive classification is on the presence or absence of thickness stretching. Works
proposing models without stretching are in [28, 45, 89, 91, 119–121]. On the
other hand, higher-order models fulfilling the Koiter recommendations are in
[40–42, 90, 122–131].
Other classes of higher-order theories consider non-polynomial terms to build
expansions [132–136]. Sinusoidal and exponential terms are typical choices,
e.g.,

uα = uα1 + z uα2 + sin(zπ/h)uα3 + ez/h uα4

uβ = uβ1
+ z uβ2

+ sin(zπ/h)uβ3
+ ez/h uβ4

uz = uz1 + z uz2 + sin(zπ/h)uz3 + ez/h uz4

(6)

Non-polynomial terms enrich the displacement field allowing the detection of
more complex through-the-thickness distributions.

2.3 Zig-zag expansions

The necessity of zig-zag models stems from the difficulties in fulfilling the C0
z

requirements via higher-order expansions. The increase of the order, in fact, is
not enough to meet C0

z and transverse stresses distributions may be wrong if
calculated via the Hooke law. Zig-zag theories can provide C0

z; in other words,
they can lead to structural theories fulfilling the compatibility and equilibrium
conditions at the layer interface.
Zig-zag approaches trace back to the first half of the twentieth-century [9].
A complete review of zig-zag is beyond the scope of this paper but is avail-
able in [137] providing the main features of the three fundamental zig-zag
approaches, namely, the Lekhnitskii [9], Ambartsumian [138], and Reissner-
Murakami [139]. Other significant works focused on shells are [140–149]. An
example of a zig-zag model enhancing FSDT is the following:

uα = uα1 + z uα2 + (−1)k 2zk
hk

uαZ
uβ = uβ1

+ z uβ2
+ (−1)k 2zk

hk
uβZ

uz = uz1

(7)

Where uαZ and uβZ are two additional variables, referred to as Murakami’s
zig-zag functions, and the amount of DOF is still independent of the number
of layers. Similarly, the zig-zag terms can enhance higher-order theories, e.g.,
the N=3 one,

uα = uα1 + z uα2 + z2 uα3 + z3 uα4 + (−1)k 2zk
hk

uαZ
uβ = uβ1

+ z uβ2
+ z2 uβ3

+ z3 uβ4
+ (−1)k 2zk

hk
uβZ

uz = uz1 + z uz2 + z2 uz3 + z3 uz4 + (−1)k 2zk
hk

uzZ

(8)
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2.4 Layer-wise approach

The layer-wise approach introduces the dependency of the unknown variables
on the number of layers. Such an approach leads to higher computational costs,
but its adoption is necessary in many cases, e.g., the precise detection of stress
in each layer, high-stress gradients along the thickness, free-edge and local
effects. The use of a layer-wise approach leads to zig-zag distributions with
the additional benefit of having independent layers. A layer-wise displacement
field is the following:

ukα = L1 u
k
α1

+ L2 u
k
α2

+
∑N
i=3 Liu

k
αi

ukβ = L1 u
k
β1

+ L2 u
k
β2

+
∑N
i=3 Liu

k
βi

ukz = L1 u
k
z1 + L2 u

k
z2 +

∑N
i=3 Liu

k
zi

(9)

L-functions are usually Lagrange or Legendre polynomials. To facilitate the
application of compatibility conditions at the interfaces, ’1’ and ’2’ variables
should have the physical meaning of displacements at the top and bottom
of the interface, respectively. The other additional terms serve as higher-order
ones to enrich the kinematics of each layer. Usually, the use of third- or fourth-
order terms guarantees quasi-3D accuracy. Significant contributions on shell
theories can be found in [150–161].

2.5 Reissner Mixed Variational Theorem, RMVT

In mixed formulations, displacements and stresses are primary variables [21].
The RMVT has emerged as one of the most powerful tools for composites and
has as primary variables the displacements and the transverse stresses [162–
164]. The use of RMVT is independent of the type of expansion adopted. In
other words, Taylor expansions, zig-zag, layer-wise approaches and combina-
tion thereof remain available. For instance, a layer-wise model can have the
following distributions of displacements and transverse stresses:

ukα = L1 u
k
α1

+ L2 u
k
α2

+
∑N
i=3 Liu

k
αi

ukβ = L1 u
k
β1

+ L2 u
k
β2

+
∑N
i=3 Liu

k
βi

ukz = L1 u
k
z1 + L2 u

k
z2 +

∑N
i=3 Liu

k
zi

σkαz = L1 σ
k
αz1 + L2 σ

k
αz2 +

∑N
i=3 Liσ

k
αzi

σkβz = L1 σ
k
βz1

+ L2 σ
k
βz2

+
∑N
i=3 Liσ

k
βzi

σkzz = L1 σ
k
zz1 + L2 σ

k
zz2 +

∑N
i=3 Liσ

k
zzi

(10)

Carrera expanded these concepts and presented a generalized approach to
building such models in a unified manner [165]. RMVT is convenient for mul-
tilayered structures. Interlaminar continuity of transverse stresses and zig-zag
displacements are easily implementable, and post-processing for transverse
stresses is not necessary. The extension of RMVT to a weak form of the Hooke
law allows for the reduction in the computational costs with no accuracy penal-
ties. Numerical examples proved that the use of an RMVT third-order zig-zag,
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equivalent single-layer model can provide 3D-like accuracy in most cases ex-
cept for severe local effects in which the layer-wise version is more preferable
[113].

2.6 Asymptotic approaches

The construction of structural theories via the asymptotic method proceeds
by defining a characteristic parameter of the structure and problem [24, 25].
Often, such a parameter is the ratio between the thickness and the in-plane
dimension, i.e., ε = h/L. Then, ε leads to the following displacement field:

u = u1 + εu2 + ε2 u3+, ...,+εn un+1 +O(εn+1) (11)

The strain energy expression makes use of the previous expansion to isolate
same-order terms. As the desired order is set, the expansion is truncated,
and the problem solution proceeds via the minimization of the strain energy.
The main advantage of this approach is the possibility to control the accu-
racy of the solution against the 3D one. Significant contributions for shells
are reported in [166–178]. Moreover, recently, Vetyukov at al. [179] proposed a
hybrid asymptotic/direct approach and demonstrated the asymptotic nature
of the structural theory for elastic and piezoelectric shells, including the con-
vergence to exact solutions even in the presence of essential heterogeneity and
anisotropy for thin structures.

2.7 Proper generalized decomposition

One of the most recent techniques to build shell theories is the Proper Gener-
alized Decomposition (PGD) [180–183]. The displacement field has two con-
tributions, one from 2D FE and the other from thickness functions, as follows:

uα =
∑N
i=1 P

i
α(α, β)T iα(z)

uβ =
∑N
i=1 P

i
β(α, β)T iβ(z)

uz =
∑N
i=1 P

i
z(α, β)T iz(z)

(12)

The strength of this method relies on the nonlinear iterative procedure allowing
for the determination of the 2D and 1D functions. In other words, the choice
of the displacement field and the solution of the problem merge.

3 Carrera unified formulation, CUF

CUF emerged as a generalized approach to generate any structural theory.
Early works on shells, in which the CUF formalism was not present or not
systematic, focused on the analysis of shear effects and transverse normal
stress on composite shell buckling and vibrations [184, 185], use of RMVT for
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structural dynamics [186] and statics [187–190]. The systematic use, analysis
and list of guidelines and recommendations for RMVT and zig-zag are in [165]
and [137, 191], respectively. The seminal works on the CUF formalism includ-
ing a comprehensive numerical campaign date back to early 2000’s [8, 113].
Following a work on exact solutions [192], the last decade focused on the finite
element formulation [193–196]. The latest development of CUF introduced the
concept of node-dependent kinematics (NDK) in which each node of an FE
model can assume a different shell theory [197, 198].
The CUF displacement field for a 2D model is

u(x, y, z) = Fτ (z)uτ (x, y) τ = 1, . . . ,M (13)

The Einstein notation acts on τ . Fτ are the thickness expansion functions. uτ
is the vector of the generalized unknown displacements. M is the number of
expansion terms. In the case of polynomial, Taylor-like expansions, a fourth-
order model, referred to as N=4, has the following displacement field:

uα = uα1
+ z uα2

+ z2 uα3
+ z3 uα4

+ z4 uα5

uβ = uβ1 + z uβ2 + z2 uβ3 + z3 uβ4 + z4 uβ5

uz = uz1 + z uz2 + z2 uz3 + z3 uz4 + z4 uz5

(14)

N=4 has fifteen nodal DOF. The order and type of expansion is a free param-
eter. Thus, the structure of the theory is an input of the analysis. The metric
coefficients Hk

α, Hk
β and Hk

z of the kth layer are

Hk
α = Ak(1 + zk/R

k
α), Hk

β = Bk(1 + zk/R
k
β), Hk

z = 1 (15)

Rk
α and Rk

β are the principal radii of the middle surface of the kth layer, Ak

and Bk the coefficients of the first fundamental form of Ωk, see Fig. 1. This
paper focuses only on shells with constant radii of curvature with Ak = Bk =
1. The geometrical relations are

εkp =
{
εkαα, ε

k
ββ , ε

k
αβ

}T
= (Dk

p +Ak
p)uk

εkn =
{
εkαz, ε

k
βz, ε

k
zz

}T
= (Dk

nΩ +Dk
nz −Ak

n)uk
(16)

where

Dk
p =




∂α
Hkα

0 0

0
∂β
Hkβ

0
∂β
Hkβ

∂α
Hkα

0


 Dk

nΩ =




0 0 ∂α
Hkα

0 0
∂β
Hkβ

0 0 0


 Dk

nz =



∂z 0 0
0 ∂z 0
0 0 ∂z


 (17)

Ak
p =




0 0 1
HkαR

k
α

0 0 1
HkβR

k
β

0 0 0


 Ak

n =




1
HkαR

k
α

0 0

0 1
HkβR

k
β

0

0 0 0


 (18)
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The stress-strain relations are

σkp =
{
σkαα, σ

k
ββ , σ

k
αβ

}T
= Ck

ppε
k
p +Ck

pnε
k
n

σkn =
{
σkαz, σ

k
βz, σ

k
zz

}T
= Ck

npε
k
p +Ck

nnε
k
n

(19)

where

Ck
pp =



Ck11 C

k
12 C

k
16

Ck12 C
k
22 C

k
26

Ck16 C
k
26 C

k
66


 Ck

pn =




0 0 Ck13
0 0 Ck23
0 0 Ck36




Ck
np =




0 0 0
0 0 0
Ck13 C

k
23 C

k
36


 Ck

nn =



Ck55 C

k
45 0

Ck45 C
k
44 0

0 0 Ck33




(20)

The FEM formulation adopts a nine-node shell element based on the Mixed In-
terpolation of Tensorial Component (MITC) method [199]. The displacement
vector becomes

δus = Njδusj , uτ = Niuτi i, j = 1, · · · , 9 (21)

uτi and δusj are the nodal displacement vector and the virtual displacement,
respectively. The strain expression becomes

εp = Fτ (Dp +Ap)Niuτi

εn = Fτ (DnΩ −An)Niuτi + Fτ,zNiuτi
(22)

MITC avoids the membrane and shear locking via a specific interpolation
strategy for the strain components on the nine-node shell element, as follows:

εp =



εαα
εββ
εαβ


 =



Nm1 0 0

0 Nm2 0
0 0 Nm3





εααm1

εββm2

εαβm3




εn =



εαz
εβz
εzz


 =



Nm1 0 0

0 Nm2 0
0 0 1





εαzm1

εβzm2

εzzm3




(23)

Strains εααm1
, εββm2

, εαβm3
, εαzm1

, and εβzm2
result from Eq. 22 and

Nm1 = [NA1, NB1, NC1, ND1, NE1, NF1]

Nm2 = [NA2, NB2, NC2, ND2, NE2, NF2]

Nm3 = [NP , NQ, NR, NS ]

(24)

Subscripts m1, m2 and m3 indicate the point groups (A1,B1,C1,D1,E1,F1),
(A2,B2,C2,D2,E2,F2), and (P,Q,R,S), respectively, see Fig. 2.
According to d’Alembert’s principle in the formulation of Lagrange,

∫

Ωk

∫

Ak

δεk
T
σkHk

αH
k
βdΩkdz +

∫

Ωk

∫

Ak

ρkδuk
T
ükHk

αH
k
βdΩkdz = 0 (25)
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Ωk is the in-plane domain of a layer over the element and Ak is the thickness
one. Via the constitutive equations, geometrical, MITC and CUF relations,
the following governing equation reads

mk
τisjü

k
τi + kkτsiju

k
τi = 0 (26)

kkτsij and mk
τsij are 3×3 matrices referred to as the fundamental nucleus of

the stiffness and mass matrices, respectively. The components of the nuclei are
given in [194]. The assembly over all nodes and elements and the introduction
of the harmonic solution leads to the well-known eigenvalue problem,

(−ω2
nM +K)Un = 0 (27)

4 Axiomatic/asymptotic method and best theory diagram, AAM
and BTD

The axiomatic/asymptotic method (AAM) is a methodology to evaluate the
influence of generalized variables and the accuracy of structural models based
on complete or incomplete expansions [22, 23]. In this paper, the axiomatic
feature of the procedure considers all the expansions obtainable from the com-
binations of the full fourth-order expansion, i.e., 215 models. The AAM then
obtains asymptotic-like results evaluating the relevance of the unknown vari-
ables as problem parameters vary, e.g., thickness, orthotropic ratio, stacking
sequence, boundary conditions. The implementation of the AAM may follow
various approaches; in this work is as it follows:

1. Definition of parameters such as geometry, boundary conditions, materials,
and layer layouts.

2. Axiomatic choice of a starting theory and definition of the starting nodal
unknowns. Usually, the starting theory provides 3D-like solutions. The
fourth-order, equivalent single layer shell model is the reference model of
this paper.

3. The CUF generates the governing equations for the theories considered. In
particular, the CUF generates reduced models having combinations of the
starting terms as generalized unknowns.

4. For each reduced model, the accuracy evaluation makes use of one or more
control parameters; in this paper, the first ten natural frequencies.

Two parameters can identify an expansion, namely, the number of active terms
and the error or accuracy provided. The use of two parameters allows the
insertion of each expansion in a Cartesian reference frame, as in Fig. 3a. The
Best Theory Diagram (BTD) is the curve composed of all models providing
the minimum error with the least number of variables, see Fig. 3b. Given the
accuracy, models with fewer variables than those on the BTD do not exist.
Given the number of variables, models with better accuracy than those on the
BTD do not exist.
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This paper, for the first time, provides BTD for dynamic problems. To have a
single error parameter, the BTD uses the average of the errors as follows:

Error =

10∑

i=1

fi/f
N=4
i

10
(28)

Where fi is the i-th frequency from a generic shell model and fN=4
i is the

one from the reference solution. As explained in the numerical result section,
further control parameters, such as the standard deviation and the Modal
Assurance Criterion (MAC), are useful to control the quality of the results.

5 Framework to assess the accuracy of finite elements

The synergistic use of CUF and AAM allows the evaluation of the accuracy
of any finite element. The CUF can provide the governing equations of finite
elements independently of the expansion adopted to assume the primary vari-
able behavior along the thickness. The AAM provides the BTD as an optimal
boundary concerning the accuracy and computational cost. The position of a
finite element on the BTD is a form of assessment of its accuracy and computa-
tional efficiency. In this paper, the finite elements assessed are those stemming
from subsets of the fourth-order model as shown in Table 1. Black and white
triangles indicate active and inactive generalized displacement variables, re-
spectively, and DOF the nodal degrees of freedom of the element. N=2, 3, and
4 are the full expansions of the second-, third- and fourth-order. The other
three models are well-known from literature and have incomplete expansions.
The additional models are the following:

– the First Order Shear Deformation Theory (FSDT) with five DOF,

uα = uα1
+ z uα2

uβ = uβ1
+ z uβ2

uz = uz1

(29)

– a seven DOF model with parabolic transverse displacement, referred to as
PTD,

uα = uα1 + z uα2

uβ = uβ1
+ z uβ2

uz = uz1 + z uz2 + z2 uz3

(30)

– a nine DOF model with third-order in-plane displacements referred to as
TSDT,

uα = uα1
+ z uα2

+ z2 uα3
+ z3 uα4

uβ = uβ1
+ z uβ2

+ z2 uβ3
+ z3 uβ4

uz = uz1

(31)

For the sake of brevity, the comparative analysis focused on the previous mod-
els only. The framework can handle any given model including those stemming
from layer-wise approaches or non-polynomial expansions [110, 200].
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6 Numerical examples

The numerical results focus on spherical shells with geometrical and material
features retrieved from [201] and [28]. The shell has a = b and Rα = Rβ =
R. The material properties are E1/E2 = 25, G12/E2 = G13/E2 = 0.5, G13/E2

= 0.2, ν = 0.25. In all cases, the three constant terms of the expansions,
namely, uα1

, uβ1
and uz1, are always present in the reduced models. In other

words, the combinations considered 12 terms, from linear to fourth-order for
a total of 212 models. Such a choice led to a considerable reduction of the
computational cost without significant loss of information as previous works
proved the presence of constant terms in almost all best models [111]. For the
sake of readability, the BTD vertical axis ranges from 5 to 15 as models with
4 or less DOF provide very high errors and are not of practical interest.

6.1 Simply-supported, 0/90/0

The first set of analyses refers to a simply-supported shell with symmetric lam-
ination and various thickness and curvature ratios, a/h, and R/a, respectively.
Table 2 presents the first natural frequency from different models including
higher- and first-order shear deformation theories, HSDT and FSDT, respec-
tively, CLT, a layer-wise fourth-order model, LD4, and the present equivalent
single layer full fourth-order expansion, N=4. The latter provides good accu-
racy if compared to LD4 and is set as the reference solution to build the BTD.
Figure 4 shows the BTD for R/a = 5 and various thicknesses. For instance, in
the case of a/h = 10, the 5 DOF BTD provides the first ten natural frequencies
with a mean error of 8 %. For the sake of readability of the results, for a/h = 10
and 5, the figure also presents BTD with only N=3. Figure 5 shows the stan-
dard deviation (SD) per each BTD and computed on the error distribution.
For instance, the 5 DOF BTD model for a/h = 100 has SD = 1.5 %, that is, it
provides the first ten natural frequencies with a 1.5 % dispersion on the mean
error given in Fig. 4a and equal to 3.2 % for the 5 DOF BTD model. Figure
6 shows the accuracy of all the models stemming from the 212 combinations,
that is, each dot on the plot represents a shell finite element and its accuracy
in detecting the first ten natural frequencies. The modal assurance criterion
(MAC) matrices are shown in Fig. 7 using the first ten natural modes from the
nine and eight DOF BTD models and those from the full N=4. Figures 8 and
9 present the BTD and all combination accuracies for a fixed thickness and
varying curvature. The terms of BTD models are in Tables 3-7. The last row
of each table shows the relevance factor (RF) of the same order variables. The
RF is the ratio between the number of active instances and the total number
of cases. For instance, concerning Table 3, RF0 = 1 indicates that the zeroth-
order terms are always present in the BTD. RF4 = 0.27 because fourth-order
variables are in the BTD nine times out of 33 cases. As shown in [111], the
RF provides a metric to measure the influence of a set of variables, the higher
the RF the higher is the relevance. The numerical results suggest that
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– In all cases, 9 DOF are necessary to ensure errors lower than 1 % on the
first ten natural frequencies. The thickness ratio is decisive to determine
the error ranges of the BTD models. For thin shells, the maximum error
with 5 DOF is 3 % whereas, for moderately thick shells it is larger than 8
%. On the other hand, the effect of curvature is less significant.

– In the case of thin shells, of all the models considered for comparison pur-
poses, only the N=3 and FSDT are BTD theories or very close to being
BTD. From a/h = 10 and below, N=3 and TSDT are very close to the BTD
indicating a predominant role of third-order expansion terms. As indicated
previously, the effect of curvature is less significant.

– The standard deviation is smaller than 1 % in all cases with more than 8
DOF. In the case of a/h = 4, SD is larger than 4 % with 7 DOF and below.
Such values of SD proves that the choice of the mean error over the first
ten natural frequencies is valid as a metric to build the BTD meaning that
the BTD models can detect the first ten modal shapes and frequencies with
acceptable mean accuracy. The SD curves are similar in all the numerical
cases of this paper and, therefore, not reported for the sake of brevity.

– All combination plots present bands with no models indicating accuracy
gaps. For instance, for a/h = 100, no models can provide errors in the
range of 10-60 %. Such bands are narrow or disappear for thicker shells.
Such a phenomenon is consistent with the findings in [111] and is due to
the very high relevance of lower-order terms in thin shells, usually up to the
first-order. The absence of one of these terms leads to very high errors. On
the other hand, for thicker shells, such relevance is weaker with a stronger
influence of higher-order terms; therefore, the removal of any terms affect
less the accuracy and makes the maximum error smaller.

– MAC is useful to control the quality of the modal shapes from BTD models.
The MAC matrices in Fig. 7 refer to the last model with perfect MAC
and the first one with some discrepancies, namely, the nine and eight DOF
BTD. In all other cases of this section, MAC matrices have no discrepancies
meaning that all BTD models can reproduce the first ten modal shapes
with high accuracy.

– The analysis of relevance factors from Tables 3-7 shows the increasing
importance of third- and fourth-order variables as the thickness increases.
Third-order terms tend to become as important as first-order, whereas
fourth-order ones tend to equal second-order variables.

6.2 Clamped-free, 0/90/0

The second shell configuration has two non-consecutive edges clamped and the
other two free, i.e., the sequence of constrains is clamped/free/clamped/free.
Unless otherwise specified, all the other parameters are as in the first case.
The aim is to investigate the effect of a different set of geometrical boundary
conditions on the BTD. Table 8 shows the first natural frequency compared
with a layer-wise model from literature.
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As in the previous case, the numerical results focus on BTD plots for various
thickness ratios, Fig. 10, the accuracy of reduced models stemming from all
212 combinations, Fig. 11, and the MAC matrix showing that, for the thick
case, the 6 DOF BTD cannot detect all ten modes properly, see Fig. 12. Tables
9 and 10 report the BTD models and the RF.
The numerical results show similar tendencies to the simply-supported case.
The BTD have similar ranges and the two cases, i.e., simply-supported and
clamped-free, share most of the terms composing the best models.

6.3 Simply-supported, 90/0

The last shell configuration considers a different stacking sequence to investi-
gate the effect of an asymmetric lamination on the BTD. All other parameters
remain like those of the previous cases.
Table 11 shows the first frequency for the various thickness and curvature ra-
tios considered for the analysis. The results match well those from an ESL
with higher-order terms from the literature. Figures 13-16 show the BTD and
all combination accuracies, whereas the BTD terms are in Tables 12-15. In
all cases, the BTD models detect perfectly all ten modes; therefore, in this
section, there are no MAC matrices. The numerical results show that

– The PTD and TSDT are BTD, or very close to the curve, for a/h = 100
and a/h = 10, respectively. FSDT is always BTD but, for a/h = 10, its
accuracy is poor. The N=3 is quite close to the BTD, whereas, N=2 is
always quite far from it.

– The RF reveals that the second- and fourth-order terms tend to be more
relevant than in the 0/90/0 case.

6.4 Analysis of the influence of generalized displacement variables

This section investigates the influence of DOF as problem parameters vary.
The methodology makes use of the RF of each DOF as shown in Fig. 17. RF
= 1 means that a DOF is in each BTD. For the 0/90/0 case with R/a = 5,
uβ2

is in every BTD independently of the thickness, whereas, uα2
is in every

BTD for a/h = 100 and in the 91 % for a/h = 10 and 5. The analysis considers
terms from the first- to the fourth-order, see Figs. 17-20, given that zeroth-
order terms are usually always necessary for meaningful accuracy levels. The
analysis of each order follows:

– First-order terms. In-plane components are fundamental in all cases with
RF close to one. The influence of the transverse term, instead, varies signif-
icantly. Such an influence decreases as the thickness increases and is high
for the asymmetric lamination.

– Second-order terms. The influence of these terms is, on average, smaller
than first-order ones but becomes more significant in the asymmetrical
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lamination case. The in-plane components have either little decrements or
significant increments of relevance as the thickness increases. As in the
previous case, the transverse term influence decreases as the thickness in-
creases.

– Third-order terms. The in-plane components have significant influence in
all cases and the relevance increases for thicker shells. The out-of-plane
term has a small relevance in all cases.

– Fourth-order terms. These terms are the least influential. The symmetric
lamination leads to higher relevances than the asymmetric one.

Further considerations may result using Figs. 21 and 22. These plots are mod-
ified versions of Figs. 4a,b and Fig. 15. Each plot shows the displacement field
of various structural models with nine and seven DOF to provide insights re-
lated to models from the literature. The displacement field on the BTD are
also in Tables 3, 4, and 14, 15. The results suggest that

– For thin shells, to improve the accuracy without computational overheads,
i.e., moving horizontally and leftward on the BTD diagram, third-order
in-plane variables and second-order transverse ones are necessary. In other
words, the enhancement of classical theories should give priority to third-
order in-plane terms and may neglect second-order ones, whereas, should
favor second-order transverse ones.

– For thin shells, best models with decreasing accuracy, i.e., following the
BTD down and rightward, keep the second-order transverse term and lose
the third-order in-plane ones.

– For thick shells, moving horizontally and leftward on the BTD diagram,
complete third-order expansions for the in-plane components gain impor-
tance, whereas, the zeroth-order transverse term in enough.

– For thick shells, following the BTD down and rightward, only the third-
order in-plane components remain influential.

– The asymmetric lamination case requires displacement fields having a few
variations if compared to the symmetric ones. However, for given DOF, the
BTD models of the asymmetric case are less accurate than the symmetric
ones.

6.5 Summary on the proof of concept

The numerical results exploited the synergy among various methodologies,
namely, the Carrera Unified Formulation (CUF) to generate higher-order struc-
tural theories, Finite Element Method (FEM) to obtain natural frequencies
and modes, axiomatic asymptotic method (AAM) to investigate the influence
of generalized displacement variables, and Best Theory Diagrams (BTD) to
provide insights on the optimum choice of variables for computational cost
minimization. The shell theories evaluated are those stemming from all the
subsets given by the combinations of fifteen variables of a full fourth-order
model. Such subsets include well-known theories from literature such as the
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First- and Third-Order Shear Deformation Theories, FSDT and TSDT, re-
spectively. The metric to evaluate the accuracy of a model is the average error
on the first ten natural frequencies with the standard deviation and Modal
Assurance Criterion (MAC) as control tools to check the frequency dispersion
and modal shape quality. Results refer to various shell configurations concern-
ing thickness, curvature, boundary conditions, and stacking sequence. Models
from literature serve as references to verify the framework and draw guidelines
for future modeling strategies. Further metrics, referred to as Relevance Fac-
tors (RF), proved useful to have an overview of the importance of a variable
or order at a glance. The main conclusions are the following:

– The structural features with a predominant role in the determination of
the most significant unknown variables are the thickness and the stack-
ing sequence. The influence of curvature and boundary conditions is less
evident and require further investigations.

– In most cases, some nine DOF are enough to ensure results as accurate as
99 % of the full fourth-order model.

– The accuracy ranges obtainable by a shell model depends significantly on
the thickness. In thin shells, lower-order terms dominate, and their presence
allows very accurate results, whereas their absence leads to unacceptable
errors. As the thickness increases, higher-order terms gain relevance, and
intermediate accuracy levels become viable.

– As a general guideline, the improvement of the shell model without in-
crements of the nodal DOF should favor, first, the third-order in-plane
components and, then, the second-order transverse terms. Second- and
fourth-order in-plane, third- and fourth-order transverse terms have less
relevance.

– The choice of the average error on the first ten frequencies proved to be
useful to build reduced models that can predict the global response of the
structure under different deformation states. Such a choice improves the
validity of the present framework that, in previous works, adopted single or
local values under static loads with critical issues regarding generalizations.

– The present framework may serve as a tool to evaluate the accuracy of any
structural model and lead to informed decision-making regarding the most
convenient sets of generalized variables to use.

7 Considerations on the use of neural networks to assess and
develop structural theories

The synergy between CUF and AAM is convenient as a tool for machine
learning training [202, 203]. Neural networks (NN) may serve as surrogate
models for the fast mapping between given inputs and outputs. In a direct
approach, structural theories and problem features are inputs, and accuracies
serve as outputs. In an inverse approach, inputs and outputs swap. inputs and
outputs swap. For instance, a fourth-order model with inactive terms and h/a
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= 0.1 has the following coding:

uα = uα1 + z uα2 + z4 uα5

uβ = uβ1 + z uβ2 + z3 uβ4 => [1 1 1 1 1 1 0 0 1 0 1 0 1 0 0 0.1]
uz = uz1 + z uz2 + z2 uz3

(32)

Where the first fifteen terms of the array refer to the generalized displacement
variables and the last one to the thickness ratio. Figure 23 shows the classical
approach based on CUF and FE to assess the accuracy and efficiency of a
structural theory and the one in which NN substitutes FE. A comparison of
the two procedures follows:

– CUF generates the governing FE equations for all the shell theories stem-
ming from subsets of the fourth-order expansions. Given that the expansion
has fifteen terms, overall, 215 FE shell models are available. For instance,
FSDT is one of these models in which five terms are active - uα1

, uβ1
, uz1,

uα2 , and uβ2 - and ten inactive.
– The FE way runs 215 FE analyses and reports the error and number of

active terms of each case in a 2D plot.
– The NN way runs one-tenth of the FE analyses and uses them for training.

Then, the 2D plot stems from querying the trained NN with all 215 shell
models.

– If a/h is a training variable, and, e.g., three a/h values are available, the
overall number of analyses is 3×215, and the query of the NN includes the
shell model and the thickness ratio.

Table 16 reports the typical costs of both procedures. The proper training of
NN can partially substitute FE to estimate the accuracy of a shell theory for
varying problem features. The primary challenges concern the proper selection
of the input features - e.g., thickness, material properties, stacking sequence,
boundary conditions - and the significant outputs - e.g., frequencies, stresses.
Furthermore, the use of NN for the inverse problem is promising as it would
allow the use of a given accuracy to determine the structural theory to use.

8 Conclusions

This paper presented an overview of the existing approaches to develop shell
theories for composites and provided a method to assess them. The overview
highlighted the seminal importance of the following guidelines:

– Caution is mandatory on the use of classical models available in commer-
cial codes and assuming unstretchable normals and constant shear stress
over the thickness. The use of such models may lead to inaccurate results
in many meaningful engineering cases, e.g., the presence of local effects
are of interest or high-stress gradients, anisotropy and high transverse de-
formability, and impact problems.
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– The Koiter recommendations, i.e., the inclusion of transverse shear and
axial stress in refined theories, remain a valuable guideline that should
lead the development of shell theories.

– The combined use of the RMVT, third-order expansions and zig-zag dis-
tributions, most likely, represents the best accuracy/efficiency trade-off in
many cases. The layer-wise option remains mandatory for severe local ef-
fects.

To the author’s best knowledge, there is no systematic way to assess structural
theories. In other words, the only existing approach to evaluate a theory is by
comparing its accuracy with other models on a given structural model or by
using the asymptotic approach over a given structural or material parameter.
The second part of this paper presents the proof of concept of a method that
can assess any structural theory and indicate the best models for a given
problem concerning the accuracy and computational costs. The main features
of the proposed method are

– Given a set of generalized variables, it provides the relevance for each of
them and indicates those to retain.

– Via the Best Theory Diagrams (BTD), the assessment of any structural
theory is possible concerning the best accuracy available with the same
number of DOF or the minimum number of DOF required to meet the
same accuracy.

– The proposed method has coding features that are very promising in a
machine learning scenario. The training of neural networks may ease the
simultaneous assessment over the primary variables, the problem charac-
teristics, and the accuracy. Also, it may lead to surrogate models requiring
a fraction of the computational costs of classical FE, accepting accuracy
requirements as the input and providing the structural theory to use as the
output.

References

1. A. L. Cauchy. Sur l’équilibre et le mouvement d’une plaque solide. Ex-
ercises de Matematique, 3:328–355, 1828.

2. S. D. Poisson. Memoire sur l’équilibre et le mouvement des corps elas-
tique. Mem. Acad. Sci., 1829.

3. A.E.H. Love. The Mathematical Theory of Elasticity. Cambridge Univ
Press, fourth edition, 1927.

4. G. Kirchhoff. Uber das gleichgewicht und die bewegung einer elastischen
scheibe. Journal fur reins und angewandte Mathematik, 40:51–88, 1850.

5. E. Reissner. The effect of transverse shear deformation on the bending
of elastic plates. Journal of Applied Mechanics, 12:69–76, 1945.

6. R.D. Mindlin. Influence of rotatory inertia and shear in flexural motions
of isotropic elastic plates. Journal of Applied Mechanics, 18:1031–1036,
1951.



Methods and guidelines for the choice of shell theories 21

7. S.A. Ambartsumian. Nontraditional theories of shells and plates. Applied
Mechanics Reviews, 55(5):R35–R44, 2002.

8. E. Carrera. Theories and finite elements for multilayered, anisotropic,
composite plates and shells. Archives of Computational Methods in En-
gineering, 9(2):87–140, 2002.

9. S.G. Lekhnitskii. Strength calculation of composite beams. Vestnik in-
zhen i tekhnikov, 9, 1935.

10. F.B. Hildebrand, E. Reissner, and G.B. Thomas. Notes on the founda-
tions of the theory of small displacements of orthotropic shells. NACA
TN-1833, 1949.

11. W.T. Koiter. A consistent first approximation in the general theory of
thin elastic shells. Proceedings of Symposium on the Theory of Thin
Elastic Shells, August 1959, North-Holland, Amsterdam, pages 12–23,
1959.

12. S.A. Ambartsumian. Contributions to the theory of anisotropic layered
shells. Applied Mechanics Reviews, 15:245–249, 1962.

13. N.J. Pagano. Exact solutions for composite laminates in cylindrical bend-
ing. Journal of Composite Materials, 3(3):398–411, 1969.

14. A.W. Leissa. Vibration of shells. NASA-SP-288, LC-77-186367, 1973.
15. E.I. Grigolyuk and G.M. Kulikov. General directions of the development

of theory of shells. Mechanics of Composite Materials, 24(287–298), 1988.
16. K. Kapania. A review on the analysis of laminated shells. ASME Journal

of Pressure Vessel Technology, 111(2):88–96, 1989.
17. A.K. Noor and W.S. Burton. Assessment of computational models for

multilayered composite shells. Applied Mechanics Reviews, 43(4):67–97,
1989.

18. M. Touratier. A generalization of shear deformation theories for axisym-
metric multilayered shells. International Journal of Solids and Structures,
29(11):1379 – 1399, 1992.

19. V.V. Vasil’Ev and S.A. Lur’E. On refined theories of beams, plates, and
shells. Journal of Composite Materials, 26(4):546–557, 1992.

20. J. N. Reddy and D. H. Robbins. Theories and computational models for
composite laminates. Applied Mechanics Reviews, 47(6):147–165, 1994.

21. K. Washizu. Variational Methods in Elasticity and Plasticity. Pergamon,
Oxford, 1968.

22. E. Carrera and M. Petrolo. Guidelines and recommendation to construct
theories for metallic and composite plates. AIAA Journal, 48(12):2852–
2866, 2010.

23. E. Carrera and M. Petrolo. On the effectiveness of higher-order terms in
refined beam theories. Journal of Applied Mechanics, 78, 2011.

24. A.L. Gol’denweizer. Theory of thin elastic shells. International Series
of Monograph in Aeronautics and Astronautics. Pergamon Press, New
York, 1961.

25. P. Cicala. Systematic approximation approach to linear shell theory. Lev-
rotto e Bella, Torino, 1965.



22 Marco Petrolo, Erasmo Carrera

26. J.N. Reddy. Exact solutions of moderately thick laminated shells. Journal
of Engineering Mechanics, 110(5):794–809, 1984.

27. J.G. Ren. Exact solutions for laminated cylindrical shells in cylindrical
bending. Composites Science and Technology, 29(3):169 – 187, 1987.

28. J.N. Reddy and C.F. Liu. A higher-order shear deformation theory of
laminated elastic shells. International Journal of Engineering Science,
23(3):319 – 330, 1985.

29. C.P. Wu and C.C. Liu. Stress and displacement of thick doubly curved
laminated shells. Journal of Engineering Mechanics, 120(7):1403–1428,
1994.

30. A.W. Leissa and J.D. Chang. Elastic deformation of thick, laminated
composite shells. Composite Structures, 35(2):153 – 170, 1996.

31. X.P. Shu. A refined theory of laminated shells with higher-order trans-
verse shear deformation. International Journal of Solids and Structures,
34(6):673 – 683, 1997.

32. X. Wang, C. Wang, and Z.Y. Yu. An analytic method for interlaminar
stress in a laminated cylindrical shell. Mechanics of Advanced Materials
and Structures, 9(2):119–131, 2002.

33. A.S. Oktem and R.A. Chaudhuri. Fourier analysis of thick cross-ply Levy
type clamped doubly-curved panels. Composite Structures, 80(4):489 –
503, 2007.

34. A.K. Noor and P.L. Rarig. Three-dimensional solutions of laminated
cylinders. Computer Methods in Applied Mechanics and Engineering,
3(3):319 – 334, 1974.

35. T K Varadan and K Bhaskar. Bending of laminated orthotropic cylin-
drical shells - an elasticity approach. Composite Structures, 17:141–156,
1991.

36. J. Fan and J. Zhang. Analytical solutions for thick, doubly curved, lami-
nated shells. Journal of Engineering Mechanics, 118(7):1338–1356, 1992.

37. A. Bhimaraddi and K. Chandrashekhara. Three-dimensional elasticity
solution for static response of simply supported orthotropic cylindrical
shells. Composite Structures, 20(4):227 – 235, 1992.

38. C.P. Wu and J.Y. Lo. Three-dimensional elasticity solutions of laminated
annular spherical shells. Journal of Engineering Mechanics, 126(8):882–
885, 2000.

39. P. Kumari and S. Kar. Static behavior of arbitrarily supported composite
laminated cylindrical shell panels: An analytical 3D elasticity approach.
Composite Structures, 207:949 – 965, 2019.

40. R.K. Khare, V. Rode, A.K. Garg, and S.P. John. Higher-order closed-
form solutions for thick laminated sandwich shells. Journal of Sandwich
Structures & Materials, 7(4):335–358, 2005.

41. A.K. Garg, R.K. Khare, and T. Kant. Higher-order closed-form solutions
for free vibration of laminated composite and sandwich shells. Journal
of Sandwich Structures & Materials, 8(3):205–235, 2006.

42. H. Biglari and A.A. Jafari. High-order free vibrations of doubly-curved
sandwich panels with flexible core based on a refined three-layered theory.



Methods and guidelines for the choice of shell theories 23

Composite Structures, 92(11):2685 – 2694, 2010.
43. E. Asadi, W. Wang, and M.S. Qatu. Static and vibration analyses of thick

deep laminated cylindrical shells using 3d and various shear deformation
theories. Composite Structures, 94(2):494 – 500, 2012.

44. S. Hosseini-Hashemi, S.R. Atashipour, M. Fadaee, and U.A. Girhammar.
An exact closed-form procedure for free vibration analysis of laminated
spherical shell panels based on Sanders theory. Archive of Applied Me-
chanics, 82(7):985–1002, 2012.

45. J.L. Mantari and C. Guedes Soares. Analysis of isotropic and multilay-
ered plates and shells by using a generalized higher-order shear deforma-
tion theory. Composite Structures, 94(8):2640 – 2656, 2012.

46. C. Hwu, H.W. Hsu, and Y.H. Lin. Free vibration of composite sandwich
plates and cylindrical shells. Composite Structures, 171:528 – 537, 2017.

47. G. Jin, T. Ye, X. Ma, Y. Chen, Z. Su, and X. Xie. A unified approach for
the vibration analysis of moderately thick composite laminated cylindri-
cal shells with arbitrary boundary conditions. International Journal of
Mechanical Sciences, 75:357 – 376, 2013.

48. G. Jin, T. Ye, Y. Chen, Z. Su, and Y. Yan. An exact solution for the free
vibration analysis of laminated composite cylindrical shells with general
elastic boundary conditions. Composite Structures, 106:114 – 127, 2013.

49. T. Ye, G. Jin, Y. Chen, X. Ma, and Z. Su. Free vibration analysis of lami-
nated composite shallow shells with general elastic boundaries. Composite
Structures, 106:470 – 490, 2013.

50. Y. Qu and G. Meng. Dynamic analysis of composite laminated and sand-
wich hollow bodies of revolution based on three-dimensional elasticity
theory. Composite Structures, 112:378 – 396, 2014.

51. G. Jin, T. Ye, and S. Shi. Three-dimensional vibration analysis of
isotropic and orthotropic open shells and plates with arbitrary boundary
conditions. Shock and Vibration, 2015, 2015.

52. H. Li, F. Pang, X. Wang, Y. Du, and H. Chen. Free vibration analysis
for composite laminated doubly-curved shells of revolution by a semi
analytical method. Composite Structures, 201:86 – 111, 2018.

53. R. Zhong, J. Tang, A. Wang, C. Shuai, and Q. Wang. An exact solution
for free vibration of cross-ply laminated composite cylindrical shells with
elastic restraint ends. Computers and Mathematics with Applications,
77(3):641 – 661, 2019.

54. A.L. Poore, A. Barut, and E. Madenci. Free vibration of laminated
cylindrical shells with a circular cutout. Journal of Sound and Vibration,
312(1):55 – 73, 2008.

55. M. Shakouri and M.A. Kouchakzadeh. Analytical solution for vibration of
generally laminated conical and cylindrical shells. International Journal
of Mechanical Sciences, 131-132:414 – 425, 2017.

56. S.G.P. Castro and M.V. Donadon. Assembly of semi-analytical models to
address linear buckling and vibration of stiffened composite panels with
debonding defect. Composite Structures, 160:232 – 247, 2017.



24 Marco Petrolo, Erasmo Carrera

57. M.H. Kargarnovin and M. Hashemi. Free vibration analysis of multilay-
ered composite cylinder consisting fibers with variable volume fraction.
Composite Structures, 94(3):931 – 944, 2012.

58. A.V. Lopatin and E.V. Morozov. Fundamental frequency of the lam-
inated composite cylindrical shell with clamped edges. International
Journal of Mechanical Sciences, 92:35 – 43, 2015.

59. M. Nasihatgozar, S.M.R. Khalili, and K.M. Fard. General equations for
free vibrations of thick doubly curved sandwich panels with compressible
and incompressible core using higher order shear deformation theory.
Steel and Composite Structures, 24(2):151–176, 2017.

60. C.P. Wu and K.H. Chiu. Rmvt-based meshless collocation and element-
free galerkin methods for the quasi-3d free vibration analysis of multilay-
ered composite and fgm plates. Composite Structures, 93(5):1433 – 1448,
2011.

61. A.H. Sofiyev. Application of the first order shear deformation theory
to the solution of free vibration problem for laminated conical shells.
Composite Structures, 188:340 – 346, 2018.

62. A.V. Singh and V. Kumar. Vibration of laminated shallow shells on
quadrangular boundary. Journal of Aerospace Engineering, 9(2):52–57,
1996.

63. A.V. Singh and L. Shen. Free vibration of open circular cylindrical com-
posite shells with point supports. Journal of Aerospace Engineering,
18(2):120–128, 2005.

64. X. Zhao, K.M. Liew, and T.Y. Ng. Vibration analysis of laminated com-
posite cylindrical panels via a meshfree approach. International Journal
of Solids and Structures, 40(1):161 – 180, 2003.

65. T. Ye, G. Jin, Z. Su, and X. Jia. A unified Chebyshev–Ritz formulation for
vibration analysis of composite laminated deep open shells with arbitrary
boundary conditions. Archive of Applied Mechanics, 84:441–471, 2017.

66. G. Jin, T. Ye, X. Jia, and S. Gao. A general Fourier solution for the
vibration analysis of composite laminated structure elements of revolu-
tion with general elastic restraints. Composite Structures, 109:150 – 168,
2014.

67. X. Song, Q. Han, and J. Zhai. Vibration analyses of symmetrically lam-
inated composite cylindrical shells with arbitrary boundaries conditions
via Rayleigh–Ritz method. Composite Structures, 134:820 – 830, 2015.

68. F. Pang, H. Li, H. Chen, and Y. Shan. Free vibration analysis of com-
bined composite laminated cylindrical and spherical shells with arbitrary
boundary conditions. Mechanics of Advanced Materials and Structures,
2019.

69. G. Jin, Z. Su, T. Ye, and X. Jia. Three-dimensional vibration analysis of
isotropic and orthotropic conical shells with elastic boundary restraints.
International Journal of Mechanical Sciences, 89:207 – 221, 2014.

70. C. Yang, G. Jin, Y. Zhang, and Z. Liu. A unified three-dimensional
method for vibration analysis of the frequency-dependent sandwich shal-
low shells with general boundary conditions. Applied Mathematical Mod-



Methods and guidelines for the choice of shell theories 25

elling, 66:59 – 76, 2019.
71. A.V. Singh. Free vibration analysis of deep doubly curved sandwich

panels. Computers and Structures, 73(1):385 – 394, 1999.
72. M. Hemmatnezhad, G.H. Rahimi, M. Tajik, and F. Pellicano. Experi-

mental, numerical and analytical investigation of free vibrational behav-
ior of GFRP-stiffened composite cylindrical shells. Composite Structures,
120:509 – 518, 2015.

73. X. Xie, H. Zheng, and G. Jin. Integrated orthogonal polynomials based
spectral collocation method for vibration analysis of coupled laminated
shell structures. International Journal of Mechanical Sciences, 98:132 –
143, 2015.

74. Y. Qu, H. Hua, and G. Meng. A domain decomposition approach for
vibration analysis of isotropic and composite cylindrical shells with arbi-
trary boundaries. Composite Structures, 95:307 – 321, 2013.

75. Y. Qu, X. Long, S. Wu, and G. Meng. A unified formulation for vibra-
tion analysis of composite laminated shells of revolution including shear
deformation and rotary inertia. Composite Structures, 98:169 – 191, 2013.

76. J. Guo, D. Shi, Q. Wang, J. Tang, and C. Shuai. Dynamic analysis of lam-
inated doubly-curved shells with general boundary conditions by means
of a domain decomposition method. International Journal of Mechanical
Sciences, 138-139:159 – 186, 2018.

77. A. Alibeigloo. Static and vibration analysis of axi-symmetric angle-
ply laminated cylindrical shell using state space differential quadrature
method. International Journal of Pressure Vessels and Piping, 86(11):738
– 747, 2009.

78. H.V. Lakshminarayana and K. Dwarakanath. Free vibration characteris-
tics of cylindrical shells made of composite materials. Journal of Sound
and Vibration, 154(3):431 – 439, 1992.

79. J. Zhu. Free vibration analysis of multilayered composite plates and shells
with the natural approach. Computer Methods in Applied Mechanics and
Engineering, 130(1):133 – 149, 1996.

80. N.S. Bardell, J.M. Dunsdon, and R.S. Langley. Free and forced vibra-
tion analysis of thin, laminated, cylindrically curved panels. Composite
Structures, 38(1):453 – 462, 1997.

81. T. Park, K. Kim, and S. Han. Linear static and dynamic analysis of
laminated composite plates and shells using a 4-node quasi-conforming
shell element. Composites Part B: Engineering, 37(2):237 – 248, 2005.

82. H. Nguyen-Van, N. Mai-Duy, and T. Tran-Cong. Free vibration anal-
ysis of laminated plate/shell structures based on fsdt with a stabilized
nodal-integrated quadrilateral element. Journal of Sound and Vibration,
313(1):205 – 223, 2008.

83. H. Nguyen-Van, N. Mai-Duy, W. Karunasena, and T. Tran-Cong. Buck-
ling and vibration analysis of laminated composite plate/shell structures
via a smoothed quadrilateral flat shell element with in-plane rotations.
Computers and Structures, 89(7):612 – 625, 2011.



26 Marco Petrolo, Erasmo Carrera

84. D. Chakravorty, J.N. Bandyopadhyay, and P.K. Sinha. Finite element
free vibration analysis of point supported laminated composite cylindrical
shells. Journal of Sound and Vibration, 181(1):43 – 52, 1995.

85. K.S.S. Ram and T.S. Babu. Free vibration of composite spherical shell
cap with and without a cutout. Computers and Structures, 80(23):1749
– 1756, 2002.

86. S.C. Han, S. Choi, and S.Y. Chang. Nine-node resultant-stress shell
element for free vibration and large deflection of composite laminates.
Journal of Aerospace Engineering, 19(2):103–120, 2006.

87. S. Jayasankar, S. Mahesh, S. Narayanan, and Chandramouli Padman-
abhan. Dynamic analysis of layered composite shells using nine node
degenerate shell elements. Journal of Sound and Vibration, 299(1):1 –
11, 2007.

88. I.F. Pinto Correia, C.M. Mota Soares, C.A. Mota Soares, and J. Her-
skovits. Analysis of laminated conical shell structures using higher order
models. Composite Structures, 62(3):383 – 390, 2003.

89. R.K. Khare, T. Kant, and A.K. Garg. Free vibration of composite and
sandwich laminates with a higher-order facet shell element. Composite
Structures, 65(3):405 – 418, 2004.

90. R.K. Khare, A.K. Garg, and T. Kant. Free vibration of sandwich lami-
nates with two higher-order shear deformable facet shell element models.
Journal of Sandwich Structures & Materials, 7(3):221–244, 2005.

91. A. Kumar, P. Bhargava, and A. Chakrabarti. Vibration of laminated
composite skew hypar shells using higher order theory. Thin-Walled
Structures, 63:82 – 90, 2013.

92. S.N. Thakur and C. Ray. An accurate C0 finite element model of mod-
erately thick and deep laminated doubly curved shell considering cross
sectional warping. Thin-Walled Structures, 94:384 – 393, 2015.

93. S.N. Thakur, C. Ray, and S. Chakraborty. A new efficient higher-order
shear deformation theory for a doubly curved laminated composite shell.
Acta Mechanica, 228(1):69–87, 2017.

94. F. Dau, O. Polit, and M.Touratier. An efficient C1 finite element with
continuity requirements for multilayered/sandwich shell structures. Com-
puters and Structures, 82(23):1889 – 1899, 2004.

95. T. Yamamoto, T. Yamada, and K. Matsui. A quadrilateral shell element
with degree of freedom to represent thickness–stretch. Computational
Mechanics, 59(4):625–646, 2017.

96. R.R. Paccola, M.S.M. Sampaio, and H.B. Coda. Continuous stress distri-
bution following transverse direction for fem orthotropic laminated plates
and shells. Applied Mathematical Modelling, 40(15):7382 – 7409, 2016.

97. H. Parisch. A critical survey of the 9-node degenerated shell element
with special emphasis on thin shell application and reduced integration.
Computer Methods in Applied Mechanics and Engineering, 20(3):323 –
350, 1979.

98. K.Y. Sze, L.Q. Yao, and T.H.H. Pian. An eighteen-node hybrid-stress
solid-shell element for homogenous and laminated structures. Finite El-



Methods and guidelines for the choice of shell theories 27

ements in Analysis and Design, 38(4):353 – 374, 2002.
99. M. Fiolka and A. Matzenmiller. On the resolution of transverse stresses in

solid-shells with a multi-layer formulation. Communications in Numerical
Methods in Engineering, 23(4):313–326, 2007.

100. S. Shiri and H. Naceur. Analysis of thin composite structures using
an efficient hex-shell finite element. Journal of Mechanical Science and
Technology, 27(12):3755–3763, 2013.

101. K. Rah, W. Van Paepegem, A.M. Habraken, and J. Degrieck. A mixed
solid-shell element for the analysis of laminated composites. International
Journal for Numerical Methods in Engineering, 89(7):805–828, 2012.

102. Y.W. Kwon. Analysis of laminated and sandwich composite structures
using solid-like shell elements. Applied Composite Materials, 20(4):355–
373, 2013.

103. G.M. Kulikov and S.V. Plotnikova. Exact geometry four-node solid-
shell element for stress analysis of functionally graded shell structures
via advanced SaS formulation. Mechanics of Advanced Materials and
Structures, In Press.

104. M. Jabareen and E. Mtanes. A solid-shell Cosserat point element for
the analysis of geometrically linear and nonlinear laminated composite
structures. Finite Elements in Analysis and Design, 142:61 – 80, 2018.

105. L. Leonetti and H. Nguyen-Xuan. A mixed edge-based smoothed solid-
shell finite element method (mes-fem) for laminated shell structures.
Composite Structures, 208:168 – 179, 2019.

106. Y. Ko, Y. Lee, P.S. Lee, and K.J. Bathe. Performance of the MITC3+ and
MITC4+ shell elements in widely-used benchmark problems. Computers
and Structures, 193:187–206, 2017.

107. G. Rama, D. Marinkovic, and M. Zehn. High performance 3-node shell
element for linear and geometrically nonlinear analysis of composite lam-
inates. Composites Part B: Engineering, 151:118–126, 2018.

108. T. Ho-Nguyen-Tan and H.G. Kim. A new strategy for finite-element
analysis of shell structures using trimmed quadrilateral shell meshes: A
paving and cutting algorithm and a pentagonal shell element. Interna-
tional Journal for Numerical Methods in Engineering, 114(1):1–27, 2018.

109. K Wisniewski and E Turska. Improved nine-node shell element MITC9i
with reduced distortion sensitivity. Computational Mechanics, 62(3):499–
523, 2018.

110. E. Carrera, M. Cinefra, A. Lamberti, and M. Petrolo. Results on best
theories for metallic and laminated shells including layer-wise models.
Composite Structures, 126:285–298, 2015.

111. M. Petrolo and E. Carrera. Best theory diagrams for multilayered struc-
tures via shell finite elements. Advanced Modeling and Simulation in
Engineering Science, 6(4):1–23, 2019.

112. E. Carrera, F. Miglioretti, and M. Petrolo. Computations and evaluations
of higher-order theories for free vibration analysis of beams. Journal of
Sound and Vibration, 331(19):4269 – 4284, 2012.



28 Marco Petrolo, Erasmo Carrera

113. E. Carrera. Theories and finite elements for multilayered plates and
shells: a unified compact formulation with numerical assessment and
benchmarking. Archives of Computational Methods in Engineering,
10(3):216–296, 2003.

114. Y. Vetyukov. Hybrid asymptotic-direct approach to the problem of finite
vibrations of a curved layered strip. Acta Mechanica, 223(2):371–385,
2012.

115. H. Kraus. Thin elastic shells. 1967.
116. J.N. Reddy. A Simple Higher-Order Theory for Laminated Composite

Plates. Journal of Applied Mechanics, 51(4):745–752, 1984.
117. M. Endo. An alternative first-order shear deformation concept and its

application to beam, plate and cylindrical shell models. Composite Struc-
tures, 146:50–61, 2016.

118. Q. Wang, D. Shao, and B. Qin. A simple first-order shear deformation
shell theory for vibration analysis of composite laminated open cylindrical
shells with general boundary conditions. Composite Structures, 184:211
– 232, 2018.

119. N.N. Huang. Influence of shear correction factors in the higher-order
shear deformation laminated shell theory. International Journal of Solids
and Structures, 31:1263–1277, 1994.

120. S.N. Thakur, C. Ray, and S. Chakraborty. A new efficient higher-order
shear deformation theory for a doubly curved laminated composite shell.
Acta Mechanica, 228(1):69–87, 2017.

121. S.N. Thakur, C. Ray, and S. Chakraborty. Response sensitivity analysis
of laminated composite shells based on higher-order shear deformation
theory. Archive of Applied Mechanics, 88(8):1429–1459, 2018.

122. C.P. Wu and C.C. Liu. Stress and displacement of thick doubly curved
laminated shells. Journal of Engineering Mechanics, 120(7):1403–1428,
1994.

123. C.P. Wu and C.C. Liu. A local high-order deformable theory for thick
laminated cylindrical shells. Composite Structures, 29(1):69 – 87, 1994.

124. P.H. Shah and R.C. Batra. Stress singularities and transverse stresses
near edges of doubly curved laminated shells using tsndt and stress re-
covery scheme. European Journal of Mechanics - A/Solids, 63:68 – 83,
2017.

125. P.H. Shah and R.C. Batra. Stretching and bending deformations due
to normal and shear tractions of doubly curved shells using third-order
shear and normal deformable theory. Mechanics of Advanced Materials
and Structures, 25(15-16):1276–1296, 2018.

126. S.M.R. Khalili, S. Tafazoli, and K.M. Fard. Free vibrations of laminated
composite shells with uniformly distributed attached mass using higher
order shell theory including stiffness effect. Journal of Sound and Vibra-
tion, 330(26):6355 – 6371, 2011.

127. P. Desai and T. Kant. On numerical analysis of axisymmetric thick circu-
lar cylindrical shells based on higher order shell theories by segmentation
method. Journal of Sandwich Structures & Materials, 17(2):130–169,



Methods and guidelines for the choice of shell theories 29

2015.
128. O. Rabinovitch and Y. Frostig. High-order analysis of unidirectional

sandwich panels with flat and generally curved faces and a “soft” core.
Journal of Sandwich Structures & Materials, 3(2):89–116, 2001.

129. Y. Frostig, C.N. Phan, and G.A. Kardomateas. Free vibration of unidi-
rectional sandwich panels, part i: Compressible core. Journal of Sandwich
Structures & Materials, 15(4):377–411, 2013.

130. D Punera and T Kant. Elastostatics of laminated and functionally graded
sandwich cylindrical shells with two refined higher order models. Com-
posite Structures, 182:505–523, 2017.

131. W. Zhen and C. Wanji. A global-local higher order theory for mul-
tilayered shells and the analysis of laminated cylindrical shell panels.
Composite Structures, 84(4):350 – 361, 2008.

132. C. Ossadzow and M. Touratier. An improved shear-membrane theory for
multilayered shells. Composite Structures, 52(1):85 – 95, 2001.

133. A.J.M. Ferreira, E. Carrera, M. Cinefra, C.M.C. Roque, and O. Polit.
Analysis of laminated shells by a sinusoidal shear deformation theory and
radial basis functions collocation, accounting for through-the-thickness
deformations. Composites Part B: Engineering, 42(5):1276 – 1284, 2011.

134. J.L. Mantari, A.S. Oktem, and C. Guedes Soares. Bending and free
vibration analysis of isotropic and multilayered plates and shells by using
a new accurate higher-order shear deformation theory. Composites Part
B: Engineering, 43(8):3348 – 3360, 2012.

135. H.T. Thai, T.P. Vo, T.Q. Bui, and T.K. Nguyen. A quasi-3d hyperbolic
shear deformation theory for functionally graded plates. Acta Mechanica,
225(3):951–964, 2014.

136. A.S. Sayyad and Y.M. Ghugal. Static and free vibration analysis of
laminated composite and sandwich spherical shells using a generalized
higher-order shell theory. Composite Structures, 219:129 – 146, 2019.

137. E. Carrera. Historical review of zig-zag theories for multilayered plates
and shells. Applied Mechanics Review, 56:287–308, 2003.

138. S.A. Ambartsumian. On a general theory of anisotropic shells. Journal
of Applied Mathematics and Mechanics, 22(2):305 – 319, 1958.

139. H Murakami. Laminated composite plate theory with improved in-plane
response. Journal of Applied Mechanics, 53:661–666, 1986.

140. Ya.M. Grigorenko and A.T. Vasilenko. Taking account of nonuniformity
of transverse displacement deformation in thickness in layered shells. So-
viet Applied Mechanics, 13(10):989–994, 1977.

141. A.O. Rasskazov. Theory of multilayer orthotropic shallow shells. Soviet
Applied Mechanics, 12(11):1131–1136, 1976.

142. V.G. Piskunov and A.A. Rasskazov. Investigation of stresss-trained state
of tapered orthotropic shells and plates on the basis of second order shear
theory. International Applied Mechanics, 34(8):798 – 806, 1998.

143. J.M. Whitney. The effect of transverse shear deformation on the bending
of laminated plates. Journal of Composite Materials, 3(3):534–547, 1969.



30 Marco Petrolo, Erasmo Carrera

144. B.K. Rath and Y.C. Das. Vibration of layered shells. Journal of Sound
and Vibration, 28(4):737 – 757, 1973.

145. K.P. Soldatos and T. Timarci. A unified formulation of laminated com-
posite, shear deformable, five-degrees-of-freedom cylindrical shell theo-
ries. Composite Structures, 25(1):165 – 171, 1993.

146. A. Kumar, A. Chakrabarti, and P. Bhargava. Vibration of laminated
composites and sandwich shells based on higher order zigzag theory. En-
gineering Structures, 56:880 – 888, 2013.

147. A. Kumar, A. Chakrabarti, and P. Bhargava. Finite element analysis
of laminated composite and sandwich shells using higher order zigzag
theory. Composite Structures, 106:270 – 281, 2013.

148. A Ahmed and S Kapuria. A four-node facet shell element for laminated
shells based on the third order zigzag theory. Composite Structures,
158(1):112–127, 2016.

149. H.B. Coda, R.R. Paccola, and R. Carrazedo. Zig-Zag effect without
degrees of freedom in linear and non linear analysis of laminated plates
and shells. Composite Structures, 161:32–50, 2017.

150. T.M. Hsu and J.T. Wang. Rotationally symmetric vibrations of or-
thotropic layered cylindrical shells. Journal of Sound and Vibration,
16(4):473 – 487, 1971.

151. Y.K. Cheung and C.I. Wu. Free vibrations of thick, layered cylinders
having finite length with various boundary conditions. Journal of Sound
and Vibration, 24(2):189 – 200, 1972.

152. D.H. Robbins Jr. and J.N. Reddy. Modelling of thick composites using a
layerwise laminate theory. International Journal for Numerical Methods
in Engineering, 36(4):655–677, 1993.

153. J.N. Reddy. Mechanics of laminated composite plates and shells. Theory
and Analysis. CRC Press, 2nd edition, 2004.

154. A. Dasgupta and K.H. Huang. A layer-wise analysis for free vibrations
of thick composite spherical panels. Journal of Composite Materials,
31(7):658–671, 1997.

155. M. Yaqoob Yasin and S. Kapuria. An efficient layerwise finite element
for shallow composite and sandwich shells. Composite Structures, 98:202
– 214, 2013.

156. Y. Guo and M. Ruess. A layerwise isogeometric approach for NURBS-
derived laminate composite shells. Composite Structures, 124:300 – 309,
2015.

157. K. Khan, B.P. Patel, and Y. Nath. Dynamic characteristics of bimodular
laminated panels using an efficient layerwise theory. Composite Struc-
tures, 132:759 – 771, 2015.
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Figures

Fig. 1 Shell geometry.
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Fig. 3 Representation of FE in a 2D Cartesian reference frame and an example of BTD.
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Fig. 4 BTD for 0/90/0, R/a = 5.
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Fig. 5 STD for 0/90/0, R/a = 5.
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Fig. 6 All combinations for 0/90/0, R/a = 5.
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Fig. 7 MAC for 0/90/0, R/a = 5, a/h = 5.
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Fig. 8 BTD for 0/90/0, a/h = 10.
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Fig. 9 All combinations for 0/90/0, a/h = 10.
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Fig. 10 BTD for 0/90/0, clamped-free, R/a = 10.
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Fig. 11 All combinations for 0/90/0, clamped-free, R/a = 10.
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Fig. 12 MAC for 0/90/0, clamped-free, R/a = 10, a/h = 4.
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Fig. 13 BTD for 90/0, R/a = 5.
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Fig. 14 All combinations for 90/0, R/a = 5.
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Fig. 15 BTD for 90/0, R/a = 20.
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Fig. 16 All combinations for 90/0, R/a = 20.
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Fig. 17 RP for first-order DOF.
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Fig. 19 RP for third-order DOF.
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Fig. 20 RP for fourth-order DOF.
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Fig. 21 BTD for 0/90/0, R/a = 5, with seven and nine DOF models

0 0.5 1 1.5 2 2.5 3

Error %

5

6

7

8

9

10

11

12

13

14

15
D

O
F

u
x

= u
1

+ zu
2

+ z
3
u

4

u
y

= u
β1

+ zu
β2

u
z

= u
z1

+ z
2
u

z3

u
x

= u
α1

+ zu
α2

+ z
2
u
α3

+ z
3
u
α4

u
y

= u
β1

+ zu
β2

+ z
2
u
β3

+ z
3
u
β4

u
z

= u
z1

u
x

= u
α1

+ zu
α2

+ z
2
u
α3

u
y

= u
β1

+ zu
β2

+ z
2
u
β3

u
z

= u
z1

+ zu
z2

+ z
2
u

z3

u
x

= u
α1

+ zu
α2

u
y

= u
β1

+ zu
β2

u
z

= u
z1

+ zu
z2

+ z
2
u

z3

u
x

= u
α1

+ zu
α2

+ z
3
u
α4

u
y

= u
β1

+ zu
β2

+ z
3
u
β4

u
z

= u
z1

+ zu
z2

+ z
2
u

z3

(a) a/h = 100

0 2 4 6 8 10 12

Error %

5

6

7

8

9

10

11

12

13

14

15

D
O

F

u
x

= u
1

+ zu
2

+ z
2
u

3

u
y

= u
1

+ zu
2

+ z
2
u

3

u
z

= u
z1

+ zu
z2

+ z
2
u

z3

u
x

= u
1

+ zu
2

u
y

= u
1

+ zu
2

u
z

= u
z1

+ zu
z2

+ z
2
u

z3

u
x

= u
1

+ zu
2

+ z
3
u

4

u
y

= u
1

+ zu
2

+ z
2
u

3
+ z

3
u

4

u
z

= u
z1

+ z
4
u

x5

u
x

= u
1

+ zu
2

+ z
3
u

4

u
y

= u
1

+ zu
2

+ z
3
u

4

u
z

= u
z1

u
x

= u
1

+ zu
2

+ z
2
u

3
+ z

3
u

4

u
y

= u
1

+ zu
2

+ z
2
u

3
+ z

3
u

4

u
z

= u
z1

(b) a/h = 10



Methods and guidelines for the choice of shell theories 53

Fig. 22 BTD for 90/0, R/a = 5, with seven and nine DOF models
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Tables

Table 1 Shell finite elements assessed

DOF uα1 uβ1 uz1 uα2 uβ2 uz2 uα3 uβ3 uz3 uα4 uβ4 uz4 uα5 uβ5 uz5
N=4 15 N N N N N N N N N N N N N N N
N=3 12 N N N N N N N N N N N N M M M
TSDT 9 N N N N N M N N M N N M M M M
N=2 9 N N N N N N N N N M M M M M M
PTD 7 N N N N N N M M N M M M M M M
FSDT 5 N N N N N M M M M M M M M M M

Table 2 0/90/0, a/h = 10, ω = ω
√

ρa4

h2ET
.

Model R/a = 2 R/a = 5 Plate
HSDT [28] - 12.060 11.790
FSDT [26] 13.382 12.372 12.162
CLT [184] 15.878 15.233 15.104
LD4 [201] 12.773 11.685 11.457
N=4 13.007 11.972 11.756

Table 3 BTD models for 0/90/0, R/a = 5, a/h = 100

DOF uα1 uβ1 uz1 uα2 uβ2 uz2 uα3 uβ3 uz3 uα4 uβ4 uz4 uα5 uβ5 uz5
15 N N N N N N N N N N N N N N N
14 N N N N N N N N N N N M N N N
13 N N N N N N N N N N N M N N M
12 N N N N N N N N N N N M M N M
11 N N N N N N N N N N N M M M M
10 N N N N N N M N N N N M M M M
9 N N N N N N M M N N N M M M M
8 N N N N N M M M N N N M M M M
7 N N N N N M M M N N M M M M M
6 N N N N N M M M M N M M M M M
5 N N N N N M M M M M M M M M M

RF0 = 1.00 RF1 = 0.88 RF2 = 0.61 RF3 = 0.58 RF4 = 0.27

Table 4 BTD models for 0/90/0, R/a = 5, a/h = 10

DOF uα1 uβ1 uz1 uα2 uβ2 uz2 uα3 uβ3 uz3 uα4 uβ4 uz4 uα5 uβ5 uz5
15 N N N N N N N N N N N N N N N
14 N N N N N N M N N N N N N N N
13 N N N N N N N N N N N M M N N
12 N N N N N N M N N N N M M N N
11 N N N N N N M N M N N M M N N
10 N N N N N M M N M N N M M N N
9 N N N N N M M N M N N M M M N
8 N N N N N M M M M N N M M M N
7 N N N N N M M M M N N M M M M
6 N N N N N M M M M N M M M M M
5 N N N M N M M M M N M M M M M

RF0 = 1.00 RF1 = 0.79 RF2 = 0.39 RF3 = 0.67 RF4 = 0.48
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Table 5 BTD models for 0/90/0, R/a = 5, a/h = 5

DOF uα1 uβ1 uz1 uα2 uβ2 uz2 uα3 uβ3 uz3 uα4 uβ4 uz4 uα5 uβ5 uz5
15 N N N N N N N N N N N N N N N
14 N N N N N N N N N N N N M N N
13 N N N N N N M N N N N N M N N
12 N N N N N M M N N N N N M N N
11 N N N N N M M N M N N N M N N
10 N N N N N M M N M N N M M N N
9 N N N N N M M N M N N M M N M
8 N N N N N M M N M N N M M M M
7 N N N N N M M M M N N M M M M
6 N N N N N M M M M N M M M M M
5 N N N M N M M M M N M M M M M

RF0 = 1.00 RF1 = 0.73 RF2 = 0.42 RF3 = 0.76 RF4 = 0.39

Table 6 BTD models for 0/90/0, R/a = 2, a/h = 10

DOF uα1 uβ1 uz1 uα2 uβ2 uz2 uα3 uβ3 uz3 uα4 uβ4 uz4 uα5 uβ5 uz5
15 N N N N N N N N N N N N N N N
14 N N N N N N N N N N N N M N N
13 N N N N N N M N N N N N M N N
12 N N N N N N M N N N N M M N N
11 N N N N N M M N N N N M M N N
10 N N N N N M M N M N N M M N N
9 N N N N N M M N M N N M M M N
8 N N N N N M M M M N N M M M N
7 N N N N N M M M M N N M M M M
6 N N N N N M M M M N M M M M M
5 N N N M N M M M M N M M M M M

RF0 = 1.00 RF1 = 0.76 RF2 = 0.42 RF3 = 0.70 RF4 = 0.45

Table 7 BTD models for 0/90/0, Plate, a/h = 10

DOF uα1 uβ1 uz1 uα2 uβ2 uz2 uα3 uβ3 uz3 uα4 uβ4 uz4 uα5 uβ5 uz5
15 N N N N N N N N N N N N N N N
14 N N N N N N N N N N N M N N N
13 N N N N N N N N N N N M M N N
12 N N N N N N M N N N N M M N N
11 N N N N N M M N N N N M M N N
10 N N N N N M M N N N N M M N M
9 N N N N N M M N M N N M M N M
8 N N N N N M M M M N N M M M N
7 N N N N N M M M M N N M M M M
6 N N N N N M M M M N M M M M M
5 N N N M N M M M M N M M M M M

RF0 = 1.00 RF1 = 0.73 RF2 = 0.49 RF3 = 0.64 RF4 = 0.45

Table 8 0/90/0, clamped-free, R/a = 10, ω = ω
√

ρa4

h2ET
.

Model a/h = 4 a/h = 20
LD4 [201] 7.094 23.505
N=4 7.250 24.144
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Table 9 BTD models for 0/90/0, clamped-free, R/a = 10, a/h = 20

DOF uα1 uβ1 uz1 uα2 uβ2 uz2 uα3 uβ3 uz3 uα4 uβ4 uz4 uα5 uβ5 uz5
15 N N N N N N N N N N N N N N N
14 N N N N N N N N N N N N N M N
13 N N N N N N M N N N N N N M N
12 N N N N N N M M N N N N N M N
11 N N N N N M M N N N N M M N N
10 N N N N N M M N N N N M M M N
9 N N N N N M M M N N N M M M N
8 N N N N N M M M N N N M M M M
7 N N N N N M M M M N N M M M M
6 N N N N N M M M M N M M M M M
5 N N N M N M M M M N M M M M M

RF0 = 1.00 RF1 = 0.76 RF2 = 0.45 RF3 = 0.73 RF4 = 0.40

Table 10 BTD models for 0/90/0, clamped-free, R/a = 10, a/h = 4

DOF uα1 uβ1 uz1 uα2 uβ2 uz2 uα3 uβ3 uz3 uα4 uβ4 uz4 uα5 uβ5 uz5
15 N N N N N N N N N N N N N N N
14 N N N N N N M N N N N N N N N
13 N N N N N N M N N N N N M N N
12 N N N N N N M N N N N N M N M
11 N N N N N N M N M N N M M N N
10 N N N N N N M N M N N M M N M
9 N N N N N M M N M N N M M N M
8 N N N N N M M N M N M M M N M
7 N N N M N M M N M N M M M N M
6 N N N M N M M N M N M M M M M
5 N N N M N M M M M N M M M M M

RF0 = 1.00 RF1 = 0.76 RF2 = 0.45 RF3 = 0.67 RF4 = 0.45

Table 11 90/0, ω = ω
√

ρa4

h2ET
.

Model R/a = 5 R/a = 20
a/h = 100

HSDT [28] 28.840 11.84
N=4 28.824 11.842

a/h = 10
HSDT [28] 9.377 8.999
N=4 9.269 8.967

Table 12 BTD models for 90/0, R/a = 5, a/h = 100

DOF uα1 uβ1 uz1 uα2 uβ2 uz2 uα3 uβ3 uz3 uα4 uβ4 uz4 uα5 uβ5 uz5
15 N N N N N N N N N N N N N N N
14 N N N N N N N N N N N M N N N
13 N N N N N N N N N N N M N M N
12 N N N N N N N N N N N M N M M
11 N N N N N N N M N N M M N N M
10 N N N N N N M N N N N M M M M
9 N N N N N N N M N M M M N M M
8 N N N N N N M M N N M M M M M
7 N N N N N M M M N M M N M M M
6 N N N N N M M M M M M M M M N
5 N N N N N M M M M M M M M M M

RF0 = 1.00 RF1 = 0.91 RF2 = 0.61 RF3 = 0.42 RF4 = 0.39
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Table 13 BTD models for 90/0, R/a = 5, a/h = 10

DOF uα1 uβ1 uz1 uα2 uβ2 uz2 uα3 uβ3 uz3 uα4 uβ4 uz4 uα5 uβ5 uz5
15 N N N N N N N N N N N N N N N
14 N N N N N N N N N N N N N N M
13 N N N N N M N N M N N N N N N
12 N N N N N M N N M N N M N N N
11 N N N N N M N N M N N M M N N
10 N N N N N M N N M N N M M M N
9 N N N N N M N N M N N M M M M
8 N N N N N M M N M N N M M M M
7 N N N N N M M M M N N M M M M
6 N N N N N M M M M N M M M M M
5 N N N N N M M M M M M M M M M

RF0 = 1.00 RF1 = 0.73 RF2 = 0.52 RF3 = 0.67 RF4 = 0.42

Table 14 BTD models for 90/0, R/a = 20, a/h = 100

DOF uα1 uβ1 uz1 uα2 uβ2 uz2 uα3 uβ3 uz3 uα4 uβ4 uz4 uα5 uβ5 uz5
15 N N N N N N N N N N N N N N N
14 N N N N N N N N N N N M N N N
13 N N N N N N N N N N M N N N M
12 N N N N N N N M N N N M N M N
11 N N N N N N N N N N M M M N M
10 N N N N N N N M N N N M M M M
9 N N N N N N N M N N M M M M M
8 N N N N N N M M N N M M M M M
7 N N N N N N M M N M M M M M M
6 N N N N N M M M N M M M M M M
5 N N N N N M M M M M M M M M M

RF0 = 1.00 RF1 = 0.94 RF2 = 0.64 RF3 = 0.42 RF4 = 0.33

Table 15 BTD models for 90/0, R/a = 20, a/h = 10

DOF uα1 uβ1 uz1 uα2 uβ2 uz2 uα3 uβ3 uz3 uα4 uβ4 uz4 uα5 uβ5 uz5
15 N N N N N N N N N N N N N N N
14 N N N N N N N N N N N N N N M
13 N N N N N N N N N N N M N N M
12 N N N N N M N N N N N M N N M
11 N N N N N M N N N N N M M N M
10 N N N N N M N N M N N M M M N
9 N N N N N M N N M N N M M M M
8 N N N N N M M N M N N M M M M
7 N N N N N M M N M M N M M M M
6 N N N N N M M M M N M M M M M
5 N N N N N M M M M M M M M M M

RF0 = 1.00 RF1 = 0.76 RF2 = 0.64 RF3 = 0.61 RF4 = 0.33

Table 16 Overview of FE and NN computational costs to obtain BTD.

Process Analyses Cost
BTD via FE 215 eigenvalue problems 1
Data training generation 215/10 eigenvalue problems 0.1
Training of NN One layer with ten neurons 0.02
BTD via NN 215 queries to NN 0.001


