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Source localization based on electroencephalography (EEG) has become a widely used 
neuroimaging technique. However its precision has been shown to be very dependent on 
how accurately the brain, head and scalp can be electrically modeled within the so-called 
forward problem. The construction of this model is traditionally performed by leveraging 
Finite Element or Boundary Element Methods (FEM or BEM). Even though the latter is 
more computationally efficient thanks to the smaller interaction matrices it yields and 
near-linear solvers, it has traditionally been used on simpler models than the former. 
Indeed, while FEM models taking into account the different media anisotropies are widely 
available, BEM models have been limited to isotropic, piecewise homogeneous models. 
In this work we augment standard BEM with a new wire integral equation to account 
for the anisotropy of the white matter. The new formulation combines the efficiency of 
BEM discretization of the boundaries only and modeling of the fibrous nature of the white 
matter as one-dimensional basis functions which limits the computational impact of their 
modeling. We compare our scheme against widely used formulations and establish its 
correctness in both canonical and realistic cases.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Electroencephalography (EEG) based source localization has gained an increasing popularity as a reliable neuroimaging 
modality in research and medical practice [1–3]. Using scalp measured potentials, various algorithms have been proposed 
for the retrieval of the location of the neuro-generators [4]. Many of these algorithms rely on an accurate solution of the 
associated forward problem which maps a given setting of sources and head model to the corresponding scalp potential 
distribution. The complexity of the head geometry and its underlying conductivity, however, precludes the use of analyti-
cal methods and one has to adopt numerical approximations. With their renowned high accuracy and robustness, integral 
equations-based methods remain the preferred choice for researchers [5,6]. In particular, the boundary element method 
(BEM) only requires the discretization of the boundaries, thus reducing the overall dimensionality. Moreover, given the 
smoothness of its underlying kernel, it is possible to augment BEM with fast algorithms such as the adaptive cross approxi-
mation (ACA) or the fast multipole method (FMM) [7,8], which further reduce its computational complexity. The three most 
widely employed BEM formulations for the EEG forward problem are the adjoint double layer (ADL), the double layer (DL) 
and the symmetric (SY) approaches [9–11]. By leveraging on methods of layer potentials, these formulations solve Poisson’s 
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Fig. 1. Volume conductor with nested geometry.

equation under the assumption of isotropic media [12]. The DL formulation is a direct approach in which the potential is 
obtained directly while the ADL formulation solves first for an auxiliary unknown before integrating it to obtain the electric 
potential. Differently from the two previous approaches, the SY formulation simultaneously involves two surface unknowns. 
Despite its larger system of equations, it has a block diagonal structure [12]. For more details on these methods, their 
relative merits and disadvantages, the reader is referred to [10,11,13].

Despite their advantages, BEM-based formulations are restricted to isotropic and piece-wise homogeneous problems. This 
is a significant limitation since the white matter anisotropy has a considerable impact on the accuracy of source localization 
procedures [14,15]. These early results have been obtained with differential based methods and entire volume discretization 
[14,15], which is computationally expensive. More recently, integral techniques accounting for the white matter anisotropy 
have been introduced [13,16]; they do however also require the discretization of the entire head volume.

The anisotropy of the white matter tissue arises from its underlying assembly of bundles of parallelly-oriented axons 
[17,18]. This suggests that the apparent inhomogeneous anisotropy is actually structured and may be expressed in terms of 
these axons’ fibers. This observation has been leveraged on in [19] by replacing a single fiber by dipolar sources of constant 
magnitude. The forward problem was subsequently solved iteratively with the symmetric formulation. However, this work 
does not account for the coupling and interactions between different fibers which is essential for a precise forward solution. 
The structured assembly of the white matter has also been exploited for different settings in [20,21].

The work presented in this paper aims at extending the three main BEM (EEG) formulations to take into account the 
anisotropic and inhomogeneous conductivity of the white matter. This is achieved by a modelization of the white matter 
connectivity. Indeed, using diffusion weighted MRI (DW-MRI) it is possible to track axon fibers and reveal the underlying 
network of the white matter [22]. One-dimensional basis functions are used for the modelization of the fibers, which results 
in efficient and accurate forward solutions. As a byproduct, the new technique we present could further improve the recently 
introduced approaches exploiting the brain connectivity patterns in source estimation [23,24]. Some preliminary results have 
been presented in [25]. Several numerical experiments validate the new schemes in canonical and realistic settings.

The reader should note that 1D formulations have been extensively studied in the context of high frequency electromag-
netic modeling of wire-like structures [26–28], although those schemes, for perfect electrically conducting wires, are only 
mildly related to the ones presented here.

The paper is organized as follows: the notations is set and some background is recalled in Section 2; the new equations 
and their discretizations are then derived in Section 3 and Section 4, respectively. The new schemes are validated with 
various simulations and tests in Section 5 before closing with conclusions in Section 6.

2. Background and notations

Consider an electric volume current density J residing in a conducting medium Ω ⊂ R3. This domain is composed 
of N nested, piecewise homogeneous sub-regions Ωi such that Ω = ⋃N

i=1 Ωi with Ω1 being the innermost layer. Each 
sub-region is associated with an isotropic conductivity σi and delimited by the Lipschitz surface Γi with Γ = ⋃N

i=1 Γi and 
Γi ∪ Γi−1 = ∂Ωi (Fig. 1).

Let Λj be a curve modeling a bundle of parallel white matter fibers and Λ = ⋃Nf
j=1 Λj their union. These fibers assume a 

thin cylindrical shape of circular section a [29,30] and give rise to a tensorial conductivity profile in which the conductivity 
along the fiber σ f is different from the conductivity in the transversal direction σ1. In the quasi-static regime, the electric 
potential φ is related to the current density J via Poisson’s equation

∇ ·
(
σ(r)∇φ(r)

)
= ∇ · J (r) , r ∈ Ω , (1)
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where the local electric conductivity σ is described by a 3 ×3 symmetric tensor [31]. For the sake of simplicity in explaining 
our new method, we neglect the anisotropy of the skull and thus, given that the neuron fibers are only present in the 
innermost region Ω1, eq. (1) can be rewritten as

∇ ·
(
σ(r)∇φ(r)

)
= ∇ · J (r) , r ∈ Ω1, (2)

σi�φ(r) = 0 , r ∈ Ωi, i = 2, . . . , N, (3)

where it was assumed that the current sources are present only in the innermost layer that corresponds to the brain. Two 
transmission conditions are associated with each of these equations: (i) a Dirichlet condition that enforces the continuity of 
the electric potential across interfaces and (ii) a Neumann condition that enforces the continuity of the electric current flux, 
i.e.

[φ] j = 0 on Γ j, for j = 1 . . . N, (4)

[σ∂n̂φ] j = 0 on Γ j, for j = 1 . . . N, (5)

where the bracket notation [g] j denotes the jump of a function g across Γ j and ∂n̂ g = n̂ · ∇g with n̂ = n̂(r) the unit vector 
normal to Γ j pointing outward of Ω j . Note that the fibers do not come into contact with the inner surface. In the context 
of the EEG forward problem, brain sources are commonly modeled as current dipoles [32,33], i.e.

J (r) = Pδ(r − r0), (6)

in which P and δ respectively denote the dipole moment and the Dirac delta function. The electric potential induced by 
this elementary source in an infinite homogeneous domain of conductivity σ1 reads

vdip(r) = P · (r − r0)

4πσ1|r − r0|3
. (7)

3. Integral equation based formulations

By transforming Poisson equation into an integral equation, conventional BEM formulations (SL, DL and SY), have been 
particularly attractive as they offer computational savings in comparison with other alternatives. In general, reformulating 
a partial differential equation as an integral expression requires knowledge of its fundamental solution. When considering 
the anisotropy of the white matter however, eq. (2) involves position and orientation dependent tensors for which the 
corresponding fundamental solution does not exist in closed form, for general geometries. Equation (2) should then be 
recast into an equivalent one at a reduced dimensionality by extracting the Laplacian operators and using Green’s identities. 
In particular, this choice not only allows for a unified treatment of eqs. (2) and (3), but also reduces the effect of the 
anisotropy to a one-dimensional apparent volume current density along the fibers. Consequently, the framework of standard 
BEM formulations can be extended to handle the anisotropy of the white matter. To that end, eq. (2) can be re-expressed as

�φ(r) = ∇ ·
(

J (r)

σ1
+ κ(r)J f (r)

)
, r ∈ Ω1, (8)

where J f = σ∇φ is the apparent volume current density along the fibers and κ is the conductivity contrast defined as

κ (r) =
(
σ−1(r) − σ1

−1 I
)

, (9)

in which I is the identity tensor. Note that κ is zero everywhere except on the fibers where it has the form

κ(r) = (σ−1
f − σ−1

1 )t̂(r) t̂
T
(r) (10)

with t̂(r) being the unit vector tangential to Λ j . Therefore, the matrix-vector product κ(r) J f (r) reduces, locally, to a scalar-
vector product. We remind the reader that, in the above settings, it is assumed that the conductivity of the fibers is σ1 in 
the transversal direction and σ f in the longitudinal direction. Therefore, even though we are modeling only the tangential 
part of the apparent volume current density, we are not making any assumption on the total current density on the fibers. 
In particular, the transversal part of the total current density is not assumed to be constant.

In order to derive an integral representation for the potential and its flux using Green’s second identity, the following 
well known operators are introduced:

• the single layer operator

(Su|Γi
)(r) =

∫
G(r − r′)u(r′)ds(r′) , r ∈ Ω , (11)
Γi
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• the double layer operator

(Du|Γi
)(r) =

∫
Γi

∂n̂′ G(r − r′)u(r′)ds(r′) , r ∈ Ω , (12)

• the adjoint double layer operator

(Ku|Γi
)(r) =

∫
Γi

∂n̂G(r − r′)u(r′)ds(r′) , r ∈ Γ j , (13)

• the hypersingular operator

(Nu|Γi
)(r) =

∫
Γi

∂n̂∂n̂′ G(r − r′)u(r)ds(r′) , r ∈ Γ j , (14)

where

G(r − r′) = 1

4π |r − r′| (15)

is the fundamental solution associated with the Laplacian. In addition, a new operator is introduced to handle the fiber 
contributions

(Vu)(r) =
∫
Λ

g(r − r′)∇ · (κu(r′))dl(r′) , r ∈ Ω , (16)

where the associated wire kernel is defined as

g(r − r′) =
a∫

0

2π∫
0

G(r − r′)ρ′ dρ′ dθ ′ , (17)

and ρ and θ are the usual polar coordinates in the fiber’s transverse plane.
The starting point of our development is Green’s second identity, which states that

(Dφ|∂Ωi
)(r) − (Sξ |∂Ωi

)(r) =
∫
Ωi

φ(r)�G(r − r′) − G(r − r′)�φ(r) , r ∈ Ωi \ Γi , (18)

where ξ = ∂n̂φ is the derivative of the potential in the normal direction. Using eqs. (3) and (8) and the property of the 
fundamental solution, eq. (18) reduces to the following

(Dφ|∂Ωi
)(r) − (Sξ |±∂Ωi

)(r) = −φ(r) +
⎧⎨
⎩ vdip(r) −

Nf∑
k=1

VJΛk(r) r ∈ Ωi \ Γi, i = 1 ,

0 r ∈ Ωi \ Γi, i = 2 . . . N .

(19)

Taking the limit r → ∂Ω , the following integral representation for the electric potential is derived

(Dφ|∂Ωi
)(r) − (Sξ |±∂Ωi

)(r) = −1

2
φ|∂Ωi

(r) +
⎧⎨
⎩ vdip(r) −

Nf∑
k=1

VJΛk(r) r ∈ ∂Ωi, i = 1 ,

0 r ∈ ∂Ωi, i = 2 . . . N ,

(20)

where the 1
2 stems from the Cauchy principal value. By differentiating eq. (19) with respect to r in the direction normal to 

the boundary, an integral representation for the potential flux can be obtained

(Nφ|∂Ωi
)(r) − (Kξ |±∂Ωi

)(r) = −1

2
ξ |±∂Ωi

(r) +
⎧⎨
⎩ vs(r) −

Nf∑
k=1

WJΛk(r) r ∈ ∂Ωi, i = 1 ,

0 r ∈ ∂Ωi, i = 2 . . . N ,

(21)

where

(Wu)(r) =
∫

∂n̂ g(r − r′)∇ ·
(
κu(r′)

)
dl(r′) (22)
Λ
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and

vs(r) = ∂n̂ vdip(r). (23)

It is worth noting that eqs. (20) and (21) are written for a normal vector pointing outward. A consistent change of signs 
should be made when the normals are pointing inward, which is the case for Γi−1. In the inner most layer Ω1 the last term 
of the right-hand side in eqs. (20) and (21) represents the effect of the fibers; it describes the local anisotropic conductivity.

3.1. Double layer-wire formulation

Equations (20) and (21) have two surface unknowns, one of which could be discarded by using the boundary conditions 
eqs. (4) and (5); depending on the variable discarded two different formulations can be obtained. The double layer-wire 
formulation is obtained if the surface electric potential φ(r) is the remaining unknown. This formulation can be derived 
after multiplying eq. (20) with the local conductivity and summing the contribution of all the regions Ωi

σ1 vdip(r) − σ1

Nf∑
k=1

VJΛk(r) = σ j + σ j+1

2
φ(r) −

N∑
i=1

(σi+1 − σi) (Dφ|Γi
)(r), r ∈ Γ j, j = 1 . . . N, (24)

where the S operator term cancels out by enforcing the transmission condition (5).
Equation (24) simultaneously involves the surface potential φ and the current density J as unknowns, and therefore 

needs to be complemented with a second equation. The second equation is obtained by applying the gradient operator to 
eq. (24)

σ1∇vdip(r) − σ1∇
Nf∑

k=1

VJΛk(r) = σ1σ
−1
Λn

JΛn(r) − ∇
N∑

i=1

(σi+1 − σi) (Dφ|Γi
)(r), r ∈ Λn, n = 1 . . . Nf. (25)

Combining eqs. (24) and (25) constitutes the first new formulation and will be referred to as the double layer-wire (DLW) 
formulation.

3.2. Single layer-wire formulation

Differently from the DLW that is formulated in terms of surface potentials, the single layer-Wire (SLW) formulation is 
derived from eq. (21) and solves for the jump of the potential’s normal derivative across an interface. Thus, applying eq. (21)
to each region Ω j and summing up their contributions yields

vs(r) −
Nf∑

k=1

WJΛk(r) = 1

2
(ξ |−Γ j

+ ξ |+Γ j
)(r) −

N∑
i=1

K(ξ |−Γi
− ξ |+Γi

)(r), r ∈ Γ j, j = 1 . . . N , (26)

where the N operator term cancels out by enforcing the transmission condition (4). After introducing

qΓ j = ξ |−Γ j
− ξ |+Γ j

=
(

σ j+1 − σ j

σ j+1

)
ξ |−Γ j

, (27)

the sum of the normal derivatives can be expressed as

ξ |−Γ j
+ ξ |+Γ j

=
(

σ j+1 + σ j

σ j+1 − σ j

)
q|Γ j

. (28)

Substituting back eq. (28) in eq. (26) forms the single layer formulation

vs(r) −
Nf∑

k=1

WJΛk(r) = σ j + σ j+1

2(σ j+1 − σ j)
q|Γ j

(r) −
N∑

i=1

(Kq|Γi
)(r), r ∈ Γ j, j = 1 . . . N . (29)

Similarly to the DLW eq. (29) exhibits two unknowns and needs to be complemented. The complementary equation will be 
derived from eq. (20) by summing the contributions of all regions

φ(r) = vdip(r) −
Nf∑

k=1

VJΛk(r) +
N∑

i=1

(Sq|Γi
)(r) , (30)

where D vanishes due to condition eq. (4). A current equation is obtained by applying the gradient operator to eq. (30)
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∇vdip(r) − ∇
Nf∑

k=1

VJΛk(r) = σ−1
Λn

JΛn(r) − ∇
N∑

i=1

(Sq|Γi
)(r), r ∈ Λn,n = 1 . . . Nf . (31)

Subsequently to finding q, the electric potential can be computed via eq. (30).

3.3. Symmetric-wire formulation

The symmetric formulation leverages on a combination of eq. (20) and eq. (21) applied, in contrast with the two previous 
formulations, to adjacent regions only. Summing these contributions yields

(Dφ|∂Ωi−1
)(r) − (Dφ|∂Ωi

)(r) − (Sξ |±∂Ωi−1
)(r) + (Sξ |±∂Ωi

)(r)

=
⎧⎨
⎩ −vdip(r) +

Nf∑
k=1

VJΛk(r) r ∈ ∂Ωi, i = 1,

0 r ∈ ∂Ωi, i = 2 . . . N.

(32)

The current flux d|Γi
= σiξ |−Γi

= σi+1ξ |+Γi
(by virtue of condition eq. (5)), can be substituted in eq. (32)

(Dφ|∂Ωi−1
)(r) − (Dφ|∂Ωi

)(r) − σ−1
Ωi−1

(Sd|∂Ωi−1
)(r) + σ−1

Ωi
(Sd|∂Ωi

)(r)

=
⎧⎨
⎩ −vdip(r) +

Nf∑
k=1

VJΛk(r) r ∈ ∂Ωi, i = 1,

0 r ∈ ∂Ωi, i = 2 . . . N.

(33)

This expression constitutes the first equation of the symmetric formulation. It has three unknowns, the surface potential, the 
normal component of the surface current density and the fibers current density. Therefore, two other equations are needed. 
In order to derive a second equation, eq. (33) is multiplied by the local conductivity and applied to adjacent domains, 
yielding

− σΩi−1(Nφ|∂Ωi−1
)(r) + σΩi (Nφ|∂Ωi

)(r) + (Kd|∂Ωi−1
)(r) − (Kd|∂Ωi

)(r)

=
⎧⎨
⎩ −σ1 vs(r) + σ1

Nf∑
k=1

WJΛk(r) r ∈ ∂Ωi, i = 1,

0 r ∈ ∂Ωi, i = 2 . . . N.

(34)

For the third equation, the gradient operator of eq. (20) is applied to the innermost layer, which leads to the current 
equation

∇vdip(r) − ∇
Nf∑

k=1

VJΛk(r) = σ−1
Λn

JΛn(r) − ∇(Dφ|Γ1
)(r) + σ−1

1 ∇(Sd|Γ1
)(r), r ∈ Λ, n = 1 . . . Nf. (35)

Note that the quantities restricted to non-existing surfaces i.e. Γ0 and ΓN+1 are set to zero and that on the outermost layer 
d|ΓN

is identically Zero. This formulation requires the solution of two surface equations out of which the surface unknowns 
interact with only their immediate neighbors. This will give rise to a block diagonal matrix, thus reducing the apparently 
higher computational cost.

4. Discretization

The numerical solution of the presented equations is achieved following a Galerkin approach. In this respect, the different 
head surfaces Γi are tessellated into triangular meshes and the fibers Λ j into cylindrical segments. On these finite elements, 
each unknown S(r) is approximated by a linear combination of the Nx basis functions {xi}

S(r) ≈
Nx∑

i=1

ai xi(r) , (36)

where ai is the coefficient of the ith basis function. In order to obtain a square linear system, the discretized equations 
are then tested with an appropriate set of functions of same cardinality as the set of basis functions. The choice of these 
finite elements is not arbitrary and must be in accordance with the operators’ mapping properties i.e. the basis functions 
should span the domain of the operator and the testing functions should span the dual of its range [11,34]. The functions 
used to discretize the different unknowns must be capable of satisfying their different physical properties, for instance the 
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Fig. 2. Illustration of (a) the patch (b) the pyramid basis functions respectively defined in eq. (37) and eq. (38).

Fig. 3. Illustration of the hat basis functions, as defined in section 4.

discretization of the current density should not permit the existence of jumps. In this paper we considered patch {ϕn(r)} and 
pyramid {ψn(r)} functions to expand the surface unknowns φ, q and d depending of the formulation and hat basis functions 
{λn(r)} to expand the current density J(r). The pyramid and patch basis functions ψn(r) are respectively expressed as

ϕn(r) =
{

1 if r ∈ T rn ,

0 otherwise,
(37)

and,

ψn(r) =

⎧⎪⎨
⎪⎩

∣∣(r j − ri
) × (r − ri)

∣∣∣∣(r j − ri
) × (rn − ri)

∣∣ n 
= i 
= j if r ∈ T rn ,

0 otherwise.

(38)

where rn, ri, r j are the position vectors of the vertices constituting the triangle T rn . Figs. 2(a) and 2(b) present the 
schematic definitions of these basis functions.

The current density is expanded with oriented hat functions whose support is made of two straight segments sk =
(rk; rk+1) and sk+1 = (rk+1; rk+2) (Fig. 3) and defined as

λk(r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r − rk−1

|rk − rk−1| if r ∈ sk−1 ,

rk+1 − r∣∣rk − rk+1
∣∣ if r ∈ sk ,

0 otherwise.

(39)

It should be noted that the hat basis functions are continuous and thus automatically enforce the jump condition of the 
current density.

4.1. Discretization of the double layer-wire formulation

In eqs. (24) and (25), the surface potential φ is discretized with pyramid basis functions and the current density J is 
discretized with hat basis functions. Equations (24) and (25) are then tested with pyramid and hat functions respectively. 
This gives rise to the following matrix system⎡

⎣ Gv
Λm

+ V v
ΛmΛn

Dv
ΓnΛm

V s
ΛmΓn

Gs
Γn

+Ds
ΓnΓm

⎤
⎦

⎡
⎣ J
φ

⎤
⎦ =

⎡
⎣wΛ

c

⎤
⎦ , (40)

where the matrix entries are
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(V v
ΛiΛ j

)mn =
〈
λ

Λ j
m (r), ∇Vλ

Λi
n (r)

〉
Λ

,

(Gv
Λi

)mn =
〈
λ

Λi
m (r), (I − κ)λ

Λi
n (r)

〉
Λ

,

(Dv
ΓiΛ j

)mn = (σi+1 − σi)
〈
λ

Λ j
m (r), ∇Dψ

Γi
n (r)

〉
Λ

,

(V s
ΛiΓ j

)mn =
〈
ψ

Γ j
m (r), Vλ

Λi
n (r)

〉
Γ

,

(Ds
ΓiΓ j

)mn = (σi+1 − σi)
〈
ψ

Γ j
m (r), Dψ

Γi
n (r)

〉
Γ

,

(Gs
Γi

)mn = (σi+1 + σi)

2

〈
ψ

Γi
m (r), ψ

Γi
n (r)

〉
Γ

,

and, 〈 f , g〉x = ∫
x f · g dx denotes the duality product. The entries of the right-hand side are

(wΛ)m = 〈
λm(r), ∇vdip(r)

〉
Λ

,

(vdΓ )m = 〈
ψm(r), vdip(r)

〉
Γ

.

One of the attractive features pertaining to integral operators is that by specifying their data at the boundaries and 
on the fibers, it is possible to get the potential everywhere in the head domain. By solving the (DLW) equation system 
formulation, the potential is recovered at the vertices of the mesh. It follows that this potential can be easily computed at 
random position on the boundaries by a simple interpolation. If however the potential is desired at location that does not 
belong to the boundaries, we can use the following equation

φ(r) = 1

σ j
∗

⎡
⎣σ1 vdip(r) − σ1

Nf∑
k=1

VJΛk(r) +
N∑

i=1

(σi+1 − σi) (Dφ|Γi
)(r)

⎤
⎦ (41)

where σ j is the local conductivity of the evaluation point.

4.2. Discretization of the single layer-wire formulation

Similarly to the previous approach, the surface unknown q in eqs. (29) and (31) is discretized with pyramid basis func-
tions and the current density J is discretized with hat basis functions. Equations (29) and (31) are then tested with pyramid 
and hat functions respectively. This gives rise to the system⎡

⎣ G
v
Λi

+ V v
ΛiΛ j

Kv
ΓiΛ j

W s
ΛiΓ j

Gs
Γi

+Ks
ΓiΓ j

⎤
⎦

⎡
⎣ J
q

⎤
⎦ =

⎡
⎣ wΛ

VsΓ

⎤
⎦ (42)

where the matrix entries are

(V v
ΛiΛ j

)mn =
〈
λ

Λ j
m (r), ∇Vλ

Λi
n (r)

〉
Λ

,

(Gv
Λi

)mn =
〈
λ

Λi
m (r), (I − κ)λ

Λi
n (r)

〉
Λ

,

(Kv
ΓiΛ j

)mn =
〈
λ

Λ j
m (r), Kψ

Γi
n (r)

〉
Λ

,

(W s
ΛiΓ j

)mn =
〈
ψ

Γ j
m (r), Wλ

Λi
n (r)

〉
Γ

,

(Gs
Γi

)mn = (σi+1 + σi)

2(σi+1 − σi)

〈
ψ

Γi
m (r), ψ

Γi
n (r)

〉
Γ

,

(Ks
ΓiΓ j

)mn =
〈
ψ

Γ j
m (r), Kψ

Γi
n (r)

〉
Γ

,

and where the entries of the right-hand side are

(wΛ)m = 〈
λm(r), ∇vdip(r)

〉
Λ

,

(VsΓ )m = 〈ψm(r), vs(r)〉Γ .

After solving this system of equations, the electric potential in the head can be computed via eq. (30).
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Table 1
Definition of the different coefficients associated with the discretization of the symmetric 
formulation.

Condition αi j βi j γi j θ j

j = 1 − − − 1
j = i σi + σ j −2 σ−1

i + σ−1
j −

j = i − 1 −σi 1 −σ−1
i −

j = i + 1 −σ j 1 −σ−1
j −

otherwise 0 0 0 0

4.3. Discretization of the symmetric-wire formulation

In contrast with the two previous approaches, the symmetric formulation (eqs. (33) to (35)) has two surface unknowns: 
the potential φ that we discretize with pyramid basis functions, the current flux with patch basis functions and the cur-
rent density J with hat basis functions. Equations (33) to (35) are tested with patch, pyramid and hat basis functions 
respectively, resulting in the following system of equations

⎡
⎢⎢⎢⎢⎣
Gv

Λi
− VΛiΛ j Dv

ΓnΛm
Sv

ΓnΛm

W s
ΛiΓ j

N s
ΓiΓ j

Ks
ΓiΓ j

V s
ΛmΓn

Ds
ΓiΓ j

Ss
ΓiΓ j

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
J

φ

d

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
wΛ

VsΓ

VdΓ

⎤
⎥⎥⎥⎦ (43)

in which the system entries are defined as

(V v
ΛiΛ j

)mn =
〈
λ

Λ j
m (r), ∇Vλ

Λi
n (r)

〉
Λ

,

(Gv
Λi

)mn =
〈
λ

Λi
m (r), (I − κ)λ

Λi
n (r)

〉
Λ

,

(Dv
ΓiΛ j

)mn =
〈
λ

Λ j
m (r), θiDψ

Γi
n (r)

〉
Λ

,

(Sv
ΓiΛ j

)mn =
〈
λ

Λ j
m (r), θiSψ

Γi
n (r)

〉
Λ

,

(W s
ΛiΓ j

)mn =
〈
ψ

Γ j
m (r), θ jWλ

Λi
n (r)

〉
Γ

,

(V s
ΛiΓ j

)mn =
〈
ψ

Γ j
m (r), θ jVλ

Λi
n (r)

〉
Γ

,

(N s
ΓiΓ j

)mn =
〈
ψ

Γ j
m (r), αi jNψ

Γi
n (r)

〉
Γ

,

(Ks
ΓiΓ j

)mn =
〈
ψ

Γ j
m (r), βi jKϕ

Γi
n (r)

〉
Γ

,

(Ds
ΓiΓ j

)mn =
〈
ϕ

Γ j
m (r), βi jDψ

Γi
n (r)

〉
Γ

,

(Ss
ΓiΓ j

)mn =
〈
ϕ

Γ j
m (r), γi jSϕ

Γi
n (r)

〉
Γ

,

the entries of the right-hand side are

(wΛ j )m =
〈
λ

Λ j
m (r), ∇vdip(r)

〉
Λ

,

(vdΓ j
)m =

〈
ψ

Γ j
m (r), θ j vdip(r)

〉
Γ

,

(VsΓ j )m =
〈
ψ

Γ j
m (r), θ j vs(r)

〉
Γ

,

and the coefficients α, β , γ and θ are defined in Table 1.
By solving this system, we obtain the potential at all the nodes of the interface’s mesh. If the points of interest are on 

the mesh, the potential can be recovered by interpolation. If the points of interest are not located on the mesh, one can use 
either eq. (41) or eq. (18).
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Fig. 4. Anisotropic cube inside a three layered sphere: (a) reference model and (b) simulated model.

Fig. 5. The relative error of the DLW, SLW and SYW formulations as a function of the average edge length which shows the convergence of the solutions to 
the reference solution obtained with FEM. The simulated geometry is illustrated in Fig. 4.

5. Numerical results

In this section the newly developed integral formulations are validated and their performances are studied through 
several numerical examples. The parameters of the simulations are given in normalized units and the systems of equations 
are solved with direct inversion via LU factorization and backward substitution.

5.1. Convergence of the solution

In order to demonstrate that the proposed formulations are capable of capturing the anisotropic conductivity and do 
converge to the exact solution, we have simulated a cubic block whose anisotropic conductivity is 10 along the z axis 
and 1 in the (x, y) plane, residing inside a three layered sphere (Fig. 4(a)). The radii of the spheres are 0.87, 0.92 and 1
respectively. The cube, whose side length is equal to 0.7, is placed at their center. The conductivities of the different spheres 
are 1, 1/15 and 1 respectively. A current source with a dipolar moment equal to [1, 1, 1] is set at [0.4, 0, 0]. In order to 
account for the anisotropic effect of the cube with our formulations, we have created a grid of 64 equally spaced fiber, as 
illustrated in Fig. 4(b). The wires have a radius of 0.05 and their conductivity is set to be 10 along the wires and 1 in their 
transverse direction. A convergence analysis has been carried out in which the model is discretized with increasingly refined 
mesh (the number of wires has been kept constant). Note that we could have solved and used as reference the scenario 
shown in Fig. 4(b) using a highly refined mesh, but we opted to use the structure of Fig. 4(a) with FEM. We made this 
choice to validate and illustrate the merits of our new schemes by selecting a different modelization (wire elements) of the 
underlying physics (volume).

Fig. 5 reports the obtained relative error as a function of the mesh edge length; a FEM solution corresponding to highly 
refined mesh (1 443 230 nodes) is used as reference. The relative error is defined as the following dimensionless quantity

RE = |yref − y|
|yref |

(44)

in which yref and y denote the solution and the reference solution in that order. From Fig. 5, we can see that the three 
formulations converge to the reference solution with a convergence order of approximately O (h2) and can indeed account 
for the anisotropy of the medium.
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Table 2
Coordinates of the wires in the xy plane corresponding to Fig. 6.

x −0.4 −0.2 0 0.2 0.4 −0.2 0 0.2 −0.2 0 0.2

y 0 0 0 0 0 −0.2 −0.2 −0.2 0.2 0.2 0.2

Fig. 6. Geometry of the simulated model; the red dots indicate the position of the current sources.

Fig. 7. Relative error of the different formulations as a function of dipole eccentricity: (a) along the fibers and (b) away from the fibers. The simulated 
geometry as well as the dipole sources are shown in Fig. 6 where a refined FEM solution was used as a reference. In the legend, AN refers to the analytical 
solution of the corresponding spherical geometry in the absence of the fibers.

5.2. Accuracy for different dipole eccentricities

In the second test, we have studied the effect of source eccentricity on the computed potential. Three concentric spheres 
of radius 0.87, 0.92 and 1 have been considered. Eleven vertical fibers of radius 0.05 were set at the coordinates summarized 
in Table 2. The conductivities of the different layers of the sphere were set to 1, 1/15 and 1 and the fibers to 10 along the 
z direction and 1 in the transversal direction. The model was discretized with 642 nodes per surface and 15 segments per 
fiber. The forward problem was then solved for a varying dipole position: along and away from the fibers as shown in Fig. 6
with red dots. The computed relative error, where a high resolution FEM was used as a reference, is shown in Figs. 7(a) 
and 7(b) for the two cases. In order to illustrate the error introduced when neglecting the anisotropic conductivity of the 
fibers, we have also included the relative error produced by the analytic solution of the same spherical model in the absence 
of the fibers.

In general the accuracy of the three numerical solutions decreases for shallow sources. This behavior is due to the 
singularity of the source and is in agreement with what has been reported in the literature [12,35,36]. It is also observed 
that not accounting for the anisotropic conductivity of the fibers leads to higher errors, especially in vicinity of the fibers. As 
expected, these errors decrease when the source is moved away from the fibers (Fig. 7(b)) and remains stable when moving 
in their vicinity (Fig. 7(a)).
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Fig. 8. MRI-based head model: (a) the simulated head model composed of white matter fibers, brain, skull and scalp surfaces; (b) computed distribution of 
the electric potential on the scalp, the dots indicate the position of electrodes of a high density EEG device; (c) magnitude of the calculated current density 
along the fibers.

5.3. Application to a realistic head mesh

As a last numerical test, a realistic head model obtained from MRI images is considered (Fig. 8(a)). Using standard 
procedures (see for example [37]), we have constructed a 3 layered mesh in which each domain represents the brain, the 
skull and the scalp, each of which is made of 6248, 8328 and 9346 triangles, respectively. Furthermore, the white matter 
fibers, made of 23 888 segments, are recovered using DTI-based tractography implemented in [38]. The conductivity of the 
different tissues is set to 0.33, 0.022 and 0.33 for the scalp, skull and brain respectively [39]. The conductivity of the fibers 
is set to be 0.33 in their local transverse direction and 10 times greater in their longitudinal direction. Following the EGI 
system [40], a set of 256 electrodes has been placed on the scalp as shown in Fig. 8(b). At these positions, the electric 
potential was computed using the newly introduced schemes. For the sake of comparison, we have also computed the 
solution with FEM, on a volume mesh of 10 million tetrahedrons. We show the results obtained in Fig. 9, where we observe 
that the four formulations are in agreement with a relative error less than 0.8%. In Fig. 8(c), we plot the magnitude of the 
current density along the fibers.

6. Conclusion

The correct modeling of the electric properties of the head is crucial for an accurate forward solution and, consequently, 
for brain source reconstruction. This includes the anisotropic behavior of the white matter, given its impact on the scalp 
potential. In this paper, we have presented new integral techniques that can handle the anisotropic conductivity profile of 
the head and thus extend the application of conventional BEM approaches. The one dimensional nature of the wire basis 
functions ensures the computational efficiency of the schemes. It has been shown throughout several numerical tests that 
the computed potential exhibit high accuracy and stability making it a competitive alternative to differential equations based 
methods. Given that the different approaches that we have presented share the same surface equation with standard BEM 
techniques (double layer, adjoint double layer and symmetric formulation), they inherit some of their properties, merits and 
disadvantages: (i) the accuracy of the different formulations matches, in general, the ones observed with purely surfacic 



L. Rahmouni et al. / Journal of Computational Physics: X 5 (2020) 100048 13
Fig. 9. Electric potential computed at electrodes position shown in Fig. 8(b).

counterparts [11,12]; in particular their precision is higher for deep sources and degrades gradually for shallower sources. 
Several strategies, that equally apply to our equations, have been proposed in the literature such as adaptive discretization 
or opting for less singular source; (ii) similarly, the number of unknowns in discretizing a particular mesh is higher in the 
symmetric formulation (because it entails two surface equations), though the system is band diagonal. (iii) the accuracy 
also depends on the conductivity ratio, for which the symmetric formulation was shown to handle better the high contrast. 
Recently, several techniques have been introduced to make the DL and SL cope better with the high contrast [9,11]. Those 
techniques are compatible with our equations; (iv) lastly, the DL-W and SL-W are integral equations of the second kind, 
which translate into well-conditioned systems with h-refinement, the SY-W, however has two surface integral equations of 
the first kind; this suggests an ill-conditioning for an increasing mesh density. A preconditioner based on Calderón identities 
has been recently proposed [41] that effectively stabilizes the condition number and can be easily adapted to the proposed 
scheme.
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