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Abstract: The pervasive and increasing deployment of smart meters allows collecting a huge amount
of fine-grained energy data in different urban scenarios. The analysis of such data is challenging
and opening up a variety of interesting and new research issues across energy and computer science
research areas. The key role of computer scientists is providing energy researchers and practitioners
with cutting-edge and scalable analytics engines to effectively support their daily research activities,
hence fostering and leveraging data-driven approaches. This paper presents SPEC, a scalable and
distributed engine to predict building-specific power consumption. SPEC addresses the full analytic
stack and exploits a data stream approach over sliding time windows to train a prediction model
tailored to each building. The model allows us to predict the upcoming power consumption at a time
instant in the near future. SPEC integrates different machine learning approaches, specifically ridge
regression, artificial neural networks, and random forest regression, to predict fine-grained values
of power consumption, and a classification model, the random forest classifier, to forecast a coarse
consumption level. SPEC exploits state-of-the-art distributed computing frameworks to address the
big data challenges in harvesting energy data: the current implementation runs on Apache Spark,
the most widespread high-performance data-processing platform, and can natively scale to huge
datasets. As a case study, SPEC has been tested on real data of an heating distribution network
and power consumption data collected in a major Italian city. Experimental results demonstrate the
effectiveness of SPEC to forecast both fine-grained values and coarse levels of power consumption
of buildings.

Keywords: big data frameworks; data mining algorithms; machine learning; energy consumption
forecast; data streams analysis

1. Introduction

In the last few years, an increasing number of smart meters has been deployed in smart city
environments to monitor energy consumption in buildings. As a result, the collected data have
increased at an exceptional rate, so that energy-related data are becoming big data. The plenitude
of data provides a favorable circumstance to face valuable challenges and add intelligence in
energy-related contexts. The knowledge discovery process applied to energy data can reveal hidden
and actionable models and patterns, such as those characterising and predicting energy consumption,
for different stakeholders, from energy managers, to analysts, and consumers.

In the last decades of the past century, data mining proved to be a valid solution for finding
implicit, unknown, and useful information from very large datasets. The most popular data mining
tasks include correlation analysis (e.g., association rules), prediction (e.g., classification, regression),
and grouping similar data (e.g., clustering). Turning to the energy domain, the association rule mining
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and clustering allow unsupervised energy data exploration useful for summarizing usage patterns,
while prediction algorithms enable energy consumption forecasting, which, in turn, paves the way for
optimising heating distribution networks.

To effectively mine large collections of energy data, state-of-the-art data mining algorithms
have often required crucial limitations to be addressed, such as those represented by computational
resources. To this aim, scalable solutions have been devised in recent years, including wide-spread
big data frameworks like Apache Hadoop [1], and Apache Spark [2]. However, the fast changing
pace of the evolution of such distributed-computing technologies introduces two sources of problems:
(i) on the one hand, they are not mature enough to be applied on a generic domain and still require
some form of fine-tuning to fit the specific scenario; (ii) on the other hand, it is difficult to find suitable
professional profiles trained on the latest advancements of such platforms. The proposed solution
tries to accommodate the needs of energy experts and energy-provider companies of extracting data
insights by exploiting machine-learning solutions which have much less stringent requirements on the
professional skills of the data analysts.

The exploitation of big data platforms on energy-related data is of primary importance to extract
useful, actionable, and previosuly unknown knowledge from data as well as to forecast future energy
consumption. Thus, the analysis of energy data opens up a variety of interesting research issues
across two research communities: energy and computer science. To design effective analytics tools,
a considerable interaction between an energy scientist and a computer scientist is needed, with the
former being mainly responsible for defining the end-goals and the assessment of extracted knowledge.
Furthermore, a stronger involvement in the algorithm definition phase is beneficial to enrich the
algorithm itself with domain-expert knowledge, such as physical laws and event models. The computer
scientist tackles the task of selecting the right software platform, designing and developing efficient
and effective algorithms, selecting the optimal analytic techniques to achieve the end-goals, with the
right trade-off between quality of results and processing time or resources.

From the energy scientist’s point of view, a lot of research efforts should be devoted to analyzing,
characterizing and understanding energy-related data to effectively support different interested users
in the decision-making process, from energy managers and analysts, to end-users living in buildings.
Different research challenges can be addressed, whose results have a great potential to influence the
overall energy balance of our communities. From the computer scientist’s point of view, most of the
technologies and algorithms related to big data processing and analytics have to be tailored to the
specific features of the energy domain, such as heterogeneous sources and formats, variable data
distributions, different abstraction levels, both fine and coarse grained, to effectively and efficiently
support the knowledge extraction process.

This paper presents SPEC, a Scalable Predictor of PowEr Consumption. It provides a data mining
engine for predicting the future power consumption over sliding time windows, specific to each
building under exam. Different regression techniques and a classification method have been integrated
into SPEC to build a model aimed at predicting the fine-grained power consumption at a time instant
in the near future (i.e., with a limited time horizon): artificial neural networks, random forest regressor
and ridge regression. furthermore, SPEC also includes the random forest classifier to forecast a
power consumption level, instead of the fine-grained value. Each prediction model is tightly tailored
to the specific building efficiency, by being trained only on power consumption historical data of
the selected building. The SPEC methodology builds upon state-of-the-art distributed-computing
solutions, namely, Apache Spark, which allows us to quickly analyze very large data collections.
As a case study, SPEC has been validated on thermal power consumption collected in a major city
in the North of Italy. Energy data have been enriched with meteorological open data. Experimental
results, obtained on 12 buildings monitored every roughly five minutes for one year, demonstrate
the effectiveness of the proposed methodology in predicting fine-grained power consumption with a
limited average error and a good accuracy.



Energies 2019, 12, 2933 3 of 18

This paper is organized as follows. We first present the most used distributed and parallel
frameworks, then the paper contribution is detailed. Next the description of the main building blocks
of the SPEC engine is presented followed by the discussion of the experimental results yielded by the
SPEC engine on real thermal power data. After the comparison of our approach with related works,
we draw conclusions and presents future work.

2. Distributed Frameworks

The recent explosion in size of sensor-provided datasets has required the development of
new distributed and parallel big data approaches, often replicated inside cloud-based services
(e.g., platform-as-a-service tools) [3]. In recent years, two frameworks have emerged: MapReduce [4],
as a programming paradigm, whose most popular implementation is provided by the Apache Hadoop
platform, and Apache Spark [2], a more real-time data-processing solution with improved performance.
Both solutions allow programmers to focus on data-processing issues, disregarding low-level details
of the physical data replication and distribution over a cluster of machines, and the corresponding
network coordination. The first big data approach to crunch huge datasets was the MapReduce [4]
paradigm proposed by Google and then implemented in various software solutions, whose most
popular is Apache Hadoop. MapReduce exploits data locality by moving the algorithm to the data
instead of bringing the data to the algorithm, hence allowing each node of the distributed cluster to
process local data only. To this aim, a proper storage system was developed, the Hadoop distributed file
system (HDFS), which is probably the most widespread big data storage solution now, being compliant
with almost all analytics software solutions.

More recently, the Apache Spark [2] framework has been developed. Apache Spark is a general
purpose in-memory distributed platform supporting many development languages. Although it
maintains full compatibility with the MapReduce paradigm, it overcomes MapReduce limitations and
has become the favorite platform for large-scale data analytics, by enabling distributed data caching
within the nodes main memory, and reducing slow disk access.

Thanks to the availability of such distributed platforms, different libraries provide many
open-sourced algorithms for machine learning. Mahout [5], designed for Hadoop, is among the
most widespread ones. It contains implementations in the data mining areas such as algorithms to
address the cluster analysis, classification, and to support recommendation systems. All the current
implementations are based on Hadoop MapReduce and has been exploited to support different data
warehousing applications [6,7]. MLlib [8], instead, is the Machine Learning library developed on
Spark, and it is rapidly growing both in development and adoption (e.g., network traffic analysis [9],
social networks [10]).

3. Contribution of This Work

The aim of this work is to provide to energy scientists a scalable engine to predict fine-grained
power consumptions tailored to each specific building under exam. The proposed engine, named
SPEC, is customized to efficiently manage energy data, and includes different data mining algorithms
to forecast both real and categorical values of power consumption. Furthermore, self-evaluation
metrics are included to help the domain experts in assessing the quality of the results obtained.
SPEC is built upon state-of-the-art distributed-computing solutions: the current implementation
exploits Apache Spark and is able to effectively scale to huge data collections. SPEC is designed to be
helpful in various energy-related applications, such as heating and electricity consumptions. As a case
study, the proposed engine has been validated to forecast heating consumption every five minutes on
12 buildings.

To analyze the robustness of the proposed engine, it has been tested in two peculiar conditions:
(i) from 6:00 a.m. to 10:00 p.m., which includes both transient states with peak values and steady states
with more stable consumption values, and (ii) from 5:00 p.m. to 10:00 p.m. with only the steady-state
phase. As expected, the forecasting activity in the former case is more challenging.
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The energy scientist can successfully exploit this engine without specific algorithm-related
knowledge, by setting only the energy-relevant parameters to reach her goals. No development
of ad-hoc procedures in a specific programming language is required. For example, energy scientists
can choose between fine-grained (every five minutes) or coarse-grained (e.g., hour/day/week)
measurement periods, they can select the best metrics to evaluate the results, and the corresponding
time frame of interest (e.g., the complete day versus specific hours of the day). In addition to the
simple exploitation of the proposed engine, knowing in advance the expected power consumption
on a per-building basis can provide interesting knowledge to the energy providers, that can devise
proper strategies to efficiently satisfy the energy demand for each building as well as for the overall
network. Finally, predicting the power consumption allows both a more accurate energy network
sizing, hence providing a more reliable provisioning service, and a more informed energy usage by
end-users (customers), who can be encouraged with specific rewards to apply ad-hoc strategies to
reduce power consumption during the transient phases, when the energy peak demand is critical
to satisfy.

4. Related Work

Recently, energy-related data have gained traction as the focus of many machine-learning-enabled
analysis. The wide diffusion of smart and tiny sensor devices has been throughly exploited to monitor
indoor and outdoor environmental parameters supporting the collection of a large volume of measures
with temporal and spatial information. The knowledge extraction process applied on these data
collections discover an interesting subset of actionable knowledge to effectively support the decision
making process of facility managers.

Many research contributions on energy-related data have been carried out for: (i) identifying the
main factors that increase energy consumption (e.g., floors and room orientation [11], location [12],
weather [13]); (ii) characterizing consumption profiles among different users [12,14]; (iii) supporting
data visualization and warning notification [15]; (iv) efficient storing and retrieval operations based on
NoSQL databases [16];

A parallel research effort has been devoted to designing and developing systems providing
innovative and widespread analytics services based on big data technologies. General purpose
solutions [17] have been proposed together with specific techniques tailored to a given application
domain, such as thermal energy consumption [18], residential energy use [19], renewable energy [20],
air pollution levels [21].

In [22], various big data services based on a Hadoop large-scale energy-distribution platform have
been analyzed. Authors conclude that most services goal is the energy efficiency improvement and the
cost cut in heating maintenance and consumption. Other approaches contribute with algorithmic and
technological solutions, such as clustering techniques and association rule mining: in these works, big
data mining techniques are exploited both for prediction from historical data and for data exploration.

Similarly, different combinations of such techniques have also been successfully exploited
in other domains, e.g., for scaling network data characterization [23], and for social network
data exploration [10].

Addressing the wider energy-data management field, in [24,25] two different platforms and
infrastructures for managing building-specific data from different smart-city sources are presented.
In [26,27] different GIS-enabled frameworks for modelling urban district energy consumption are
presented, with the former [26] applied in New York city, and the latter [27] in a North-western Italian
city. However, they do not focus on energy consumption prediction but on classifying energy intensity
in buildings [26] and estimating space heating [27].

Focusing on the energy forecasting techniques, in [28], a predictor of energy consumption in
buildings is proposed, consisting of four building blocks, from data acquisition to performance
evaluation. In [29], a thermal-load forecast approach combining multiple data-driven methods is
presented, with experimental results on the next-day hourly load forecast.
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In [30] a prediction model for district energy consumption in medium (mothly) and long terms
(yearly) is presented, based on an ensamble of three different data-mining techniques. In [31] two
data-driven thermal-load forecasting models are compared, one based on support vector machines,
and another with two nonlinear autoregressive exogenous recurrent neural networks. In [32], two
heating distribution network substations in Changchun, China, were analyzed by means of data mining
techniques. As a result, six operating states are identified in each heating season. Finally, in [33]
the predictions of three energy consumption linear models are compared on two Swedish cities.
Forecasts target the next-day prediction and not the specific building prediction model. Overall,
current state-of-the-art works do not address specifically the large-scale challenges while keeping focus
on the fine-grained data-driven forecasts.

Similarly, research efforts have been devoted to characterizing energy consumption at a large
scale [34,35] as well as energy efficiency based on real consumption data [6] or estimated data [36,37].
The study presented in [34] exploits a NoSQL technology to support the collection, storing and
analysis of large volumes of energy-related data. In [34], a datawarehouse-style solution targeting
KPI computation based on the leading NoSQL database MongoDB [38] has been proposed, exploiting
the map-reduce approach. The proposed indicators consider the energy consumption during specific
outdoor conditions (temperature range) to characterize the energy consumption of single buildings and
groups of buildings in the same neighborhood. As a further step, a more advanced KPI computation
approach is presented in [6]. The work in [6] presented the energy signature analysis (ESA) system.
It is based on a big data methodology exploiting the map-reduce paradigm. It is able to characterize
the building’s energy efficiency through the energy signature. The latter estimates the total heat loss
coefficient of a building and it is computed by a linear regression of the power used for heating on
the difference between the internal temperature and the external temperature. The building signature
has been exploited to compute two KPIs: “(i) The intra-building KPI to compare latest observations
with past energy demand in the same conditions, for example in a similar outdoor temperature and
indoor temperature; and (ii) the inter-building KPI to rank the overall building performance with
respect to nearby and similarly characterized buildings by considering spatial co-location, building
size, and usage patterns (e.g., residential, office, public building)”. In [39] an engine exploiting
unsupervised machine learning approaches (clustering) and association rule mining is used to explore
energy consumption in buildings.

Differently from the previously-mentioned research papers [6,34,35,39,40], the current work
presents an engine based on scalable machine learning approaches to forecast fine-grained power
consumption. The previously-cited works focus on diverse targets and proposed different analytics
approaches. They also describe a significantly dissimilar architecture, wheres the datawarehouse
design is the same. In particular, no state-of-the-art solution provides a large-scale prediction with
a fine-grained five minute resolution for each building. Specifically, the target of [34,39] is the
characterization of the power consumption and the focus of [6] is the energy efficiency characterization,
to define a building ranking, whereas the present paper targets the predicting of sliding-windows
power consumption. Furthermore, the methodologies proposed in [6,34] exploit the map-reduce
paradigm, while this work exploits the more advanced and high-performing Apache Spark framework;
and the approach proposed in [35] does not include the forecasting data mining techniques exploited
by the currently proposed methodology.

First attempts towards the prediction of fine-grained energy/power consumption over a sliding
window have been proposed in [41,42]. The current paper significantly extends the study in [41]
by (i) providing a new algorithm to perform the regression task (i.e., the ridge regression model);
(ii) including a new analytics method (i.e., classification approach) to address the prediction of power
consumption labels through the random forest classifier; (iii) adapting the prediction models to a longer
time frame, including the first hours of the morning when a large number of energy consumption
spikes occur; (iv) introducing new and longer prediction horizons; (v) adding an exploitation use case
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of the proposed approach, based on a real-world district heating network, and (vi) providing a more
in-depth and extensive experimental validation (almost three-fold expansion in experimental results).

5. The SPEC Engine

SPEC is a distributed analytics engine aimed at predicting fine-grained power consumption.
Its architecture is presented in Figure 1 and consists of different components, each addressing one
of the main steps of the knowledge-extraction process. The scope of the current paper is to discuss
SPEC performance and usage in the context of thermal energy consumption. To this aim, the dataset
under analysis consists of thermal energy consumption data, collected every five minute from a large
number of smart meters deployed in 12 buildings. As proposed in [34], energy data are enriched
with meteorological information, collected from open-data web services [43]. Added meteorological
information includes temperature, relative humidity, precipitation, wind direction, UV index ,
solar radiation and atmospheric pressure, as defined and provided by [43]. The data collection
and integration component is in charge of collecting energy consumption data and integrating
meteorological information with the right temporal and geographical correlation. Since the focus is
on thermal energy consumption in residential and office buildings, only measurements of the winter
season are considered.

The other SPEC components are presented in the next subsections.

Figure 1. The scalable predictor of power consumption (SPEC) architecture.

5.1. Data Preprocessing

The knowledge extraction process is a multi-step process typically starting with a preprocessing
phase, whose aim is to smooth the effect of possibly unreliable measurements. SPEC preprocessing
component provides three features which have been proved to be crucial in real-world sensor-provided
energy data: (i) outlier detection and removal, (ii) missing value handling, and (iii) data normalization.

Outlier detection and removal. An outlier is a measurement that lies outside the expected range
of values. It may occur either when the collected value does not fit the model under study or when
faulty sensors provide unacceptable measurements for the phenomenon under analysis.

To detect outliers SPEC integrates the leverage measure. It is a coefficient based on the
Mahalanobis distance to define whether a power consumption measurement (Xi) is different from
the others. For each observation Xi, SPEC computes the leverage as proposed in [44], as provided
in Equation (1):

Hi = Mahalanobis2(Xi) +
1
N

, (1)
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where N is the number of power consumption measurements, and the Mahalanobis distance, in our
study, is computed as provided in Equation (2):

Mahalanobis(Xi) =

√
(Xi −mean(E))2

∑j(Xj −mean(E))2 , (2)

where mean(E) is the mean of all energy samples, while ∑j(Xj − mean(E))2 is the the total square
difference between all samples in energy consumption and their mean. Only the observations Xi
with a leverage value Hi greater than the CutO f f threshold are processed in the next analytics step.
The CutO f f threshold value is computed as provided in Equation (3):

CutO f f =
2(K + 1)

N
, (3)

where K is the number of variables under analysis.
Missing value handling. Many strategies are available to address missing values. SPEC selects

different approaches for different attributes, in particular for contextual data sources, such as unreliable
weather data providers: (i) replacement with the daily average value or (ii) replacement with the hourly
average value computed in the corresponding time of the previous week. The choice is mainly driven
by the physical meaning of each attribute. Specifically, strategy (i) is exploited for rain precipitation
and wind direction attributes, while strategy (ii) is applied to solar radiation and UV index attributes.

Data normalization is an important task required when differences in scale and measurement
unit exist in the data under analysis. Specifically, the normalization technique allows preserving the
original data distribution without affecting the relevance of the analytics results. SPEC integrates
two normalization techniques: min-max and z-score. The typical state-of-the-practice approach is to
iteratively perform different analysis sessions with different data normalization techniques to identify
the strategy yielding better results.

5.2. Data Analysis

The core of the knowledge extraction process in SPEC consists of three building blocks: (i) data
stream processing, (ii) prediction analysis, and (iii) prediction validation.

5.2.1. Data Stream Processing

In the buildings under analysis, a large volume of energy data is continuously collected since
power consumption is monitored roughly every five. Due to the high volume of collected data,
the SPEC engine performs the prediction over a sliding time window. Specifically, when a new power
consumption measurement is collected from a building, a sliding window over its historical data
stream is considered. This window contains a snapshot of the latest power consumption values of the
building, together with correlated meteorological data. The time window size is a parameter (wlength)
to be chosen depending on the temporal context of interest for the analysis: with short time windows,
the evaluation is almost in real-time of the building’s consumption is performed based only on very
recent measurements; instead, a very large time window includes many historical measurements.

5.2.2. Prediction Analysis

Many data mining algorithms are available for prediction purposes. Depending on the nature
of the variable to predict, we can identify two broad classes of approaches: if we wish to predict
future power consumption measurements as numerical values, then we focus on regression techniques;
otherwise, if the prediction were a consumption level (such as high, mid, low), then a classification
approach able to predict categorical values is required. SPEC addresses both requests by providing
three regression techniques and a classification algorithm.
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The prediction analysis component consists of two steps: (i) model building and (ii) prediction
task. In (i) a model for the data under analysis is built by analyzing past power consumption together
with meteorological data. Then the model is exploited to forecast the upcoming power consumption
in (ii). Among the techniques available to our purposes there are regression-based methods, decision
trees, naive Bayes approaches, neural networks, and support vector machines. Each technique employs
different learning algorithms to build models from historical data. In SPEC a new data model is
created for each time window. To self-assess the performance of the proposed prediction models,
data are split into training and test sets. The former is used to build the model, whereas the latter to
assess its quality.

For the regression purposes, i.e., the prediction of a real value of power consumption,
SPEC provides the following techniques: ridge regression (RR), random forest regression (RFR),
and artificial neural networks (ANN). While the latter two techniques have been widely and
successfully exploited in many different applications , the former was included to provide better
insights to the energy-provider company. The selected techniques are briefly presented in the following,
specifically focusing on the Apache Spark implementation.

Ridge regression (RR) builds a model based on the linear dependency among data under analysis.
Given a set of input features expressed through a n-dimensional vector x = [x1, . . . , xn] ∈ IRn and
a target variable y ∈ IR representing the objective of the prediction, the algorithm builds a regression
model with L2-regularization using stochastic gradient descent that provides a good estimation of the
value of y.

Random forest regressor (RFR) is an ensemble learning method that can be used for regression.
Given a training set with known predictions, a group (forest) of decision trees is created as a model.
The forest approach reduces the risk of overfitting. In MLlib [8], the RFR algorithm creates different
trees during the training phase by generating randomness and minimizing overfitting. The randomness
is introduced by (i) performing N sub-sampling of the training set (i.e., bootstrapping), (ii) considering
different random subsets of input variables. Thus, a parallel execution of the training step is possible.
During the application of the model, the single class labels produced by each tree are aggregated and
a global result is computed. Labels are replaced by real values in case of regression problems.

The building of each decision tree is a top-down process: an attribute test condition is chosen at
each step so that it best splits the records. To this aim, the Gini index can be exploited. Each node in the
tree represents a test on an attribute, being each branch, descending from a node, a range of possible
values for that attribute. Leaves represent values of the target attribute. This allows to partition the
sample space depending on the test conditions of the different attributes at each node.

To generate a prediction, the tree is visited top-down, following the tests in each node,
and branching down to a resulting leaf.

Artificial neural networks (ANN) exploited in SPEC are multi-layer networks without restrictions
(the source code has been downloaded from https://github.com/yannart/Scala-Neural-Network).
They include an input layer, n hidden layers, and an output layer. Each node in a layer takes as
input a weighted sum of the outputs of all the nodes in the previous layer, and it applies a nonlinear
activation function to the weighted input. The network is trained with back-propagation and learns
by iteratively processing the set of training data records: weights in the network nodes are backward
updated to minimize the mean squared prediction error.

Among the available techniques suited to the classification problem (i.e., the prediction of
a categorical value such as a range of values of power consumption) SPEC provides the random forest
classifier (RFC).

The random forest classifier (RFR) is a technique very similar to the random forest regressor. It is
an ensemble learning method based on a pool of trees. Differently from the regressor, the predictions
are categorical, such as high, mid, or low energy consumption levels. Each level can be associated
to a specific range of real consumption values. There is virtually no limit in the number of different
categorical values, however, such techniques typically work well with a low number of classes

https://github.com/yannart/Scala-Neural-Network
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(i.e., different predicted categories), in the order of tens at most. They are useful because often it is not
the precise real value to be of interest, but its level in terms of meaningfulness for the phenomena under
study. Hopefully, grouping contiguous values into the same level (i.e., discretization into category),
helps in improving accuracy results. Technically, the difference with the regressor is in the the final
predicted value, which cannot be computed as the average of the single tree predictions, but a majority
voting approach is used: the category voted by the largest number of trees is selected as the final result
of the forest classifier.

5.2.3. Prediction Validation

This component evaluates the ability of the SPEC engine to correctly predict the energy
consumption of a building. To this aim, SPEC integrates three metrics to evaluate the quality
of regression-based models and one metric for the classification-based models: (i) mean absolute
percentage error (MAPE), (ii) weighted absolute percentage error (WAPE), and (iii) symmetric mean
absolute percentage error (SMAPE), whose formulas are reported in the following, are the regression
metrics, whereas the accuracy is used for the classification model. Accuracy is the ratio of the correct
predictions with respect to the overall number of predictions. The metrics are provided in the following
Equations (4)–(6).

MAPE =
100%

n

n

∑
i=1

∣∣∣∣Ai − Pi
Ai

∣∣∣∣ (4)

WAPE = 100% · ∑n
i=1 |Ai − Pi|

∑n
i=1 Ai

(5)

SMAPE =
100%

n

n

∑
i=1

|Ai − Pi|
|Ai|+ |Pi|

(6)

In all formulas, Ai is the actual energy consumption at time ti while Pi is the corresponding
predicted value.

MAPE, or mean absolute percentage deviation (MAPD), can evaluate a predictor quality. However,
since MAPE is a percentage, it might be less suitable for energy predictions because of its sensitivity
to low absolute values: given the same absolute error, MAPE may be very large in presence of low
consumption values, while it might hide errors when the absolute consumption is very high. The WAPE
and SMAPE metrics have been proposed to address this issue. WAPE suffers from not having a specific
meaning as an error on the single prediction but only on all the forecasts, while SMAPE is able to
correctly model the prediction error for each forecast individually. The only drawback of SMAPE
is that it is not symmetric. Thus, overestimated forecasts and underestimated forecasts do not have
the same impact. Specifically, for the same value of prediction error, the underestimated forecast
has a greater impact on the overall SMAPE value. Since each metric has benefits and drawbacks,
SPEC provides them all to allow the energy analyst to select the best one for her goals.

6. Experimental Results

We tested the efficiency of SPEC by performing different experimental sessions on a real dataset,
including power consumption data collected from 12 residential buildings. Measurements are collected
over a full winter period in Italy, from October 15th to April 15th. Energy data have been enriched
with meteorological information collected from the weather underground web service (the weather
underground web service gathers meteorological data from personal weather stations (PWS) registered
by users) [43].

The experiments reported in the paper target a subset of the overall district heating buildings,
specifically those buildings for which the full historical datasets of real-world data measurements
were available.
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The datasets have been stored in a Hadoop cluster available at our University, based on the
Cloudera Distribution of Apache Hadoop, version 6.1.0. All experiments have been performed on
our cluster, which has 8 worker nodes, and runs Apache Hadoop 3.0.0 and Spark 2.4. The current
implementation of SPEC is a project developed in Scala exploiting the Apache Spark framework.

Input variables are: time, date, temperature, humidity, precipitations, pressure, dew point,
wind direction, and energy consumption, in the configured time window. The target of the prediction
task is the upcoming energy consumption in the near future. For the results reported in this study,
the SPEC engine configuration featured the normalization and outlier detection through the min-Max
technique and the Leverage approach, respectively; the time window size (wlength) has been set
to three samples (i.e., roughly 15 min). A parameter grid search has been performed to identify
values for algorithm parameters. To configure the ridge regression algorithm in MLlib, the following
parameters have been set: intercept = false, numIterations = 100, regParam = 0.01, stepSize = 1.0.
For both the Random Forest Regressor and Classifier in MLlib, the parameters were: numTrees = 20,
featureSubsetStrategy = all, impurity = variance, maxDepth = 4, maxBins = 100. The ANN regressor
has been used with perceptronInputNum = 9 and neuronLayerNum = Array [10, 2, 1].

Experimental results targeted the five minute prediction capability. To this aim, we evaluated the
prediction error for all algorithms and all buildings separately. The prediction error has been computed
as the averaged error of all predictions in the whole (winter) period. To perform the prediction
task we considered two different time frames: (i) the complete day, from 6:00 a.m. to 10:00 p.m.;
(ii) the afternoon/evening only, from 5:00 p.m. to 10:00 p.m. The former time frame includes both
transient and steady-state phases, thus the prediction is more challenging: values were characterized
by large variability and spikes. The second time frame includes typical steady-state phases, with more
stable consumption values, hence the prediction task is expected to be easier.

Tables 1–3 report the MAPE, WAPE, SMAPE values for each monitored building obtained through
the ridge regression (RR), artificial neural networks (ANN), and the Random Forest Regression (RFR)
models respectively. Tables 1–3 focus on the 5–10 p.m. time frame, whereas Tables 4–6 report results of
the whole day.

All three regression models yield good results by analyzing consumption values in the 5–10 p.m.
time frame. Both RR and ANN models present limited errors: ANN has a MAPE of 6–19%, a WAPE of
6–10%, and a SMAPE of 3–5% as reported in Table 2. Such results are very similar to the ones yielded
by RR in Table 1). Also the performances of RFR are quite good, although slightly worse than both
RR and ANN models: it has a MAPE of 9–20%, a WAPE of 9–14%, and a SMAPE of 5–7% as reported
in Table 3).

As expected, errors yielded by SPEC models worsen when the prediction task is performed for
the whole day. As shown in Tables 4–6, on average ANN models reach the best results, with an average
prediction error lower than both RR and RFR. Results of RFR are better than RR, although slightly
worse than ANN.

Table 1. Prediction error for each building: ridge regression model, time frame: 5–10 p.m.

Building MAPE WAPE SMAPE

B1 10.4% 8.5% 4.0%
B2 6.4% 6.3% 3.1%
B3 10.1% 8.4% 4.1%
B4 18.9% 9.9% 4.9%
B5 9.1% 7.9% 3.7%
B6 7.9% 7.7% 3.6%
B7 9.1% 7.3% 3.6%
B8 6.4% 6.5% 3.1%
B9 15.7% 8.6% 4.2%

B10 12.6% 9.0% 4.3%
B11 15.2% 9.9% 4.9%
B12 12.4% 9.2% 4.4%
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Table 2. Prediction error for each building: artificial neural network model, time frame: 5–10 p.m.

Building MAPE WAPE SMAPE

B1 13.5% 11.8% 6.0%
B2 7.1% 7.0% 3.5%
B3 12.8% 10.7% 5.5%
B4 20.4% 12.8% 6.6%
B5 9.9% 9.4% 4.6%
B6 7.4% 7.1% 3.7%
B7 11.0% 9.7% 5.0%
B8 7.7% 7.9% 3.9%
B9 18.6% 12.9% 6.7%

B10 15.9% 12.4% 6.4%
B11 16.9% 12.1% 6.2%
B12 12.7% 10.5% 5.2%

Table 3. Prediction error for each building: random forest regression model, time frame: 5–10 p.m.

Building MAPE WAPE SMAPE

B1 13.3% 11.5% 5.6%
B2 10.4% 10.3% 5.1%
B3 13.3% 11.2% 5.6%
B4 19.8% 11.1% 5.8%
B5 11.2% 10.5% 5.2%
B6 12.2% 12.0% 5.9%
B7 11.5% 9.6% 4.7%
B8 9.3% 9.4% 4.6%
B9 19.0% 11.9% 6.1%

B10 14.6% 11.3% 5.6%
B11 19.3% 13.4% 6.5%
B12 16.9% 13.9% 7.0%

Table 4. Prediction error for each building: ridge regression model, time frame: 6 a.m–10 p.m.

Building MAPE WAPE SMAPE

B1 26.7% 10.1% 9.8%
B2 25.5% 16.8% 8.1%
B3 21.5% 20.6% 8.1%
B4 42.8% 31.1% 13.8%
B5 22.2% 16.3% 8.0%
B6 24.3% 16.9% 9.0%
B7 23.8% 20.4% 9.7%
B8 31.2% 31.8% 14.0%
B9 28.6% 23.8% 10.9%

B10 21.8% 22.2% 10.0%
B11 30.1% 26.2% 11.9%
B12 24.8% 19.9% 9.6%
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Table 5. Prediction error for each building: artificial neural network model, time frame: 6 a.m–10 p.m.

Building MAPE WAPE SMAPE

B1 21.4% 11.3% 6.0%
B2 21.0% 9.6% 4.8%
B3 13.7% 10.9% 5.4%
B4 31.9% 15.2% 7.2%
B5 18.9% 10.0% 5.0%
B6 17.9% 9.9% 5.4%
B7 17.4% 11.0% 5.4%
B8 16.4% 14.1% 6.4%
B9 20.6% 12.2% 5.9%

B10 11.9% 10.4% 5.1%
B11 23.7% 15.2% 7.5%
B12 20.6% 11.4% 5.6%

Table 6. Prediction error for each building: random forest regression model, time frame: 6 a.m–10 p.m.

Building MAPE WAPE SMAPE

B1 22.9% 13.5% 7.3%
B2 23.9% 10.9% 5.6%
B3 16.6% 16.5% 7.5%
B4 32.7% 17.0% 7.9%
B5 20.9% 11.5% 5.9%
B6 23.0% 12.3% 6.8%
B7 18.0% 12.0% 6.0%
B8 17.2% 16.5% 7.3%
B9 21.6% 13.0% 6.3%

B10 13.2% 11.7% 5.9%
B11 23.5% 15.1% 7.5%
B12 20.3% 13.5% 6.7%

Since the ANN model yielded the lowest errors and on average achieved better results than both
RR and RFR on all time frames (i.e., 6 a.m.–10 p.m. and 5–10 p.m.), we analyzed in more details the
error trend yielded by ANN in a given day for a representative building, as reported in Figure 2.
Building no. 7 is selected as representatives because its consumption time series include multiple
peaks. In all cases, the ANN models are able to predict values following the trend of the actual time
series, although the error significantly increases for peaks in energy consumption, such as during the
early morning (e.g., 7–8 a.m).

Figure 2. Building 7: detailed results for 24 h of continuous five minute predictions.
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We experimentally evaluated the performance of the random forest classifier provided by SPEC.
To perform the categorical classification task, the power consumption values per unit of volume have
been discretized in six fixed-size bins as in [39]: two bins until 15.5 KW/m3 (off until 0.05 KW/m3,
low until 15.5 KW/m3), a bin each 10 KW/m3 for values until 35.5 (medium consumption until
25.5, high consumption until 35.5) and an additional bin for values exceeding 35.5 KW/m3. Table 7
reports the accuracy yielded on the 12 buildings under analysis for both the complete day and
afternoon/evening time frames. In both cases the classifier achieved good accuracy values: they are in
the range from 81–91% when analyzing all collected values (6 a.m.–10 p.m.), and in the range 89–98%
(except for building no. 1) on the afternoon/evening time frame.

Table 7. Accuracy for each building: random forest classification model.

Building Time Frame Time Frame
6:00 a.m.–10:00 p.m. 5:00 p.m.–10:00 p.m.

B1 81% 77%
B2 91% 98%
B3 91% 93%
B4 85% 95%
B5 88% 94%
B6 88% 94%
B7 84% 93%
B8 85% 98%
B9 87% 93%

B10 89% 97%
B11 85% 89%
B12 88% 89%

Regarding the prediction horizon, we analyze the performance in terms of MAPE, WAPE,
and SMAPE of the top-performing approach, i.e., ANN, with longer prediction horizons, specifically
30, 45, and 60 min, as reported in Table 8. The selected 5 buildings are those presenting no missing
values, hence not requiring any pre-processing. Such results are compared with two naive techniques:
(NAIVE 1) previous-value predictor and (NAIVE 2) same-time previous-day predictor.

Improvements in terms of prediction error reduction of the artificial neural network model over
the two selected naive approaches for a 30-min prediction horizon in the time frame 6 a.m.–10 p.m.
are reported in Table 9. The results for prediction horizons of 45 and 60 min are reported in
Tables 10 and 11 respectively.

The proposed approach always yields to better predictions (i.e., with lower errors) with respect to
the NAIVE 2 approach. Similar results are also reported with respect to NAIVE 1 apart from a single
exception (SMAPE for building B2). Improvements for building B1 are higher with respect to NAIVE 1
and lower with respect to NAIVE 2, whereas the converse is true for the remaining buildings. This is
due to the different usage pattern of residential versus office/public buildings.

Table 8. Artificial neural network model prediction errors for different horizon lenghts: 30, 45,
and 60 min; time frame: 6 a.m.–10 p.m.

MAPE (%) WAPE (%) SMAPE (%)
Horizon

(minutes) 30 45 60 30 45 60 30 45 60

B1 8.3 9.1 8.3 8.3 8.8 8.3 4.1 4.3 4.1

B2 18.8 17.6 18.3 19.4 19.4 20.0 8.7 8.5 8.9

B3 10.1 9.6 9.9 9.9 8.9 9.8 4.9 4.6 4.9

B4 8.1 8.0 7.8 8.0 78̇ 7.9 3.8 3.7 3.8

B5 11.7 12.5 11.8 11.3 11.4 11.2 5.4 5.6 5.4
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Table 9. Improvement in terms of prediction error reduction of the Artificial Neural Network model
over naive approaches for a 30-min prediction horizon; time frame: 6 a.m–10 p.m.

Building NAIVE 1 NAIVE 2

MAPE (%) WAPE (%) SMAPE (%) MAPE (%) WAPE (%) SMAPE (%)
B1 12.8 15.0 5.9 2.2 1.8 1.9

B2 3.8 4.3 −0.7 13.4 14.7 4.3

B3 2.1 1.1 0.3 13.8 13.9 5.5

B4 1.8 1.4 1.2 14.4 13.7 6.0

B5 1.3 2.5 0.9 11.9 13.1 4.5

Table 10. Improvement in terms of prediction error reduction of the artificial neural network model
over naive approaches for a 45-min prediction horizon; time frame: 6 a.m–10 p.m.

Building NAIVE 1 NAIVE 2

MAPE (%) WAPE (%) SMAPE (%) MAPE (%) WAPE (%) SMAPE (%)
B1 7.7 10.1 3.7 2.9 2.0 1.3

B2 4.9 8.7 1.2 13.5 14.5 4.3

B3 1.0 4.1 0.8 12.0 12.7 4.9

B4 1.4 3.5 0.8 10.0 9.2 4.1

B5 2.4 5.1 1.3 8.7 7.2 2.5

Table 11. Improvement in terms of prediction error reduction of the artificial neural network model
over naive approaches for a 60-min prediction horizon; time frame: 6 a.m–10 p.m.

Building NAIVE 1 NAIVE 2

MAPE (%) WAPE (%) SMAPE (%) MAPE (%) WAPE (%) SMAPE (%)
B1 12.8 15.0 5.9 2.2 1.8 1.7

B2 6.1 8.7 1.4 11.8 12.8 3.8

B3 2.7 6.0 1.6 13.4 13.3 5.2

B4 1.5 3.0 0.8 10.1 9.2 4.4

B5 2.0 3.5 0.9 5.4 5.6 2.0

Considering the performance of the ANN model on longer prediction horizons, we notice that
errors for 30, 45, and 60 min are lower than five minute forecasts. If the energy provider operations can
benefit from a 5-min prediction horizon, this is proved to be a more challenging task than 30–60 min
horizons. Changing the prediction horizon from 30 to 60 min does not affect significantly the error rates.

Statistical significance of the difference in the values in Tables 9–11 have been computed with the
Student t-test for the MAPE metric. Bold values indicate that the t-test has been passed for a p-value
of 0.05. We notice that improvements reported for the 60-min horizon are statistically significant for
all buildings, and they would be significant also for lower p-values, such as 0.01. On the contrary,
the shorter the horizon, the less significant the improvements: for the 45-min horizon, only three
buildings out of five pass the t-test with p-value 0.05, whereas all 5 would pass the t-test for p-value
0.10. For the 30-min horizon, again three out of five buildings pass the t-test with p-value 0.05, however
the remaining two buildings would require a p-value larger than 0.10.

Finally, we present a sample of how the proposed work could be exploited in a real-world
district-heating distribution network. The goal of the solution is to be a tool directly available to energy
experts and energy-providing company management to support their decisions in the strategic design
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and expansion plan of the district heating networks, besides the day-to-day operations. In Figure 3,
a district map of building consumption levels with real experimental data is presented for two different
days, December 8th in Figure 3a and December 9th in Figure 3b. Each of the five consumption
levels is a percentage range of the top consumption among the overall population for that day,
and it is associated with a color from green (0–20%) to red (80–100%). The aim is to analyze the
total consumption of each neighborhood in the district under exam, hence grouping together the
single buildings but keeping a fine-grained spatial resolution. While such a map can be produced
for any prediction horizon, the presented results describe a whole day consumption, considering
that December 8th is a national holiday. Specific patterns emerge for residential versus office/public
buildings; for instance, the two neighborhoods at the top-centre of the map had opposite behaviors:
the lower one is green (0–20%) during the national holiday (Figure 3a) and red (80–100%) on the
next day (Figure 3b), and indeed it is a neighborhood of office buildings. On the contrary, the upper
neighborhood is red (80–100%) during the national holiday (Figure 3a), and light green (20–40%)
during the next day, hence showing the behavior of a residential building with most people working
out of home.

(a) December 8th (b) December 9th

Figure 3. Total consumption of the buildings in the monitored district, grouped by neighborhood.

The map reported in Figure 4 similarly provides the average consumption per m3, hence being
useful to estimate the energy efficiency of the buildings. It is interesting to note that during the national
holiday, even if the previously analyzed office neighborhood was green (0–20%) in total consumption
(Figure 3a), it is orange (60–80%) in average consumption (Figure 4a), hence being poorly efficient
when using low total energy. On the contrary, it has a very high energy efficiency on December 9th
(Figure 4b) with a light-green level (20–40%), when it is a top consuming neighborhood (red level
80–100%, (Figure 3b).

(a) December 8th (b) December 9th

Figure 4. Average consumption per m3 of the buildings in the monitored district, grouped
by neighborhood.
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7. Conclusions and Future Works

In this paper we presented the SPEC (Scalable Predictor of PowEr Consumption) engine to
predict power consumption at large scale. SPEC addresses the full analytic stack and exploits a data
stream approach over sliding time windows to train a prediction model tailored to each building.
It integrates a wide range of algorithms to perform the prediction task both in terms of regression
and classification.

Experimental results, achieved on real data, demonstrate the potential of the proposed approach
in generating accurate prediction model. On average by considering both time frames (complete day
versus only few hours, i.e., transient and steady state phases versus only steady state) the ANN model
outperforms the others with a lower prediction error. These results are promising and demonstrate
the potential of the proposed methodology in addressing the cumbersome task of predicting power
consumption over a sliding window.

Currently, we are extending the current version of the architecture towards a cross-building model
to perform more accurate fine grained value predictions. Furthermore, we are working on enriching
the prediction models with physical model knowledge, to yield better performance in correspondence
of power consumption peaks. Furthermore, we are tailoring the SPEC engine to other energy-related
applications, such as electricity applications.
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