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Automatic Localized Non-Conformal Mesh
Refinement for Surface Integral Equations

J. A. Tobon Vasquez, Member, IEEE, Z. Peng, Member, IEEE, J. F. Lee, Fellow, IEEE, G. Vecchi, Fellow, IEEE
and F. Vipiana, Senior Member, IEEE

Abstract—We propose an automatic, solution based, localized
meshing refinement for increasing the accuracy of integral-
equation solution for multi-scale electromagnetic problems. The
procedure starts with a local measure of the boundary con-
dition error, via testing on zero-order basis functions defined
on the finest level mesh. Then, the adaptive mesh refinement
(h-refinement) is obtained by non-conformal sub-meshing with
Discontinuous Galerkin formulation in order to achieve the
desired accuracy. Numerical experiments shows the effectiveness
of the approach in the cases of cubic geometry and realistic
multi-scale structures.

Index Terms—Integral equations, method of moments, adap-
tive mesh refinement, discontinuous Galerkin, error estimation.

I. INTRODUCTION

Mesh quality and resolution are key issues in the accurate
and efficient solution to many numerical problems. If the
numerical method is well tested and well conditioned, even
in multi-scale problems, the solution accuracy is proportional
to mesh density. However, there is an obvious need to trade off
between mesh density and computational cost. One challenge
is how to achieve a desired level of accuracy for both smooth
parts and non-smooth parts (geometrical asperities, edges,
corners, etc.) of the object. In general, the adaptive refinement
consists of two necessary parts: detection of inaccuracies, and
schemes to increase accuracy by locally acting in targeted
regions.

The study of adaptive refinement procedures has prompted
a large body of research in finite elements, e.g. [1]–[4].
For surface integral equation methods, local a-posteriori error
estimation techniques have been proposed to identify high-
error regions in the case of 2-D simple geometries, e.g.
[5]–[9]. In [10], a simple error metric, based on checking
boundary conditions on the scatterer surface, is applied to 3-D
geometries to identify the contributions of the mesh cells to
the total error. Moreover, in [11]–[13] Ubeda and co-authors
presented a geometrically based mesh refinement procedure
devoted to improve the solution accuracy in presence of
sharp edges. Finally, in [14], an adaptive h-refinement based
on an advancing front Delaunay triangulation and Laplacian
smoothing has been proposed for the numerical solution of the
electric field integral equation (EFIE).

In this work, we propose an automatic refinement for the
surface integral equation analysis of complex 3-D bodies. The
goal of this study is to adaptively choose the resolution of
approximation for a desired level of accuracy in the analysis
of multi-scale structures. Due to the Calderon identity [15], the

error in the approximate solution can be bounded above and
below by the residual error of the discretized surface integral
equation. This means that locally refining the mesh where
the residual is larger actually improves the overall accuracy.
We therefore develop an a-posteriori error estimator based on
the residual error associated with individual elements, where
an automatic localized meshing refinement, based on dyadic
subdivisions, is applied to the elements above a predefined
error threshold. The proposed scheme does not fully respect all
the hypothesis in [15], implementing also not div-conforming
basis functions and considering geometries with non-smooth
parts; however, the obtained numerical results are in line the
ones theoretically predicted in [15].

In order to achieve meshing efficiency, this paper exploits a
very appealing feature of the recently developed discontinuous
Galerkin boundary element method [16], [17]. For a given
discretization, the resolution of approximation can be adapted
at the element level to align with the operating frequency and
local characteristics of the problem geometry. It is directly
applicable to multi-scale problems, which feature electrically
small, geometrically complex regions, and regions that are
smooth and electrically large.

The paper is organized as follows. In Sect. II surface
integral equations and discontinuous Galerkin (DG) are briefly
reviewed to set the notation. In Sect. III the proposed automatic
refinement scheme is discussed in details. Numerical examples
are in Sect. IV and finally Sect.V contains the conclusions and
future perspectives. Preliminary results have been presented in
[18]–[21].

II. BACKGROUND: SURFACE INTEGRAL EQUATION AND
DISCONTINUOUS GALERKIN

The linear system, corresponding to the Combined Field
Integral Equation (CFIE) used to analyze a perfect electric
conductor (PEC) close body in free space, can be written as:(

[ZEFIE]

η
+ α[ZMFIE]

)
[I] =

[VEFIE]

η
+ α[VMFIE] (1)

where η is the intrinsic impedance, used to normalize the
matrices in order to have similar dimensions and magnitudes,
and α is a dimensionless weight, controlling the contribution
of the Electric Field Integral Equation (EFIE) and Magnetic
Field Integral Equation (MFIE) operators. The matrices [Zβ ]
and the vectors [Vβ ], with β = EFIE or MFIE, represent the
MoM matrices and right hand side (RHS) vectors correspond-
ing to the EFIE and MFIE formulations. Finally the vector
[I] collects the coefficients of the basis functions fn chosen to
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discretize the unknown electric surface current density J, e.g.
the RWG basis functions [22],

J(r) '
N∑
n=1

Infn(r), (2)

where N is the total number of basis functions and r is a
generic point on the body surface. The [ZEFIE] can be written
as

[ZEFIE] = [Zφ] + [ZA] (3)

where the contributions of the scalar (φ) and vector (A)
potentials are explicitly denoted.

When non div-conforming basis function fn are used for the
DG approach, there is a significant change in the evaluation
of [Zφ]. A generic basis function fn, non-zero only inside a
discretization cell, can be always written as

fn(r) = fCn (r)χ(r) (4)

where fCn is a function equal to fn inside the discretization cell
(e.g. a triangle) and continuous across the cell boundaries, and
χ is a pulse function equal to one inside the cell and equal
to zero outside. A generic element of [Zφ] can be explicitly
written as

Zφmn =
1

j4πωε0
·(∫∫

Sm

dS ∇s · fCm(r)

∫∫
Sn

dS′G(r, r′)∇′s · f
C
n (r′)

+

∫∫
Sm

dS ∇s · fCm(r)

∮
Γn

dΓ′ G(r, r′) n̂n · fCn (r′)

−
∮

Γm

dΓ n̂m · fCm(r)

∫∫
Sn

dS′ G(r, r′)∇′s · f
C
n (r′)

−
∮

Γm

dΓ n̂m · fCm(r)

∮
Γn

dΓ′ G(r, r′) n̂n · fCn (r′)
)

(5)

where G(r, r′) = e−jk0|r−r′|/|r − r′|, k0 = ω
√
ε0µ0, ω is

the working angular frequency, ε0 and µ0 are the free space
permittivity and permeability respectively. The surfaces Sm
and Sn, with contours Γm and Γn, are the definition domains
of the functions fm and fn respectively; n̂m and n̂n are the
outer unit normals to the contours Γm and Γn respectively in
the planes containing the function definition domains. If the
functions fm and fn are div-conforming, only the first term
in (5) remains. The other three terms are present when the
normal component of the considered basis function does not
vanish along the corresponding definition domain contour lines
(non div-conforming basis functions). Along these contours,
where the normal component of the basis function is different
from zero, charge may accumulate; hence, as proposed in [16],
[23], the so-called interior penalty concept is used to penalize
the potential produced by the charges accumulated along the
contours. The chosen interior penalty (IP) term is equal to

ZIP
mn = C

∮
Γm

dΓ n̂m · fCm(r)

∮
Γn

dΓ′ G(r, r′) n̂n · fCn (r′) (6)

where the constant C = 1/(j4πωε0) so that ZIP
mn exactly

cancel the last term in (5) and only the first three terms in (5)
need to be evaluated.

The same discretization strategy is applied to the MFIE
operator, yielding

ZMFIE
mn =

1

2

∫∫
Sm

dS fm(r) · fn(r)+∫∫
Sm

dS fm(r)× n̂ ·
∫∫

Sn

dS′ fn(r′)×∇G(r, r′) (7)

where n̂ is the outgoing normal to the surface of the structure.
For the MFIE operator there is no need to add interior penalty
terms.

Alternative implementations of the discontinuous Galerkin
scheme for non-conformal meshes can be also considered
as recently detailed in [24], [25], and including the interior
penalty stabilization term proposed in [16].

III. RESIDUAL ERROR BASED ADAPTIVE REFINEMENT
SCHEME

In boundary element method (BEM), an infinite dimensional
solution space is approximated with a finite dimensional one,
therefore there is an error associated with the numerical
solution. Quantifying this error is a very important aspect
of numerical analysis since it can increase confidence in a
solution. It can also be used to develop adaptive refinements
of the BEM discretization, optimize the solution relative to the
number of unknowns, and in turn reduce computational cost.

In the following subsections, an a-posteriori error indicator
for estimating the relative solution error distribution is de-
scribed (Sect. III-A) as well as the corresponding scheme to
adaptively refine the initial mesh if the locally estimated error
is above threshold (Sect. III-B).

A. Error Estimator

The proposed error estimator is residual-based, and consti-
tutes a proper bound on an error energy measure.

To start with, we define the residual error R as

R(r) = C{J(r)} − Eitan(r)

η
− α n̂×Hi(r) (8)

where Eitan(r) is the known incident electric field tangent to
the body surface, Hi(r) is the known incident magnetic field,
and the C is the CFIE operator

C{J(r)} = −Estan{J(r)}
η

− α n̂×Hs{J(r)} (9)

with Estan equal to the scattered electric field tangent to the
body surface, and Hs equal to the scattered magnetic field.

Note that the residual error R is orthogonal to the space
where we are seeking the solution due to the Galerkin or-
thogonality property. Moreover, due to the Calderon identity,
the error in the approximate solution can be bounded above
and below by the residual error R of the discretized surface
integral equation. Therefore, the norm of the residual error can
be used to estimate the error in the approximate solution.

Hence, we are interested in a projection of this residual
error R into a space that can give us information on the
expected advantages of a refinement, and in particular, of
an h-refinement. In this sense, we recall that the Galerkin
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scheme ensures zero weighed residuals when the field residual
is projected onto the set of employed basis functions, so
obviously we need to look at the weighted residual in a refined
space; this can be achieved by the spaces spanned by functions
obtained with h-refinements, e.g. half-RWG basis functions
defined on mesh cells refined with respect the initial ones. The
half-RWG basis functions, also called monopolar-RWG basis
functions in [11] and square-integrable (L2) basis functions in
[16], are cell-based basis functions, defined as the well-known
RWG basis functions, but taking into account only one of the
two triangles of the RWG definition domain; as result, each
triangle is support for three half-RWG basis functions.

In order to define the refined basis functions used to weight
the residual error R, all the triangular cells of the initial mesh
are subdivided, through a dyadic scheme, into sub-cells, as
shown in Fig. 1 for a generic k-th cell of the initial mesh. The
number of levels ` of the dyadic subdivision scheme is related
to the required accuracy of the final solution (in Fig. 1 ` = 2).
Then, three half-RWG basis functions are defined inside each

Fig. 1. Example of dyadic subdivision; left: initial space; right: refined space;
highlighted in yellow the refined mesh cells above the error threshold.

i-th refined cell within the considered k-th cell.
For each cell of the refined mesh, the residual error R

is projected on the corresponding half-RWG basis functions
and normalized with respect to the basis function norm. The
maximum of this normalized projection is the estimated norm
of the residual error R and corresponds to the considered
local indicator of the initial solution error (and thus of the
expected advantage of a local refinement). The sought-for error
estimator on the i-th refined cell within the k-th initial cell is
therefore

∣∣∣∣∣∣R(`)
k,i

∣∣∣∣∣∣ ∼= max
f
(`)

j(k,i)

〈
f

(`)
j(k,i),R

〉
√〈

f
(`)
j(k,i), f

(`)
j(k,i)

〉 (10)

where f
(`)
j(k,i) with j(k, i) = 1, 2, 3 are the three half-RWG

basis functions defined inside the considered domain.
To evaluate the error estimator in (10), we need to compute

the inner product 〈f (`)
m ,R〉, where, to simplify the notation,

the local index j(k, i) has been substituted with the global
index m. Substituting R with its expression in (8), this inner
product becomes

〈
f (`)
m ,R

〉
=

〈
f (`)
m , C {J(r)} − Eitan(r)

η
− α n̂×Hi(r)

〉
,

(11)

that can be written as〈
f (`)
m ,R

〉
=
〈
f (`)
m , C {J(r)}

〉
−
〈
f (`)
m ,

Eitan(r)

η
+ α n̂×Hi(r)

〉
.

(12)
Then, substituting J(r) with its expression in (2), equation
(12) can be written in matrix format as〈

f (`)
m ,R

〉
=
[
A(`)
m

] [
I(`)
]
−B(`)

m (13)

where [
A(`)
m

]
=

[Z
(`)
EFIE,m]

η
+ α[Z

(`)
MFIE,m] (14)

is the m-th row of the “usual” CFIE MoM matrix in the refined
mesh, and

B(`)
m =

V
(`)
EFIE,m

η
+ αV

(`)
MFIE,m (15)

is the m-th element of the CFIE RHS vector in the refined
mesh. The vector

[
I(`)
]

collects the initial current coefficients
(2) exactly projected in the refined mesh, observing that a
generic RWG (or half-RWG) basis function can be written as
linear combination of the RWG (or half-RWG) basis functions
defined in the same definition domain, refined via a dyadic
scheme, as detailed in [26, Appendix I.A].

We note that, in any terms of (14), the test and basis
functions are half-RWG functions defined on the refined mesh.
Hence, the single matrix-vector product, to be performed in
(13) in order to evaluate the error estimator, can be acceler-
ated via a fast-MoM algorithm, such as the multi level fast
multipole algorithm (MLFMA), including the interior penalty
conditions (6) [16], [23].

Moreover, it is important to notice that the error estimator
in (10) is associated to each of the refined mesh cells (see
Fig. 1); hence, on the initial mesh cells, we obtain such as a
map of the estimated error: this error map is the key ingredient
to the adaptive h-refinement scheme described in the following
subsection.

B. Adaptive h-refinement

In order to perform the adaptive h-refinement, the obtained
error estimator values, in each cell of the refined mesh
(Sect. III-A), are compared to a chosen error threshold τ : if
the error estimator value is above τ , the corresponding refined
cell is identified in the mesh. As an example, in Fig. 1, the
refined cells, where error estimator value is above threshold,
are highlighted in yellow.

The next step of the adaptive h-refinement scheme is to
check which cells of the initial mesh contain at least one re-
fined cell with the corresponding error estimator above thresh-
old. If at least one refined cell is above τ , the corresponding
initial mesh cell is divided in four sub-cells through a dyadic
subdivision. If, instead, the initial mesh cell does not contain
any refined mesh cell above τ , the initial mesh cell remains
unchanged. Then, the same procedure is repeated recursively
to all the the sub-cells in which the initial mesh cells have been
divided into. The adaptive h-refinement scheme stops when the
obtained sub-cells correspond to the refined mesh cells used
for the error estimator evaluation (Sect. III-A). The described
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Fig. 2. Example of application of the proposed adaptive h-refinement scheme:
the considered k-th cell of the initial mesh is divided into sub-cells according
to the error map reported in Fig. 1; the final adaptive h-refined mesh is shown
on the right.

procedure is shown with an example in Fig. 2, where the final
adaptive h-refined mesh is reported on the right according to
the error estimation shown in Fig. 1.

The proposed adaptive h-refinement scheme leads to a non-
conformal mesh, as shown in Fig. 2; hence, the refined solution
of the initial BEM problem can be evaluated with a fast
factorization algorithm, applied to the adaptive h-refined mesh,
in which a Discontinuous Galerkin scheme is implemented
[16], [23].

Moreover, we notice that the choice of the error threshold τ
should be related to the number of levels ` in which the initial
mesh is subdivided into refined mesh cells to evaluate the error
estimator ||R(`)

k,i||, because, as stated above, the adaptive h-
refinement scheme stops when the obtained mesh cells are the
same as the corresponding refined mesh cells used in ||R(`)

k,i||.

Fig. 3. Graphical description of the proposed residual error based adaptive
refinement scheme.

To summarize, the whole algorithm flow can be described
as follows:

1) evaluation of the unknown surface current density dis-
cretized with the initial mesh;

2) definition of the level-` h-refined mesh through dyadic
subdivisions of the initial mesh cells (see Fig. 1);

3) evaluation of the error estimator values on each cell of
the level-` h-refined mesh (10);

4) selection of the level-` h-refined mesh cells whose error
estimator value is above the chosen error threshold τ
(see Fig. 1);

5) definition of the adaptive h-refined mesh according to
the selected level-` h-refined mesh cells (see Fig. 2);

6) evaluation of the unknown surface current density dis-
cretized with the obtained adaptive h-refined mesh.

The whole process is graphically described in Fig. 3 where a
simple cubic structure is considered with log10(τ) = −2 and
` = 2.

IV. NUMERICAL RESULTS

A. Cubic Structure

The first considered test case is a cubic structure with side
equal to λ/2, and discretized with 312 triangles, where the
average mesh size is equal to λ/10 (λ is the working wave-
length). The excitation is a plane wave from (ϑ, ϕ) = (30, 30)
deg. with Ei = ϑ̂+ ϕ̂.

The first row of Fig. 4 shows the initial mesh of the con-
sidered cube and different adaptive h-refined meshes obtained
decreasing the error threshold τ (from left to right), keeping
` = 2. In the second row, the corresponding error estimator
values are reported in log10 scale: the first error map (on the
left) is obtained from the initial surface current density and
is used to generate all the analyzed adaptive h-refined meshes
(see Sect. III-B), while the other ones are reported as a check
of the quality of the surface current densities obtained with
adaptive h-refined meshes. Finally, the last row shows the
initial surface current density (first picture on the left) and
the adaptive h-refined ones. As expected, the error estimator
values decrease below the chosen error threshold τ once the
corresponding adaptive h-refined mesh is applied, and the
surface current densities become closer to the reference one,
reported in Fig. 5. The reference surface current density has
been evaluated with the level-2 h-refined conformal mesh (in
the following called reference mesh), i.e. the mesh obtained
through a double application of the dyadic cell subdivision
scheme to all the cells of the initial mesh, and applying
conventional RWG basis functions. Moreover, Fig. 6 shows the
RMS error [24] of the surface current density, evaluated with
the initial mesh and with the considered adaptive h-refined
meshes (see with Fig. 4), with respect to the reference surface
current density, defined as

εRMS =

√∫
S
dS |J (r)− JREF (r)|2√∫
S
dS |JREF (r)|2

(16)

where JREF is the reference surface current density and S
the boundary of the considered PEC body. It is evident that
increasing the mesh refinement according to the proposed
adaptive h-refinement scheme (i.e. increasing the number of
cells in Fig. 6) the εRMS decreases.

A further check on the obtained adaptive h-refined surface
current densities is shown in Fig. 7, where the sorted error
estimator values are reported in log10 scale for each of the
considered meshes (see Fig. 4, first row). Each line of Fig. 7
corresponds to an adaptive h-refined mesh and is compared
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Fig. 4. Cubic structure; first row: initial mesh and adaptive h-refined meshes for different error threshold τ ; second row: corresponding error map (log10
scale); third row: corresponding surface current density.

Fig. 5. Cubic structure: reference surface current density evaluated with the
level-2 h-refined conformal mesh

with the chosen error threshold τ : it is evident that the solution
obtained on the adaptive h-refined mesh has error estimator
values below the corresponding τ . Note that, for all cases,
the number of triangles is the one of the level-2 h-refined
conformal mesh (reference mesh), because the evaluation of
the error estimator is associated to each cell of this mesh
regardless of the considered adaptive h-refined mesh (10).

Figure 8 shows the difference of the radiated near field, in a

Fig. 6. Cubic structure: RMS error of the surface current density evaluated
with the initial mesh and with the adaptive h-refined meshes with respect to
the reference surface current density. .

plane parallel to one cube face at the distance of λ/10, in the
case of the initial mesh and for different error threshold τ with
respect to the reference near field radiated by the reference
surface current density in Fig. 5. We can notice that the near
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Fig. 7. Cubic structure: sorted error estimator values in log10 scale associated
to each cell of the considered mesh; solid black line: error estimator values
associated to the initial mesh; other lines: error estimator values associated to
the corresponding adaptive h-refined mesh for different error threshold τ .

field difference clearly decreases once the adaptive h-refined
meshes are applied, as expected observing that the proposed
error estimator (10) is a residual-based.

Fig. 8. Cubic structure: difference of the radiated near field in the case of the
initial mesh and for different error threshold τ with respect to the reference
near field radiated by the reference surface current density in Fig. 5; the plane
where the near fields are evaluated is at λ/10 from the cube face.

Finally, in Fig. 9, the far field radiated by the cube is
analyzed in the three main planes, i.e. xy, xz and yz planes,
where the cube is oriented according to the Cartesian reference
system as shown in Fig. 3. Using the adaptive h-refined meshes
the radiated field is almost superimposed to the reference one,

radiated by the reference surface current density in Fig. 5.

Fig. 9. Cubic structure: radiated far field in the three main planes comparing
the case of the initial mesh, adaptive h-refined meshes for different error
threshold τ and the reference mesh.

B. Realistic multi-scale structure

The next analyzed structure is the morphed version of a
“Rafale” aircraft with maximum length equal to ∼ 7λ and
excited by a plane wave from (ϑ, ϕ) = (30, 30) deg. with
Ei = ϑ̂+ ϕ̂.

The initial mesh, shown in Fig. 10.a, is formed by 5.324
triangles with minimum and maximum size equal to ∼ λ/150
and ∼ λ/5 respectively. The initial surface current density
(see Fig. 11.a) is given in input to the error estimator (10)
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Fig. 10. Rafale aircraft; (a): initial mesh; (b): adaptive h-refined mesh;
difference of the radiated near field with respect to the reference one (dB).

with ` = 2, obtaining the error map shown in Fig. 12.a. The
error map is compared to the error threshold log10(τ) = −2.1,
highlighting that the 18% of the level-2 triangles are above
threshold.

Then, the adaptive h-refined mesh is generated accordingly,
as shown in Fig. 10.b; the total number of triangle is equal
to 28.952, with the same maximum triangle size as the initial
mesh, and minimum triangle size reduced to ∼ λ/600. As a
first check, the error map is evaluated also for the obtained
adaptive h-refined mesh, where now the level-2 triangles
above threshold are reduce to less than 4% (see Fig. 12.b).
The adaptive h-refined surface density current is shown in
Fig. 11.b.

Fig. 11. Rafale aircraft surface current density; (a): initial mesh; (b): adaptive
h-refined mesh.

Fig. 12. Rafale aircraft error map; (a): initial mesh; (b): adaptive mesh.

To better compare the initial and h-refined surface density
currents to the reference one, obtained with a level-2 h-refined
conformal mesh formed by 85.184 triangles (see Fig. 13),
some details of the aircraft are highlighted in Fig. 14, where
the first column corresponds to the initial mesh solution, the
second one to the adaptive h-refined solution and the last one

Fig. 13. Rafale aircraft: reference surface current density obtained with the
level-2 h-refined conformal mesh (reference mesh).

to the reference solution. It is evident that the adaptive h-
refined mesh allows to significant improve the accuracy of
the surface density current, in particular close to geometrical
asperities such as edges and corners, keeping the total number
mesh triangles around 1/3 with respect to the reference mesh.

Fig. 14. Rafale aircraft: details of the surface current densities; (a)-(c): zoom
1 in Fig. 13; (d)-(f): zoom 2 in Fig. 13; (h)-(l): zoom 3 in Fig. 13; the 1st

column is obtained with the initial mesh, the 2nd with the adaptive h-refined
mesh, and the 3rd with the reference mesh.

Finally, Fig. 10 shows the difference of the radiated near
field with respect to the reference one in the case of the initial
mesh (a), and in the case of the adaptive h-refined mesh (b), at
λ/10 from the aircraft tail; the field error is strongly reduced
once the adaptive h-refined mesh is applied.

V. CONCLUSION AND PERSPECTIVES

In this paper, we presented an adaptive and automatic h-
refinement scheme for the analysis of multi-scale structures,
able to enrich the approximations locally, at element level,
for a prescribed threshold. A local measure of the boundary
condition error is obtained via testing on local refined half-
RWG basis functions. The adaptive h-refined mesh is effected
via non-conformal sub-meshing and Discontinuous-Galerkin.
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The next steps of the research activity are the development
of guidelines for the error threshold choice with respect to the
desired solution accuracy, and the investigation of an adaptive
h-refined meshing that avoids the need of the Discontinuous-
Galerkin solution scheme.
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