
17 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Cross-Level Verification Methodology for Digital IPs Augmented with Embedded Timing Monitors / Vinco, Sara;
Bombieri, Nicola; JAHIER PAGLIARI, Daniele; Fummi, Franco; Macii, Enrico; Poncino, Massimo. - In: ACM
TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS. - ISSN 1084-4309. - STAMPA. -
24:3(2019), pp. 1-23. [10.1145/3308565]

Original

A Cross-Level Verification Methodology for Digital IPs Augmented with Embedded Timing Monitors

Publisher:

Published
DOI:10.1145/3308565

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2723192 since: 2020-02-24T09:46:48Z

ACM

1

A Cross-Level Verification Methodology for Digital IPs
Augmented with Embedded Timing Monitors

SARA VINCO, Politecnico di Torino, Italy
NICOLA BOMBIERI, University of Verona, Italy
DANIELE JAHIER PAGLIARI, Politecnico di Torino, Italy
FRANCO FUMMI, University of Verona, Italy
ENRICO MACII, Politecnico di Torino, Italy
MASSIMO PONCINO, Politecnico di Torino, Italy

Smart systems are characterized by the integration in a single device of multi-domain subsystems of different
technological domains, namely analog, digital, discrete and power devices, MEMS and power sources. Such
challenges, emerging from the heterogeneous nature of the whole system, combined with the traditional
challenges of digital design, directly impact on performance and on propagation delay of digital components.

This paper proposes a design approach to enhance the RTL model of a given digital component for the
integration in smart systems with the automatic insertion of delay sensors, which can detect and correct
timing failures. The paper then proposes a methodology to verify such added features at system-level. The
augmented model is abstracted to SystemC TLM, that is automatically injected with mutants (i.e., code
mutations) to emulate delays and timing failures. The resulting TLM model is finally simulated to identify
timing failures and to verify the correctness of the inserted delay monitors. Experimental results demonstrate
the applicability of the proposed design and verification methodology, thanks to an efficient sensor-aware
abstraction methodology, by applying the flow to three complex case studies.

CCS Concepts: • Hardware → Simulation and emulation; Transaction-level verification; Timing analysis
and sign-off ;

Additional Key Words and Phrases: Timing monitors; Code abstraction; SystemC TLM; Razor sensor; Verifica-
tion

ACM Reference Format:
Sara Vinco, Nicola Bombieri, Daniele Jahier Pagliari, Franco Fummi, Enrico Macii, and Massimo Poncino. 2019.
A Cross-Level Verification Methodology for Digital IPs Augmented with Embedded Timing Monitors. ACM
Trans. Des. Autom. Electron. Syst. 1, 1, Article 1 (January 2019), 23 pages. https://doi.org/10.1145/3308565

1 INTRODUCTION
The design of smart systems has become challenging not only for its increasing complexity, but
also for its emergent multidisciplinarity [8]. As a result, even though the design flow is highly

Authors’ addresses: Sara Vinco, Politecnico di Torino, Department of Control and Computer Engineering, Turin, Italy;
Nicola Bombieri, University of Verona, Department of Computer Science, Verona, Italy; Daniele Jahier Pagliari, Politecnico
di Torino, Department of Control and Computer Engineering, Turin, Italy; Franco Fummi, University of Verona, Department
of Computer Science, Verona, Italy; Enrico Macii, Politecnico di Torino, Interuniversity Department of Regional and
Urban Studies and Planning, Turin, Italy; Massimo Poncino, Politecnico di Torino, Department of Control and Computer
Engineering, Turin, Italy.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
1084-4309/2019/1-ART1 $15.00
https://doi.org/10.1145/3308565

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://doi.org/10.1145/3308565
https://doi.org/10.1145/3308565

1:2 S. Vinco et al.

standardized in the digital domain [43], the presence of multi-domain components in a single device
arises novel challenges and design constraints, that affect interactions over the whole system. This
requires novel and specific solutions, that must combine multi-disciplinary monitoring with good
performance, still not affecting the overall design flow.

Most of the design constraints (e.g., frequency, power supply, temperature) are related to physical
properties of the circuit, and thus require the insertion of suitable monitors. A typical example
are delay monitors, used to detect and correct timing failures induced by manufacturing process
variability, aging or temperature variations. All such monitors require to apply verification at low
levels of abstraction, typically at RTL. Unfortunately, verification of physical properties related to
specific design constraints at RTL has several limitations. First, simulation performance at RTL is
prohibitive for reaching high-quality results, thus preventing an effective validation of the inserted
sensors. Also, the manipulation of the RTL code for testing system correctness over different metric
values is time consuming and not scalable to complex systems. Finally, verification of the RTL model,
once integrated into a high-level system description of a smart system (e.g., a virtual platform
implemented in SystemC TLM or C++) requires co-simulation instead of simulation, thus killing
simulation performance of the whole system platform [22, 23, 45].

Such considerations on the performance of RTL and of its impact on both simulation and verifi-
cation suggest that moving to system level might improve by far the verification process. Currently,
the consolidated level of abstraction for system level design and verification is Transaction Level
Modeling (TLM), that facilitates design space exploration and verification of the system without
focusing on the implementation details. This guarantees a sound trade-off between simulation
performance and accuracy for a wide range of user’s needs during design and verification of digital
components. The SystemC-based implementation of TLM has the additional advantage that it is
deeply integrated within the SystemC framework, and that it can thus run simultaneously with
models implemented with the Analog and Mixed-Signal (AMS) extension of SystemC. This allows
to foresee a homogeneous simulation scenario for a multi-domain system.
In this context, tools for the automatic abstraction of existing RTL models represent a valuable

support for the design of modern complex systems. Well-known examples are the RTL-to-SystemC
abstraction tools for reusing RTL models of IPs [2, 21]. The automatic translation process to TLM
preserves only the functionality of the original IP. On the other hand, most of the design constraints
are related to physical properties of the circuit (e.g., frequency, power supply, temperature). As a
consequence, the verification of the additional design constraints is not achievable, at the state of
the art, at TLM.
Mixed-level modeling or co-simulation have been proposed over time to allow, for instance,

design exploration and validation [37], RTL fault injections with error propagation at system level
[33], and prediction of non-functional properties (such as aging) [28]. However, the lower level
models act as bottlenecks in the mixed-level approaches, thus slowing down the simulation of the
whole system.

This paper proposes a methodology for system-level verification of digital IPs augmented with
sensors. Since many physical properties affect the timing of the digital IP, we adopted timing
monitors, so that the effect of many physical properties can be captured concurrently.
This work builds upon [26], that introduced the proposed detection and correction paradigm.

The new contributions are the following:

• an extended presentation of the design paradigm, focusing on the requirements on sensor
features, on the sensors adopted in this work, i.e., the Razor sensor and the Counter-based
sensor, and on the sensor insertion strategy;

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

A Cross-Level Verification Methodology for Digital IPs Augmented with Embedded Timing
Monitors 1:3

• the extension of the RTL-to-TLM abstraction strategy, to allow faster simulation during
the verification of the inserted delay sensors, to identify a tradeoff between accuracy and
simulation speed, and to make the proposed approach more robust and applicable to more
complex IPs;

• an extended presentation of the mutation analysis approach, that allows verification of the
inserted sensors early in the design flow at system level;

• the application to three new case studies, chosen to prove the soundness and the applicability
of the proposed approach to complex IPs.

The paper is organized as follows. Section 2 provides some background. Section 3 describes the
implemented design and verification paradigm, that is deepened in Sections 4-7. Section 8 presents
the experimental results, while conclusions are discussed in Section 9.

2 BACKGROUND
2.1 Detection and correction paradigm
The heterogeneity of smart systems, together with the coexistence of multi-domain subsystems in
a single device, forces to extend the traditional digital design process to additional constraints on
performance, reliability/robustness, power consumption and temperature [8, 50]. Such metrics can
be monitored through specific physical quantities, i.e., frequency (propagation delay), supply noise,
supply current, supply voltage and temperature. Their direct measurement, through the insertion
of ad hoc sensors, allows to define a design paradigm based on detection and correction of the
related constraints.

Digital IP

Metrics

Sensor

Inputs Outputs

Metrics

Metrics OK

Wrapper

Fig. 1. Example of digital IP augmented with a sensor.

Consider a generic digital IP modeled at RTL through a hardware description language (HDL),
as shown in Fig. 1. The IP is extended with a customized sensor, monitoring a specific metric and
measuring the corresponding physical quantity. The sensor signals whether the related constraint
is met (Metric OK output) and it may provide also a metric value (Metric output). This paradigm
can be enriched with further functionality, depending on the target scenario:

• detection only: the sensor simply measures the quantity and signals whether it meets the
specified constraint. Thus, Metric and Metric OK are the only outputs;

• detection and correction: the sensor provides an additional control signal that regulates some
hardware knobs for “correcting" the corresponding metric value (the dashed line in Figure 1).

2.2 On-chip delay monitoring
With CMOS technology scaling, delay variability has become a critical issue. Indeed, a wide range
of different physical phenomena result in alterations of the propagation delays of a CMOS circuit.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:4 S. Vinco et al.

Manufacturing process variability caused by non-idealities (such as random dopant fluctuations
and sub-wavelength lithography) makes the propagation delays non-deterministic and instance-
specific [14]. Delay variations may occur among different realizations of the same circuit (global
effects) as well as among different devices, e.g., standard cells, of the same circuit (local effects).
Temperature variations across the die and so-called hot spots generate supply and threshold voltage
fluctuations, which also result in alterations of nominal propagation delays [49]. In addition to the
spacial dimension, these variations are also time- and context-dependant. Finally, aging effects such
as Negative Biasing Temperature Instability (NBTI) or Hot Carrier Injection (HCI) cause nominal
delays to drift during the lifetime of a device [3].
In order to cope with all these effects, increasingly large design margins (e.g., on the minimum

supply voltage VDD) should be included when constraining the traditional implementation of a
CMOS device, to avoid timing failures even in worst-case variability conditions. Alternatively,
occasional timing failures can be detected and corrected, rather than totally avoided, by following
the paradigm defined in Section 2.1. This allows designers to reduce margins (e.g., use a lower
VDD) and therefore improve the metrics (e.g., energy efficiency) of the implemented circuit. Such
constant monitoring of the timing behavior of a circuit is realized by means of on-chip delay sensors
or monitors [15–18, 24, 38, 42, 48, 52].
On-chip delay monitoring architectures proposed in the literature mainly differ in the type

of measurement performed: absolute measurement of delay values, or comparison w.r.t. a given
threshold. In the former approach, the absolute measurement of path delay is achieved either using
a Time-to-Digital Converter (TDC) to translate timing information into digital values [18, 38, 48, 52],
or through time-to-voltage conversion to translate path delay into voltage levels [24]. In the latter
approach, ad hoc sampling elements replace latches or flip-flops in the critical paths of the circuit.
Occurrence of a timing violation is then detected by observing a signal transition within a given
time window [15] or by performing a delayed comparison of the monitored signals [16, 17, 42].
Recovery mechanisms may also be implemented in order to correct the detected errors.

Once delay sensors have been embedded into a digital IP, their detection and correction characte-
ristics must be verified. Several solutions based on fault injection can be found in literature [5]. Some
techniques rely on simulator commands to easily manipulate model signals or variables without
altering the HDL code. However, such commands are not standard, but rather simulator-specific.
Other techniques modify the original RTL code, either by adding saboteurs in the design structure
[41] or by modifying the behavior of some components by using mutants [4]. The main drawback
is that both techniques require additional control signals to activate the occurrence of a fault and
automatic tools to add/remove the HDL modification.

2.3 Mutation analysis
Mutation analysis relies on the concept of creating several models of the design under verification
(i.e., a SW application or a HW IP model), each one mutated by introducing a syntactically correct
functional change (i.e., a mutant) [19, 31, 39]. The purpose of such mutations consists of perturbing
the behavior of the model, to verify whether the test suite is able to detect the difference between
the original model and the mutated versions [36]. A transformation rule that generates a mutant
from the original program is called a mutation operator.

Figure 2 shows the structure of a mutation system. When an IP model is submitted to a mutation
system, the system first creates many mutated versions of the program (step 1), e.g., by replacing
an operand with a different syntactically legal operand, or by modifying expressions replacing or
inserting new operators, or deleting entire statements. Then, test cases are supplied to the system
to serve as inputs to the program (step 2). Each test case is executed on the original program. If
the output of a mutant program differs from the original (correct) output, the mutant is marked

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

A Cross-Level Verification Methodology for Digital IPs Augmented with Embedded Timing
Monitors 1:5

as killed (step 3), otherwise it is marked as survived [27]. If after all test sets have been executed
some mutants still survived, verification engineers can provide additional test inputs to kill such
survived mutants, thus improving the test set quality.
If a mutant cannot be killed by any possible sequence of inputs, such a mutant is said to be

equivalent. A model that has equivalent mutants is syntactically different but functionally equivalent
to the model with no mutants. Automatically detecting equivalent mutants is impossible as such a
model equivalence is undecidable [36].

Digital IP Test cases

1. Mutant

injection
2. Simulation

3. Result

comparison

Mutated

digital IP
Test cases

Fig. 2. Outline of the mutation analysis process.

Mutation analysis provides designers with an adequacy score, known as mutation score, which
indicates the quality of the input test set. The mutation score is the ratio of the number of killed
mutants over the total number of non-equivalent mutants. The goal of mutation analysis is to
measure how far the mutation score is from 100%, which indicates that the test set is sufficient to
detect all the design errors represented by the mutants.
Mutation analysis has been applied to languages for system-level design and verification such

as SystemC [9, 32, 35, 44]. All these papers propose mutation models to verify the functional
correctness of the SystemC and SystemC TLM descriptions, but none of such works aims at
verifying timing constraints of the SystemC model through simulation.

2.4 SystemC TLM
Transaction level modelling (TLM) is a modelling style for implementing communication between
IP blocks at different abstraction levels, each one with a different level of accuracy. It is applied to a
variety of use cases, such as SW development, SW performance analysis, architectural analysis, and
HW verification.
Rather than defining an abstraction level around each use case, the OSCI TLM-2.0 standard

defines a set of interfaces (i.e., blocking, non-blocking, direct memory, and debug interfaces) and
provides a library of primitives (e.g., b_transport() and nb_transport()) for implementing the
communication side of transaction-level models. The standard specifies a number of protocols that
are appropriate for, but not locked to, the various use cases.
The different TLM protocols allow designers to describe and simulate a design with different

levels of detail. The best-suited protocol is selected depending on the target use case and each
protocol is implemented by using specific TLM primitives.

The most adopted TLM-2.0 protocols are loosely-timed and approximately-timed. Loosely-timed
(LT) is appropriate for software development, by using, for example, a virtual platform model of

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:6 S. Vinco et al.

an MPSoC, where the software may include one or more operating systems. Models implemented
with this protocol have a loose dependency between timing and data. They do not depend on
the advancement of time to be able to produce a response and, normally, resource contention
and arbitration are not considered. Approximately-timed (AT) is appropriate for architectural
exploration and performance analysis. Models implemented with this protocol have a much stronger
dependency between timing and data, as AT forces models to synchronize the transactions before
processing them, thus triggering multiple context switches in the simulation, eventually resulting
in performance penalties. On the other hand, they easily model resource contention and arbitration.
It is important to note that both the protocols are independent from the underlying SystemC
management of time, that can be simulated only with artificial wait() invocations.

3 PROPOSED FLOW
Given the crucial role of propagation delay in design correctness, and its strong dependency from
physical phenomena, the embedded monitors adopted in this work are timing sensors. Digital IPs
are thus augmented with delay sensors, that are automatically inserted at RTL to monitor the IP
timing characteristics: by sensing the propagation delay in appropriate locations of the digital IP,
performance can be monitored and optimized to improve circuit reliability.
Once that sensors have been inserted to detect delays and temporal behaviors in the RTL IP, a

verification step must be applied, to verify their effective detection of circuit delays. State of the art
approaches work at RTL, either by applying fault injection or by adding saboteurs to the original
IP. However, this makes the already slow RTL simulation even more time consuming.

This work proposes to move the simulation phase to TLM, with the goal of speeding up simulation.
The RTL IP, enhanced with the delay sensors, is thus abstracted to TLM by using state of the art
techniques. Given the timeless nature of TLM, delays must be expressed as modifications of the IP
code: this is achieved with the definition of mutants, and mutation analysis is applied to evaluate
the effectiveness of the detection and correction mechanism.

Digital IP

Metric

Sensor

Inputs/

Outputs

Metric

Metric OK

m1

m2

m3

mn

m4

3. Injection of

mutants

2. RTL to TLM

abstraction

Digital IP

Metric

Sensor

Inputs Outputs

Metric OK

Metric

VHDL/Verilog

to SystemC TLM

RTL IP

TLM simulation platform

4. Mutation analysis

Automatic

stimuli

generator

and sensor

monitor

1. Insertion of delay

monitors

Fig. 3. Overview of the verification methodology.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

A Cross-Level Verification Methodology for Digital IPs Augmented with Embedded Timing
Monitors 1:7

The resulting methodology is made of the following steps, depicted in Figure 3:
(1) Insertion of delay monitors. The delay monitors must be inserted on the critical paths: it is

thus necessary to identify delay monitors suitable for the proposed methodology, and to
define a strategy to identify critical paths to be monitored (Section 4).

(2) RTL-to-TLM abstraction of the augmented digital IP. The RTL model of the digital IP, enhanced
with sensors, is abstracted to SystemC TLM for fast simulation (Section 5).

(3) Injection of mutants in the abstracted digital IP. Delays do not exist at TLM, that abstracts
timing: they are thus modeled as modifications of the IP code, called mutants, that are
automatically injected in the abstracted digital IP (Section 6).

(4) Mutation analysis. The abstracted and injected digital IP and sensor are connected to a stimuli
generator, which activates each mutant to test the detection and correction mechanism
(Section 7).

4 INSERTION OF DELAY MONITORS
This Section presents the delay sensors adopted in this work (Section 4.1) and the strategy followed
to automatically insert them in the starting IP (Section 4.2).

4.1 Delay sensors
The detection and correction sensors constitute an additional functionality w.r.t. the starting IP.
Three essential requirements must be met for the sensor implementation to guarantee a correct
adoption of the proposed paradigm:

• sensors must be synthesizable;
• sensors must be digital and should carry out no A/D conversion;
• the monitored quantity must affect either functionality or timing of the IP on the circuit path,
and sensors must highlight any violation of the monitored property at the functional level,
e.g., through output ports.

These conditions guarantee that the information is preserved also after the conversion to a high-
level model at TLM. At higher abstraction levels, the IP model is less accurate and preserves only
timing and functional information. Thus, if the monitored physical phenomenon (e.g., temperature,
aging) is visible through its effects on functionality or timing of the IP, its effect is still visible
and replicable at higher levels of abstraction. This is straightforward for delay monitors, as delay
impacts both timing and functional behavior of the IP. Given that delays are a side-effect of many
physical phenomena, this paper focuses solely on delay monitors. Note that the sensor may be
embedded in the IP itself, i.e., it does not need to be external and distinguishable.
This paper proposes two different architectures for an on-chip delay sensor meeting such

requirements: an extended Razor flip-flop (Section 4.1.1) and a Counter-based monitor (Section
4.1.2). The sensors can be used either individually or in combination, depending on the required
level of precision, i.e., either a generic fail/no fail information or a more quantitative information
on system delay.

4.1.1 Modified Razor flip-flop. The first monitor implementation is based on the Razor flip-flop
(FF) concept [16], selected to obtain a timing failure detection and possibly correction within a few
clock cycles.
The architecture of the Razor sensor is depicted in Figure 4.a. The IP is a generic IP, featuring

one input signal (DATA_IN) and one output signal (DATA_OUT), and it contains three critical paths,
labeled by C0, C1 and C2. The key idea to monitor delay on such critical paths is to augment the
functionality of a standard flip-flop (FF) with the capability of self-recovery in presence of a failure.
This is achieved by replacing the standard flip flops at the end of C0, C1 and C2 with Razor sensors.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:8 S. Vinco et al.

DIGITAL IP

FF
C0

FF
C1 C2

DATA_IN DATA_OUTFF

METRIC_OK

C3

RAZOR

FFR E

RAZOR

FFR E

RAZOR

FFR E

SHADOW

LATCH

MAIN
FF

0

1

Q

E

CLK

CLK

R

MODIFIED RAZOR FF

D

OP1D

CLK

CLK

LATCH_OUT

OP2

CYCLE 1 CYCLE 2 CYCLE 3

OP1FF_OUT

E

OP1 OP2

R = 1 (RECOVERY ON)

OP2

Tskew

SHORT-PATHLONG-PATH

(a)

(b)

Fig. 4. Example of digital IP augmented with the modified Razor replacing FFs of critical paths (a) and timing
diagram of the modified Razor sensor mechanism.

As a result, the digital IP is extended with a new output port (METRIC_OK), used to notify detected
delays.
In detail, the Razor sensor enhances the FF by introducing a shadow latch that samples the FF

input data on the negative level of the delayed clock signal CLK. The CLK is delayed by half CLK
period. If the values contained by the FF and by the shadow latch differ, an error signal E is asserted
to notify the timing failure.
The correction feature can be selectively activated on each modified Razor FF acting on the

corresponding signal R. The Razor flip-flop has been modified with an additional multiplexer for
allowing the self recovery mechanism: when the control signal R is high, the recovery mechanism
is executed and the error in the faulty FF is corrected.

Working mechanism. Figure 4.b details the behavior of the Razor sensor:
• correct timing: in a given clock cycle (cycle 1), if the combinational path C1 meets the setup
time for the main FF, then both the main FF (positive edge triggered) and the shadow latch
(later activated on the negative level of CLK) will latch the correct data. Therefore, the XOR
gate’s output is 0 and there is no error to flag at the output E (i.e., E = 0);

• timing failure detection: if the timing constraints on the combinational path C1 are not met
because of variability issues, e.g., aging, temperature, process variations (cycle 2), the main
FF will latch an incorrect data (i.e., OP1 instead of OP2). Still, the shadow latch will latch the
correct data (OP2), thanks to the delayed operating mode. As a consequence, the output of
the XOR gate will rise to 1 and the error is detected and flagged in output (E = 1);

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

A Cross-Level Verification Methodology for Digital IPs Augmented with Embedded Timing
Monitors 1:9

• timing failure detection and correction: if the error correction mechanism is enabled (cycle 3, R
= 1, AND gate transparent), the multiplexer connects the latched value with the input of the
main FF. In the subsequent cycle, when the recovery phase is executed, the normal operating
mode of the system must be delayed of a cycle by the adoption of various strategies, e.g., by
interrupting the normal pipeline operation.

Sensor characteristics. Since CLK is delayed by half CLK period, the Razor working time window
is bounded by the rising and falling edge of CLK. The area overhead of a modified Razor FF is
quite modest, as it is about one standard FF. In addition, the set of critical paths to be monitored
represents a small percentage of the overall paths in the circuit.

Adherence to paradigm constraints. The Razor sensor satisfies the paradigm constraints. It is
entirely digital, as it was designed to operate synchronously w.r.t. the augmented IP, and it is
synthesizable. Therefore, it can be fully abstracted to SystemC TLM. Furthermore, the sensor affects
the functionality of the augmented IP, both through the error notification process (output E) and the
presence of both a FF and a shadow latch, that highlight the possible presence of a delay through
its effect on the stored values.

4.1.2 Counter-based monitor. The second monitor implementation relies on a simple counter
to measure the propagation delay on critical paths of the digital IP (Figure 5.a). The original IP is
the same as for Figure 4. Compared to the modified Razor FF, the IP extended with Counter-based
monitors provides also an absolute measure of delay rather than a simple timing failure detection
(MEAS_VAL).

Reference and measurement values are computed by referring to a higher frequency clock (i.e.,
HF_CLK in Fig. 5.b), whose frequency is multiple of the main clock frequency (i.e., MAIN_CLK).
Using the additional clock HF_CLK, the monitor enumerates the amount of HF_CLK periods elapsed
for the signal propagation from the path start point to the path end point and thus can provide a
measurement of delay.
The measurement is performed during a predefined time window called observability window

(i.e., OBS_WIN in Fig. 5.b) where all signal transitions are captured. The position in time and
width of OBS_WIN are chosen at design time according to the expected time interval where signal
transitions may occur.
Two registers (R1 and R2) store the counter value on the occurrence of both rising and falling

transitions. The delay measure is then selected according to the last captured transition. A control
block compares the obtained value with reference values determined at design time.

Working mechanism. Figure 5.b details the behavior of the Counter-based sensor:

• when OBS_WIN rises to logic 1, the measurement process terminates on the last transition
of the current monitored path signal CURR_CPS, which can be either positive or negative.
A positive transition activates the enable signal of the register R1, in order to sample the
actual counter output value. Similarly, a negative transition activates the enable signal of
the register R2, so that the actual counter output value is stored in this register. Therefore,
register R1 and R2 operate in a mutually exclusive way. Depending on the transition type, the
digital measure MEAS_VAL is continuously updated, without resorting to ad hoc transition
detectors;

• when OBS_WIN falls to 0, the registers hold the last rising/falling transition, whereas the
latches hold the last value assumed by the signal in the window, which is then used to select
the correct register output value;

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:10 S. Vinco et al.

(a)

(b)

TMAIN_CLK

MAIN_CLK

START_MEAS

OBS_WIN OBSERVABILITY

WINDOW

OUT_OK

CURR_CPS

HF_CLK

8LUT_OUT

0 0MEAS_VAL 6 7 8 9 10

THF_CLK

CYCLE 1 CYCLE 2 CYCLE 3

DIGITAL IP

FF
C0

FF
C1 C2

DATA_IN DATA_OUTFF

METRIC_OK

C3

COUNTER
OBS_WIN

CTRL EN

LATCH
n

LATCH

EN

EN

EN

EN n

REG

n

REG

0

1
MEAS_VAL

n

COUNTER BASED DELAY SENSOR

FFR E FFR E

FFR E

Fig. 5. Example of digital IP augmented with the Counter-based monitor connected to critical path end
points (a) and timing diagram of the Counter-based sensor working mechanism (b).

• the reference path delay is then compared with the measured delay value and, if the timing
constraint on the current path under observation is met, OUT_OK assumes logic value 1;

• the circuit output values are stable for the next MAIN_CLK rising edge (cycle 3) in order to
be captured outside, while internal registers are reset to 0.

Sensor characteristics. In general, the main sensor characteristics depend on the HF_CLK period.
For each critical path, the latency of measurement is threeMAIN_CLK cycles. Once a measurement

on a critical path is accomplished, another measurement process begins on the next MAIN_CLK
rising edge, so that after three MAIN_CLK edges the delay of the next path can be read out. This
procedure is repeated for all critical paths that have to be measured. Once all path delays have been
measured, the circuit goes back to idle state.

Since the counter is synchronous with respect to HF_CLK, themaximum resolution is the HF_CLK
period, and the maximum error is half of the HF_CLK period.

The detectable delay range depends also on the observability window: the maximum measurable
delay corresponds to the time interval beginning with the first MAIN_CLK rising edge (signal
transitions start to propagate through the monitored path) and ending with the falling edge of
OBS_WIN (no more signal transitions are captured).

The area overhead is limited. As an example, in the case of 10 monitored paths and measurement
bit width 8 bits, the occupied area is equivalent to approximately 352 NAND2 gates (minimum size
of NAND in the library). Consider that a fast 8x8bit (16 bit dynamic range) FIR filter has a size of

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

A Cross-Level Verification Methodology for Digital IPs Augmented with Embedded Timing
Monitors 1:11

about 10700 equivalent NAND gates, thus, the Counter-based monitor would increase the FIR size
by 3.3%.

Adherence to paradigm constraints. The Counter-based sensor satisfies the paradigm constraints.
It is entirely digital and it was designed to operate synchronously w.r.t. the augmented IP. The sensor
has been successfully synthesized with Synopsys DC using a 45nm standard cell library, therefore
it can be fully abstracted to SystemC TLM. Furthermore, the sensor extends the functionality of the
augmented IP and it makes the presence of a delay visible through the MEAS_VAL output and the
R1 and R2 registers.

4.2 Delay sensors insertion strategy
In order to contain the area and power overheads associated with the detection and correction
paradigm described in Section 2.1, delay sensors should only be inserted at the endpoints of “critical”
timing paths [16]. More formally, at the considered voltage-frequency target(s), those endpoints
that would not incur setup-time violations even in worst case conditions (of local and global process
and temperature variability, aging effects, etc.) do not require sensor augmentation.

Consequently, the identification of insertion locations for delay sensors requires a back-annotated
analysis of the RTL model, using timing information obtained from a first (sensor-free) synthesis
of the IP. The maximum propagation delay of each path is then determined using a Static Timing
Analyzer (STA). Herein, the term static in STA is used to underline that the analysis performed in
this phase is not based on simulation (dynamic), not to refer to any particular algorithm. Indeed,
our methodology is agnostic of the specific timing analysis algorithm utilized, as long as the
latter can identify suitable sensor locations in a conservative way (i.e., paths that are left without
sensors must have a timing violation probability very close to zero). The identification process can
therefore leverage any of the advanced variations of deterministic and statistical STA proposed in
the literature, such as those accounting for path correlations, process variation, etc. [30, 46].
The easiest way to separate critical and not-critical paths (in case of a standard deterministic

STA) is to adopt a threshold-based approach: all those paths whose critical setup slack is smaller
than a threshold (in ps) are binned as critical, and vice versa. The threshold can be determined
using standard design margin considerations, based on the relevant physical sources of variability.
Industrial-level STA tools are already equipped with all the necessary features to compute such
threshold, i.e. multiple process-temperature corners analysis, aging and local On-Chip Variation
(OCV) modeling, etc.

Once critical paths have been identified, one sensor is inserted at each of these paths endpoints,
by means of automatic modifications of the RTL model. Specifically, the RTL signal corresponding
to the target endpoint is connected to a newly created instance of the delay sensor component
(Razor or Counter-based), possibly through an intermediate variable used to extract single critical
bits from a multi-bit signal. New ports are also added to the top-level IP model, for the connection
of the support clocks (CLK and HF_CLK) and of the delay sensor outputs.

Although not strictly related to the proposed flow, notice that sensor locations should be remem-
bered for the following post-verification synthesis of the IP, since they require special care during
implementation (e.g., to avoid short-path issues in the case of Razors [16]).

5 RTL TO TLM ABSTRACTION OF THE AUGMENTED DIGITAL IP
The recent trend towards the use of abstraction levels higher than RTL has led to the development
of methodologies and tools for reusing RTL models of IPs through automatic RTL-to-SystemC
TLM abstraction [2, 21]. The constraints detailed in Section 4.1 make de facto the sensors not
distinguishable from the starting IP, from the point of view of an automatic abstraction tool. Thus,

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:12 S. Vinco et al.

any of such tools can in principle be adopted for the abstraction of the augmented IP. The following
sections focus on the abstraction process, on the strategies to improve simulation performance,
and on the effect of abstraction on the inserted sensors.

5.1 Abstraction process
RTL simulation relies on event driven dynamic simulation kernels: RTL processes (i.e., concurrent
statements) are activated whenever an event in their sensitivity list occurs (e.g., when an input
signal changes value). Figure 6.a outlines the execution flow of a typical HDL simulator kernel.
On the clock rising event, all synchronous processes are run (step 1). Then, if any event has been
triggered (e.g., write on a signal), the asynchronous processes sensitive to such an event are woken
up (step 2). The routine iteratively goes on until there is no further event. Each of such iterations
corresponds to a delta cycle, i.e., to a simulation cycle that does not advance simulated time [1] (i.e.,
the loop around step 2). The same procedure is applied for the falling edge of the clock (steps 3
and 4). When there is no further process to wake up, the simulated time is updated and simulation
moves to the next simulation cycle (i.e., the arrow going back to step 1). This simulation strategy is
common to all HDL languages, despite of the syntactic differences.

DELTA CYCLE

1. Rising edge of clock:

execute synchronous processes

Any event?
2. Execute

sensitive processes

4. Execute

sensitive processes

SIMULATION

CYCLEYES NO

YES NO

3. Falling edge of clock:

execute synchronous processes

Any event?

DELTA CYCLE

scheduler(){

// 1. rising edge of clock

exec_synchronous_processes();

// delta cycle

while(any_event){

// 2. execute asynchronous processes

// sensitive to events

exec_asynchronous_processes();

}

// 3. falling edge of clock

exec_synchronous_processes();

// delta cycle

while(any_event){

// 4. execute asynchronous processes

// sensitive to events

exec_asynchronous_processes();

}

(a) (b)

Fig. 6. RTL dynamic scheduling overview (a) and corresponding TLM scheduling code (b).

Despite technical differences, all RTL-to-SystemC TLM abstraction tools generate SystemC TLM
code by translating HDL statements into C++ statements (e.g., RTL processes are translated into
C++ functions), encapsulated by TLM interfaces and primitives. However, SystemC TLM simulation
is almost timeless: simulation proceeds with remote function calls between components, thus
bypassing the underlying SystemC RTL scheduler. When moving the RTL IP to TLM, it is thus
necessary to preserve the simulation semantics, e.g., in terms of cycle-based accuracy.
Figure 6.b shows how the RTL scheduling is reproduced in TLM. The key ingredient is the

scheduler() function, that emulates one simulation cycle of the RTL scheduler. The body of
the function reproduces step by step the scheduler. First it invokes all synchronous processes, to
emulate the rising edge of the clock (step 1). Then, it reproduces the delta cycle, by checking if any
value change occurred and executing the corresponding asynchronous processes (step 2). The same
is reiterated for emulating the falling edge of the clock (steps 3 and 4). It is important to note that,

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

A Cross-Level Verification Methodology for Digital IPs Augmented with Embedded Timing
Monitors 1:13

in the TLM abstracted version, processes are mapped onto C++ functions, and signals and ports are
mapped onto C++ variables. The scheduler() function is then wrapped by TLM primitives: each
invocation of the TLM primitive corresponds to one simulation cycle of the original RTL design.
For more details on the abstraction procedure, please refer to [12, 13].

The key characteristics of such abstraction methodology is that it preserves cycle-based accuracy
w.r.t. the starting RTL code: each RTL clock cycle is mapped onto one scheduler() call, and the
scheduler() function reproduces all phases of the RTL scheduler, delta cycles included.

5.2 Sensor-aware abstraction
The inserted sensors have different characteristics in terms of timing accuracy. The TLM abstraction
must reach a good compromise between timing accuracy and simulation performance, thus two
different strategies are defined.

5.2.1 TLM simulation of the Razor sensor. To preserve the main characteristics of the Razor
sensor, it is necessary to map the RTL cycle-accurate simulation to TLM transitions. Given that the
standard abstraction preserves the accuracy to the clock cycle, and that the augmented RTL IP is
cycle-accurate w.r.t. one clock signal, no modification shall be applied to the scheduler, that is as in
Figure 6.b. This allows to preserve the correct behavior of the sensor and to map each CLK period
to one TLM transaction, as outlined in Figure 7. This scenario applies to all sensors that preserve
accuracy w.r.t. the IP clock cycle, with no finer grain clocks.

OP1D

CLK

CLK

LATCH_OUT

OP2

CYCLE 1 CYCLE 2 CYCLE 3

OP1FF_OUT

E

OP1 OP2

R = 1 (RECOVERY ON)

OP2

Tskew

SHORT-PATHLONG-PATH

TLM transaction #1

(TLM primitive call)

TLM transaction #2

(TLM primitive call)

TLM transaction #3

(TLM primitive call)

Fig. 7. Mapping of RTL waveforms to TLM transactions for the Razor sensor.

5.2.2 TLM simulation of the Counter-based sensor. The Counter-based sensor is sensitive to two
clock signals, i.e., the IP clock signal and the high frequency clock. To verify the characteristics
of the Counter-based sensor, the TLM code must thus reproduce the presence of both the clock
signals, by finding at the same time a good trade off with performance.
The TLM code generated as in Figure 6.b is cycle accurate w.r.t. only one of the clock cycles.

Thus, a different strategy is used, as depicted in Figure 8. The main code skeleton is as in Figure
6.b; however, the presence of a higher frequency clock forces some code modifications. To avoid
the generation of a high number of TLM transactions, a TLM transaction still corresponds to one
cycle of the clock with larger period (MAIN_CLK). Vice versa, the second clock signal (HF_CLK) is
abstracted as a standard signal, so that a number of its cycles are wrapped into one TLM transaction.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:14 S. Vinco et al.

This is reflected in the TLM scheduler code (Figure 8.b), where 10 cycles of (HF_CLK) correspond
to a single cycle of (MAIN_CLK). This mechanism allows to preserve cycle accuracy also w.r.t. the
higher frequency clock, even if one of its cycles does not correspond to an entirely new transaction.
This scenario applies not only to the Counter-based sensor, but also to all sensors that require

the presence of a finer grain clock, to perform more precise computation or to precisely measure
and monitor metric values.

TMAIN_CLK

MAIN_CLK

START_MEAS

OBS_WIN OBSERVABILITY

WINDOW

OUT_OK

CURR_CPS

HF_CLK

8LUT_OUT

0 0MEAS_VAL 6 7 8 9 10

THF_CLK

CYCLE 1 CYCLE 2 CYCLE 3

TLM transaction #1

(TLM primitive call)

TLM transaction #2

(TLM primitive call)

TLM transaction #3

(TLM primitive call)
scheduler(){

exec_synchronous_processes();

while(any_event){

exec_asynchronous_processes();

}

for(HFCLK=0; HFCLK<clock_ratio; HFCLK++){

exec_hfclk_synchronous_processes();

while(any_event){

exec_asynchronous_processes();

}

}

exec_synchronous_processes();

...

}

(a) (b)

HIGHER FREQUENCY CLOCK CYCLE

Fig. 8. Mapping of RTL waveforms to TLM transaction sequences for the Counter-based sensor (a) and TLM
scheduling code updated with the support for the higher frequency clock (b).

5.3 Speeding up TLM simulation: data type abstraction
The standard RTL-to-TLM abstraction process maps the HDL data types to the corresponding
SystemC data types, thus preserving data type accuracy and multi-value logic. Nevertheless, data
types severely affect SystemC simulation performance with respect to other HDLs [20], and the
impact gets even worse at SystemC TLM, where bit accuracy is useless and the slow implementation
of data types limits the potential simulation performance of the abstraction paradigm.
To deal with such limitations, the proposed approach adopts HDTLib, an efficient library that

provides a faster implementation of all the HDL-oriented data types [11]. HDTLib consists of five
data types: a 4-value logic vector class, a 2-value bit vector class, a single logic value class, a signed
and an unsigned integer class. In order to achieve a significant performance improvement, HDTLib
maps data types on statically allocated arrays of unsigned integers. All operations are implemented
on words, instead of single bits, and rely on Karnaugh maps, rather than on lookup tables, to achieve
faster access to bitwise truth tables. A complete presentation of HDTLib is available in [10, 11, 51].

Together with such implementation solutions, HDTLib improves simulation speed by considering
that bit accurate data types would describe HW characteristics that are useless for the high-level
functional verification. At TLM, it is thus possible to accept a loss in terms of accuracy, implicit in
the abstraction process, to fasten simulation and verification. To achieve this, multi-valued logic
data types (i.e., X, Z, 0, 1) are thus mapped into a two-valued logic type (i.e., 0, 1). The Z and X
values are replaced, e.g., with 0, by considering the limitations and effects of this replacement on
the actual designs [10, 11].

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

A Cross-Level Verification Methodology for Digital IPs Augmented with Embedded Timing
Monitors 1:15

6 MODELING AND INJECTION OF DELAY MUTANTS
Once the RTL IP is abstracted at TLM, RTL delays must be simulated also at TLM level, so to verify
the effectiveness of the delay sensors. Given the untimed nature of TLM, it is necessary to model
delays as mutants, small alterations of the code used to deviate from the expected behaviour (see
Section 2.3).
The methodology has to deal with the problem of the loss of accuracy caused by the TLM

abstraction process: time accuracy is indeed reduced to an abstract timeline divided into clock
cycles and delta cycles, which does not allow for a lower level representation of delays. The
proposed mutation model solves this problem by preserving, in a more abstract way, delays in the
generated TLM models. Such an abstraction of delay is implemented by postponing the signal
update (i.e., assignment statement) forward in the simulation time line. This is enabled by the fact
that the adopted abstraction process preserves cycle accuracy with respect to the original RTL code.
Delayed assignments are then applied in different points of the simulation cycle, thus postponing
the assignment and mimicking the effect of a delay.
The different classes of mutants and their application are depicted in Figure 9, that exemplifies

mutant injection on a simple example, i.e., the assignment sig1 = a000 in a synchronous process.
Figure 9.e shows the original VHDL process. Figure 9.f is the corresponding C implementation
as a function, that is invoked during the rising edge phase of the standard TLM scheduler (the
first exec_synchronous_processes() in Figure 9.a). To postpone the assignment, the function is
broken in two, as shown in Figure 9.g-h: the function invoked during the rising edge phase assigns
the value of a000 to a temporary variable, and this value is passed to variable sig1 later on, by
invoking the function apply_mutant_sig1(). The following of this section describes how this
modifies the standard TLM scheduling routine.

The standard TLM scheduling routine has only two main synchronization points, i.e., the rising
edge and the falling edge of the clock (note that the delta cycles do not have any timing connotation,
as they are supposed to happen in zero time). Thus, the first two classes of mutants reproduce:

(1) Minimum delay mutant. The actual assignment to the signal is postponed by one delta cycle. In
the example of Fig. 9.b, the assignment to sig1 becomes effective right after the rising edge of
the clock (i.e., at the first delta cycle, see Figure 10.a), when function apply_mutant_sig1()
is invoked by the TLM scheduler. In this way, the delay sensor will receive the updated value
of sig1 after the rising edge of the clock, and thus identify the error.

(2) Maximum delay mutant. The assignment to sig1 is postponed just before the next edge of
the clock signal (see Figure 9.c). In the example of Fig. 9.c, the statement is delayed just before
the falling edge of the clock (see Figure 10.a). In this way, the delay sensor will receive the
updated value of sig1 with a long delay, and it will thus identify the error.

When the adopted delay sensor introduces a secondary clock, i.e., the high frequency clock,
the scheduler() function features more synchronization points (Figure 8.b). The high frequency
clock requires indeed the introduction of inner loops, that preserve cycle accuracy w.r.t. the high
frequency clock. Thus, each main clock period is divided into smaller time units, each corresponding
to one period of the high frequency clock. We thus achieve a finer time granularity. This extended
notion of time allows to have a finer timing accuracy, and to introduce a third class of mutants:

(3) Delta delay mutant. The actual assignment to the signal is postponed exactly by a number
of high frequency clock cycles. In the example of Fig. 9.d, the statement is delayed of three
HF_CLK clock cycles, thus introducing a delay between two and three periods of the high
frequency clock. This allows to create a finer correspondence between RTL delays and TLM
delays, and to have a (gross) estimate of the delay being simulated at TLM, measured in terms

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:16 S. Vinco et al.

scheduler(){

exec_synchronous_processes();

// invokes synch_proc_sig1 thus

// assigning sig1 = a000

while(any_event) {

exec_asynchronous_processes();

}

exec_synchronous_processes();

while(any_event) {

exec_asynchronous_processes();

}

}

(a)

scheduler(){

exec_synchronous_processes();

// invokes synch_proc_sig1_mutated

// thus assigning tmp = a000

while(any_event) {

if (first_delta_cycle){

apply_mutant_sig1();

// assigns sig1 = tmp

}

exec_asynchronous_processes();

}

exec_synchronous_processes();

while(any_event) {

exec_asynchronous_processes();

}

}

(b)

scheduler(){

exec_synchronous_processes();

// invokes synch_proc_sig1_mutated

// thus assigning tmp = a000

while(any_event) {

exec_asynchronous_processes();

}

apply_mutant_sig1();

// assigns sig1 = tmp

exec_synchronous_processes();

while(any_event) {

exec_asynchronous_processes();

}

}

(c)

scheduler(){

exec_synchronous_processes();

// invokes synch_proc_sig1_mutated

// thus assigning tmp = a000

while(any_event) {

exec_asynchronous_processes();

}

for(HFCLK=0;HFCLK<10;HFCLK){

update_HFCK();

while (any_event){

exec_asynchronous_processes();

if(HFCLK==THIRD_CYCLE)

apply_mutant_sig1();

// assigns sig1 = tmp

}

exec_synchronous_processes();

…

(d)

CLK

CLKCLK

process(clock, reset)

begin

if ((clock = '1') and (clock'event))

then

sig1 <= a000;

end if;

end process;

void synch_proc_sig1(){

if (clock == 1)

sig1 = a000;

}

void synch_proc_sig1_mutated(){

if (clock == 1)

tmp = a000;

}

void apply_mutant_sig1(){

sig1 = tmp;

}

(e)

(f)

(g)

(h)

Fig. 9. The proposed mutants for the TLM model: high-level representation of the TLM scheduling without
mutants (a), a minimum delay mutant example (b), a maximum delay example (c), and an example of delta
delay mutant (d). The snapshots of code apply delays to the assignment sig1 = a000, for which the figure
shows the original VHDL code (e), the corresponding C function (f), and the effect of mutant injection (g-h).

of HF_CLK cycles (as depicted in Figure 10.b), as opposed to maximum and minimum delays,
that give no indication (Figure 10.a).

6.1 Verification of digital IPs augmented with Razor sensors
The working time window of the Razor sensor spans from the rising edge of the clock to the falling
edge of the clock.
To detect delays in this time window, both the Minimum and Maximum delay mutants are

adopted. The minimum delay allows to detect signals with the minimum possible delay, i.e., delayed
of one delta cycle. The maximum delay mutant allows to model signals with a delay of half of CLK
cycle, as explained in Section 4.1.1. This covers the two extremes of the time window, as shown in
Figure 10. Thus, mutants allow to reproduce delays in the range that must be covered by the Razor
sensor, and thus to validate the effectiveness of the Razor sensor at detecting and correcting delays.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

A Cross-Level Verification Methodology for Digital IPs Augmented with Embedded Timing
Monitors 1:17

MAIN_CLK

OBS_WIN

HF_CLK

TLM transaction

D
e

la
y
 1

 H
F

_
C

LK

D
e

la
y
 2

 H
F

_
C

LK

D
e

la
y

 3
 H

F
_

C
LK

D
e

la
y
 4

 H
F

_
C

LK

D
e

la
y

 5
 H

F
_

C
LK

MAIN_CLK

TLM transaction

MUTANT

ACTIVITY

M
in

im
u

m
 d

e
la

y

M
a

x
im

u
m

 d
e

la
y

SENSOR

ACTIVITY

(a) (b)

MUTANT

ACTIVITY

SENSOR

ACTIVITY

Fig. 10. Application of mutant injection for the Razor sensor (a) and the Counter-based sensor (b)

6.2 Verification of digital IPs augmented with Counter-based sensors
The main difference between the Razor sensor and the Counter-based sensor is that the latter
provides an estimation of the delay of signal propagation. This reduces the effectiveness of the
Minimum and Maximum delay mutants, that introduce delays of one delta cycle or of half of a
clock cycle. Here comes the need for the third type of mutant, the Delta mutant.
The Delta delay mutant is applied to insert a given number of high frequency clock cycles

(HF_CLK) of delay on a target signal, as shown in Figure 10. The Delta delay mutant allows the
detection feature of the Counter-based sensor to be verified at TLM for the whole observability
window (OBS_WIN), by preserving the characteristics of maximum resolution (HF_CLK period),
maximum error (half of HF_CLK cycle) and dynamic range provided by the RTL simulation, as
explained in Section 4.1.2.

7 MUTATION ANALYSIS OF THE AUGMENTED DIGITAL IPS WITH THE PROPOSED
MUTANTS

The last step of the proposed flow is the simulation of the TLM IP injected with mutants, with the
goal of verifying the behavior of the inserted delay monitors.
To achieve this result, the TLM IP injected with delay mutants is simulated in parallel with a

non-injected TLM IP, with the same input stimuli. Inputs are typically provided by the testbench
shipped with the IP, written at design time to stress and check all the features of the RTL IP and
to dynamically verify its correctness [6]. At this point of the design flow, the testbench must
achieve good code coverage i.e., it should execute all (or most of) paths, to ensure sound functional
verification [7], and it is thus reasonable to assume that the testbench stimulates the identified
critical paths. To allow mutant detection, the testbench must lead to a change of the value given in
input to the delay sensor (i.e., from 0 to 1 or vice versa), so that the delayed assignment becomes
visible. If a testbench is not available, or in case the testbench is not complete, stimuli can be
generated by applying any stimuli generation technique available at the state of the art [25, 34].
Note that discussing this point is out of the scope of this paper.

In order to verify the behavior of all inserted sensors, simulation is run once for each sensor, by
activating the corresponding delay mutant. This introduces the desired delay on the critical path
of the sensor under evaluation. Throughout the simulation, outputs are analyzed by comparing
the results of the two TLM IPs: if the outputs differ, then the mutant has been killed and the delay

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:18 S. Vinco et al.

produced effects on the functionality of the IP. Once that this condition is met, it is possible to
verify the behavior of the inserted sensor by observing its outputs.

In case of a digital IP augmented with the Razor sensor, one must observe the output port E of
the Razor, as it is used to notify that the FF and the shadow latch contain different values. Thus, the
E port is observed in combination with all the output ports of the IP:

• If E = 1, the Razor sensor detected the injected delay, and the correction feature of the Razor
(i.e., correction of output values with some clock cycles of delay) can be observed on the
output ports of the IP.

• If E = 0 (and the mutant is switched on), either the mutant has not been activated because
the testbench has failed to generate a proper input sequence to stress the mutant (i.e., either
it did not reach the assignment statement or the assignment did not change the value of the
signal), or the mutant models a delay outside the range of detection of the sensor. In the
former case, the IP outputs of the injected version match with those of the non injected one.
In the latter case, the IP outputs of the injected vs. non inject versions do not match, and the
sensor failed at verifying the delay on the critical path.

In case of a digital IP augmented with a Counter-basedmonitor, one must observe theMEAS_VAL
port of the Counter-based sensor, as it contains the estimated delay:

• IfMEAS_VAL , 0, the corresponding mutant has been activated and detected;
• If MEAS_VAL = 0 (and the mutant is switched on), the testbench has failed to generate a
proper input sequence to stress the mutant.

8 EXPERIMENTAL RESULTS
This Section proves the effectiveness of the proposed design paradigm and verification methodology
on three complex case studies. All experiments have been run on a 64-bit server with 8 3.40 GHz
cores and 16GB of RAM, and running Kubuntu 14.04 Linux OS. Simulation times are calculated as
an average over a number of executions.

8.1 Case studies
The proposed cross-level verification methodology has been applied to three case studies:
• an open-source implementation of the MIPS R3000A microprocessor, supporting the MIPS I
Instruction Set Architecture [40];

• the digital sub-system of a custom DSP for heart rate detection, that applies digital filters and
integrators to blood flow imaging [29];

• a digital decimation filter contained in a MEMS smart microphone systems, developed with
Matlab HDL Coder.

Table 1 shows the main characteristics of the IPs. The table reports the number of lines of code
of the starting RTL (Column RTL (loc)), the number of primary input and output pins (Columns
PI (#) and PO (#)), the number of flip-flops (Column FF (#)) and the area in terms of equivalent
NAND2 gates (Column Gates (#)) of each IP. Moveover, column Monitored paths (#) shows the
number of identified critical paths that require the insertion of delay sensors, while column Processes
reports the number of synchronous and asynchronous processes. Timing and area results refer to a
synthesis performed on 45nm CMOS technology from STM, and to the voltage-frequency points
reported in Columns VDD [V] and fclk [GHz].

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

A Cross-Level Verification Methodology for Digital IPs Augmented with Embedded Timing
Monitors 1:19

Table 1. Characteristics of the IPs used as case studies

Digital RTL PI PO VDD fclk FF Gates Processes
IP (loc) (#) (#) [V] [GHz] (#) (#) Synch. Asynch.

Plasma 1,893 36 132 1.05 0.2 1297 14286 7 94
DSP 1,274 22 22 1.05 2 536 8098 2 67
Filter 508 5 15 1.05 1 128 2255 11 34

8.2 Insertion of delay monitors
The analysis described in Section 4.2 has been applied by using Synopsys PrimeTime v2016.06 [47].
The number of identified critical paths for each design is reported in Table 2 (Column Critical paths
(#)). The endpoint of each critical path identifies the location where a delay sensor must be inserted.
Thus, the number of inserted sensors is the same as the number of critical paths (Column Sensors
(#)). By using the strategy in Section 4.2, we generated two versions of each IP, one using Razor
sensors and the other using Counter-based sensors. Column RTL (loc) shows that the number of
lines of code is now larger than the original implementation, and that the Counter-based versions
required more lines of code, due their more complex implementation and to the presence of the
secondary clock.
Table 2 also reports the time required by the Static Timing Analysis phase required to identify

sensors locations and of the following automated RTL modification (column STA time (s)). This
analysis and manipulation step required less than 10s for all designs. It is important to note that this
process is mandatory also when performing verification at RTL level, as it is necessary to identify
the paths to be monitored. Thus, it does not constitute an overhead to the verification flow.

Table 2. Characteristics of the insertion of delay monitors

Digital STA Critical Sensors RTL
IP time (s) paths (#) Type Inserted (#) (loc)

Plasma 9.45 29 Razor 29 2,308
Counter 29 2,844

DSP 8.51 34 Razor 34 3,025
Counter 34 14,959

Filter 8.22 24 Razor 24 1,008
Counter 24 6,178

8.3 RTL-to-TLM abstraction
Table 3 reports information on the abstracted SystemC TLM descriptions in terms of lines of code
and of simulation time. RTL-to-TLM abstraction (Column Abstracted TLM) increases the number of
lines of code, as the abstraction process introduces the TLM primitives and it requires to explicitly
model the scheduling routine, to decouple functionality from the HDL RTL scheduler. Nonetheless,
TLM code generation was almost instantaneous and faster than 1 minute for all versions of all IPs.
The generated code is on average 3.05 times faster than the original RTL implementation, which
was simulated using a state-of-the art industrial tool, i.e., Mentor Graphics QuestaSim, version 10.6.
It is possible to note that the speedup is on average larger for the Counter-based versions (3.2x),
given the more complex implementation of the Counter-based monitor and its high frequency
clock, thus leaving more space to optimization.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:20 S. Vinco et al.

Table 3. Characteristics and simulation performance of the generated TLM code.

Digital Delay RTL Abstracted TLM
IP sensors Time (s) (loc) Time (s) Speedup w.r.t. RTL

Plasma Razor 146.69 9,314 56.42 2.60x
Counter 295.94 14,765 106.45 2.78x

DSP Razor 227.98 8,306 71.02 3.21x
Counter 1,547.27 56,384 520.97 2.97x

Filter Razor 301.65 4,617 101.23 2.98x
Counter 1,314.71 35,277 345.98 3.80x

The application of data type optimization (Column Optimized TLM) allowed to further improve
TLM simulation time, as reported in Table 4. The generated code is on average 1.34x faster, thanks
to the adoption of HDTLib rather than standard SystemC data types. The lighter implementation
of the data type library thus positively impacts on the performance with respect to the original
RTL implementation, reaching an average speedup of 4.03x.

Table 4. Characteristics and simulation performance of the generated optimized TLM code.

Digital Delay Optimized TLM
IP sensors Time (s) Speedup w.r.t. TLM Speedup w.r.t. RTL

Plasma Razor 33.99 1.66x 4.32x
Counter 62.99 1.69x 4.70x

DSP Razor 65.16 1.09x 3.50x
Counter 434.14 1.20x 3.56x

Filter Razor 77.87 1.30x 3.87x
Counter 311.69 1.11x 4.22x

8.4 Injection of delay mutants and mutation analysis
The mutants defined in Section 6 have been injected in the SystemC TLM models through ADAM,
the Automatic Delay Analysis and Mutation tool, implemented on top of the HIFSuite API [21]. The
tool takes in input the names of the RTL signals connected to the delay monitors and the kind of
mutant to inject, and it automatically applies the necessary code modifications.
The number of injected mutants is reported in Table 5 (Column Mutants (#)). The versions

containing Razor sensors are injected with minimum delay mutants and maximum delay mutants,
to test that both conditions are detected by the sensors. Vice versa, Counter based sensors introduce
also an intermediate granularity of time, thanks to the higher frequency clock. Thus, the versions
with Counter based mutants are injected also with delta delay mutants. Mutant injection increased
the number of lines of code for each code version, due to the insertion of mutants and to the
management processes (Column Injected TLM (loc)). This impacts simulation time, that is increased
by an average of 43%. However, it is important to note that the injected version is still 2.83x faster
than the original RTL implementation on average, thus allowing effective verification of the inserted
delay monitors.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

A Cross-Level Verification Methodology for Digital IPs Augmented with Embedded Timing
Monitors 1:21

Table 5. Characteristics and results of the application of mutation analysis.

Digital Delay Injected TLM Mutants Errors

IP sensors (loc) Time Speedup (#) killed corrected risen
(s) w.r.t. RTL (%) (%) (%)

Plasma Razor 13,292 45.00 3.26x 58 100.0 100.0 100.0
Counter 18,743 88.08 3.36x 87 100.0 n.a. 66.7

DSP Razor 39,297 98.27 2.32x 68 100.0 100.0 100.0
Counter 87,375 661.23 2.34x 102 100.0 n.a. 88.4

Filter Razor 17,833 105.11 2.87x 48 100.0 100.0 100.0
Counter 48,494 446.21 2.82x 72 100.0 n.a. 50.1

8.5 Mutation analysis
The mutation analysis presented in Section 7 has been finally applied to the obtained TLM models.
To generate the input stimuli, we relied on the RTL testbenches of the IPs, that have been applied
both to the abstracted TLM version and to the TLM injected with delay mutants. Applying mutation
analysis required to simulate the TLM versions once per inserted sensor: this further increases the
effectiveness of the fast TLM simulation, that is still on average 4.03x faster than RTL simulation.

Results of the application of mutation analysis are reported in Table 5 (ColumnMutation analysis).
Mutation analysis allowed us to kill all mutants, i.e., to detect all injected delays in both versions of
each IP. Additionally, the Razor versions notified and corrected all the injected delays (columns
Error risen (%) and Mutants corrected (%), respectively). To validate these results, we simulated the
same scenario at RTL, by injecting delays through explicitly delayed assignments (e.g., by using
after constructs). RTL simulation required much longer simulation times (Column RTL Time (s)
of Table 3), but the percentages of detected and corrected delays, and of risen errors are identical
(100% for all designs).

The Counter-based sensor notifies as errors only delays that meet a given threshold (see Section
4.1.2). In our experimental results, the threshold has been set, in a monitor look-up table, equal to 8
periods of the high frequency clock. Mutants modelling delays below such a threshold have been
detected, but they have not been notified as errors, as delays are considered tolerable by the system,
i.e., the system is robust enough to handle them. To validate the correctness of the identified errors,
we reproduced the same scenario at RTL. We indeed considered that TLM preserves cycle accuracy
with respect to the high frequency clock (Figure 8). This can be used to have a (gross) estimate
of the simulated delay, depending on when the assignment takes place with respect to the high
frequency clock. It was thus possible to model delays at RTL and TLM that fall within the same
period of the high frequency clock. Given that the Counter-based sensor measures delay in terms
of high frequency clock periods, such delays are de facto identical for the sensor. As a result, the
number of errors risen at RTL and at TLM was identical, thus validating the effectiveness of TLM
simulation w.r.t. RTL simulation of delay sensors.

9 CONCLUSIONS
This paper presented a methodology to verify at system-level (TLM) digital IPs augmented with
embedded timing monitors. With the abstraction to TLM, the delay on critical paths is detected since
the functionality of the implemented timing monitors is preserved. This allowed us to catch at TLM
the side-effects of many physical properties on the performance of digital IPs. The methodology
has been applied to three case studies, which have been augmented with two types of sensors, to
show that both precise monitoring and correction of errors are possible. The results show that

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:22 S. Vinco et al.

the proposed mutants effectively reproduce the effect of delays at TLM and that an accurate and
efficient verification of the delay sensors is possible at levels of abstractions higher than RTL, with
a substantial improvement of verification speed. Additionally, all features of the proposed sensors
have been preserved, from delay identification to delay correction, depending on the starting
monitor characteristics.

REFERENCES
[1] Accellera. 2006. IEEE Standard SystemC Language Reference Manual. http:///ieeexplore.ieee.org. (2006).
[2] M.A. Alam, H. Kufluoglu, D. Varghese, and S. Mahapatra. 2007. Carbon Model Studio. Microelectronics Reliability 47, 6

(2007), 853 – 862. http://carbondesignsystems.com/.
[3] M.A. Alam, H. Kufluoglu, D. Varghese, and S. Mahapatra. 2007. A comprehensive model for PMOS NBTI degradation:

Recent progress. Microelectronics Reliability 47, 6 (2007), 853 – 862.
[4] J. R. Armstrong, F. S. Lam, and P. C. Ward. 1992. Test Generation and Fault Simulation for Behavioral Models. Prentice

Hall.
[5] J.-C. Baraza, J. Gracia, S. Blanc, D. Gil, and P.-J. Gil. 2008. Enhancement of Fault Injection Techniques Based on the

Modification of VHDL Code. IEEE VLSI 16, 6 (2008), 693–706.
[6] J. Bergeron. 2003. Writing Testbenches: Functional Verification of HDL Models. Kluwer Academic Publishers, Norwell

Massachusetts.
[7] Janick Bergeron. 2003. Writing Testbenches: Functional Verification of HDL Models. Springer.
[8] N. Bombieri, D. Drogoudis, G. Gangemi, R. Gillon, E. Macii, M. Poncino, S. Rinaudo, F. Stefanni, D. Trachanis, and M.

van Helvoort. 2013. SMAC: Smart Systems Co-Design. In Proc. of Euromicro DSD. 1–7.
[9] N. Bombieri, F. Fummi, V. Guarnieri, and G. Pravadelli. 2013. Testbench Qualification of SystemC TLM Protocols

through Mutation Analysis. IEEE TCOMP PP, 99 (2013), 1–14.
[10] N. Bombieri, F. Fummi, V. Guarnieri, F. Stefanni, and S. Vinco. 2011. Efficient implementation and abstraction of

systemc data types for fast simulation. In Proc. of IEEE/ECSI FDL. 1–7.
[11] N. Bombieri, F. Fummi, V. Guarnieri, F. Stefanni, and S. Vinco. 2012. HDTLib: an efficient implementation of SystemC

data types for fast simulation at different abstraction levels. Design Automation for Embedded Systems 16, 2 (2012),
115–135.

[12] N. Bombieri, F. Fummi, and G. Pravadelli. 2011. Automatic Abstraction of RTL IPs into Equivalent TLM Descriptions.
IEEE Trans. Comput. 60, 12 (2011), 1730–1743.

[13] N. Bombieri, F. Fummi, and S. Vinco. 2015. A Methodology to Recover RTL IP Functionality for Automatic Generation
of SW Applications. ACM TODAES 20, 3, Article 36 (2015), 26 pages.

[14] S. Borkar. 2005. Designing reliable systems from unreliable components: the challenges of transistor variability and
degradation. IEEE MICRO 25, 6 (2005), 10–16.

[15] K.A. Bowman, J.W. Tschanz, Nam Sung Kim, J.C. Lee, C.B. Wilkerson, S.L. Lu, T. Karnik, and V.K. De. 2009. Energy-
Efficient and Metastability-Immune Resilient Circuits for Dynamic Variation Tolerance. IEEE JSSC 44, 1 (2009),
49–63.

[16] S. Das, D. Roberts, Seokwoo Lee, S. Pant, D Blaauw, T. Austin, K. Flautner, and T. Mudge. 2006. A self-tuning DVS
processor using delay-error detection and correction. IEEE JSSC 41, 4 (2006), 792–804.

[17] S. Das, C. Tokunaga, S. Pant, Wei-Hsiang Ma, S. Kalaiselvan, K. Lai, D.M. Bull, and D.T. Blaauw. 2009. RazorII: In Situ
Error Detection and Correction for PVT and SER Tolerance. IEEE JSSC 44, 1 (2009), 32–48.

[18] R. Datta, G. Carpenter, K. Nowka, and J.A. Abraham. 2006. A scheme for on-chip timing characterization. In Proc. of
24th IEEE VLSI Test Symp. 24–29.

[19] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. 1978. Hints on Test Data Selection: Help for the Practicing Programmer.
IEEE Computer 11, 4 (April 1978), 34–41.

[20] W. Ecker, V. Esen, L. Schonberg, T. Steininger, M. Velten, and M. Hull. 2007. Impact of description language, abstraction
layer, and value representation on simulation performance. In Proc. of ACM/IEEE DATE. 1–6.

[21] EDALab s.r.l. [n. d.]. HIFSuite. http://http://www.hifsuite.com/. ([n. d.]).
[22] F. Fummi, M. Lora, F. Stefanni, and Vinco S. 2015. Code Generation Alternatives to Reduce Heterogeneous Embedded

Systems to Homogeneity. Vol. 311. Springer, 103–124.
[23] F. Fummi, M. Lora, F. Stefanni, D. Trachanis, J. Vanhese, and S. Vinco. 2014. Moving from co-simulation to simulation

for effective smart systems design. In IEEE DATE. 1–4.
[24] S. Ghosh, S. Bhunia, A. Raychowdhury, and K. Roy. 2006. A Novel Delay Fault Testing Methodology Using Low-

Overhead Built-In Delay Sensor. IEEE CAD 25, 12 (2006), 2934–2943.
[25] V. Guarnieri, N. Bombieri, G. Pravadelli, F. Fummi, H. Hantson, J. Raik, M. Jenihhin, and R. Ubar. 2011. Mutation

analysis for SystemC designs at TLM. In Proc. of IEEE LATW. 1–6.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

A Cross-Level Verification Methodology for Digital IPs Augmented with Embedded Timing
Monitors 1:23

[26] V. Guarnieri, M. Petricca, A. Sassone, S. Vinco, N. Bombieri, F. Fummi, E. Macii, and M. Poncino. 2014. A cross-level
verification methodology for digital IPs augmented with embedded timing monitors. In Proc. of ACM/IEEE DATE. 1–6.

[27] R. Guderlei, R. Just, and C. Schneckenburger. 2008. Benchmarking Testing Strategies with Tools from Mutation
Analysis. In IEEE ICSTW. 360–364.

[28] N. Hatami, R. Baranowski, P. Prinetto, and H. Wunderlich. 2012. Efficient system-level aging prediction. In Proc. of
IEEE ETS. 1–6.

[29] D. He, H. C. Nguyen, B. R. Hayes-Gill, Y. Zhu, J. A. Crowe, G. F. Clough, C. A. Gill, and S. P. Morgan. 2012. 64ÃŮ64
pixel smart sensor array for laser Doppler blood flow imaging. 37 (2012), 3060–3062. Issue 15.

[30] Z. He, T. Lv, H. Li, and X. Li. 2013. Test Path Selection for Capturing Delay Failures Under Statistical Timing Model.
IEEE TVLSI 21, 7 (2013), 1210–1219.

[31] D. Hyunsook and G. Rothermel. 2006. On the Use ofMutation Faults in Empirical Assessments of Test Case Prioritization
Techniques. IEEE SE 32, 9 (2006), 733–752.

[32] H.M. Le, D. Grosse, and R. Drechsler. 2012. Automatic TLM Fault Localization for SystemC. IEEE TCAD 31, 8 (2012),
1249–1262.

[33] R. Leveugle, D. Cimonnet, and A. Ammari. 2004. System-level dependability analysis with RT-level fault injection
accuracy. In Proc. of IEEE DFT. 451–458.

[34] P. Lisherness and K. Cheng. 2012. Improving validation coverage metrics to account for limited observability. In Proc.
of IEEE ASPDAC. 292–297.

[35] Peter Lisherness and Kwang-Ting Cheng. 2010. SCEMIT: A SystemC error and mutation injection tool. In Proc. of
ACM/IEEE DAC. 228 –233.

[36] A.J. Offutt and R.H. Untch. 2001. Mutation Testing for the New Century. Kluwer Academic Publishers, Chapter
Mutation 2000: Uniting the Orthogonal, 34–44.

[37] P.G. Paulin, C. Pilkington, and E. Bensoudane. 2002. StepNP: a system-level exploration platform for network processors.
IEEE DTC 19, 6 (2002), 17–26.

[38] Songwei Pei, Huawei Li, and Xiaowei Li. 2012. A High-Precision On-Chip Path Delay Measurement Architecture. IEEE
VLSI 20, 9 (2012), 1565–1577.

[39] G. Pravadelli, D. Quaglia, S. Vinco, and F. Fummi. 2017. Handbook of Hardware/Software Codesign. Springer
Science+Business Media Dordrecht, Chapter Semiformal Assertion-Based Verification of Hardware/Software Systems
in a Model-Driven Design Framework, 683–720.

[40] S. Rhoads. 2001. Plasma CPU Core. (2001). opencores.org.
[41] M. Rimen, J. Ohlsson, E. Jenn, J. Arlat, and J. Karlsson. 1994. Fault Injection into VHDL Models: The MEFISTO Tool. In

Proc. of IEEE FTCS. 66–75.
[42] T. Sato and Y. Kunitake. 2007. A Simple Flip-Flop Circuit for Typical-Case Designs for DFM. In Proc. of IEEE ISQED.

539–544.
[43] L. Scheffer, L. Lavagno, and G. Martin. 2010. EDA for IC System Design, Verification, and Testing. Taylor & Francis.
[44] Alper Sen and Magdy S. Abadir. 2010. Coverage metrics for verification of concurrent SystemC designs using mutation

testing. In Proc. of IEEE HLDVT. 75–81.
[45] K. Shim, W. Kim, K.-H. Cho, and B. Min. 2012. System-level simulation acceleration for architectural performance

analysis using hybrid virtual platform system. In Proc. of IEEE ISOCC. 402–404.
[46] Ahish Mysore Somashekar, Spyros Tragoudas, Rathish Jayabharathi, and Sreenivas Gangadhar. 2016. Non-enumerative

Generation of Path Delay Distributions and Its Application to Critical Path Selection. ACM Trans. Des. Autom. Electron.
Syst. 22, 1 (2016), 17:1–17:21.

[47] Synopsys. [n. d.]. PrimeTime Static Timing Analysis. https://www.synopsys.com/implementation-and-
signoff/signoff/primetime.html. ([n. d.]).

[48] Ming-Chien Tsai, Ching-Hwa Cheng, and Chiou-Mao Yang. 2008. An All-Digital High-Precision Built-In Delay Time
Measurement Circuit. In Proc. of IEEE VTS. 249–254.

[49] O.S. Unsal, J.W. Tschanz, K. Bowman, V. De, X. Vera, A. Gonzalez, and O. Ergin. 2006. Impact of Parameter Variations
on Circuits and Microarchitecture. IEEE MICRO 26, 6 (2006), 30–39.

[50] S. Vinco, Y. Chen, F. Fummi, E. Macii, and M. Poncino. 2017. A Layered Methodology for the Simulation of Extra-
Functional Properties in Smart Systems. IEEE TCAD 36, 10 (2017), 1702–1715.

[51] S. Vinco, V. Guarnieri, and F. Fummi. 2016. Code Manipulation for Virtual Platform Integration. IEEE TCOMP 65, 9
(2016), 2694–2708.

[52] Xiaoxiao Wang, M Tehranipoor, S. George, D. Tran, and L. Winemberg. 2012. Design and Analysis of a Delay Sensor
Applicable to Process/Environmental Variations and Aging Measurements. IEEE VLSI 20, 8 (2012), 1405–1418.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

	Abstract
	1 Introduction
	2 Background
	2.1 Detection and correction paradigm
	2.2 On-chip delay monitoring
	2.3 Mutation analysis
	2.4 SystemC TLM

	3 Proposed flow
	4 Insertion of Delay Monitors
	4.1 Delay sensors
	4.2 Delay sensors insertion strategy

	5 RTL to TLM abstraction of the augmented digital IP
	5.1 Abstraction process
	5.2 Sensor-aware abstraction
	5.3 Speeding up TLM simulation: data type abstraction

	6 Modeling and injection of delay mutants
	6.1 Verification of digital IPs augmented with Razor sensors
	6.2 Verification of digital IPs augmented with Counter-based sensors

	7 Mutation analysis of the augmented digital IPs with the proposed mutants
	8 Experimental Results
	8.1 Case studies
	8.2 Insertion of delay monitors
	8.3 RTL-to-TLM abstraction
	8.4 Injection of delay mutants and mutation analysis
	8.5 Mutation analysis

	9 Conclusions
	References

