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Abstract

We consider modeling of angular or directional data viewed as a linear variable wrapped onto
a unit circle. In particular, we focus on the spatio-temporal context, motivated by a collection
of wave directions obtained as computer model output developed dynamically over a collection of
spatial locations. We propose a novel wrapped skew Gaussian process which enriches the class of
wrapped Gaussian process. The wrapped skew Gaussian process enables more flexible marginal
distributions than the symmetric ones arising under the wrapped Gaussian process and it allows
straightforward interpretation of parameters. We clarify that replication through time enables
criticism of the wrapped process in favor of the wrapped skew process.
We formulate a hierarchical model incorporating this process and show how to introduce appro-
priate latent variables in order to enable efficient fitting to dynamic spatial directional data. We
also show how to implement kriging and forecasting under this model. We provide a simulation
example as a proof of concept as well as a real data example. Both examples reveal consequential
improvement in predictive performance for the wrapped skew Gaussian specification compared
with the earlier wrapped Gaussian version.

Keywords: Directional data Hierarchical model Kriging Markov chain Monte Carlo Space-
time data Wave directions

1 Introduction

There is increasing interest in analyzing directional data which are collected over space and time.
Examples arise, for instance, in oceanography (wave directions), meteorology (wind directions), biology
(study of animal movement). They also arise from periodic data, e.g., event times might be wrapped
according to a daily period to give a circular view (eliminating end effects). We wrap time around a
circle by a modulus transformation and, without loss of generality, can rescale to degrees or angles on
a unit circle. Time wrapping with spatial data occurs naturally in applications such as locations and
times of crime events, locations and times of automobile accidents, and residence address with time of
admission for hospitalizations.

Jona Lasinio et al (2012) introduced a Bayesian hierarchical model to handle angular data, enabling
full inference regarding all model parameters and prediction under the model. Their context was
multivariate directional observations arising as angular data measurements taken at spatial locations,
anticipating structured dependence between these measurements. They proposed the wrapped spatial
Gaussian process, induced from a linear spatial Gaussian process. They explored dependence structure
and showed how to implement kriging of mean directions and concentrations in this setting.

The current state of the art for modeling circular space-time data includes the wrapped Gaussian
process and the projected Gaussian process. The second, although more flexible, is based upon a four
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parameter model such that complex interactions among the parameters make interpretation difficult.
In this paper our contribution is to overcome a key limitation of the wrapped Gaussian process, that
the marginal distributions at all locations are symmetric. Here we introduce the wrapped skew Gaus-
sian process. This new circular process allows for asymmetric marginal distributions while retaining
straightforward parametric interpretation. Our wrapping approach is developed from the skew normal
distribution proposed by Azzalini (1985) and the process extension constructed by Zhang et al (2010)

By now, there is a fairly rich literature on skew multivariate normal models (Azzalini, 2005; Sahu
et al, 2003; Ma and Genton, 2004; Wang et al, 2004) but all are inline, i.e., on a linear scale. The first
attempt to wrap the skew normal distribution for circular data can be found in Pewsey (2000) where
its basic properties are derived. Follow-on work appears in Pewsey (2006); Hernández-Sánchez and
Scarpa (2012).

To our knowledge, we propose the first extension to multivariate wrapped skew distributions, in
particular, to a spatial and spatio-temporal setting. In what follows we review the univariate wrapped
skew normal distribution, showing the flexibility of shapes and do the same for bivariate wrapped skew
normal distributions. Then, we turn to a hierarchical model for dynamic spatial data and show how,
using suitable latent variables, to fit it efficiently. We also show how to implement kriging under this
model.

A critical point emerges: though we can fit both models with a single sample of spatially referenced
directions, in terms of kriging performance, we can not criticize the wrapped spatial Gaussian process
in favor of the wrapped skew spatial Gaussian process. This is not surprising. Consider the linear
situation. With a single sample of data from a set of locations, it is difficult to criticize the Gaussian
process in favor of a more complex stochastic process specification, i.e., it is difficult to criticize a
multivariate normal model with a single sample of multivariate data. However, with replicates, we are
able to demonstrate substantially improved predictive performance for the wrapped skew Gaussian
process. We do this both with simulated data, as a proof of concept, and with real data, making direct
comparison. In our setting replicates arise through a dynamic spatial data where we envision i.i.d.
spatial increment processes.

Inference for spatial data is challenging due to the restriction of support to the unit circle, [0, 2π),
and to the sensitivity of descriptive and inferential results to the starting point on the circle. There
exists a substantial early literature on circular data (see e.g. Mardia (1972) and Mardia and Jupp
(1999), Jammalamadaka and SenGupta (2001) or Fisher (1996)) primarily confined to descriptive
statistics and limited inference for simple univariate models.

Computational procedures such as MCMC methods and the EM algorithm, have substantially
advanced inference opportunities for directional data. Some examples include linear models (Harrison
and Kanji, 1988; Fisher, 1996; Kato and Shimizu, 2008), linear models in a Bayesian context (Guttorp
and Lockhart, 1988; Damien and Walker, 1999), models for circular time series (Breckling, 1989;
Coles, 1998; Mardia and Jupp, 1999; Ravindran and Ghosh, 2011; Hughes, 2007; Fisher and Lee, 1992;
Holzmann et al, 2006) or model for space-time circular-linear data (Lagona et al, 2015). Recently,
Kato (2010), building upon earlier work (Kato et al, 2008), proposed a discrete time Markov process
for circular data. He uses the Möbius circle transformation, connecting it with an early Markov process
model of Fisher and Lee (1994).

With regard to multivariate theory for circular data, particularly in the fully Bayesian setting, the
work of Coles (1998) is foundational for ours. He also employs wrapped distributions, noting that,
in the Gaussian case, they can be readily given a multivariate extension. Coles mostly works with
independent replicates of multivariate circular data in low dimension with an unknown covariance
matrix and develops some theory and examples for the time series setting. He mentions possible
extensions to the spatial setting but offers no development, in particular, no thoughts on regression or
kriging (Sections 3.5 and 3.6 below). Coles and Casson (1998) include spatial dependence in looking
at the direction of maximum wind speed. With little detail, they propose conditionally independent
directions modeled with a von Mises distribution, introducing spatial structure in the modal direction
and concentration parameters, a second stage specification. Our view, again following Jona Lasinio
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et al (2012), is to introduce spatial structure at the first stage of the modeling, directly on the angular
variables, resulting in a spatial process model with smooth process realizations.

Following a different strand, the projected normal and the associated projected Gaussian process
(Wang and Gelfand, 2013, 2014) have generated recent interest. In particular, a general bivariate
normal distribution is projected to an angle, extending work of Presnell et al (1998) and Nuñez-
Antonio and Gutiérrez-Peña (2005). The extension to a stochastic process for variables on the circle
over a continuous spatial domain, the projected Gaussian process, is induced from a linear bivariate
spatial Gaussian process. The projected Gaussian process has marginal distributions that can be
asymmetric, possibly bimodal, an advantage over the wrapped Gaussian process. Wang and Gelfand
(2014) also investigate properties of this process, including the nature of joint distributions for pairs
of directions at different locations. Working within a hierarchical Bayesian framework, they show that
model fitting is straightforward using suitable latent variable augmentation in the context of Markov
chain Monte Carlo (MCMC). In very recent work, Mastrantonio et al (2015) offer comparison between
the wrapping and the projection modeling approaches.

We remark that we have explored the possibility of introducing skewness into the projected Gaussian
process. The overall process model is induced by a bivariate skewed Gaussian process. This is a more
challenging process to work with; the resulting directional process model is extremely messy and has
proved very difficult to fit. It likely exceeds what the data is capable of supporting. We do not discuss
it further.

Our motivating example is drawn from marine data. Wave heights and outgoing wave directions,
the latter being measured in degrees relative to a fixed orientation, are the main outputs of marine
forecasts. Numerical models for weather and marine forecasts need statistical post-processing. Wave
directions, being angular variables, cannot be treated through standard post-processing techniques (see
Engel and Ebert, 2007; Bao et al, 2009, and references therein). In Bao et al (2009) bias correction and
ensemble calibration forecasts of surface wind direction are proposed. The authors use circular-circular
regression as in Kato et al (2008) for bias correction and Bayesian model averaging with the von Mises
distribution for ensemble calibration. However, their approach does not explicitly account for spatial
structure.

Lastly, it is worth commenting that, in our setting, wave direction data is viewed differently from
wind direction data. The former is only available as an angle while the latter is customarily associated
with wind speed, emerging as the resultant of North-South and East-West wind speed components.

The format of the paper is as follows. In Section 2 we review, develop and illustrate the univariate
wrapped skew normal distribution. Section 3 extends to the wrapped skew Gaussian process, including
distribution theory, model fitting, and kriging. Section 4 provides the dynamic version which we then
pursue through simulation in Section 5 and a wave direction data analysis in Section 6. Section 7 offers
a brief summary and some future research possibilities.

2 The wrapped skew normal

2.1 The univariate case

We begin with the univariate wrapped skew normal distribution. Let X and W be two independent
standard normal variables, let σ2 ∈ R+ and λ ∈ R. Then, the random variable

Z = µ+
σλ√

1 + λ2
|X|+ σ√

1 + λ2
W − σλ

√
2√

π(1 + λ2)
(1)

is said to be distributed as a skew normal variable (Azzalini, 1985) with parameters µ, σ2 and λ; i.e.,
Z|Ψ ∼ SN(µ, σ2, λ), where Ψ denotes the vector of parameters. Let φ(·) and Φ(·) be the probability
density function (pdf) and the cumulative density function (cdf), respectively, of a standard normal.
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Then, the pdf of Z|Ψ is

2

σ
φ

z − µ+ σλ
√

2√
π(1+λ2)

σ

Φ

λ
z − µ+ σλ

√
2√

π(1+λ2)

σ




and from (1) we can easily derive the mean and the variance of Z, respectively. They are µ (the
definition in (1) was made in order to center Z at µ) and

σ2λ2/(1 + λ2) (1− 2/π) + σ2/(1 + λ2).

With the transformation

Θ = Z mod 2π, implying Θ ∈ [0, 2π), (2)

we obtain a random variable with support on the unit circle. We can express the inline variable as Z =
Θ + 2πK, where K, the winding number, assumes values in Z = {0,±1,±2, ...}. The transformation
(2) defines what is called a wrapped skew normal (WSN) distribution, as introduced in Pewsey (2000).
It wraps the skew normal distribution, defined on the real line, onto the unit circle. Details on the
wrapping approach can be found in Jammalamadaka and SenGupta (2001) or Mardia and Jupp (1999).

The pdf of Θ|Ψ is

∑
k∈Z

2

σ
φ

θ + 2πk − µ+ σλ
√

2√
π(1+λ2)

σ


× Φ

λ
θ + 2πk − µ+ σλ

√
2√

π(1+λ2)

σ


 . (3)

The infinite sum in (3) is impossible to evaluate but, to display the density, as with the wrapped
normal case, we can obtain an accurate approximation by appropriately truncating the sum. Figure 1
illustrates the effect of introduction of skewness into the wrapped normal density. To obtain a sample
from a wrapped skew normal we first obtain a sample from the skew normal and then transform it to
a circular variable via (2). Also, note that, if we let K be a random variable, the density inside the
sum in (3) is the joint density of (Θ,K|Ψ) whence, we marginalize over K to obtain the density of the
circular variable.

Pewsey (2000) gives the fundamental properties of the WSN along with closed forms for the cosine

and sine moments. Let µ∗ = µ − σλ
√

2√
π(1+λ2)

and J (a) =
∫ a

0

√
2
π exp

(
u2

2

)
du the cosine and sine

moments become

αp = E(cos pΘ|Ψ) = exp

(
−p

2σ2

2

)
×
(

cos(pµ∗)− J
(

λσp√
1 + λ2

)
sin(pµ∗)

)
(4)

and

βp = E(sin pΘ|Ψ) = exp

(
−p

2σ2

2

)
×
(

sin(pµ∗) + J
(

λσp√
1 + λ2

)
cos(pµ∗)

)
. (5)
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Figure 1: Densities of the wrapped skew normal (solid line) with µ = π, σ2 = 1 and different values
of λ along with the associated densities of the wrapped normal (dashed line) having the same circular
mean and variance

(a) λ = 3 (b) λ = 10

(c) λ = −10

The trigonometric moments (4) and (5) are useful to compute the circular mean of Θ, µ̃ = atan∗ α1

β1

1,

and the circular concentration, c̃ =
√
α2

1 + β2
1 . However, unfortunately we need to compute J (·),

which is not available in closed form. Pewsey (2000) suggests to use deterministic numerical integration
methods but we note that αp and βp can be computed using Monte Carlo approximation.

Indeed, from (1) we can see that

Z|X,Ψ ∼ N

(
µ+

σλ√
1 + λ2

|X| − σλ
√

2√
π(1 + λ2)

,
σ2

1 + λ2

)
(6)

and as a consequence

Θ|X,Ψ ∼WN

(
µ+

σλ√
1 + λ2

|X| − σλ
√

2√
π(1 + λ2)

,
σ2

1 + λ2

)
, (7)

where WN(·) indicates the wrapped normal distribution. Let {Xb}Bb=1 be a set of B samples from the
distribution ofX. Then, we can write the cosine moments as αp = E(cos pΘ|Ψ) = EX|ΨEΘ|X,Ψ(cos pΘ|X,Ψ),
since EΘ|X,Ψ(cos pΘ|X,Ψ) is the cosine moment of Θ|X,Ψ. Following Jona Lasinio et al (2012), a
Monte Carlo approximation of αp is

α̂p ≈
exp

(
−p2 σ2

2(1+λ2)

)
B

×
B∑
b=1

cos

(
p

(
µ+

σλ√
1 + λ2

|X| − σλ
√

2√
π(1 + λ2)

))
.

1For the definition of atan∗ see Jammalamadaka and SenGupta (2001), p. 13
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Similarly, we find

β̂p ≈
exp

(
−p2 σ2

2(1+λ2)

)
B

×
B∑
b=1

sin

(
p

(
µ+

σλ√
1 + λ2

|X| − σλ
√

2√
π(1 + λ2)

))

and then ˆ̃µ = atan∗ α̂1

β̂1
and ˆ̃c =

√
α̂2

1 + β̂2
1 .

2.2 The bivariate case

Let Z1 and Z2 be two random variables skew normal distributed with, respectively, parameters
(µ1, σ

2
1 , λ1) and (µ2, σ

2
2 , λ2):

Z1 = µ1 +
σ1λ1√
1 + λ2

1

|X1|+
σ1√

1 + λ2
1

W1 −
σ1λ1

√
2√

π(1 + λ2
1)
,

Z2 = µ2 +
σ2λ2√
1 + λ2

2

|X2|+
σ2√

1 + λ2
2

W2 −
σ2λ2

√
2√

π(1 + λ2
2)
.

We introduce dependence between Z1 and Z2 by letting Cor(X1, X2|Ψ) = ρx and Cor(W1,W2|Ψ) =
ρw. Then, we say that (Z1, Z2|Ψ) is distributed as a bivariate skew normal with the additional
parameters, ρx and ρw. This specification of the bivariate skew normal, due to Zhang and El-Shaarawi
(2010), differs from the one that can be derived using the multivariate normal of Azzalini and Valle
(1996) and it is more suitable to built a stationary process, see Section 3.

Using the transformation (2) we can obtain the circular variables Θ1 = Z1 mod 2π and Θ2 =
Z2 mod 2π associated with (Z1, Z2). The parameters ρx and ρw govern the dependence between Θ1

and Θ2 and if both are 0, Θ1 and Θ2 are independent as with the associated linear variables.
Let g(·|Ψ) be the density of (Z1, Z2|Ψ)′, let K = (K1,K2)′ be the vector of winding numbers and

Θ = (Θ1,Θ2)′, with Z = Θ + 2πK. As in the univariate case, we obtain the density of Θ, a bivariate
wrapped skew normal, through marginalization over K of the joint density of (Θ,K|Ψ):

f(θ|Ψ) =
∑
k1∈Z

∑
k2∈Z

g(θ + 2πk|Ψ).

In Figure 2 we show plots of the bivariate wrapped skew normal distributions.

3 The wrapped skew Gaussian process

A natural way to construct a wrapped skew Gaussian process Θ(s), s ∈ Rd is to start from a skew
Gaussian process Z(s) on the line and define, for each s, Θ(s) = Z(s) mod 2π, following the approach
of Jona Lasinio et al (2012). To capture stationarity we use the following stationary skew Gaussian
process, proposed by Zhang and El-Shaarawi (2010):

Z(s) = µ+
σλ√

1 + λ2
|X(s)|+ σ√

1 + λ2
W (s)− σλ

√
2√

π(1 + λ2)
. (8)

Here, X(s) andW (s) are independent zero mean Gaussian process with isotropic parametric correlation
functions, ρx(h;ψx) and ρw(h;ψw), respectively.

The process in (8) is not the only stationary skew Gaussian process proposed in the literature. How-
ever, Minozzo and Ferracuti (2012) point out that most of them are in fact not stationary. For example
Kim and Mallick (2004) or Allard and Naveau (2007) built stochastic skew normal processes where
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Figure 2: Bivariate densities of the wrapped skew normal with µ = π, σ2 = 1, λ = 3 in the first column
and λ = 10 in the second column and several values of ρx and ρw.

(a) ρx = 0.2 and ρw = 0.2 (b) ρx = 0.2 and ρw = 0.2

(c) ρx = 0.2 and ρw = 0.8 (d) ρx = 0.8 and ρw = 0.2

the n−finite dimensional distributions have, as special case, the multivariate skew normal of Azzalini
and Capitanio (1999). But, the class of multivariate skew normal of Azzalini and Capitanio (1999)
is not closed under marginalization. Each marginal is still a skew normal but not of the same form,
and Minozzo and Ferracuti (2012) demonstrate that the stationarity property of an n−dimensional
finite distribution in this case is not passed onto the marginals. Note that if in (8) we let the process
X(s) to be spatially constant, i.e. X(s) ≡ X, the associated n−finite dimensional distributions are
the Azzalini and Capitanio (1999)’s multivariate skew normal and then, from above, the process is not
stationary. On the other hand, if the process W (s) is spatially constant, it is easy to demonstrate that
(8) can be written as

Z(s) = µ+
σλ√

1 + λ2
|X∗(s)| − σλ

√
2√

π(1 + λ2)
,

where X∗(s) is a process with finite dimensional distributions that are a mixture of folded normal
with mode at 0 and covariance matrix that depends on the covariance matrix of X(s) and on the
parameters σ2 and λ. As a consequence the resulting process is not a skew Gaussian process.

The correlation in each of the X(s) and W (s) processes induces association for the Θ(s) process.
However, because circular variables have no magnitude (they only acquire a numerical value given an
orientation), there is no unique way to define the correlation between two circular variables Θ(s) and
Θ(s′). A common choice, which exhibits most of the desirable properties of a correlation, is the one
proposed by Jammalamadaka and Sarma (1988), that is,

E[cos(Θ(s)−Θ(s′)|Ψ)− cos(Θ(s) + Θ(s′) + 2µ̃|Ψ)]

2
√
E(sin2(Θ(s)− µ̃)|Ψ)E(sin2(Θ(s′)− µ̃)|Ψ)

. (9)
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Figure 3: Correlation functions for the inline (empty symbols) and circular (solid symbols) process
with σ2 = 1, δ = 0.95 and exponential correlation function for the processes X(s) and W (s) with
respectively decays parameters 0.5 and 0.5 (circle), 0.5 and 0.2 (triangle), 0.2 and 0.5 (rhombus), 0.2
and 0.2 (square)

In our setting (9) is not a valid correlation function; it is not a positive definite function. Moreover,
we cannot compute (9) in closed form but, again, we can resort to Monte Carlo approximation. Figure
3 provides an illustrative display of the inline and corresponding circular correlations arising from the
exponential correlation functions ρx(h;ψx) = exp(−hψx) and ρw(h;ψw) = exp(−hψw).

3.1 Implementation and Kriging

Working directly with the wrapped skew Gaussian process is not feasible since the likelihood for a
n−dimensional realization of the circular process involves n doubly infinite sums, i.e. let Θ = (Θ(s1),
Θ(s2), . . . ,Θ(sn))′ and K = (K(s1), K(s2), . . . ,K(sn))′, the density of Θ|ψ is

f(θ|Ψ) =
∑
k1∈Z

∑
k2∈Z
· · ·
∑
kn∈Z

g(θ + 2πk|Ψ),

where g(·|Ψ) is the density of Z = Θ + 2πK, the realization of the skew Gaussian process. When
dealing with wrapped distributions the winding numbers are treated as latent random variables (see
Jona Lasinio et al, 2012; Coles, 1998, for details and ideas). Hence, the joint distribution of the
circular variables and the winding numbers coincides with the joint distribution of the associated
linear variables, i.e., g(·|Ψ), and we can work directly with the process Z(s).
A critical point is the following. To simplify the model fitting, recalling (6) and (7) and extending
them to n−variate random variables, Z|X,Ψ is normal, hence the process Z(s)|X(s),Ψ is Gaussian
and Θ(s)|X(s),Ψ is wrapped Gaussian. This implies that, in the model fitting, if we further introduce
the realization of the latent Gaussian process, X(s), along with the set of winding numbers, the K(si)s,
then the MCMC implementation follows directly from the work of Jona Lasinio et al (2012) on the
wrapped Gaussian process.
In this setting, kriging is straightforward. More precisely, let s0 be the spatial location where we
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want to predict the circular process and let X = (X(s1), X(s2), . . . , X(sn))′. As is customary in the
Bayesian framework, to perform kriging we draw samples from the predictive distribution of Θ(s0)|Θ:

f(Θ(s0)|Θ) =
∑

K∈Zn

∫
Ψ

f(Θ(s0)|X(s0),X,K,Ψ,Θ)×

f(X(s0)|X,Ψ)f(X,K,Ψ|Θ)dΨ. (10)

Let Ψb, Xb and Kb be the bth sample from the posterior distribution f(X,K,Ψ|Θ). We can sample
from (10) with composition sampling. That is, if for each posterior sample we simulate Xb(s0) from
the distribution X(s0)|Xb,Ψb and Θb(s0) from the distribution Θ(s0)|Xb(s0), Xb,Kb, Ψb,Θ, then
each Θb(s0) can be considered as a sample from (10).
We can easily simulate Xb(s0) since X(s0),Xb|Ψb is Gaussian and then X(s0)|Xb,Ψb is univariate
normal with mean and covariance that can be derived using standard results. If we simulate Zb(s0)
from Z(s0)|Zb, Xb(s0),Xb,Ψb, where Zb = Θ + 2πKb, we can immediately obtain Θb(s0) as Θb(s0) =
Zb(s0) mod 2π, that is a sample from Θ(s0)|Xb(s0), Xb,Kb,Ψb,Θ. Remark that to obtain a sample
of Zb(s0) is really easy since(

Z(s0)
Z

)
|X, X(s0),Ψ ∼

N

(
µ∗ + σλ√

1+λ2
|X(s0)|

µ∗1n + σλ√
1+λ2
|X| ,

σ2

1 + λ2

(
1 ρ′0,w
ρ0,w Υ

))

where 1n is a vector of 1s of dimension n, (Υ)ij = ρw(||si− sj ||;ψw) and (ρ0,w)i = ρw(||si− s0||;ψw).

Then the distribution of Z(s0)|Zb, Xb(s0),Xb,Ψb is normal.

4 A dynamic extension of the wrapped skew Gaussian process

We extend our model to the dynamic setting following ideas in Banerjee et al (2014). We start by
specifying an inline process Zt(s), t ∈ [1, . . . , T ], as

Z1(s) = µ+
σλ√

1 + λ2
|X1(s)|

+
σ√

1 + λ2
W1(s)− σλ

√
2√

π(1 + λ2)
, (11)

Zt(s) = µ+ γ(Zt−1(s)− µ) +
σλ√

1 + λ2
|Xt(s)|

+
σ√

1 + λ2
Wt(s)− σλ

√
2√

π(1 + λ2)
, t 6= 1, (12)

where γ ∈ [−1, 1], ∀t we have Xt(s)|Ψ ∼ GP (0,ρx(h;ψx)), Wt(s)|Ψ ∼ GP (0,ρw(h;ψw)) and
Cov(Xt(s), Xt′(s

′)|Ψ) = Cov(Wt(s),Wt′(s
′)|Ψ) = 0 if t 6= t′. Expressions (11) and (12) provide a

mean-centered, first order auto-regressive model with i.i.d. process increments. Moreover, the pro-
cess increments are skew GP’s with parameters σ, λ, ρx, ρw. Equivalently, we see that Z1(s)|Ψ ∼
SGP (µ, σ2, λ) and Zt(s)|Zt−1(s),Ψ ∼ SGP (µ+ γ(Zt−1(s)− µ), σ2, λ).

Under the dynamic spatial setting, we are generally interested in predicting the process (i) at an
observed spatial location at time T + h, h ∈ Z+ (usually h = 1) or (ii) at an unobserved spatial
location s0 inside the observed time window. Suppose we let µb, (σ2)b, λb and γb be the samples of
the parameters of the bth iteration of the MCMC algorithm, (µ∗)b = µb − σbλb

√
2/
√
π(1 + (λb)2),

Xb
t (s) and Kb

t (s) the bth realization of the processes Xt(s) and Kt(s) at site s and time t and Zbt (s) =

9



Xt(s) + 2πKb
t (s). B samples from the predictive distribution ΘT+h(s)|Θ, where Θ is the observed

circular data, can be obtained if, for each MCMC sample, we draw a value ZbT+h(s) from a normal
distribution with mean

(µ∗)b + (γb)h(ZbT (s)− µb) +
σbλb√

1− (λb)2
|Xb

T+h(s)|

and variance
(σ2)b

1− (λb)2
.

The set {Θb
T+1(s)}Bb=1 is from the desired predictive distribution.

To obtain the bth posterior sample of the predictive distribution of Θt(s0)|Θ we adopt the usual
composition sampling by first samplingXb

t (s0) from the distribution ofXt(s0)|X,Ψb and then sampling
Zbt (s0) from Zt(s0)|Z,X, Xb

t (s0),Ψb. Finally, Θb
t(s0) = Zbt (s0) mod 2π is a draw from the predictive

distribution Θt(s0)|Θ.
The distribution of Zt(s0),Z|X, Xb

t (s0),Ψb is again multivariate normal and for spatial loca-
tions si, i = 1, 2, ..., n, let Zt = (Zt(s1), Zt(s2), . . . , Zt(sn))′, Z = (Z1,Z2, . . . ,ZT )′ and X be the
associated realization of the process X(s). Let Γ be a T × T correlation matrix with i, jth el-
ement equal to γ|i−j|, Γl be the lower triangular part of Γ and C be the correlation matrix of
Wt = (Wt(s1),Wt(s2), . . . ,Wt(sn))′. Let D be a vector of length n with ith element equal to
Cor(Wt(s0),W (si)), Ft be a vector of length T with ith element equal to γ|t−i|, In be the identity
matrix of dimension n and let ⊗ indicates the Kronecker product. Altogether, we have that(

Zt(s0)
Z

)
|X, Xt(s0),Ψ ∼

N

(
µ∗ + σλ√

1−λ2
|Xt(s0)|

δ
,

σ2

1− λ2

(
1 (Ft ⊗D)′

Ft ⊗D Γ⊗C

))
where

δ = µ1nT + σλ/
√

1− λ2 (Γl ⊗ In) |X|

− σλ
√

2/
√
π(1 + λ2) (Γl ⊗ In) 1nT .

Here, again Zt(s0)|Z,X, Xb
t (s0),Ψb is univariate normal and sampling from it is easy.

5 A brief simulation study

We fit and estimate the model proposed in Section 4 to 8 datasets simulated with µ = π, σ2 = 1
and 4 levels of the skew parameter λ = {0.0, 1.5, 3, 10}. For the AR(1) parameter we chose γ = 0.5;
we experimented with several values of γ ∈ (0, 1) obtaining similar results, so we report estimates
using the central value of the interval. We work with 2 sample sizes, 110 spatial locations and 60
time points, (N = n × T = 110 × 60), 220 spatial locations and 60 time points, N = 220 × 60), to
assess whether there are differences in the parameter estimates when the sample size increases. The
coordinates are uniformly generated over [0, 10]2 and for both processes, Xt(s) and Wt(s), we adopt
exponential correlation functions. We choose ψx = 0.5 and ψw = 0.2 and notice that, as λ varies, we
obtain different spatial correlations as shown in Figure 4.

The model is estimated with 90% of the spatial locations, i.e. 100 for the first sample size and
200 for the second, using the first 50 time points. Therefore, the training set is made of 100 × 50
and 200 × 50 points. We select observations using simple random sampling on the spatial locations
(probability of inclusion in the training set 1/n). The remaining spatial locations and 10 final time
points are used to define two types of validation sets: (i) prediction at observed times, i.e. we use
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Figure 4: Spatial correlation functions for the simulated datasets: circles are associated to Data1
(λ = 0), triangles to Data2 (λ = 1.5), diamonds to Data3 (λ = 3) and squares to Data4 (λ = 10).

observations between time 1 and time 50 not used to estimate the models. To simplify we call this set
the spatial validation set ; (ii) prediction at unobserved times, i.e. we use observations from time 51 to
time 60 at spatial locations used to estimate the models. We call this set the temporal validation set.
We repeat the sampling procedure 40 times.

As prior distributions we use µ ∼ U(0, 2π), γ ∼ U(−1, 1), ψx ∼ U(0.1, 1) and ψw ∼ U(0.1, 1).
To choose the prior on σ2 and λ we note that, as for the wrapped Normal case (Jona Lasinio et al,
2012), if the variance of the associated inline distribution increases we are unable to tell the difference
between the wrapped skew normal and a circular uniform. As we noted in Section 2.1, the variance of
the skew normal is

σ2λ2/(1 + λ2) (1− 2/π) + σ2/(1 + λ2),

i.e., it is a function of both σ2 and λ. In this regard, when σ2 = 10, with sample size of 200,
independently of λ, the Rayleigh test of (circular) uniformity fails to discriminate between the wrapped
skew normal and the circular uniform. So, we chose σ2 ∼ U(0, 10) and a weak informative prior for λ,
λ ∼ N(0, 100).

For each dataset we also fit a wrapped normal model (setting λ = 0) and we compare the models
with regard to posterior point estimates and predictive ability. The predictive ability of the models is
evaluated by computing the continuous rank probability score (CRPS) for circular variables (Grimit
et al, 2006). The CRPS is a proper scoring rules defined, for circular variables, as

CRPS(F, ξ) = E(d(Ξ, ξ))− 1

2
E(d(Ξ,Ξ∗)), (13)

where F is the predictive distribution, ξ is the holdout value, Ξ and Ξ∗ are independent copies of a
circular variable with distribution F , and d(Ξ,Ξ∗) = 1− cos(Ξ−Ξ∗), the circular distance (Jammala-
madaka and SenGupta, 2001, p. 15). Exact calculation of (13) is not possible since we can not obtain
the predictive distribution under the skew or the non skew Gaussian process in closed form. However,
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n = 110
Data1 (λ = 0) Data2 (λ = 1.5) Data3 (λ = 3) Data4 (λ = 10)

µ̂ 3.03 3.365 3.217 3.109
C.I. (2.762 3.321) (3.205 3.533) (3.106 3.334) (3.044 3.177)
σ̂2 1.715 1.213 1.061 0.962

C.I. (1.390 2.186) (1.080 1.388) (0.976 1.177) (0.888 1.046)

λ̂ 0.931 1.690 3.278 9.864
C.I. (0.689 1.275) (1.498 1.924) (2.881 3.716) (8.572 11.282)
γ̂ 0.388 0.446 0.499 0.488

C.I. (0.35 0.42) (0.421 0.470) (0.479 0.518) (0.475 0.502)

ψ̂x 0.234 0.399 0.472 0.528
C.I. (0.139 0.483) (0.332 0.473) (0.413 0.528) (0.475 0.589)

ψ̂w 0.144 0.254 0.191 0.210
C.I. (0.109 0.186) (0.195 0.318) (0.141 0.251) (0.137 0.307)

n = 220
Data1 (λ = 0) Data2 (λ = 1.5) Data3 (λ = 3) Data4 (λ = 10)

µ̂ 2.981 3.353 3.209 3.094
C.I. (2.713 3.261) (3.209 3.504) (3.067 3.346) (3.031 3.161)
σ̂2 1.448 1.087 1.097 0.956

C.I. (1.266 1.701) (0.994 1.196) (1.005 1.211) (0.887 1.034)

λ̂ -0.716 1.383 2.501 9.619
C.I. (-0.869 -0.589) (1.242 1.532) (2.227 2.777) (8.449 10.771)
γ̂ 0.370 0.436 0.488 0.499

C.I. (0.349 0.390) (0.418 0.452) (0.474 0.503) (0.490 0.507)

ψ̂x 0.430 0.558 0.500 0.511
C.I. (0.323 0.625) (0.485 0.639) (0.444 0.558) (0.467 0.555)

ψ̂w 0.152 0.286 0.192 0.152
C.I. (0.119 0.186) (0.235 0.340) (0.143 0.245) (0.112 0.212)

Table 1: Parameter estimates (mean) and credible intervals (C.I.) for the wrapped skew Gaussian
model in the 4 simulated datasets

for the validation point θt(s0) we can compute a Monte Carlo approximation as

1

B

B∑
b=1

d(θbt (s0), θt(s0))− 1

2B2

B∑
l=1

B∑
b=1

d(θlt(s0), θbt (s0))

where θbt (s0) denotes the simulated value of θt(s0) using the bth posterior parameters and B is the
total number of posterior samples.

As an example, in Tables 1 and 2 we present the posterior mean estimates and credible intervals for
all the parameters in all simulated datasets using one training set, i.e. the same locations and times
for each dataset. For the fourth dataset and for both sample sizes, the skew model well estimates
the parameters (the true value is inside the credible interval (C.I.)). In the first dataset λ is far
from 0. The wrapped skew normal process shows a substantial gain relative to the wrapped Gaussian
process in terms of predictive ability for locations inside the observed time windows, even if the true
model used to simulate the data is the wrapped Gaussian (Data1), see Table 3. As for forecasting
(temporal validation set), we see that there is no difference between the models in terms of CPRS.
Illustrative comparison of the predictive distributions under the two models can be seen in Figure 5.
As we expect,in the fourth dataset the predictive distribution is highly skewed while, in the first, it is
essentially symmetric.
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n = 110
Data1 (λ = 0) Data2 (λ = 1.5) Data3 (λ = 3) Data4 (λ = 10)

µ̂ 2.986 3.313 3.208 3.138
C.I. (2.752 3.222) (3.211 3.409) (3.123 3.290) (3.082 3.199)
σ̂2 1.141 0.596 0.465 0.369

C.I. (0.993 1.340) (0.556 0.645) (0.438 0.497) (0.35 0.39)
γ̂ 0.415 0.417 0.489 0.488

C.I. (0.388 0.441) (0.392 0.441) (0.465 0.514) (0.463 0.514)

ψ̂w 0.225 0.67 0.796 1.182
C.I. (0.189 0.261) (0.611 0.726) (0.731 0.862) (1.099 1.265)

n = 220
Data1 (λ = 0) Data2 (λ = 1.5) Data3 (λ = 3) Data4 (λ = 10)

µ̂ 3.023 3.308 3.181 3.143
C.I. (2.833 3.210) (3.216 3.403) (3.103 3.254) (3.090 3.205)
σ̂2 1.061 0.602 0.473 0.370

C.I. (0.937 1.209) (0.564 0.647) (0.449 0.501) (0.354 0.390)
γ̂ 0.365 0.426 0.468 0.503

C.I. (0.346 0.384) (0.407 0.444) (0.452 0.487) (0.486 0.519)

ψ̂w 0.273 0.678 0.867 1.152
C.I. (0.237 0.309) (0.626 0.730) (0.809 0.923) (1.081 1.218)

Table 2: Parameter estimates (mean) and credible intervals (C.I.) for the wrapped Gaussian model in
the 4 simulated datasets

Spatial
Data1 Data2 Data3 Data4

n=110 WS 0.173 0.146 0.118 0.116
W 0.221 0.179 0.176 0.160

n=220 WS 0.170 0.149 0.116 0.091
W 0.205 0.179 0.168 0.148

Temporal
Data1 Data2 Data3 Data4

n=110 WS 0.348 0.266 0.188 0.181
W 0.349 0.265 0.191 0.184

n=220 WS 0.350 0.275 0.193 0.181
W 0.349 0.272 0.194 0.183

Table 3: Simulated datasets: mean CRPSs over 40 validation sets. Models based on the wrapped skew
normal (WS) and the wrapped normal (W)

6 The wave direction data example

The real data we use come from a deterministic wave model implemented by Istituto Superiore per la
Protezione e la Ricerca Ambientale (ISPRA) that gives hourly prediction over a grid of about 12.5×12.5
Km on the Adriatic sea (Speranza et al, 2004). Over the Adriatic Sea area, there are 1494 points, with
minimum and maximum distance of about 7km and 852km respectively. The computer model starts
from a wind forecast model predicting the surface wind over the entire Mediterranean and then the
prediction of the wave direction is obtained solving energy transport equations using the wind forecast
as input.
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Figure 5: Illustrative predictive distributions for a holdout site in the first (a) and in the fourth
simulated dataset (b). The solid line is the predictive distribution under the wrapped Gaussian model
while the dashed one is under the wrapped skew Gaussian model. The vertical line represents the true
holdout simulated value

(a) Data1

(b) Data4

We developed two datasets. The first spans the period April 2010 between the 2nd at 00:00 and
the 4th at 22:00, a calm period. The second spans the period April 2010 between the 5th at 00:00 and
the 7th at 22:00, a storm period. We randomly select 220 spatial locations; the same spatial locations
are used for the calm and storm period dataset.

Similarly to what we did in the simulated examples, we use 90% of the spatial locations, taking
the first 48 time points to estimate models while the remaining locations and times are included in the
building of the two types of validation sets.

Again, for each training set, we fitted a skew Gaussian model and a wrapped Gaussian model. We
repeat the splitting procedure into training and validation sets 40 times and each time we compute
the CRPS to compare the performance of the models.
As prior distributions we used the same choices as in Section 5 with the exception of the spatial
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calm calm storm storm
WS W WS W

µ̂ 3.372 3.19 3.398 3.39
C.I. (2.610 4.150) (2.905 3.500) (2.498 4.274) (2.939 3.851)
σ̂2 5.246 1.827 5.015 1.283

C.I. (4.214 6.883) (1.526 2.276) (4.029 6.581) (1.130 1.477)

λ̂ 1.432 · 1.159 ·
C.I. (1.068 1.762) (· ·) (0.868 1.496) (· ·)
γ̂ 0.438 0.567 0.377 0.479

C.I. (0.406 0.471) (0.540 0.594) (0.350 0.406) (0.453 0.504)

ψ̂x 0.006 · 0.006 ·
C.I. (0.005 0.008) (· ·) (0.005 0.008) (· ·)
ψ̂w 0.002 0.013 0.001 0.007
C.I. (0.001 0.003) (0.011 0.015) (0.001 0.001) (0.005 0.008)

Table 4: Parameter estimates (mean) and credible intervals (C.I.) for the wave direction data

calm calm storm storm
WS W WS W

Spatial 0.426 0.494 0.528 0.567

Temporal 0.520 0.628 0.446 0.476

Table 5: Wave data: mean CRPSs over 40 validation sets. Models based on the wrapped skew normal
(WS) and the wrapped normal (W)

decays; for ψw we adopt a U(10−3, 10−1) which corresponds to a maximum and minimum practical
range of 3000km and 30km while for ψx we adopt a U(5−4, 5−2) which roughly corresponds to the
same practical spatial range for the process |X(s)|.

In Table 4 we provide the parameters estimates for the first selected training sets. The estimated
spatial dependence (ψw) of the W (s) process is stronger during the storm for both models while (ψx)
seems to remain the same in both sea states for X(s). Again, employing the CRPS, for both validation
sets under both sea states, the wrapped skew Gaussian process shows a consequential gain in predictive
ability compared with the standard wrapped Gaussian.
Finally, Figure 6 shows examples of predictive distributions for a holdout sample during a calm and a
storm state. We showed in Figure 1 that with |λ| < 3 there is little difference between the (symmetric)

wrapped normal and the (asymmetric) wrapped skew normal. Since, in these two examples |λ̂| < 1.5,
the predictive distributions under the skew normal models are roughly symmetric.

7 Summary and future work

We have presented a novel process model for dynamic spatial directional data. That is, we have a
conceptual time series of directions at each spatial location in the region and we observe these series
for a finite collection of locations. The model, referred to as a wrapped skew Gaussian process, enables
more flexible marginal distributions for the locations than the symmetric ones that are available under
the previously published wrapped Gaussian process. Using both simulation and a wave direction
dataset, we are able to show improved out-of-sample prediction with the former.

Future work offers several opportunities. One is to note that wave heights are available in addition
to wave directions. Wave heights inform about the sea state and therefore whether we are in a calm,
storm, or transition state. In particular, predictive uncertainty varies with wave height and/or sea
state, e.g., prediction is more precise during storm. So, we can attempt to extend the proposed model
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Figure 6: Examples of predictive distributions for one of the holdout site in calm (a) and storm (b)
sea state. The solid line is the predictive distribution under the wrapped Gaussian model while the
dashed one is under the skew Gaussian model. The vertical line represents the true holdout observed
value

(a) Calm

(b) Storm

to introduce covariates into the mean model and also into the variance model for the wrapped skew
Gaussian process. Another possibility is to model temporal data, where the time of the observed event
is treated as random. Then, upon wrapping, we would have circular times. In addition, the locations
of the events are random. The data would be treated as a point pattern over space and (circular) time.
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