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Abstract: Confounding factors like urbanization and land-use change could introduce uncertainty to
the estimation of global temperature trends related to climate change. In this work, we introduce a
new way to investigate the nexus between temporal trends of temperature and urbanization data
at the global scale in the period from 1992 to 2013. We analyze air temperature data recorded from
more than 5000 weather stations worldwide and nightlight satellite measurements as a proxy for
urbanization. By means of a range of statistical methods, our results quantify and outline that
the temporal evolution of urbanization affects temperature trends at multiple spatial scales with
significant differences at regional and continental scales. A statistically significant agreement in
temperature and nightlight trends is detected, especially in low and middle-income regions, where
urbanization is rapidly growing. Conversely, in continents such as Europe and North America,
increases in temperature trends are typically detected along with non-significant nightlight trends.

Keywords: urban heat island effect; nightlights; urbanization; temperature; statistical inference;
climate change; global warming; land-use change

1. Introduction

The urban transition leads to alterations in landscape conditions and to important modifications
in the urban climate, along with several environmental problems e.g., on water use and quality, on the
generation of air pollution, and on the production of solid waste and sewage [1,2]. Because of rapid
urbanization growth, even more considerable impacts are expected on a broader scale and especially in
developing countries, like higher consumption of energy, goods, services, and resources demand, which
have the potential for greater negative impacts on global environments and ecosystems [3–7]. Changes
in food supplies, freshwater resources, and increase in extreme weather events (e.g., heatwaves and
droughts) are expected to lead to several consequences on human health in terms of e.g., heat stress,
cardio-respiratory, and infectious diseases [2,8]. In this regard, we must also consider that 55% of the
world population is residing in urban areas in 2018, which is projected to reach 68% by 2050 [9]. In the
context of global climate change, it is crucial to better investigate how urban growth affects temperature
record trends to consistently attribute the causes of observed warming at wider scales [10–16].

The impact of urbanization on near surface temperatures has been investigated since the 1980s [17,18].
These studies suggested that a proportion of global warming observed on the last century timescale
could be related to local warming induced by urbanization. Rapid urban growth has resulted in the
expansion of built-up areas in and around cities, particularly for nations and regions experiencing
demographic expansion. This plays a crucial role in the near-surface warming and on temperature
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measurements [13,19–21]. This process is known to affect the planetary boundary layer, to drive local
climate changes, and to lead to the relative increase in temperature within the urban area [13,19,20]
contributing to the so-called Urban Heat Island (UHI) effect within cities. The UHI effect identifies
a sort of microclimate within cities, which leads to a difference of temperature between urban
and surrounding non-urban areas, characterized by higher and lower temperatures, respectively,
particularly during the night time [13,22]. UHI effects could be mainly ascribed to solar heat retention
by building materials (having low albedo and high heat capacity), obstruction of longwave emission by
the built environment, changes in land cover and urban geometries (e.g., reduced vegetation in urban
areas) causing a generalized reduced evapotranspiration, and anthropogenic heat emissions (e.g., air
conditioning, cars, and industrial facilities) [23–25]. Additionally, weather and local topographical
characteristics contribute to the UHI effect as well [13,26]. As an example, studies suggest that land-sea
interactions induce horizontal thermal advection while mountain landscapes are dominated by vertical
advection [16,27].

The UHI measurement can be defined for different layers of the urban atmosphere and even
surfaces. Since their underlying mechanisms and related measurements are different, it is, thus,
important to distinguish between different urban heat islands [18]. Surface UHI refers to the land
surface temperature specifically [5] while the atmospheric UHI considers the land air temperature as
measured by land-based weather stations [15]. Because land air temperature is commonly used in
climate warming analyses, in this paper, we consider atmospheric UHI only.

Previous works highlight how UHI affects the planetary boundary layer and how
urban-atmospheric interactions control urban-induced impacts not only at the local scale (i.e.,
individual cities), but also over regional scales [26,28]. For instance, Georgescu et al. [28] calculated that
urban expansion, separate from greenhouse gas-induced climate change, is projected to increase the
near-surface temperature up to 2 ◦C at both a local and regional scale. More recent work has advanced
this calculation by looking at the dynamic interaction and relative impact of urban to climate change
effects on the near surface temperature through the 24-hour day/night period [29]. Urban extents and
shaping impose different dynamics on urbanization-induced warming depending on spatial regional
and geographic patterns [27,30]. Based on recent findings [20], the urban area size alone explains nearly
87% of UHI variance, with significant spatial and temporal variation over large areas. At the local
level, the contribution of UHI to global warming during the summer is locally important, therefore
originating immediate critical situations for human health and well-being [31,32]. At the regional level,
urban warming is found to exhibit more relevant effects after some years of urban expansion [27].
Land cover spatial patterns are known to control UHI variation with higher values across regions with
homogeneous land cover [20]. Recent regional-scale findings in the US show a marked heterogeneity
in subnational temperature trends between large cities in Northeastern and Southern regions of the
country. Higher UHI rates are typical of colder or high latitude regions, characterized by large urban
areas surrounded by forested biomes. In contrast, southern urban ecosystems and urban areas built
in desert-like environments are characterized by lower UHI rates [20,33,34]. The effects of urban
expansion on the local climate were also investigated in Asia [35]. For instance, in China, notable
regional effects are found during the earlier stage of the urban polycentric sprawl, whereas more drying
effects and built-environment warming are locally reinforced in concentrated urbanized areas [27].
In Europe, a recent study on the largest 5000 urban agglomerations reveals that the urban size is the
main determinant of UHI and local warming, which is followed by city compactness (i.e., single-centric
or poly-centric cities) [36].

How urbanization could influence the assessment of global warming trends has not been
thoroughly inspected so far [13,37]. Since the urban population is expected to increase in the future [2],
the effect of urbanization trends on local and global warming is a key issue from the climate change
perspective. In this regard, it is crucial to quantitatively assess the amplification of global temperature
trends by urbanization i.e., to estimate to what extent large urbanized areas may be amplifying
warming attributed to climate change on a global scale [34].
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Recently, several studies were conducted in order to account and compensate for the effect of urban
warming when estimating large scale temperature trends [11,14,15]. Global warming trend analyses
are conducted, for example, using adjusted urban temperature data, by comparing observations to
the sea surface temperature [11], comparing temperature values in different weather conditions [38],
or removing sites with suspected urban warming from global [11] and regional warming analyses [39].
However, very often, the poor spatial coverage of the weather stations network does not guarantee the
possibility to compare urban stations with the corresponding rural ones [40]. Most weather station
networks are located in heavily anthropized sites [13,15]. Rapid urbanization makes the classification
between urban and rural areas difficult in some cases [34].

New techniques and approaches could be helpful in detecting relationships and feedbacks
between air temperature and land-use changes. These efforts result in independent and relatively
accurate estimates of urban shape and extent. Remote-sensing products, which are primarily
MODIS-500 maps [41–44], Landsat data [45], satellite night time images [3,46], and Synthetic Aperture
Radar (SAR) data [47], are widely used to map global urban extent and to identify and geo-localize
rural and urban stations [15,39]. In recent studies [46], day–night composites combine nightlights
and Landsat to show consistencies in land cover and nightlights brightness. Other relevant works
spatially assess the UHI signature on land surface temperature amplitude and its mutual relations with
development size, intensity, and in different biomes, for over 3000 cities worldwide combining MODIS
and night-time lights products i.e., a nightlight based impervious surface area (ISA) [48]. Nightlight
ISA and Landsat ISA for cities in the continental US are first compared to bridge from previous studies.
Results highlight significant positive relationships between UHI magnitude, ecological setting and
ISA, and that nightlights are good estimators of urban sprawl and are more objective than methods
based on population density. Zhou et al. [3] develop a method to map urban extent from nightlights
on a global scale and compare it at the pixel level and regionally with five other widely used global
urban products, including MODIS [43], GlobCover [49], and GLC2000 [50]. Results show that the
nightlight map produced by the author is in high agreement with the other global urban area map
products. Bagan and Yamagata [51] also show that the combined use of land cover data and nightlights
are both good predictors of population density in Japan. On a local scale, recent studies [52] assess
the properties of the temperature station network and the potential urban influence on temperature
records by means of land cover, population density, and nightlights at an increasing buffer around the
weather station. The three methods are found to be highly correlated, which indicates that nightlights
and population density are good proxies of urban areas.

Thus, based on comparison with other existing global urban maps, night-time satellite images
are demonstrated to be a good proxy of urban extent and allows for temporal dynamics analyses of
urban areas [3,52]. It is shown that satellite nightlights maps (also abbreviated as “nightlights” from
now on) allow tracking the spatiotemporal dynamics of the population much better than traditional
census and administrative data [53,54]. The fine spatial resolution of nightlights (nearly 1 km at the
equator) makes them a valuable proxy for the human presence, which is widely used in many research
fields [55]. In the late 1990s, the scientific community started considering nightlights as a proxy for e.g.,
population density [56]. Many studies followed, focusing mainly on economic activity [31], electric
power consumption patterns [32], or the level of poverty estimates [57]. Nightlight imagery are now
largely employed to map and measure urban extents [3,56,58] and address environmental topics,
e.g., light pollution in Europe [59]. Recently, nightlights data are being employed to relate flood risk
to increasing human pressure near rivers on a global scale [60]. The same approach is adopted to
study local human exposure to hydrogeological risk, e.g., mapping population exposure to natural
hazards [61] and assessing the interaction between water resources and dynamic human systems [62].

In this study, we introduce a new approach to quantify the relationship between urbanization
dynamics and thermal impact, by relating the temperature variations in recent years to the
corresponding variations in nightlight data. We investigate the presence of possible bias in temperature
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records induced by land-use change—specifically the growth of urban areas—by means of night time
satellite images as a proxy for urbanization.

The work is organized as follows. Nightlights and air temperature data are first repurposed and
prepared for the analysis. Then, we assess the relationship between air temperature and nightlight
evolution in the last 25 years, by means of trend estimation. We, thus, propose a series of ad hoc
statistical techniques in order to shed light on the possible agreement between temperature and
nightlight variations in time. Lastly, we discuss our findings and draw some conclusions.

2. Data

2.1. Satellite Nightlights Time Series

Annual time series of nightlights are freely provided from the NOAA National Geophysical Data
Center (NGDC) as satellite images, collected under the Defense Meteorological Satellite Program
(DMSP), Operational Linescan System (OLS) [63]. OLS consists of two sensors operating, respectively,
in the near-infrared (0.4 to 1.1 µm) and in the thermal infrared (10.5 to 12.6 µm) spectrums. Satellite
images are collected on a yearly basis for a 22-year period from 1992 to 2013. Six satellites are used,
with a total of 34 composite images, which generate a product called stable light [62]. Original satellite
images are not onboard calibrated. Thus, before running any additional analysis, we inter-calibrate
them, according to standard procedures [31,57]. In case of years presenting overlapping datasets, the
averaged night time brightness value, extensively used in recent papers [60], is employed. Each pixel
in the final product represents the stable light yearly average in a 6-bit format and it is expressed as a
Digital Number i.e., a dimensionless numerical integer, which represents the brightness on the Earth’s
surface in each cell. Sensors could identify cloud-free night time lights from e.g., human settlements,
fires, and gas flares. In this analysis, signals pertaining to fires and gas flares are removed, since they
are not of interest in studying urbanization and human settlement dynamics. Digital Number values
are proportional to radiance and range from 0 (pitch dark areas) to 63 (bright areas). When dealing with
satellite imagery, possible discrepancies could be related to, for instance, light saturation and blooming
effects, which potentially affects nightlight data. Light saturation and blooming occur primarily in
highly built-up areas and developing countries, which are characterized by bright pixels surrounded
by broad pitch-dark zones [31]. Saturation and blooming effects may lead to an overestimation of
the extent of urban areas [64]. In recent years, machine-learning approaches are being used to map
urban areas over broad scales, which account for a blooming effect and identify the boundaries of
highly bright settlements [65]. Our analysis is based on calibrated images and adjusted nightlights
values, which are not saturated at the highest intensities, in order to reduce saturation and blooming
bias [60,62]. Moreover, since our analysis focuses on trends in nightlights (i.e., on the slope of the
complete time series) rather than the actual level of urbanization (i.e., nightlights absolute values) [66],
the potential blooming effect equally affects all years along the time series within the study period,
with no significant impact on the overall trend.

Images are provided as raster products with a spatial resolution of 30 arc seconds (0.00833◦),
i.e., nearly 1 km resolution at the equator, with a spatial extension between 75◦ N, 65◦ S latitude, 180◦

W, and 180◦ E longitude.

2.2. Air Temperature Datasets

For the purpose of our analysis, nightlights imagery and temperature records should have the
same spatiotemporal coverage and resolution. More specifically, (i) the coordinates of air temperature
stations should have a spatial resolution of 30 arcsec, (ii) temperature data should be available from 1992
to 2013, and (iii) a global spatial coverage of temperature stations should be guaranteed, including in
developing countries. Two temperature datasets are considered in our analysis, which are the Berkeley
Earth [67] and the World Meteorological Organization (WMO) [68,69] dataset. More specifically, the
Berkeley Earth dataset is used to analyze the temporal trends of temperature records since it is the best
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compromise between reasonable spatial coverage and temporal availability. The WMO dataset is used
as a support to perform a quality control of the geographical position of weather stations.

The Berkeley Earth dataset combines data and metadata from 16 previous existing datasets [67].
The currently-available free dataset, after removing duplicate records, consists of 39000 stations. The
dataset consists of three categories of data, as reported in Berkeley Earth [67]: (i) “Source Data”,
which include raw temperature data as reported from the original agencies, (ii) intermediate data,
where all combined data from the original sources are filtered, merged together, quality-checked, and
flagged, which result in the “Quality Controlled” dataset, (iii) output data i.e., the Breakpoint Adjusted
Monthly Station data, which are post-processed to correct any discontinuity or heterogeneity and local
systematic effects (e.g., UHI effect). The complete description of the data quality check processes can
be found in Reference [67].

To avoid bias correction that may have been applied to compensate for UHI, we focus on the
intermediate “Quality Controlled” product (that will be termed as “Quality Controlled” from now on),
which has not been adjusted to resolve temporal discontinuities and long-term in homogeneities.

3. Data preparation

Data preprocessing entails the following steps:

1. geo-localization of air temperature stations,
2. pairing of temperature and nightlights data,
3. gap-filling procedure for incomplete time series of temperature records.

3.1. Geo-Localization of Air Temperature Stations

The spatial resolution of temperature data included in the Berkeley Earth dataset is quite
heterogeneous, with some stations localized with a 30 arcsec resolution, and others with a lower
resolution. This occurs because this dataset includes station data gathered from different sources.
To minimize uncertainties, metadata from the Berkeley Earth dataset are compared to official data
provided by the WMO weather reports when available [68,69]. WMO weather reports include a full
list of all surface and upper-air stations in use at a 30-arcsec resolution (0.00833◦) and, thus, provides a
precise geo-localization of temperature stations. An iterative statistical-based procedure is performed
in order to compare station coordinates in both Berkeley Earth and WMO datasets when available.
When inconsistencies in the Berkeley Earth dataset are found, the related coordinates are corrected
by using WMO data. Different scenarios could occur. These are described below and we refer to the
flowchart in Figure 1 for further details.

1. If the weather station from the Berkeley Earth dataset is not available in the WMO list and its
spatial resolution is coarser than 30 arcsec, the station is removed.

2. If the weather station from the Berkeley Earth dataset is not available in the WMO list and its
spatial resolution is equal or more detailed than the 30 arcsec, the station is included in the
final sample.

3. If the weather station from the Berkeley Earth dataset is included in the WMO list and the spatial
resolution provided by the Berkeley Earth dataset is coarser than 30 arcsec, station coordinates
are corrected by using those provided by WMO and the station is included in the final sample.

4. If the weather station from the Berkeley Earth dataset is included in the WMO list and the spatial
resolution provided by the Berkeley Earth dataset is equal or more detailed than 30 arcsec, station
coordinates from the two datasets are compared. In case of significant differences (i.e., the station
is located in two different grid cells, see Figure 2 as an example), the original sources are consulted
to precisely locate the station. Station metadata are, thus, corrected and the station is included in
the final sample.
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Table S1 in the Supplementary Materials reports the final sample of air temperature stations used
in this work, which fulfill the geo-localization procedure (i.e., matching between Berkeley Earth and
WMO metadata) [68,69].

3.2. Pairing of Temperature and Nightlights Data

Once the position of the stations has been checked and corrected if necessary, we define a regular
square buffer around the pixel where the station is located, which ranges from 3 to 7 pixels (i.e., from 3
to 7 km at the equator approximately). We compute the average annual Digital Number value (L for
lights, from now on) for the year i and the station s (Lis) using the equation below.

Lis =
1

kTOT

kTOT

∑
k=1

Lik (1)

where Lik is the value in the kth pixel for the year i and ktot is the total number of pixels in the buffer
around station s. For example, ktot = 9 in a 3 × 3 km buffer around the station and up to ktot = 49 in a
7 × 7 km buffer. In this regard, L(3)

is indicates that the average is made in 3×3 km buffer, whereas L(7)
is

refers to a 7 × 7 km buffer. Buffers smaller than 3 km (i.e., 1 × 1 km and 2 × 2 km) are not considered
in order to avoid the spatial noise due to a possible inaccurate geo-localization of air temperature
stations. Selected buffers allow one to attenuate this spatial noise (i.e., the local noisy effect is reduced
by considering neighboring pixels). The choice of analyzing more than one buffer is due to effects of
urban warming that could be detected several kilometers away from the instrument site, even if the
major impact is evident in the first kilometer [70].

3.3. Gap-Filling Procedure for Incomplete Time Series of Temperature Records

After having matched temperature and nightlights data, we turn to fill possible gaps in the annual
time series of temperature records. The Berkeley Earth dataset provides monthly average data Tij,
where i is the year (from 1992 to 2013) and j is the month (from 1 to 12). Yearly data are derived
by averaging available monthly data. Since some stations show gaps in monthly data, we apply a
statistical procedure to estimate the annual mean temperature in the presence of limited missing data
and then fill the gaps (see Text S1 in the Supplementary Materials).

In detail, for a given station s, we call Nmi(s) the number of monthly data available in year i,
i = 1992 . . . 2013 (0 ≤ Nmi(s) ≤ 12). We also call Nyj(s) the number of available records for month
j, j = 1 . . . 12 (0 ≤ Nyj(s) ≤ 22). The distribution of Nmi and Nyj values is reported in Figure 3.
By performing a sensitivity analysis (see a detailed description of the method and outcomes in S1 Text
in the Supplementary Materials), the acceptable number of missing values to perform the gap-filling
procedure is identified. The thresholds Nm* = 9 and Ny* = 18 are selected: if Nmi(s) < Nm* (for any
i) or Nyj(s) < Ny* (for any j) the air temperature station s is discarded from our analysis. Otherwise,
missing data are reconstructed as follows: suppose the temperature observation is missing in station s
for month j* in year i*. The reconstructed value is the average of the temperature values available for
the same month in other years using the equation below.

T̂i∗j∗(s) =
1

Nyj∗(s)

Nyj∗(s)

∑
k=1

Tkj∗(s) (2)

where Nyj*(s) is the number of available records for month j* and Tkj*(s) are available temperature data
for month j* in year k, k = 1, . . . ,Nyj*(s), respectively. Table S2 in the Supplementary Materials provides
an example of application of the performed gap-filling procedure.

Overall, 5530 air temperature stations are selected in this study, meeting both geo-localization
and gap-filling requirements (Figure 3c and Table S3 in the Supplementary Materials). The performed
data preparation procedure produces a loss of information, from the original 39,000 stations, which
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show different behaviors across continents. In the case of North America, the loss of information
does not significantly influence the analysis, in view of both the high station density and spatial
coverage. Conversely, the consistent number of gaps in the temperature datasets in Africa and South
America, along with the scarce network coverage, more significantly impacts the consistency of the
selected dataset.Atmosphere 2019, 10, x FOR PEER REVIEW 8 of 20 
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Figure 3. Geo-localization of air temperature stations from the Berkeley Earth dataset and gap-filling
procedure for temperature records (dataset: average monthly temperature, Quality Controlled).
(a) Consistency analysis of monthly and yearly availability of air temperature stations in the period
from 1992 to 2013. The figure shows the number of times when it is possible to derive the temperature
T using the available data records i.e., how many stations have the entire data series and, if they are
incomplete, how many months per year are available per each station. (b) Yearly availability of air
temperature stations with 12 months of records per year. (c) Locations of active (i.e., having at least
one year of data, empty dots) and selected (i.e., meeting geo-localization and gap-filling requirements)
between 1992 and 2013 (filled dots). Stations are color-coded based on the six considered regions:
Africa in green, Asia in red, Europe in yellow, North America in purple, South America in blue, and
Oceania in light blue.

4. Methods

In order to investigate the nexus between temperature variations and urbanization trends,
as derived from nightlights, a linear regression analysis estimating trends of temperature and
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nightlights versus time is first performed. A statistical analysis is then proposed to measure the
degree of agreement between trends in temperature and nightlights. Results are analyzed on both
global and regional (i.e., continental) scales. For the sake of clarity, examples of application are included
throughout the text.

4.1. Trend Analysis

Temperature T [◦C] and nightlights L [-] trends in the study period from 1992 to 2013 are analyzed
through a linear regression model.

For a given station, we fit T values versus time by using the equation below.

T(t) = aT + bT ·t (3)

where bT identifies the slope of the temperature regression line, aT is the intercept, and t is time. The
corresponding linear regression model to fit L values versus time is shown below.

L(t) = aL + bL·t (4)

where bL and aL indicate the slope and intercept of the nightlights regression line, respectively.
Regression coefficients are estimated via the ordinary least squares method. The slope of the

regression line represents the percentage of variation of the temperature (Figure 4a) or the nightlights
(Figure 4b) per year.
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Figure 4. Linear regression trend lines of air temperature T (◦C) and nightlights L (-) records. Example
for the air temperature station of Torino Caselle, IT (Berkeley Earth ID: 155990). (a) Temperature
time series: green colored dots refer to annual temperature values in the presence of 12 months
of available data per year. Empty dots refer to temperature values obtained from the gap-filling
procedure. The linear regression line and equation (Equation (3)) are shown in red. The average annual
temperature for year i is also reported. (b) Nightlights time series: purple colored dots refer to annual

Digital Number values, where a 3 × 3 km buffer is considered L(3)
is . The linear regression line and

equation (Equation (4)) are shown in red. The average annual Digital Number value for the year i is
also reported.
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In order to test the significance of trends, we compute the p-values—pT and pL for temperature and
nightlights, respectively—corresponding to the empirically determined slope values on a two-tailed
Student’s t distribution with n-2 degrees of freedom, where n = 22 is the sample size, e.g., the length of
the observation period in years. The null hypothesis of the test is that there is no trend and we adopt a
significance level α = 0.1, i.e., a 0.05 significance level on each tail of the distribution. In the following,
we allocate positive significant trends in the class c = 1 (p-value ≥ 0.95), negative significant trends in
the class c = 4 (p-value ≤ 0.05), while positive and negative non-significant trends are placed in the
classes c = 2 (0.5 < p-value < 0.95) and c = 3 (0.05 < p-value < 0.5), respectively.

Figure 4 shows the application of the linear regression model to a specific station in a 3 × 3 km
spatial buffer. In this case, increasing variations in time for both T and L are found, with p-values of the
slope regression lines equal to 0.9846 and 0.9998 for temperature and nightlights, respectively. Since
both pT and pL are in class 1 (p value ≥ 0.95), this means that significantly positive temperature and
nightlight variations occur in the considered buffer.

4.2. Statistical Indicators to Measure the Agreement between Temperature and Nightlights Trends

In order to measure the degree of agreement between the trends of temperature and nightlights,
we define an algorithm whose main steps are described below. In the following paragraphs, the results
obtained for Asia are used to provide an example of application of the method.

With respect to the considered geographic area (Asia in this case), we compute the percentage of
stations with significant (or non-significant) increasing (or decreasing) trends based on related p values.
This is performed separately on T and L. We denote these percentages as wTc and wLc, with c = 1, . . . , 4
by using:

wTc =
nTc

nTOT
(5)

wLc =
nLc

nTOT
(6)

where nTc and nLc indicate the number of pT and pL values in the cth class and nTOT the total sample
size in the study area. For Asia, nTOT = 1153 (whereas, for the whole globe, nTOT = 5530).

Table 1 shows the percentage of stations in each class of significance c for Asia. For example,
40.8% of stations show a significant and increasing temperature trend and nearly 56% of stations are
located in areas of significant increasing luminosity.

Table 1. Probability of occurrence in the considered four classes of significance c. The example refers
to Asia, with nTOT = 1153. Number and percentage of stations in Asia with significance increasing
(c = 1, ++), non-significance increasing (c = 2, +), non-significance decreasing (c = 3, -), and significance
decreasing trends (c = 4, –) based on observed pT and pL values.

c nT wT nL wL

1 (++) 471 40.8% 646 56%
2 (+) 388 33.7% 177 15.4%
3 (-) 233 20.2% 170 14.7%
4 (–) 61 5.3% 160 13.9%

We define two variables, denoted as VT and VL, and we assign values to each station and class of
significance c: (i) 1 for c = 1, (ii) 0.5 for c = 2 (iii) −0.5 for c = 3, and (iv) −1 for c = 4. Specifically:

VT =


1 i f c = 1, with P{c = 1} = wT1

1/2 i f c = 2, with P{c = 2} = wT2

−1/2 i f c = 3, with P{c = 3} = wT3

−1 i f c = 4, with P{c = 4} = wT4

(7)
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VL =


1 i f c = 1, with P{c = 1} = wL1

1/2 i f c = 2, with P{c = 2} = wL2

−1/2 i f c = 3, with P{c = 3} = wL3

−1 i f c = 4, with P{c = 4} = wL4

(8)

The product of VT and VL define the final score assigned to the station. We then compute the
expected values of the two variables VT and VL based on the probability of occurrence in class c and
value assigned to the stations, which is shown in the equations below.

E[VT ] = wT1 − wT4 +
1
2
(wT2 − wT3) (9)

E[VL] = wL1 − wL4 +
1
2
(wL2 − wL3) (10)

Likewise, variances are computed using the equation below.

σ2dVTe = wT1 + wT4 +
1
4
(wT2 + wT3)− E2[VT ] (11)

σ2dVLe = wL1 + wL4 +
1
4
(wL2 + wL3)− E2[VL] (12)

In the case of Asia, the expected values and corresponding variances are E[VT] = 0.42, E[VL] = 0.43,
σ2[VT] = 0.42, σ2[VL] = 0.59.

We then define a concordance index CI (which is formally a covariance), which allows one to
assess the degree of agreement between the two considered variables VT and VL.

CI =
1

nTOT

nTOT

∑
i=1

VTi ·VLi (13)

where the product between VTi and VLi represents the contribution of each station to the concordance
index. A decreasing index entails a decreasing agreement between pT and pL, which means increasing
temperature T (c = 1,2) and decreasing nightlights trends L (c = 3,4) or vice versa. An increasing index
is instead associated with increasing agreement. In the case of Asia, CI = 0.22.

If T and L were statistically independent and, therefore, not related, the mean and variance of CI
would be computed by using the equation below.

E[CI] = ∑ VT ·∑ VL (14)

σ2[CI] =
1

nTOT
(σ2[VT ]·E2[VL] + σ2[VL]·E2[VT ] + σ2[VT ]·σ2[VL]) (15)

Therefore, Equation (14) provides a reference value to be compared with the CI given by
Equation (13) to assess the degree of agreement between T and L. Values of CI can be standardized to
make norm-referenced interpretations. We compute a standardized score z using the equation below.

z =
CI− E[CI]

σ[CI]
(16)

The larger the z value, the more concordant are the variations of temperature and nightlights.
Assuming CI is approximately Gaussian-distributed and borrowing some limit values commonly
adopted in z-scores interpretation, we have that: if z < −2, T and L variations are strongly discordant.
If −2 < z < −1, T and L variations are discordant. If −1 < z < 0, the discordance is weak. If 0 < z < 1,
the concordance is weak. If 1 < z < 2, T and L variations are concordant and, if z >2, T and L variations
are strongly concordant.



Atmosphere 2019, 10, 117 12 of 20

In the case of Asia, we obtain E[CI] = 0.18 σ[CI] = 0.019 and z = 2.1, which has strongly concordant
variations in temperature and nightlights.

5. Results

The main outcomes are shown and discussed in the following paragraphs. Hereinafter, we show
the results for only the 3 × 3 km buffer. Analyses on larger spatial buffers lead to similar results
compared to the 3 × 3 km buffer (see Figures from S1 to S8 in the Supplementary Materials).

Regression analyses on mean annual T and L are carried out for each station as outlined in the
Methods section. Results are reported in Figure 5a–i, where the slopes of T and L regression lines are
reported. Sectors 1 and 3 represent positive and negative concordant trends, while sectors 2 and 4 refer
to discordant trends, e.g., a rise in temperature in correspondence of a decreasing nightlights trend
(sector 4) and vice versa (sector 2). Interesting differences emerge at the continental scale. A positive
agreement is detected in more than 50%, 69%, and 43% of stations in Asia, Africa, and South America.
In those regions, most stations are located in more and more anthropized areas and experienced
an increase of temperature in the period from 1992 to 2013. A unique pattern can be noticed in
South America, where 30% of stations are located in areas with increasing nightlights but decreasing
temperature trends. In Europe, concordant and discordant patterns are almost balanced. In Oceania,
most stations are experiencing warming i.e., more than 70% out of the total, with both increasing (37%)
and decreasing (35%) nightlight trends. More than 62% of North American stations show negative
luminosity tendency (mostly due to measures to reduce light pollution) in more than 49% of the cases
in conjunction with warming trends. This tendency is reflected in the Northern Hemisphere and
worldwide due to the large number of stations located in the USA.

Figure 6 summarizes the outcomes from our algorithm to assess the concordance between trends
of different variables. As the first outcome, the majority of air temperature stations is experiencing
warming trends: pT for more than 70% of the selected stations is in class c equal to 1 and 2 (wT1, wT2),
with the sole exception of South America (Figure 6f), where negative and positive temperature trends
are almost balanced. The global distribution of L is clearly bimodal, with two peaks in class 1 and
class 4 (the latter are mostly related to stations in North America).

The computation of the concordance index CI (Equation (13)) reveals an appreciable degree of
concordance between T and L trends in Asia and Europe and a weak positive concordance in Africa,
South America, and Oceania. The discordance detected in North America moves the CI toward a
negative value on a global scale (Figure 6a,h). The standardized z scores, thus, move in the direction of
an overall tendency toward positive concordance, except for North America.
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Figure 5. Slope and P value scatterplots of T and L regression trend lines at global and continental scales,
3 × 3 km buffer. Panels (a–i): slope of T (bT) and L (bL) regression trend lines. The number of stations
included in each sector is in bold, as well as the number of stations with L systematically equal to zero
(bL = 0) on the horizontal axis. Panels (l–t): p values density plots where the color scale represents
the data density. Figure 5l–t show the joint distribution of pT and pL values, which is represented as
density plots. Similar conclusions shown above can be drawn at the continental scale, with the majority
of the p values in the upper-right corner (very large p values) for Asia, Africa, and South America
(weaker signal), which implies a systematic presence of concordant increasing trends of nightlights
and temperature. Europe and Oceania have a bimodal distribution, with a second high-density peak in
the lower-right corner (increasing temperature with decreasing nightlights). Lastly, North America
presents a clear concentration of data points in the lower-right corner of the diagram, which indicates
increasing temperature trends and decreasing nightlights trends.
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6. Discussion and Conclusions

In this work, we introduce a new way of quantifying the nexus between the evolution in time
of thermal impacts and urbanization at multiple scales. Our results confirm the overall tendency
of urbanization trends to affect temperature changes. A significant increment of temperature in
concomitance with increasing luminosity variations are detected worldwide, and regional-scale results
are generally in agreement with this overall trend.

We quantitatively assess the degree of agreement across the four different classes of trend
significance using a statistical indicator, which computes the percentage of stations included in
each class of significance, based on temperature and nightlights trends. The majority of stations are
experiencing warming trends since pT values are mainly included in the first two classes (wT1, wT2).

Recent studies at a very local scale show that the size of the source radius (i.e., buffer) matters
when assessing urban influences on station temperature trends, and the near-station surroundings
have been demonstrated to be more influential for temperature values [52]. Nevertheless, analyses
with larger spatial buffers tend to confirm the patterns detected in the 3 × 3 km buffer (Figures S1–S8
in the Supplementary Materials). Cities expand toward neighboring non-urbanized areas, which cause
their edges to become brighter [71]. This shows that (i) anthropogenic pressure still grows towards
new and peripheric areas, and (ii) most parts of the suburbs continue to experience warming relative
to nearby rural sites [70].

As confirmed by recent findings at the regional scale in Italy, with urban dispersion, peri-urban
areas become progressively more and more vulnerable to climate change [72]. Besides the background
climate, urban landscape morphology likely plays a major role in shaping the spatial variability of
urbanization-induced warming such as for some Chinese regions [27]. From an urban extent point
of view, results on a number of European cities confirm that UHI in an urban sprawl, stretched and
polycentric cities is less intense [36]. Not only urban expansion, but variation in density within cities is
another relevant issue to be further addressed in the future [73].

The analyses on the agreement of temperatures and luminosity variations on a continental
scale could provide interesting insights into the sociodemographic and economic features of single
continents. For instance, Africa and Asia reveal significant increasing temperature trends along with
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nightlight increments in recent years, which reflect the fast-evolving and uncontrolled urbanization
in these areas. In such areas, recent studies highlight that urban land expansion is explained by
different factors. For example, China’s urban land expansion is driven more by economic rise than
population while, in India, population growth drives urban land sprawl [74]. Most urban growth
around the world, and especially in middle-income and low-income continents such as Africa and Asia,
is taking place on prime agricultural land [75]. By being less urbanized, region-specific projections
reveal that these areas are expected to experience relatively faster rates of urbanization over the next
30 years [76,77].

Increasing temperatures along with slightly positive or negative nightlight trends mainly
correspond to developed continents. It is worth noting that developed countries have already
experienced major urbanization expansion in past decades. In such context, the heating effect due
to urban sprawl tends to flatten with the increase of urban areas beyond a certain size because the
increase in the density of the urban built environment and activities is not infinite [18,20]. As cities grow,
temperatures in pre-existing urban areas in some cases are pretty stable, while temperatures only rise
in newly urbanized areas [78]. This is confirmed by recent studies showing that, when temperatures
rise in pre-existing urban areas, the air temperature change is smaller than newly urbanized ones [79].
Moreover, based on UN projections [9] and other studies, the urban population in some cities across
Europe is expected to decline by 2050 [9,76,77].

The significant decrement of night time luminosity detected in North America could be the result
of policy-driven initiatives as light pollution abatement programs promoted in these last years in
western countries such as in Canada and in at least 18 U.S. states [55,71,80,81]. The same initiative
has been undertaken in many countries in Northern Europe such as the United Kingdom and the
Netherlands [59,62]. This makes the interpretation of urbanization dynamics more complex on
temperature trends. In locations such as North America and parts of Europe, the mere use of nightlights
as a proxy of urbanization may lead to the misleading conclusion that T increases independently of the
entity of urbanization, which suggests a minimum UHI effect in regional warming. Nevertheless, this
is not confirmed by regional analyses worldwide, where the increment of urbanization seems to be of
value in explaining temperature variations [28]. Therefore, in such cases, contingent regionally-based
studies are crucial in solving the issue [27,28]. Regionally-based studies could reveal more about
the importance of scale-dependency of the nexus between climate patterns and urbanization [20,27].
Studies on cities across North America reveal that the local background climate greatly contributes
to UHI [82] and that temperature trends differ between northern and southern latitudes because
of biomes [20]. Relevant urbanization patterns exist in Europe that can be captured by nightlights
and recent studies confirm that there is a strong variation of urbanization dynamics within single
countries and regions, which is in line with our findings [66]. Subnational levels of analysis in
Europe reveal that changes in nightlights luminosity are influenced by a number of drivers e.g., the
socioeconomic context and national and regional policies [66]. Preliminary work reveal that, when
analyses on Central-Northern and Southern countries are performed separately, the Mediterranean area
countries reveal a clear tendency toward a significant positive concordance, while other factors, such
as light pollution abatement programs, could be responsible for the discordance detected in Northern
Europe [83]. On the other hand, cooler Northern European cities appear to be more vulnerable to
UHI effects than Southern cities, which appear to be well-adapted [84]. These studies, along with
our findings, stress the importance of mutual relations and feedbacks between regional warming and
urbanization dynamics. Decreasing temperature trends detected in South America could be related
to mesoscale effects (i.e., related to meteorological phenomena from approximately 10 to 1000 km in
a horizontal extent such as between a microscale and synoptic scale). Recent findings outline that
the intensification of the South Pacific Anticyclone during these last years, which is a consequence
of global warming, could contribute to the coastal cooling and warming in the continental Chile
and Andes [85,86]. Other previous studies show that, in the past, there has been net cooling over
Argentina (about −0.04 ◦C/decade) in contrast to other land areas. This occurs mainly in the areas
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where precipitation has increased the most likely due to an increase in the moisture transport from
the Amazon to Northern Argentina by the low-level jet [87]. Nightlights trends in South America
are growing with a slower rate than in Asia and Africa. South America is more urbanized than
these regions since the level of urbanization was around 81%, which matches that of North America
(82%) as well as many European countries (68%) [9]. Consequently, the rate of urbanization in South
America is quite slow compared to other developing regions, as confirmed by previous studies and
projections [76].

Although satellite data provide information that is not directly related to the quantitative rise of
temperature records, in this work, we prove how these data can support both global and local analyses
of urban and global warming-related issues. Our analysis performed over a wide range of spatial scales
presents some uncertainty associated with the reliability of urban temperature records, which provides
the ground for future discussion on the effect of urban heating on climate data. Further advances in
this direction could benefit from the perspectives offered by new approaches and techniques, and
from further studies showcasing the multi-scale impacts of urbanization on the climate. Merging
high-resolution data as nightlights, which was made available by new advances in remote-sensing,
statistical models, and concepts, could represent the opportunity for an unconventional strategy to
analyze such issues.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/10/3/117/s1,
Text S1: Reconstruction procedure in annual average temperature data. Table S1: Matching between the final
sample of Berkeley Earth and official WMO stations used in this work (5530 stations). Stations are provided with
related ID codes, coordinates, and precision. In the case of WMO stations, the precision of the coordinates is not
reported since the minimum resolution is always equal or higher than 30 arcsec. When no matching with the
WMO station is available, WMO coordinates are denoted as “NaN”. Table S2: Table. Example of application of
a reconstruction procedure of annual average temperature. In the selected station Torino Caselle (Berkeley ID
155990) two gaps in November and December 2013 (i = 22) are found. Table S3: Active and selected air temperature
stations in the study period from 1992 to 2013 for “Quality Controlled” data derived from the Berkeley Earth
dataset. Number of active (i.e., having at least one year of data) stations from 1992 to 2013 and available stations
after the application of thresholds for the reconstruction of mean annual temperature from the mean monthly
data and spatial localization. The selected thresholds are Nmi ≥ 9 and Nyj ≥ 18. The percentages refer to the total
sample of active and selected stations respectively. Figure S1: Slope of T (bT) and L (bL) regression trend lines at a
global and continental scale, 4 × 4 km buffer. Sectors 1 and 3 correspond to agreeing trends while sectors 2 and
4 refer to discordant trends. The number of stations included in each sector is in bold as well as the number of
stations with L systematically equal to zero (bL = 0) on the horizontal axis. Figure S2: P values density plots at a
global and continental scale, 4x4 km buffer. The color scale represents the data density. Figure S3: Slope of T (bT)
and L (bL) regression trend lines on a global and continental scale, 5 × 5 km buffer. Sectors 1 and 3 correspond to
agreeing trends while sectors 2 and 4 refer to discordant trends. The number of stations included in each sector is
in bold as well as the number of stations with L systematically equal to zero (bL = 0) on the horizontal axis. Figure
S4: P values density plots at global and continental scales, 5 × 5 km buffer. The color scale represents the data
density. Figure S5: Slope of T (bT) and L (bL) regression trend lines at a global and continental scale. 6 × 6 km
buffer. Sectors 1 and 3 correspond to agreeing trends, while sectors 2 and 4 refer to discordant trends. The number
of stations included in each sector is in bold, as well as the number of stations with L systematically equal to zero
(bL = 0) on the horizontal axis. Figure S6: P values density plots at a global and continental scale. 6 × 6 km buffer.
The color scale represents the data density. Figure S7: Slope of T (bT) and L (bL) regression trend lines at a global
and continental scale. 7 × 7 km buffer. Sectors 1 and 3 correspond to agreeing trends, while sectors 2 and 4 refer
to discordant trends. The number of stations included in each sector is in bold, as well as the number of stations
with L systematically equal to zero (bL = 0) on the horizontal axis., Figure S8: P values density plots at a global
and continental scale, 7 × 7 km buffer. The color scale represents the data density.
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