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Abstract 

On urban road networks, approximately 2 out of 3 fatalities involve pedestrians, cyclists and motorcyclists, collectively referred 
to as “vulnerable road users” (VRU) due to their insufficient physical protection in the event of a collision. For a safer and more 
sustainable road transportation system, adequate protective countermeasures need to be introduced for this user category. 
However, related (and limited) resources restrict any safety improvements to certain high-risk sites with elevated rates of road 
traffic collisions. This study reports the results of a spatial distribution analysis of traffic collisions involving VRU in Turin over 
the period 2006-2016. The traffic road collisions database from the Italian National Institute of Statistics (ISTAT) was used for 
this purpose. Crash data were firstly geo-localized, and then analyzed using Geographic Information System technologies. A 
cluster analysis and a Kernel Density estimation were used to build spatial patterns of crashes involving VRU. Hazardous sites 
were identified on a metropolitan scale. Incorrect estimates of the actual collision frequency, which are typical of studies 
conducted over short periods, were avoided by considering only those sites where collision rates remained significantly high 
throughout the entire observation period (eleven years). The results show that clusters occur at intersections, many of which are 
located along corridors affected by heavy traffic flows and wide cross-sections. A further analysis was conducted to explain the 
role played by the geometric configuration (layout) of most hazardous sections and intersections in the level and severity of 
injuries and fatalities. 
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1. Introduction 

Road collisions have a social, personal and economic impact on society. They result in 1.24 million deaths each 
year, about 3,000 deaths per day (World Health Organization, 2015) and are the ninth leading cause of death 
worldwide (about 2.2% of global mortality), and the first for the 15-29 age group. Everyone circulating on the road 
is at risk, i.e. not only vehicle drivers and their passengers. Approximately 50% of deaths caused by road crashes 
involve vulnerable road users (i.e., pedestrians, cyclists and motorcyclists - VRU) due to their insufficient physical 
protection in the event of a collision with vehicles.  

The basis for any decision on the most appropriate countermeasure lies in an analysis of past events in order to 
identify any critical points in the road network where a significant concentration of road crashes has occurred. These 
analyses are performed by using techniques that combine geolocation tools and spatial interaction models, now 
implemented in Geographic Information System (GIS) (Jayan and Ganeshkumar, 2010). A knowledge of the spatial 
distribution of crashes allows road safety specialists to investigate hazardous road locations (HRL) (Elvik, 2008; 
Mohaymany et al., 2013). Although methodologies for the identification of HRL are consolidated in literature, 
issues relating to availability of data, data quality, and data processing and treatment, arise frequently.  

The paper addresses these issues and evaluates the effects of road network modification and implementation, the 
precision of recorded crash data, false positives and false negatives, and proposes new solutions. According to this 
methodology, HRL for VRU in the Turin (North-west of Italy) case study were identified for the 2006-2016 period. 

2. Methodology 

Collision events are records in a 2D space, which can be expressed in geographic terms (longitude, latitude), in 
cartographic (East, North) coordinates, or in the local plane (X, Y). GIS software facilitates the storage and 
processing of such georeferenced data (Aronoff, 1989). GIS represents and manages the large amount of 
information present in road collision databases, and provides tools for spatial data analysis, such as the identification 
of sites with a significant concentration of road collisions. These sites may be classified as HRL since the number of 
collisions considerably exceeds the average value observed in the surrounding area. The main goal of collision 
analysis is to determine whether the high rates recorded for certain sites are caused by specific conditions of the road 
environment or other factors.  

The presence of clusters suggests a degree of spatial dependence between crashes; these concentrations can be 
caused by one or more defects of the infrastructure requiring a dedicated analysis. If positive, this spatial 
dependence, or spatial autocorrelation, indicates an aggregation of similar values of the investigated variable (Black, 
1991). This means that two crashes occurring at or close to the same spot could have been caused by the same 
factor. From the identification of HRL and their defects, different countermeasures can then be designed and 
implemented to reduce crash frequency and/or severity. 

According to Loo and Yao (2013), approaches to identify positive spatial autocorrelation may be divided into two 
major groups: (i) link-attribute approaches; and (ii) event-based approaches. 

Link-attribute approaches provide for a segmentation of the road network into basic spatial units (BSU) and the 
counting of collision events within them; in this framework, crashes become attributes of these segments. However, 
these operations involve a significant computational effort, and entail different difficulties: (i) the correct choice of 
the BSU length, (ii) the impossibility of dividing different parts of a road network into segments of equal sized 
length, (iii) the difficulty with the interpretation of data from sections with different length, and (iv) the consequent 
loss of information.  

Event-based approaches are divided into (i) distance-based methods, which define the presence of spatial 
aggregations of points, and in (ii) density-based methods, which instead identify such aggregations along the 
network. Among the distance-based spatial analysis methodologies, the Nearest Neighbor (NN) method (Clark and 
Evans, 1954) compares the characteristics of an observed set of distances between pairs of closest points ( obsd ):  

min,
1 n

obs i
i

d d
n

=     (1) 



	 Marco Bassani  et al. / Transportation Research Procedia 45 (2020) 394–401� 395 

Available online at www.sciencedirect.com 

ScienceDirect 

Transportation Research Procedia 00 (2019) 000–000  
www.elsevier.com/locate/procedia 

 

2352-1465 © 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(https://creativecommons.org/licenses/by-nc-nd/4.0/)  
Peer-review under responsibility of the scientific committee of TIS ROMA 2019  

AIIT 2nd International Congress on Transport Infrastructure and Systems in a changing world 
(TIS ROMA 2019), 23rd-24th September 2019, Rome, Italy 

Spatial analysis of road crashes involving vulnerable road users in 
support of road safety management strategies 

Marco Bassania*, Leonardo Rossettia, Lorenzo Catania 
aPolitecnico di Torino, 24, corso Duca degli Abruzzi, Turin 10129, Italy 

 

Abstract 

On urban road networks, approximately 2 out of 3 fatalities involve pedestrians, cyclists and motorcyclists, collectively referred 
to as “vulnerable road users” (VRU) due to their insufficient physical protection in the event of a collision. For a safer and more 
sustainable road transportation system, adequate protective countermeasures need to be introduced for this user category. 
However, related (and limited) resources restrict any safety improvements to certain high-risk sites with elevated rates of road 
traffic collisions. This study reports the results of a spatial distribution analysis of traffic collisions involving VRU in Turin over 
the period 2006-2016. The traffic road collisions database from the Italian National Institute of Statistics (ISTAT) was used for 
this purpose. Crash data were firstly geo-localized, and then analyzed using Geographic Information System technologies. A 
cluster analysis and a Kernel Density estimation were used to build spatial patterns of crashes involving VRU. Hazardous sites 
were identified on a metropolitan scale. Incorrect estimates of the actual collision frequency, which are typical of studies 
conducted over short periods, were avoided by considering only those sites where collision rates remained significantly high 
throughout the entire observation period (eleven years). The results show that clusters occur at intersections, many of which are 
located along corridors affected by heavy traffic flows and wide cross-sections. A further analysis was conducted to explain the 
role played by the geometric configuration (layout) of most hazardous sections and intersections in the level and severity of 
injuries and fatalities. 
 
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(https://creativecommons.org/licenses/by-nc-nd/4.0/) 
Peer-review under responsibility of the scientific committee of TIS ROMA 2019 
 
Keywords: road traffic collision; spatial analysis; vulnerable road users; Kernel density estimation; hazardous road locations; black hotspots. 

 

 
* Corresponding author. Tel.: +39 011 564 5635. 

E-mail address: marco.bassani@polito.it 

 

Available online at www.sciencedirect.com 

ScienceDirect 

Transportation Research Procedia 00 (2019) 000–000  
www.elsevier.com/locate/procedia 

 

2352-1465 © 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(https://creativecommons.org/licenses/by-nc-nd/4.0/)  
Peer-review under responsibility of the scientific committee of TIS ROMA 2019  

AIIT 2nd International Congress on Transport Infrastructure and Systems in a changing world 
(TIS ROMA 2019), 23rd-24th September 2019, Rome, Italy 

Spatial analysis of road crashes involving vulnerable road users in 
support of road safety management strategies 

Marco Bassania*, Leonardo Rossettia, Lorenzo Catania 
aPolitecnico di Torino, 24, corso Duca degli Abruzzi, Turin 10129, Italy 

 

Abstract 

On urban road networks, approximately 2 out of 3 fatalities involve pedestrians, cyclists and motorcyclists, collectively referred 
to as “vulnerable road users” (VRU) due to their insufficient physical protection in the event of a collision. For a safer and more 
sustainable road transportation system, adequate protective countermeasures need to be introduced for this user category. 
However, related (and limited) resources restrict any safety improvements to certain high-risk sites with elevated rates of road 
traffic collisions. This study reports the results of a spatial distribution analysis of traffic collisions involving VRU in Turin over 
the period 2006-2016. The traffic road collisions database from the Italian National Institute of Statistics (ISTAT) was used for 
this purpose. Crash data were firstly geo-localized, and then analyzed using Geographic Information System technologies. A 
cluster analysis and a Kernel Density estimation were used to build spatial patterns of crashes involving VRU. Hazardous sites 
were identified on a metropolitan scale. Incorrect estimates of the actual collision frequency, which are typical of studies 
conducted over short periods, were avoided by considering only those sites where collision rates remained significantly high 
throughout the entire observation period (eleven years). The results show that clusters occur at intersections, many of which are 
located along corridors affected by heavy traffic flows and wide cross-sections. A further analysis was conducted to explain the 
role played by the geometric configuration (layout) of most hazardous sections and intersections in the level and severity of 
injuries and fatalities. 
 
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(https://creativecommons.org/licenses/by-nc-nd/4.0/) 
Peer-review under responsibility of the scientific committee of TIS ROMA 2019 
 
Keywords: road traffic collision; spatial analysis; vulnerable road users; Kernel density estimation; hazardous road locations; black hotspots. 

 

 
* Corresponding author. Tel.: +39 011 564 5635. 

E-mail address: marco.bassani@polito.it 

2 Bassani et al. / Transportation Research Procedia 00 (2019) 000–000 

1. Introduction 

Road collisions have a social, personal and economic impact on society. They result in 1.24 million deaths each 
year, about 3,000 deaths per day (World Health Organization, 2015) and are the ninth leading cause of death 
worldwide (about 2.2% of global mortality), and the first for the 15-29 age group. Everyone circulating on the road 
is at risk, i.e. not only vehicle drivers and their passengers. Approximately 50% of deaths caused by road crashes 
involve vulnerable road users (i.e., pedestrians, cyclists and motorcyclists - VRU) due to their insufficient physical 
protection in the event of a collision with vehicles.  

The basis for any decision on the most appropriate countermeasure lies in an analysis of past events in order to 
identify any critical points in the road network where a significant concentration of road crashes has occurred. These 
analyses are performed by using techniques that combine geolocation tools and spatial interaction models, now 
implemented in Geographic Information System (GIS) (Jayan and Ganeshkumar, 2010). A knowledge of the spatial 
distribution of crashes allows road safety specialists to investigate hazardous road locations (HRL) (Elvik, 2008; 
Mohaymany et al., 2013). Although methodologies for the identification of HRL are consolidated in literature, 
issues relating to availability of data, data quality, and data processing and treatment, arise frequently.  

The paper addresses these issues and evaluates the effects of road network modification and implementation, the 
precision of recorded crash data, false positives and false negatives, and proposes new solutions. According to this 
methodology, HRL for VRU in the Turin (North-west of Italy) case study were identified for the 2006-2016 period. 

2. Methodology 

Collision events are records in a 2D space, which can be expressed in geographic terms (longitude, latitude), in 
cartographic (East, North) coordinates, or in the local plane (X, Y). GIS software facilitates the storage and 
processing of such georeferenced data (Aronoff, 1989). GIS represents and manages the large amount of 
information present in road collision databases, and provides tools for spatial data analysis, such as the identification 
of sites with a significant concentration of road collisions. These sites may be classified as HRL since the number of 
collisions considerably exceeds the average value observed in the surrounding area. The main goal of collision 
analysis is to determine whether the high rates recorded for certain sites are caused by specific conditions of the road 
environment or other factors.  

The presence of clusters suggests a degree of spatial dependence between crashes; these concentrations can be 
caused by one or more defects of the infrastructure requiring a dedicated analysis. If positive, this spatial 
dependence, or spatial autocorrelation, indicates an aggregation of similar values of the investigated variable (Black, 
1991). This means that two crashes occurring at or close to the same spot could have been caused by the same 
factor. From the identification of HRL and their defects, different countermeasures can then be designed and 
implemented to reduce crash frequency and/or severity. 

According to Loo and Yao (2013), approaches to identify positive spatial autocorrelation may be divided into two 
major groups: (i) link-attribute approaches; and (ii) event-based approaches. 

Link-attribute approaches provide for a segmentation of the road network into basic spatial units (BSU) and the 
counting of collision events within them; in this framework, crashes become attributes of these segments. However, 
these operations involve a significant computational effort, and entail different difficulties: (i) the correct choice of 
the BSU length, (ii) the impossibility of dividing different parts of a road network into segments of equal sized 
length, (iii) the difficulty with the interpretation of data from sections with different length, and (iv) the consequent 
loss of information.  

Event-based approaches are divided into (i) distance-based methods, which define the presence of spatial 
aggregations of points, and in (ii) density-based methods, which instead identify such aggregations along the 
network. Among the distance-based spatial analysis methodologies, the Nearest Neighbor (NN) method (Clark and 
Evans, 1954) compares the characteristics of an observed set of distances between pairs of closest points ( obsd ):  

min,
1 n

obs i
i
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with distances that would be expected ( expd ) if points were randomly placed: 
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where dmin,i is the i-th distance from the closest point, n is the number of observations, and a is the size of the study 
area. The NN index measures the similitude between observed and expected distances, by computing the difference 
(d), or the ratio (r) between obsd  and expd . Depending on the value of these two indexes, three different point 
patterns may be found. A clustered pattern (d < 0, r < 1) is frequently found in road collision data. If a collision 
pattern is more spread out, it exhibits a random spatial pattern (d → 0, r → 1). Although there may be some local 
clusters in this type of pattern, the overall structure is spread across the study area without any apparent pattern (this 
means that a road collision has an equal chance of occurring anywhere in the study area). The third type of pattern is 
uniform (d > 0, r > 1), and has rarely been found in road collision analyses.  

The key tool for density based methods is the Kernel Density Estimation (KDE) which has been widely used in 
fields such as criminology (Anselin et al., 2000; Ummarino, 2013), epidemiology, biology, as well as in the study of 
fire trigger points (Amatulli et al., 2005), economic activities (Porta et al., 2009) and road safety (Shafabakhsh et al., 
2017; Newaz et al., 2017). To avoid the incorrect identification of HRL, it is assumed that each single event affects 
the density in its spatial neighborhood, with a continuous, symmetrical, and decreasing probabilistic function 
through a factor of regression depending on the type of function itself and on the interpolation space around the 
same point (bandwidth). The density functions associated with each individual event are then cumulated to obtain 
the final density estimation (Levine, 2002). According to Fotheringham et al. (2000), the KDE can therefore be 
expressed for n points (events) according to: 
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where f (u, v) is the crash density estimate at the location (u, v), n is the number of observations, h is the bandwidth, 
K is the selected kernel function (e.g., normal, triangular, quadratic, quartic, etc.), and di is the distance between the 
location (u, v) and the location of the i-th observation. The two basic parameters are the K function and the 
bandwidth (h). The choice of the K function does not significantly affect the result (Loo and Anderson, 2015); in 
contrast, the value of the bandwidth significantly affects the output (see next section). Okabe et al. (2009), as well as 
Porta et al. (2009), suggest a range of values for h between 100 and 300 m with respect to urban areas, based on the 
average length of arcs in the road network. Thus, h strongly depends on the case study. 

3. Crash database 

The starting source of data for the present study was the Regional collision database provided by ISTAT (National 
Institute of Statistics), related to the period 2006-2016; crash data for the Turin area was extracted from the 
database. Working from the definition of a road crash adopted by ISTAT (2015), the database lists all collisions 
involving at least one injury (Italy does not regard events resulting in property damage only as crashes). The data 
records were then divided into those involving “VRU” (i.e., where at least one VRU was involved) and vehicular 
crashes (called “noVRU”), consisting of 16,854 and 23,092 events respectively. 

Since 2011, the ISTAT database has reported the geolocalization of crash events, while before 2011, the database 
provided the address and the closest house number for crashes which occurred along arcs, and the two street names 
for crashes which occurred at intersections. Discrepancies in data information in terms of the exact location of 
events are common in Italian Crash Databases (ISTAT, 2017), as well as in other countries (Mikulik and Hollo, 
2007). In the case of data localized on the basis of street name and house number, the GPS Visualizer's 
(http://www.gpsvisualizer.com/) Address Locator tool was used to convert addresses into geographic coordinates. 
However, this tool failed in some cases, so a total of 1,632 inaccurate records out of 16,079 were identified and then 
manually corrected. It is worth highlighting that 775 VRU crash records in the official database reported incomplete 
geolocalization data, so they were excluded from further analyses and removed from the final database. 

4 Bassani et al. / Transportation Research Procedia 00 (2019) 000–000 

The effects of different localization methodologies are depicted in Fig. 1, where the same crash data in the period 
2011-2016 are represented. Fig. 1B includes crash locations obtained from the closest street/square numbers 
information and then converted with the address locator tool, while Fig. 1C shows the same events localized using 
GPS position data included in the official record. Circles indicate three different data groups which have completely 
different spatial patterns. The reasons for a concentration on the west side (circle 1) and in the middle of the square 
(circle 2) is explained in Fig. 1A: collisions are concentrated along the most trafficked pedestrian crossing (circle 1) 
and along the pedestrian crossings close to the bus stops in the middle of Vittorio Veneto square (circle 2). Circle 3 
shows the case of two events localized at the same point which are, however, wrongly located at two different points 
using the old geo-localization method. In the case of the largest square in the city, the effects of location 
inaccuracies are magnified, while smaller distances were observed along streets and ordinary intersections.  

Road crashes are random events that fluctuate in time and space. Hence, the number of crashes at a specific 
location varies from month to month, and year to year. For the same period, the crash frequency varies at arcs and 
junctions. This variation over time for the same place reflects the "regression to the mean" phenomenon. In fact, it is 
highly probable that after a period with a high crash frequency recorded on a certain element (i.e., arc or 
intersection), a period with a lower frequency follows (AASHTO, 2010), and vice versa; i.e., data continuously 
regress towards the mean of the longer period. These fluctuations may determine false positive and false negative 
crash data aggregations. The false positive/negative issue can be curbed by aggregating data for periods of two or 
three consecutive years. The systematic presence of data aggregations for the same location reveals the presence of a 
true positive. Short periods lead to an increase in cases of false positives/negatives. However, long periods may 
include significant changes to the road network layout, which may have an effect on the crash distribution pattern. 
Therefore, any subdivision into periods must also take significant network transformations into account, in particular 
those which have the greatest impact on traffic operations and crash occurrence. 

The six heat maps in Fig. 2 illustrate the case of crash clusters identified with the adoption of three different 
bandwidths equal to 50 (A, D), 100 (B, E) and 200 m (C, F) for the same case of Fig. 1. Fig. 2A, 2B and 2C show 
that an increase in bandwidth leads to the unification of distinct clusters, which renders the precise identification of 
the HRL problematic. In contrast, small values of h lead to the identification of numerous clusters concentrated in 
small areas. The choice of a large bandwidth value (200 m) would lead to the identification of a problem in a large 
area characterized by a single large cluster incorporating several road elements. Small values of h (50-100 m), 
instead, can serve to identify safety issues in specific HRL. In particular, Fig. 2A and Fig. 2B show two clusters, i.e., 
in the middle of the square (where there are bus stops) and in the area near the bridge (characterized by a high 
volume of pedestrian activity). With h equal to 200 m (Fig. 2C) these two aggregations become a single large 
cluster, thus obscuring the actual location of the criticalities. Similar operations may be carried out for the two-year 
period 2015-2016; with a value for h of 100 m, the aggregation in the center of the square, albeit less significant, is 
still present, while the cluster near the bridge is no longer there. This means that this point could be a false positive 
(in the case of an upward peak crash frequency in the period 2012-2014) or a false negative (in the event of a 
downward peak of the crash frequency in the period 2015-2016); in order to understand the nature of this site, it is 
necessary to extend the analysis over longer periods. 

 
 
 
 
 
 
 
 
 
 
                                   (A)                                                                    (B)                                                                       (C) 

Fig. 1. (A) Aerial picture and (B, C) GIS crash localization around Vittorio Veneto square (Turin, Italy). Comparison between street/house 
number (B) and GPS (C) localization methods in the period 2011-2016. 
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where f (u, v) is the crash density estimate at the location (u, v), n is the number of observations, h is the bandwidth, 
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Fig. 1. (A) Aerial picture and (B, C) GIS crash localization around Vittorio Veneto square (Turin, Italy). Comparison between street/house 
number (B) and GPS (C) localization methods in the period 2011-2016. 
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Fig. 2. Heat maps with h = 50 m (A, D), h = 100 m (B, E) and h = 200 m (C, F) in Vittorio Veneto square (Turin, Italy). Periods: 2012-2014 (A, 
B, C), and 2015-2016 (D, E, F). Red heat map indicates that the Kernel density is six standard deviations (SD) higher than the average in the 

study area.  

4. Application of HRL methodology to the case study 

Fig. 3A illustrates the distribution of 39,946 crashes which occurred in 2006-2016 in the city of Torino, 
differentiated by degree of severity (injury and fatalities). Although the database is affected by inhomogeneity issues 
regarding the crash data localization, which may lead to a wrong identification of crash aggregation, all eleven years 
were considered in the spatial distribution of road crashes. This decision was taken to maintain the informative 
content available (eleven-year period). Issues with cluster identification were partly addressed by the adoption of a 
bandwidth h of 100 m. Based on the most important road network modifications, the eleven-year period was divided 
into four periods of two years, and one of three years. Fig. 3 differentiates between crash events by severity 
(Fig. 3A), and type of road users involved in (Fig. 3B for VRU and Fig. 3C for “noVRU” crashes). 

                                 (A)                                                                        (B)                                                                         (C) 

Fig. 3. (A) Fatal (379) and injury (39,567) crashes in Turin, Italy (total 39,946) in 2006-2016 (red points indicate fatalities, green points injuries); 
(B) VRU crashes (16,854) and (C) noVRU crashes (23,092) in the same period. 
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A preliminary evaluation of the points pattern, aimed at verifying the presence of a “clustered” structure was 
carried out. The NN indexes listed in Table 1 indicates that in the five study periods the ratio was constantly less 
than 1 in the range 0.387-0.437, i.e., the crash data assumed a clustered pattern. As a result, the spatial analysis will 
certainly lead to the identification of HRL. It was carried out assuming the Quartic Kernel function in eq. (3). The 
bandwidth (h) was determined by referring to the average arc length of the Torino road network (Table 2). It was 
estimated by analyzing the eight city districts separately. A value between half of the average arc length and the 
maximum arc length was assumed to avoid the incorporation within the same cluster of two different intersections. 
Excluding the old town (district 1), as well as districts 3 and 4, mean arc length values were found to be between 
140 and 150 m. In relation to these results, a global scale bandwidth of 100 m, slightly above 50% of the average 
value characteristic of the arcs of peripheral areas, was adopted. This choice facilitated the differentiation between 
individual intersections with the exception of those in very close proximity to each other. 

The analysis was carried out as per the QGIS software and related spatial analysis tools (https://www.qgis.org/). 
The output consisted of a continuous surface on Kernel Density from eq. (3), and heat maps were obtained by 
colouring the surface with individual colours depending on density intervals. Fig. 4 shows the example of heat maps 
for the 2015-2016 period for all recorded crashes (Fig. 4A), and those including at least one VRU (Fig. 4B). Fig. 4C 
includes the coloured scale with yellow, orange and red referring to the bands (2, 4 and 6 times the standard 
deviation – SD – above the mean – M – elevation of the density surface). For easier detection of most critical points 
on the network, the analysis only includes sites where the KDE function assumes density values higher than 
M + 6 ∙ SD. Data values for all five periods were considered.  

Table 1. NN indexes for the study period 2006-2016 in Torino (Italy) according to eq. (1) and eq. (2). 

Period (y-y) 2006-2007 2008-2009 2010-2011 2012-2014 2015-2016 

NN (r) index 0.387 0.419 0.435 0.398 0.437 

Table 2. Average length (in m) of Torino’s arc network in the eight city districts. 

District # 1 2 3 4 5 6 7 8 

Average [m] 94.0 141.4 110.1 106.7 140.3 148.2 151.8 140.2 

                                     (A)                                                                             (B)                                                                       (C) 

Fig. 4. Heat map of 6,176 crash events occurring in the 2015-2016 period (A), and heat map of 2,773 VRU crashes in the same period (B); 
(C) Color scale adopted for the two heat maps. 
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Fig. 5 shows the heat map resulting from the overlapping of density peaks (HRL for VRU with density larger 
than M + 6 ∙ SD) that occurred in at least four of the five periods listed in Table 1. It shows how the criticalities are 
concentrated at the intersections along some of the main axes of the city, in particular: corso Vittorio Emanuele II, 
corso Novara, and the corridor constituted by corso Lecce, corso Trapani and corso Siracusa HRL are dispersed 
along the main urban trafficked routes. Intense traffic flows give rise to numerous conflicts between vehicles and 
VRU. In addition, wide carriageways with more than two lanes per direction expose pedestrians and cyclists to a 
higher rate of unsafe interactions with vehicles, as the former require more time to cross the intersection. Finally, 
along such corridors higher vehicular speeds are favored, and the higher speed differential between “noVRU” and 
VRU potentially leads to more severe collisions. Spatial analysis makes it possible to identify locations with a 
significant concentration of crashes; the actual causes for these concentrations need to be identified as per on-site 
monitoring and inspections. 

5. Conclusions 

To protect VRU it is essential to have safe infrastructure. VRU safety is paramount if we wish to promote non-
vehicle mobility. As evidenced in this study, crashes involving at least one VRU account for about 40% of the total 
recorded, a significantly high share indeed. It is therefore necessary to carefully identify HRL in order to protect 
pedestrians, bikers and motorcyclists if we wish to promote this mobility component in urban areas.  

The identification of HRL requires a careful evaluation of the study period to exclude cases of false positives and 
negatives, and to avoid the under- or overestimation of crash frequencies due to the “regression to the mean” 
phenomenon. The results show that critical VRU crashes occurred at the intersections of the main city avenues due 
to the higher number of conflicts with vehicular users. Specifically, the main hot spots are located along the first 
inner ring road of the city (corso Siracusa, corso Trapani, corso Lecce, piazza Rivoli), and along corso Vittorio 
Emanuele II. These sections are characterized by three main criticalities: (i) the high traffic flow along the main 
(central) carriageway, and along the lateral service carriageways; (ii) the speed difference between road users that 
traversed these sections; and (iii) the geometry of the cross section, which influences the level of exposure (time 
required to cross road) to danger of the VRU. 

Fig. 5. HRL for vulnerable road users, in Turin (2006-2016). 
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The spatial analysis highlights the correlation between collisions and network structure. For the implementation 
of effective policies to contrast the rate of crashes, it is necessary to link these results to successive actions. Spatial 
analysis offers the opportunity to provide the analyst with an order of priorities. The local analysis of the HRL and 
the design of specific countermeasures can thus be addressed to increase the overall safety of VRU as well as other 
road user categories. It should be noted that the identification of HRL requires further investigation (site inspections) 
to capture any defects that will assist the analyst with the adoption of the most appropriate countermeasures, thus 
they need to be accurately identified. 
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