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 
Abstract— The muscle synergy theory has been widely used to 

assess the modular organization of the central nervous system 
(CNS) during human locomotion. The pre-processing approach 
applied to the surface electromyographic (sEMG) signals 
influences the extraction of muscle synergies. The aim of this 
contribution is to assess the improvements in muscle synergy 
extraction obtained by using an innovative pre-processing 
approach. We evaluate the improvement in terms of the possible 
variation in the number of muscle synergies, of the intra-subject 
consistency, of the robustness, and of the interpretability of the 
results. The pre-processing approach presented in this paper is 
based on the extraction of the muscle principal activations (muscle 
activations strictly necessary to accomplish a specific 
biomechanical task) from the original sEMG signals, to then 
obtain muscle synergies using principal activations only. The 
results herein presented show that the application of this novel 
approach for the extraction of the muscle synergies provides a 
more robust and easily interpretable description of the modular 
organization of the CNS with respect to the standard pre-
processing approach. 
 

Index Terms—Electromyography, EMG, gait analysis, 
interpretability, muscle activations, muscle synergies, robustness, 
principal activations. 
 

I. INTRODUCTION 

N the last years, the muscle synergy concept was proposed 
for the assessment of the modular organization of the central 

nervous system (CNS) during different motor tasks. According 
to this theory, the CNS controls a small number of muscles 
rather than coordinating every single muscle involved in a 
specific motor task. The effectiveness of the muscle synergies 
in modeling the complexity of the motor control during 
movements has been demonstrated in several studies and 
research fields such as clinics, robotics, and sports [1]–[3].  
Human locomotion is a complex motor task due to the different 
biomechanical functions carried out during each gait cycle [4], 
the multiple degrees of freedom of the skeletal muscle system, 
and the high intra-cycle variability of the muscle activation 
patterns [5]. Previous studies demonstrated that human 
locomotion can be modeled by a small set of muscle synergies 
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responsible of specific biomechanical functions [6]–[9]. The 
number of muscle synergies extracted and their biomechanical 
functions may vary depending on the type and the number of 
muscles acquired [10]. On the average, five muscle synergies 
are needed to properly describe human locomotion [6], [11]. 

Muscle synergies during gait are often extracted from surface 
electromyography (sEMG) signals by applying the Non-
Negative Matrix Factorization (NNMF) algorithm [12], [13]. 
Before applying the factorization algorithm, the acquired 
sEMG signals are pre-processed to obtain an accurate 
description of the modular organization of the CNS. In the last 
years, several pre-processing schemes were proposed in 
literature for the extraction of muscle synergies during cyclic 
movements [3], [6], [10], [12]–[15]. As an example, in the work 
by Clark et al. [15] the acquired sEMG signals were previously 
high-pass filtered with a cut-off frequency of 40 Hz by means 
of a zero lag fourth-order digital Butterworth filter, demeaned, 
rectified and smoothed with a zero-lag 4th-order Butterworth 
digital filter with a cut-off frequency of 4 Hz. Finally, to 
facilitate the comparison among different muscles and different 
motor conditions, the filtered sEMG signals were amplitude-
normalized with respect to the global maximum of the signal 
generated by each observed muscle.  In the work of Steele et al. 
[10] sEMG data were band-pass filtered with a lower cut-off 
frequency of 20 Hz and a higher cut-off frequency of 400 Hz, 
rectified and low-pass filtered at 10 Hz.  

The application of these “standard” techniques may not be 
sufficient to fully understand the motor control mechanism due 
to the high intra-cycle variability of the sEMG activation 
intervals [16]. Statistical Gait Analysis (SGA) [17] was recently 
introduced to deal with this issue by selecting only the 
representative gait patterns. It was successfully applied to the 
study of the frequency-of-occurrence of muscle activation 
modalities [16], muscle activation timing [18] and co-
contractions [19]. Furthermore, through the application of the 
CIMAP algorithm [20], [21], it is possible to define the 
principal and secondary muscle activations. Principal 
activations (PAs) are those activations that are strictly 
necessary to accomplish the motor task, while the secondary 
activations (SAs) have an auxiliary function, such as providing 
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corrections to motion and body segment posture. The CIMAP 
algorithm was successfully applied to the study of gait 
asymmetry of healthy, orthopedic, and neurological patients 
[22]–[24]. 
The aim of this work is to assess how the application of 
innovative pre-processing techniques (CIMAP with the 
extraction of PAs) can be used to overcome the limitations of 
the standard pre-processing algorithms in terms of intra-subject 
consistency, robustness, and interpretability of muscle 
synergies. 

II. MATERIALS AND METHODS 

A. Sample Population and Experimental Protocol 

A sample population of 22 healthy subjects (age: 39.2 years 
± 17.0 years, gender: 18 females and 4 males, height: 165.2 cm 
± 8.2 cm, weight: 60.9 kg ± 17.5 kg) was retrospectively 
analyzed using gait data in our database. None of the subjects 
reported lower limb injuries or had neurological or 
musculoskeletal disorders that could compromise their gait 
performance. Twenty subjects out of 22 were right-limb 
dominant, while two were left-limb dominant, according to the 
preferred foot to start walking.  

All the subjects walked barefoot for 5 minutes at self-selected 
speed, back and forth on a 10-m straight walkway. 

The experimental protocol conformed to the Helsinki 
declaration on medical research involving human subjects. 

B. Data Acquisitions 

Gait data were recorded by means of a multichannel system 
specifically developed for clinical gait analysis (STEP32, 
Medical Technology, Italy). The following signals were 
simultaneously recorded: a) surface electromyographic 
(sEMG) signals, by means of active probes (configuration: 
single differential, size: 19 mm  17 mm  7 mm, Ag-disks 
diameter: 4 mm, interelectrode distance: 12 mm, gain: variable 
in the range from 60 dB to 86 dB); b) foot-switch signals (size: 
10 mm  10 mm  0.5 mm, activation force: 3 N) to detect gait 
phases; c) knee joint kinematics signals in the sagittal plane by 
means of electrogoniometers (accuracy: 0.5°).  

The sEMG active probes were positioned over the following 
12 muscles of the dominant lower limb and trunk: right 
Longissimus Dorsii (LDR), left Longissimus Dorsii (LDL), 
Tensor Fasciae Latae (TFL), Gluteus Medius (GMD), Rectus 
Femoris (RF), Lateral Hamstring (LH), Medial Hamstring 
(MH), Vastus Medialis (VM), Lateral Gastrocnemius (LGS), 
Peroneus Longus (PL), Soleus (SOL) and Tibialis Anterior 
(TA). Foot-switches were positioned beneath the heel, the first, 
and fifth metatarsal heads, bilaterally. Electrogoniometers were 
positioned on the lateral aspect of the knee joint, bilaterally. 

Signals were acquired with a sampling frequency of 2000 Hz, 
converted by a 12-bit analog to digital converter and sent to a 
PC for real-time representation. The acquired signals were then 
imported into the MATLAB® release 2018b (The MathWorks 
Inc., Natick, MA, USA) to be processed by means of custom 
routines. 

C. Data Processing 

Before muscle synergy extraction, the acquired sEMG 
signals were pre-processed using two different approaches: a) 
the standard approach, in which all the time samples of the 
sEMG signal were considered, and b) the novel approach in 
which only the PA intervals of the sEMG signal were 
considered. Figure 1 shows the workflow of the two approaches 
implemented for the extraction of the muscle synergies. 

 
1) Gait Cycle Segmentation and Normalization 

First, the foot-switch signals were used to segment the gait 
cycles, keeping only the gait cycles with a normal sequence of 
gait phases (Heel contact (H), Flat foot contact (F), Push off (P) 
and Swing (S)), while discarding the atypical gait cycles [25]. 
Only the gait cycles belonging to the rectilinear path were 
analyzed, removing those corresponding to direction changes at 
the beginning and at the end of the walkway (including 
deceleration before and acceleration after the U-turn) [11]. 
Then, each segmented gait cycle was time-normalized to 1000 
samples [15] and all gait cycles selected were concatenated in a 
single vector [26]. 

 

 
 
Fig. 1.  Schematic description of the two approaches implemented for the 
muscle synergy extraction: Standard Approach (green) and Novel Approach 
(blue). In the Novel Approach, only sEMG Principal Activations (PAs) are 
extracted and considered for the muscle synergy extraction, while in the 
Standard Approach all the time-samples of the sEMG signals are considered. 
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2) Extraction of Principal Activations (PAs) through CIMAP 
algorithm 

First, the muscle activation onset/offset intervals were 
computed from the sEMG signals by means of a double-
threshold statistical detector, specifically developed for gait 
analysis [27]. Then, the optimized version of the CIMAP 
algorithm (Clustering for Identification of Muscle Activation 
Patterns) [21] was used to select PAs.  

PAs are those muscle activations that are necessary to 
accomplish a specific biomechanical task and describe the 
fundamental activation intervals of a specific muscle. The 
CIMAP algorithm, based on hierarchical clustering, groups 
together the gait cycles sharing similar sEMG onset-offset 
activation patterns. For each cluster, the cluster prototype is 
defined as the median timing pattern. Then, PAs are extracted 
from the representative clusters, computed as the intersection of 
the clusters’ prototypes [21].  

Fig. 2 represents an example of application of the CIMAP 
algorithm to sEMG gait data acquired during the walking task 
of a healthy subject from PL and GMD muscles. Figure 2A 
represents normalized activation intervals for the various gait 
cycles, grouped in clusters sharing similar activation timings. 
Each orange interval represents the prototype of a 
representative cluster. Figure 2B depicts how PAs are obtained 
from the intersection of the cluster prototypes.  

For each gait cycle, the extraction of the PA intervals from 
the original sEMG signals was performed windowing the time-
normalized gait cycle by means of a binary mask that was set to 
1 in correspondence of a muscle activation and to 0 if no muscle 
activation was present. 

 

3) Muscle Synergy Extraction and Sorting 
The sEMG signals were high-pass filtered through an 8th 

order Butterworth digital filter with a cut-off frequency of 35 
Hz, to remove motion artifact, demeaned, and full-cycle 
rectified to obtain a non-negative signal. Then, the rectified 
signals were low-pass filtered by means of a 5th order digital 
Butterworth filter with a cut-off frequency of 12 Hz to obtain 
the sEMG envelope. The signals were then normalized in 
amplitude with respect to the global maximum of each muscle.  

The normalized envelopes were divided into groups of 10 
concatenated gait cycles (i.e., subgroup 1 contains gait cycles 
from 1 to 10, subgroups 2 contains gait cycles from 11 to 20, 
etc.) allowing for muscle synergy assessment over the entire 
walk [28].  

For each subgroup, muscle synergies were extracted from the 
filtered sEMG signals by means of the Non-Negative Matrix 
Factorization (NNMF) algorithm. This algorithm models the 
original sEMG signals (𝑀) as the linear combination of the 
time-independent muscle synergy weights (𝑊) and the time-
dependent activation coefficients (𝐶) [29] as described in (1): 

 

𝑀(𝑡) = ෍ 𝐶(𝑡)௞  ∙ 𝑊௞ + 𝑒

ே

௞ୀଵ

 (1) 

 
where N represents the optimal number of muscle synergies 

needed to describe the motor task. The weight vector 𝑊௞ 
describes the contribution of each observed muscle to the k-
synergy, the activation coefficient vector 𝐶(𝑡)௞  represents the 
time-dependent modulation of the muscles recruited in the k-
synergy and e represents the prediction error of the factorization 
algorithm. The MATLAB® function “nnmf” was used to apply 
the NNMF algorithm, setting the routine’s input parameters as 
detailed in TABLE I.  

The first algorithm initialization was performed differently 
for the weight vector 𝑊௞  and the activation coefficient vector 
𝐶(𝑡)௞. The 𝐶 matrix was initialized with values randomly 
selected from a uniform distribution in the range [0, 1]. To 
improve the performances of the factorization algorithm and the 
accuracy in the reconstruction of the original sEMG signals, a 
sparseness constraint was imposed in the initialization of the 𝑊 
matrix [30]. In particular, 𝑊 matrix was firstly initialized with 
values randomly chosen from a uniform distribution in the 
range [0, 0.05], then one random element of each 𝑊௞ vector was 
set to a value selected from a uniform distribution in the range 
[0.7, 0.8]. Therefore, only one muscle for each k-synergy has a 

TABLE I 
SETTINGS OF THE MATLAB ROUTINE “NNMF” USED FOR MUSCLE SYNERGY 

EXTRACTION 

Settings NNMF routine 

Algorithm multiplicative update 

Function tolerance 1e-6 

Search tolerance 1e-6 

Factorization replicates 50 

Factorization iterations (max.) 1000 

 

Fig. 2.  Example of application of the CIMAP algorithm, on a representative 
subject, to the Peroneus Longus (PL) and Gluteus Medius (GMD) muscles. 
(A) Blue intervals inside a rectangle box represent the sEMG activation 
intervals of the various gait cycles belonging to a cluster. Orange intervals 
represent the clusters’ prototypes. (B) Principal Activations (PAs) are 
represented in green, defined as the intersection of the clusters’ prototypes. 
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significant contribution, thus obtaining an extremely sparse 
initialization [30]. 

To explore the different solutions of the NNMF algorithm, 
the factorization process was run many times on the same gait 
data, changing the number of muscle synergies (N) between 1 
and 8. For each value of N, the reconstruction quality was 
computed by means of the total Variance Accounted For          
(𝑡𝑉𝐴𝐹), defined as the uncentered Pearson’s correlation 
coefficient expressed in percentage (2): 

 

𝑡𝑉𝐴𝐹 = ቆ1 −
∑ (𝑀௞ − 𝑀௞

ோ)ଶ௠
௞ୀଵ

∑ 𝑀௞
ଶ௠

௞ୀଵ

ቇ ∙ 100 (2) 

 
where m represents the number of muscles observed and 𝑀௞  

and 𝑀௞
ோ describes the original and the reconstructed sEMG 

envelopes of the k-synergy, respectively. The optimal number 
of muscle synergies needed to properly model the sEMG 
signals of the i-th subgroup (𝑁ଽ଴,௜) was selected by choosing the 
smallest number of synergies (N) granting a 𝑡𝑉𝐴𝐹 value equal 
or greater than 90% [15]. Since each subgroup could be 
described by a different number of muscle synergies, the final 
number of synergies (𝑁ଽ଴) was selected as the mode of the 
numbers of muscle synergies computed on each 10-gait-cycle 
subgroup (𝑁ଽ଴,௜). 

To represent the synergy output in the range [0, 1], the weight 
vectors 𝑊௞ were normalized in amplitude with respect to their 
global maximum. Then, the activation coefficient vectors 𝐶(𝑡)௞ 
were multiplied by the correspondent normalized values. 

To sort the muscle synergies in the same order for each 
subgroup, the k-means algorithm was applied to the 𝑊 matrix 
[9]. Clustering was performed by means of the MATLAB® 
routine “kmeans” using the following input parameters: 𝑁ଽ଴ as 
number of k-means clusters, 1000 as maximum number of 
iterations, 15 as number of replicates and cosine as distance 
metric. The activation coefficients matrix 𝐶 was ordered 
consequently. 

D.  Muscle Synergy Analysis 

The muscle synergies extracted using the standard approach 
and the novel approach (using PAs), were quantitatively 
compared in terms of (a) number of muscle synergies, (b) intra-
subject consistency, (c) robustness, and (d) interpretability of 
the results. 

 
a) Number of Muscle Synergies 

As stated above, the number of muscle synergies needed to 
properly reconstruct the sEMG signals of each 10-gait-cycle 
subgroup was selected by choosing the smallest number of 
synergies (N) granting a 𝑡𝑉𝐴𝐹 value equal or greater than 90%. 
The final number of synergies (𝑁ଽ଴) was then selected as the 
mode of the number of muscle synergies computed on each 10-
gait-cycle subgroup. 

 
b) Intra-Subject Consistency 

The intra-subject consistency of the muscle synergies among 
the subgroups of 10 gait cycles was evaluated by computing the 

similarity of the previously sorted weight vectors 𝑊௞ and 
activation coefficient vectors 𝐶(𝑡)௞, separately. The similarity 
between each couple of vectors was assessed by means of the 
cosine similarity (CS) [31]. The CS between the vectors of the 
i- and j-th subgroup of the k-synergy was defined as the 
normalized scalar product between the vectors expressed in 
percentage, as described in (3) and (4): 

 

𝐶𝑆ௐ,௞
௜,௝

 = ൭
𝑊௞

௜  ∙  𝑊௞
௝

‖𝑊௞
௜‖ ‖𝑊௞

௝
‖

൱ ∙ 100 (3) 

𝐶𝑆஼,௞
௜,௝

 = ൭
𝐶௞

௜  ∙  𝐶௞
௝

‖𝐶௞
௜ ‖ ‖𝐶௞

௝
‖

൱ ∙ 100 (4) 

 

where 𝐶𝑆ௐ,௞
௜,௝  and 𝐶𝑆஼,௞

௜,௝  represent the cosine similarity 

computed between the weight vectors 𝑊௞  and the activation 
coefficients 𝐶(𝑡)௞  of the i- and j-th subgroup, respectively. The 
𝐶𝑆 values range between 0 (no similarity) and 1 (complete 
similarity). 

 
c) Robustness 

The robustness of the muscle synergies among different 
subgroups of 10 gait cycles was assessed through the Cross-
Variance Accounted For [26] defined as follows: 

 

𝐶𝑟𝑜𝑠𝑠𝑉𝐴𝐹௜,௝ = ቆ1 −
∑ (𝑀௞

௜ − 𝑀௞
ோ,௝

)ଶ௠
௞ୀଵ

∑ (𝑀௞
௜ )ଶ௠

௞ୀଵ

ቇ ∙ 100 (5) 

 

where 𝑀௞
௜  and 𝑀௞

ோ,௝ describe the original and the 
reconstructed sEMG signals of the k-muscle for the i- and j-th 
subgroup, respectively. This parameter assesses how well the 
muscle synergies extracted for the i-th subgroup reconstruct the 
sEMG signals that belong to the j-th subgroup.  For each 
subject, the average 𝐶𝑟𝑜𝑠𝑠𝑉𝐴𝐹 value was computed over all 
the possible couples of 10-gait-cycle subgroups. The average 
𝐶𝑟𝑜𝑠𝑠𝑉𝐴𝐹 can assume values ranging from 0% to 100%, 
corresponding to low or high correlation, respectively, between 
the reconstructed and the original sEMG signals belonging to 
different subgroups. 
 
d) Interpretability 

According to the muscle synergy theory, specific 

TABLE II 
BIOMECHANICAL FUNCTIONS OF THE MUSCLE SYNERGIES DURING GAIT. 

Function Involved muscles Biomechanical function 

F1 TFL, GMD 
Hip joint stabilization during heel 
strike and load acceptance phase.  

F2 LGS, PL, SOL 
Propulsion at the mid and 
terminal stance. 

F3 TA 
Forefoot clearance control during 
the swing phase and foot control 
during the first rocker. 

F4 MH, LH 
Leg deceleration at the end of the 
swing phase. 

F5 LDR, LDR 
Control of the trunk position in 
the frontal plane at heel strike. 
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biomechanical functions can be associated to each muscle 
synergy. These biomechanical functions were generally 
assigned to each muscle synergy by observing the prevailing 
muscles contribution (𝑊௞> 0.5) and the profile of the activation 
coefficients 𝐶(𝑡)௞ [4], [5], [11], [32]. Rimini et al. [11] 
discovered 5 biomechanical function common to all the 
analyzed subjects during the walking task. TABLE II reports 
the description of each biomechanical function and the muscles 
involved in each function. For example, the biomechanical 
function F2 is used to generate the propulsion and requires, 
among the observed muscles, the involvement of the LGS, PL 
and, SOL muscles. All the other muscles are not directly 
involved in the propulsive function. 

The muscle synergy interpretability (I) was then evaluated 
considering the average of the muscle synergy weights that are 
not directly involved in the biomechanical function described 
by the k-synergy. The muscle synergy interpretability was 
computed as described in (6): 

 

𝐼 =
1

𝑁
෍((1 − 𝑊௞

ᇱതതതത)  ∙  100)

ே

௞ୀଵ

 (6) 

where 𝑁 represents the optimal number of muscle synergies 
needed to describe the motor task and 𝑊௞

ᇱതതതത is the average 
contribution of the muscles not involved in the biomechanical 
task. A muscle synergy can be considered more easily 

 
Figure 3. Activation coefficients 𝐶௞and weight vectors 𝑊௞ obtained with two different processing techniques: (A) standard approach, and (B) novel approach 
with extraction of principal activations (PAs). Each colored line (or colored vertical bar) represents 𝐶௞ (or 𝑊௞) extracted from a single subgroup of 10 gait 
cycles. Black lines (or top of black rectangles) represent the average 𝐶௞ (or 𝑊௞) across subgroups. The dotted lines, in the 𝐶௞-plots, represent the mean foot-
switch signal with the indication of the 4 gait phases: Heel contact (H), Flat foot contact (F), Push off (P) and Swing (S). 
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interpretable when the values of the weights of the muscles not 
directly involved in the specific biomechanical function are 
close to zero, while it can be considered less interpretable when 
they have values comparable with the weights of the muscles 
directly involved in the biomechanical function. The 𝐼 values 
are expressed in percentage, and range between 0% (low 
interpretability) and 100% (high interpretability).  

E. Statistical Analysis 

The hypothesis of normality of the distribution of the 
computed parameters was tested by means of the Lilliefors test 
setting the significance level () at 0.05. If the normality 
hypothesis was rejected, the Wilcoxon signed-rank test was 
used to compare the results obtained with the two approaches, 
otherwise the Student t-test was implemented (=0.05). 

III. RESULTS 

The subjects walked at an average speed of 1.2 m/s ± 0.1 m/s. 
On the average, a dataset of 156 ± 25 typical gait cycles was 
analyzed for each subject, divided into 16 ± 2 subgroups of 10 
gait cycles each.  

In the following, we compare the results obtained with the 
standard and the novel approach (entailing the extraction of 
PAs) in terms of (A) number of muscle synergies, (B) intra-
subject consistency, (C) robustness, and (D) interpretability. 

A. Number of Muscle Synergies 

Both pre-processing techniques required the same number of 
muscle synergies (𝑁ଽ଴) to properly reconstruct the original 
sEMG signals with a 𝑡𝑉𝐴𝐹 higher than 90%. For each of the 22 
subjects, 5 muscle synergies were needed to accurately 
reconstruct the original sEMG signals. Considering the 
standard approach, the muscle synergies were extracted with an 
average 𝑡𝑉𝐴𝐹 value of 93.1%  1.5%, while considering the 
novel approach the muscle synergies were extracted with an 
average 𝑡𝑉𝐴𝐹 value of 91.6%  1.8%.  

Figure 3 reports as an example the muscle synergies 
extracted from a representative subject of the sample population 
using the two processing techniques: (Fig. 3A) standard 
approach and (Fig. 3B) the novel approach (with PAs). The 
muscle synergies extracted through the standard and novel 
techniques revealed no significant changes both in the number 

of muscle synergies and in their composition. 

B. Intra-Subject Consistency 

No statistically significant differences in intra-subject 
consistency were found comparing the two approaches 
(standard and with PAs extraction), for both the weight vectors 
𝑊௞ and the activation coefficients 𝐶(𝑡)௞. More specifically, 
both approaches revealed high values of CS, suggesting a high 
similarity among the muscle synergies obtained from different 
10-gait-cycle subgroups. 

For the weight vectors 𝑊௞, CS was equal to 0.980 ± 0.002, 
using the standard approach, and 0.983 ± 0.003 using the novel 
approach, respectively. The application of the Student’s paired 
t-test revealed no significant differences between these 
approaches (p = 0.27).  

For the activation coefficients 𝐶(𝑡)௞, CS was equal to 0.978 
± 0.003 for the standard approach and 0.983 ± 0.004 for the 
novel approach, respectively. The Student’s paired t-test 
revealed no statistically significant differences between these 
procedures (p = 0.36). Figure 4A shows the values of the intra-
subject consistency values computed using the two approaches 
with the superimposition of the standard errors.   

C. Robustness 

The robustness assessment revealed a slightly significant 
increase in the 𝐶𝑟𝑜𝑠𝑠𝑉𝐴𝐹 value computed applying the novel 
approach with respect to the standard approach (Student’s 
paired t-test, p = 0.048). In particular, the 𝐶𝑟𝑜𝑠𝑠𝑉𝐴𝐹 value was 
equal to 81.2% ± 0.7%, for the standard approach, and 81.8% ± 
0.6%, for the novel approach, respectively. Figure 4B 
represents the values of the 𝐶𝑟𝑜𝑠𝑠𝑉𝐴𝐹 values computed 
considering the two processing approaches with the 
superimposition of the standard errors.  

D. Interpretability 

Results revealed a statistically significant increase in the 
interpretability of the muscle synergies extracted from the 
sEMG signals processed by means of the novel approach with 
respect to those extracted by applying the standard approach 
(Student’s paired t-test, p = 0.0007). The computed I-value was 
equal to 90.45% ± 0.52%, for the standard approach, and 
92.72% ± 0.62%, for the novel approach, respectively. Figure 

 
Figure 4. Average (± SE) values of the three parameters computed to compare the standard approach (Standard) and the novel approach (PAs): (A) represents 
the values of the intra-subject consistency of the weight vectors and the activation coefficients across different subgroup of 10-gait-cycles, (B) shows the 
vaules of the muscle synergy robustness and (C) the values of the muscle synergy interpretability.      
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4C shows the values of the muscle synergy interpretability for 
both the pre-processing techniques with the superimposition of 
the standard errors. 

IV. DISCUSSION 

The relevance of the analysis of the muscle synergies is well 
known in literature and several studies supporting the 
importance of this theory have been published in the last years 
[2], [3], [11], [15], [31], [33]. The approaches previously used 
in literature (“standard” approach) to extract the muscle 
synergies generally considered the whole sEMG signals as 
input of the factorization algorithm [6], [10], [13], [15]. These 
standard approaches may be influenced by the high cycle-by-
cycle variability of the sEMG activation patterns [16]. 
Therefore, these approaches may not be sufficient to fully 
understand the motor control strategies during human 
locomotion.  

The novel approach presented in this paper can be used to 
overcome the drawback of the standard techniques by selecting 
the PA intervals from the original sEMG signals. Considering 
PAs allow evaluating only the “necessary” muscle activations, 
discarding those with auxiliary function [22], such as those 
providing corrections to cyclic motion and body segment 
posture. According to this approach, only the time-samples in 
correspondence of PAs are considered as inputs of the 
factorization algorithm for the extraction of the muscle 
synergies [11], [21], while the remaining time-samples are set 
to zero.  

To assess the performance of the novel approach with respect 
to the standard one, the muscle synergies extracted from 22 
healthy subjects during a walking task have been compared in 
terms of number of muscle synergies, intra-subject consistency, 
robustness, and muscle synergy interpretability.  

In terms of the number of muscle synergies, both the 
approaches accurately reconstruct the original sEMG signals by 
means of five muscle synergies. These muscle synergies are 
very similar both in their composition (profile of the activation 
coefficients and weighted contribution of the muscles) and in 
the biomechanical functions produced by each of them. In 
particular, the same five biomechanical functions described in 
Ref. [11] can be associated to the muscle synergies extracted 
considering each of the two approaches.  

In terms of intra-subject consistency, the standard and the 
novel approach reveal similar values of intra-subject 
consistency (0.980 ± 0.002 and 0.983 ± 0.003, respectively), 
suggesting a high repeatability of the motor control strategy 
among the 10-gait-cycle subgroups, independently from the 
pre-processing used.  

In terms of robustness and interpretability of the muscle 
synergies, the novel approach outperforms the standard one. 
Indeed, our results suggest that the extraction of the PAs allows 
for obtaining a slightly higher robustness (81.8% ± 0.8% vs. 
81.2% ± 0.7%), and a better interpretability (92.72 % ± 0.62% 
vs. 90.45% ± 0.52%) of the muscle synergies with respect to the 
standard approach, thus providing a more robust and clear 
assessment of the modular organization of the CNS during gait. 

By analyzing the number and the composition of the muscle 

synergies and the intra-subject consistency, we found no loss of 
information due to the extraction of the PAs, with respect to the 
standard approach. Moreover, the higher performances in terms 
of robustness and muscle synergy interpretability obtained 
considering the novel approach demonstrate that the extraction 
of the PAs may successfully improve the muscle synergy 
analysis during gait in healthy subjects.  

In this study, we proposed the application of an innovative 
pre-processing technique to extract muscle synergies (CIMAP 
to select PAs). However, there are also other elements of the 
processing chain giving raise to the muscle synergies extraction 
that must be considered. In general, prior literature has drawn 
considerable attention to the influence of EMG pre-processing 
on muscle synergy extraction [34]–[36]. In particular, the 
importance of standardization in envelope estimation [37] and 
amplitude normalization [38], [39] were thoroughly 
investigated. 

To properly obtain PAs, sEMG signals must be recorded for 
at least 3 minutes during gait. In this study, we acquired 5 
minutes of gait signals, for each subject. Signal recording 
during a “long” physiological walk is needed to be able to 
collect at least 100 - 200 valid gait cycles required for PA 
analysis (in particular for the application of the CIMAP 
algorithm). Notice that this does not limit the feasibility and 
applicability of the methodology to pathological populations. 
Indeed, gait analysis is commonly used to quantitatively assess 
patients’ locomotion performance only in those patients able to 
independently walk, for some minutes, without walking aids or 
external support. In the past, several studies demonstrated the 
feasibility of gait data acquisition, during recording sessions 
lasting 3 minutes, in patients suffering from different 
neurological conditions, e.g. Normal Pressure Hydrocephalus 
[40], mild ataxia [41] and cerebral palsy [42]. 

In this work, we used the CIMAP algorithm to select PAs and 
discard secondary activations, suggesting that muscle synergies 
are better understood when considering only PAs. This is in line 
with a previous work in which the selection of PAs was used to 
define a robust asymmetry index, based on EMG activity during 
locomotion [23]. In particular, the study of Ref. [23] provided 
a validation both on healthy and pathological populations. The 
approach proposed in this work was validated considering a 
population of healthy subjects, but the use of PAs for extracting 
muscle synergies can be extended to the analysis of subjects 
affected by neurological disorders, for whom the assessment of 
motor control through muscle synergies may be of the uttermost 
importance [43], [44]. Although the validation of the current 
work has been performed on healthy individuals, the most 
obvious final goal of future works is providing such a validation 
also on patients affected by neurological disorders. However, 
when considering pathological populations, also secondary 
activations might be fundamental in the interpretation of the 
results. Indeed, discarding the effect of auxiliary functions 
included in the secondary activations might bias the 
interpretation of pathological types of behavior, instead of 
improving it. Nevertheless, it should be noticed that the 
opportunity to separate principal from secondary activations, 
provided by the CIMAP algorithm, does not preclude studying 
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also secondary (auxiliary) activations. Therefore, it is advisable 
that future developments of the proposed approach will include 
a validation also on pathological populations, possibly 
analyzing both principal and secondary activations. 

I. CONCLUSIONS 

In conclusion, the results presented in this paper demonstrate 
that the extraction of the principal activations can be 
successfully used as pre-processing step before the muscle 
synergy extraction, allowing a more robust and interpretable 
assessment of the modular organization of the CNS during a 
walking task without any loss of information. A further step 
would be the application of this novel approach on sEMG 
signals acquired from subjects with musculoskeletal or 
neurological disorders (e.g. Parkinson’s disease) during gait to 
assess its applicability also in pathological conditions. 
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