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Abstract— The muscle synergy theory was widely used in 

literature to assess the modular organization of the central 

nervous system (CNS) during human locomotion. The extraction 

of muscle synergies may be strongly influenced by the pre-

processing techniques applied to surface electromyographic 

(sEMG) signals. The aim of this contribution is to assess the 

robustness improvement in muscle synergy extraction obtained 

using an innovative pre-processing technique with respect to the 

standard procedure. The new pre-processing technique that we 

propose is based on the extraction of principal muscle activation 

intervals (necessary to accomplish a specific biomechanical task 

during gait) from the original sEMG signals, discarding the 

secondary muscle activation intervals (activations that occur 

only in some strides with auxiliary functions). Results suggest 

that the extraction of the principal activation intervals from 

sEMG provide a more consistent and stable description of the 

modular organization of the CNS with respect to the standard 

pre-processing procedure.     

I. INTRODUCTION 

In the last years, the muscle synergy concept was proposed 
for the assessment of the modular organization of the central 
nervous system (CNS) during different motor tasks and was 
applied in several research fields, such as clinics, robotics, and 
sports [1]. According to the theory of muscle synergies, the 
CNS controls a small number of muscles rather than 
coordinating each single muscle involved in a specific motor 
task [2], [3].  

Muscle synergies are extracted from surface 
electromyography (sEMG) signals by applying different 
factorization techniques, such as Non-Negative Matrix 
Factorization (NNMF) [4], [5]. Before applying these 
algorithms, the acquired sEMG signals must be properly 
processed. These procedures may strongly influence the 
accuracy of muscle synergy reconstruction in the assessment 
of the modular organization of the CNS. In literature, several 
algorithms were proposed for the extraction of muscle 
synergies during cyclic movements [2], [4]–[7]. However, 
these techniques may not be sufficient to fully understand 
motor control mechanisms due to the high intra-cycle 
variability of the sEMG activation intervals. Innovative 
techniques, such as Statistical Gait Analysis [8], [9] and 
CIMAP [10], [11], have been introduced to deal with this issue 
by selecting only the representative gait patterns. The aim of 
this study is to show how the application of Statistical Gait 
Analysis and CIMAP algorithms may influence muscle 
synergy extraction increasing the robustness of results.   

 
 

II. MATERIALS AND METHODS 

A. Data Acquisition 

The sEMG signals were recorded by means of a 
multichannel system for gait analysis (STEP32, Medical 
Technology, Italy) from one healthy female volunteer (age: 25 
years, height: 160 cm and weight: 61 kg). The subject walked 
for 5 minutes at self-selected speed, back and forth a 10-m 
straight walkway. The active probes were positioned over 12 
muscles of the right lower limb and trunk: right Longissimus 
Dorsii (LDR), left Longissimus Dorsii (LDL), Tensor Fasciae 
Latae (TFL), Gluteus Medius (GMD), Rectus Femoris (RF), 
Lateral Hamstring (LH), Medial Hamstring (MH), Vastus 
Medialis (VM), Lateral Gastrocnemius (LGS), Peroneus 
Longus (PL), Soleus (SOL) and Tibialis Anterior (TA). Foot-
switches, placed bilaterally under the foot-soles, were used to 
segment gait cycles and extract only gait cycles showing the 
typical gait phases, discarding those with atypical sequences 
(e.g. turning and acceleration/deceleration in correspondence 
of direction changes) [12]. 

B. Identification of Muscle Activation Intervals 

The Clustering for Identification of Muscle Activation 
Patterns (CIMAP) algorithm was used to select the principal 
and secondary muscle activations intervals over all the 
representative gait cycles [10].  

The muscle activation intervals were computed by means 
of a double-threshold detector, specifically developed for gait 
analysis [13]. These activation intervals were extracted from 
the original sEMG signals windowing each gait cycle by 
means of a binary mask that was set to 1 in correspondence of 
a muscle activation and to 0 where no muscle activation was 
present.  

The principal activations were defined as the muscle 
activations that are necessary to accomplish a specific 
biomechanical task and occur in each gait cycle. By contrast, 
the secondary activations occur only in some strides with 
auxiliary functions (e.g. to provide corrections to the main 
muscle activations for better controlling possible subject 
distractions or extemporaneous external disturbances).  

An example of application of CIMAP algorithm is shown 
in Fig. 1 for PL and GMD muscles. 

C. sEMG signal pre-processing 

Before muscle synergy extraction, the acquired sEMG 
signals were pre-processed considering a) all the muscle 
activations, b) only the principal activations, and c) only the 
secondary activations. 

First, gait data were segmented into typical gait cycles 
selecting only strides with a typical sequence of the gait 
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phases. Then, each segmented gait cycle was time-normalized 
into 1000 time points [14] and concatenated into a single 
vector [15]. Depending on the pre-processing procedure, the 
selection of the muscle activation intervals was performed 
windowing each normalized gait cycle by means of a different 
binary mask. After the removal of outlier strides and the 
selection of the muscle activation intervals, sEMG signals 
were high-pass filtered (8th-order Butterworth filter with a 
cutoff frequency of 35 Hz), full-cycle rectified to obtain a non-
negative signal and low-pass filtered (5th-order Butterworth 
filter with a cutoff frequency of 12 Hz) to obtain the envelopes 
of the sEMG signals. Then the envelopes were normalized in 
amplitude with respect to the global maximum of each muscle. 
Before the muscle synergy extraction, the envelopes were 
divided into subgroups of 10 concatenated gait cycles (i.e. 
subgroup 1 contains gait cycles from 1 to 10, subgroup 2 
contains gait cycles from 11 to 20, etc.) allowing for muscle 
synergy assessment over the 5-minute walk [16]. 

C. Muscle Synergy Extraction and Sorting 

Muscle synergies were extracted for each subgroup from 
the pre-processed sEMG signals by means of the NNMF 
algorithm [4], [5]. This factorization algorithm decomposes 
the original sEMG-envelope matrix (𝑀) as the linear 
combination of time-independent muscle synergy weights (𝑊) 
and time-dependent activation coefficients (𝐶) [17] as 
described in (1): 

𝑀(𝑡) =  ∑ 𝐶(𝑡)𝑘  ∙

𝑁

𝑘=1

 𝑊𝑘 + 𝑒  (1) 

where 𝑁 represents the number of synergies needed to describe 
the motor control strategy. The weight vector 𝑊𝑘 represents 
the weighted contribution of each specific muscle to the k-
synergy, the activation coefficients vector 𝐶(𝑡)𝑘 represents the 
time-dependent neural commands that activate the recruitment 
of the synergistic muscles in the k-synergy and 𝑒 represents the 
prediction error of the factorization algorithm. 

The MATLAB function “nnmf” was used to apply the 
NNMF algorithm setting the routine parameters as detailed in 
TABLE I.  

The first algorithm initialization was performed differently 
for the weights vector 𝑊𝑘 and the activation coefficients 
vector 𝐶𝑘. The 𝐶𝑘 vector was initialized with values randomly 
chosen from a uniform distribution in the range [0, 1]. To 
improve the performance of the factorization algorithm and the 
accuracy in the reconstruction of the original sEMG matrix, a 
sparseness constraint was imposed in the initialization of the 
weights matrix [18]. The 𝑊 matrix was firstly initialized with 
values randomly chosen from a uniform distribution between 
0 and 0.05, then one random element of each weight vector 𝑊𝑘 
was set to a value randomly selected from a uniform 
distribution in the range [0.7, 0.8].  

The goodness of the sEMG matrix reconstruction with 
respect to the original matrix was computed by means of the 
total Variance Accounted For (𝑡𝑉𝐴𝐹), defined as the 
uncentered Pearson’s correlation coefficient expressed in 
percentage (2):  

𝑡𝑉𝐴𝐹 = (1 − 
∑ (𝑀𝑘 − 𝑀𝑘

𝑅)2𝑚
𝑘=1

∑ (𝑀𝑘)2𝑚
𝑘=1

) ∙ 100 (2) 

where 𝑚 represents the number of muscles observed, while 𝑀𝑘 

and 𝑀𝑘
𝑅 describe the original and the reconstructed sEMG 

envelopes of the k-th muscle, respectively.  

The optimal number of muscle synergies needed to 
properly model the sEMG signals of the i-th subgroup (𝑁𝑖)  
was selected by choosing the least number of synergies  
granting a 𝑡𝑉𝐴𝐹 value greater than 90% [14]. Since each 10-
gait-cycle subgroup could be described by a different number 
of synergies, the final number of synergies (𝑁) was defined as 
the mode of the number of synergies computed on each 
subgroup. 

The k-means algorithm was used to sort the muscle 
synergies extracted from each subgroup according to their 
muscle synergy weights 𝑊 [19]. The clustering was performed 
using the following parameters: 𝑁 number of k-means clusters, 
10000 maximum iterations, 15 replicates and cosine distance 

TABLE I.  SETTINGS OF THE MATLAB 
ROUTINE “NNMF” USED 

FOR MUSCLE SYNERGY EXTRACTION 

Settings NNMF routine 

Algorithm multiplicative update 

Function tolerance 1e-6 

Search tolerance 1e-6 

Factorization replicates 50 

Factorization iterations 1000 

 

 

Figure 1. Example of clustering of muscle activation intervals using the 
CIMAP algorithm. (A) Blue intervals represents the cluster elements 

(sEMG activation intervals) normalized with respect to the gait cycle 

duration for PL (left) and GMD (right) muscles, while orange intervals 
represent the cluster prototypes. (B) Principal activation (P. A.) are 

highlighted in green and are defined as the intersection of all the clusters’ 

prototypes extracted through CIMAP. (C) Secondary activation (S. A.) are 
highlighted in red and are modeled as the union of all the auxilliary 

activation of the clusters’ prototypes discarding principal activations. 

 



  

metric. The activation coefficients 𝐶 were ordered 
consequently. To investigate changes in the robustness of the 
muscle synergies extracted using different pre-processing 
techniques, muscle synergies were extracted three times from 
the same original data considering: a) all the muscle activation 
intervals (standard procedure), b) only the principal activation 
intervals, and c) only the secondary activation intervals.  

D. Muscle Synergy Robustness 

The robustness of the muscle synergy extraction algorithm 
across different subgroups of gait cycles was assessed by 
means of the Cross-Variance Accounted For [15] defined as 
follows: 

𝐶𝑟𝑜𝑠𝑠𝑉𝐴𝐹𝑖,𝑗 = (1 −  
∑ (𝑀𝑘

𝑖 − 𝑀𝑘
𝑅,𝑗

)
2

𝑚
𝑘=1

∑ (𝑀𝑘
𝑖 )

2𝑚
𝑘=1

) ∙ 100 (3) 

where 𝑀𝑘
𝑖  and 𝑀𝑘

𝑅,𝑗
 represent the original and the 

reconstructed sEMG signals of the k-th muscle for the i- and j-
th subgroup, respectively. Then, the average CrossVAF value 
was computed over all the subgroups for each pre-processing 
technique.  

III. RESULTS AND DISCUSSION  

Using all the muscle activation intervals as well as using 
the principal activation intervals only, 5 muscle synergies were 
necessary to accurately reconstruct the original sEMG signals 

with an average 𝑡𝑉𝐴𝐹 value of 93.2  0.6% and 94.5  0.5%, 

respectively. Considering only the secondary muscle 
activations, 6 muscle synergies were necessary to accurately 
describe the original sEMG signals with an average 𝑡𝑉𝐴𝐹 

value of 93.5  3.7%.  

Fig. 3 reports the muscle synergies extracted using the 
three different pre-processing procedures. Considering the 
muscle synergies extracted from all the muscle activation 
intervals (Fig. 3 (A)) and from the principal activation 
intervals only (Fig. 3 (B)), it can be noticed that muscle 
synergies are not significantly modified both in the number 
and in the shapes of 𝐶𝑘 and 𝑊𝑘. However, the selection of the 
principal activation intervals increased the consistency of 
muscle synergies among subgroups, as it can be noticed by the 
reduced dispersion of both 𝐶𝑘 and 𝑊𝑘.  

The 𝐶𝑘 and 𝑊𝑘 computed using the secondary activation 
intervals discarding the principal activation (Fig. 3 (C)) were 
significantly different with respect to the ones represented in 
Fig. 3 (A, B) in terms of number of synergies, shapes and 
biomechanical function. The activation coefficients 
represented in Fig. 3 (C) were characterized by a lower 
amplitude and a significantly higher dispersion of the neural 
commands among the subgroups with respect to the activation 
coefficients computed using the first two pre-processing 
procedures.  

Fig. 4 shows the colour maps of CrossVAF values for each 
couple of subgroups using (A) all the muscle activation 
intervals, (B) the principal muscle activation intervals only, 

 

Figure 3. Activation coefficients 𝐶𝑘and weights 𝑊𝑘 obtained with three different pre-processing techniques: (A) selection of all muscle activation 

intervals, (B) principal activation intervals discarding secondary activations , and (C) secondary activation intervals discarding principal activations. Each 

colored line represents the activation coefficients and weights extracted from a single subgroup, while the black lines represent the average activation 

coefficients and weights among subgroups. The dotted lines in the activation coefficients plots represent the mean foot-switch signal with the levels of 

Heel contact (H), Flat foot contact (F), Push off (P) and Swing (S). 

 



  

and (C) the secondary muscle activation intervals discarding 
the principal activations. CrossVAF values range from 0% 
(blue) to 100% (red) suggesting low and high correlation 
between the reconstructed and original sEMG signals, 
respectively. Considering all the muscle activation intervals, 

an average CrossVAF value of 79.5  1.5% was obtained. 
Using the principal activations only, an average CrossVAF 

value of 85.3  0.8% was obtained, while selecting only the 

secondary activations an averaged value of 22.2  3.8% was 
obtained. 

Hence, applying the CIMAP algorithm for the selection of 
principal activation intervals from sEMG signals, it was 
observed that the same number of synergies is needed to 
describe the motor task and the robustness of muscle synergies 
across subgroups significantly increased with respect to the 
standard pre-processing procedure (all muscle activation 
intervals).    

IV. CONCLUSIONS 

The present study analyzed the impact of the selection of 
principal and secondary muscle activation intervals from 
sEMG signals on the robustness of the muscle synergies 
extracted during a walking task in a healthy volunteer. Results 
suggest that the extraction of the principal activation intervals 
provide more consistent and more stable activation 
coefficients and weights vectors.   
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Figure 4. Colour map representation of muscle synergy robustness (CrossVAF) across subgroups of gait cycles considering: (A) all the muscle activation 

intervals, (B) the principal muscle activation intervals discarding the secondary activations, and (C) the secondary muscle activation intervals discarding 

the principal activations. Colour code ranges from 0% (blue) to 100% (red). 

 


