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Abstract In this paper, empirical data are used to estimate the parameters of a sociohydrological flood
risk model. The proposed model, which describes the interactions between floods, settlement density,
awareness, preparedness, and flood loss, is based on the literature. Data for the case study of Dresden,
Germany, over a period of 200 years, are used to estimate the model parameters through Bayesian inference.
The credibility bounds of their estimates are small, even though the data are rather uncertain. A
sensitivity analysis is performed to examine the value of the different data sources in estimating the
model parameters. In general, the estimated parameters are less biased when using data at the end of the
modeled period. Data about flood awareness are the most important to correctly estimate the parameters of
this model and to correctly model the system dynamics. Using more data for other variables cannot
compensate for the absence of awareness data. More generally, the absence of data mostly affects the
estimation of the parameters that are directly related to the variable for which data are missing. This paper
demonstrates that combining sociohydrological modeling and empirical data gives additional insights into
the sociohydrological system, such as quantifying the forgetfulness of the society, which would otherwise
not be easily achieved by sociohydrological models without data or by standard statistical analysis of
empirical data.

1. Introduction

In flood risk management the aim is to reduce the overall risk, which can be done by reducing the hazard
(i.e., the frequency/magnitude of flooding), the exposure of people, and properties or their vulnerability to
flooding (Kron, 2005). However, changing one of those risk components may lead to unexpected behavior
of the system as a whole, resulting in phenomena like the levee effect (the increase of exposure due to the
nonoccurrence of flooding) or the adaptation effect (the nonlinear relation between flood severity and loss;
see, e.g., Di Baldassarre et al., 2015). In the field of sociohydrology the aim is to study phenomena that result
from the long‐term interactions between society and hydrology (Blair & Buytaert, 2016; Sivapalan et al.,
2012; Sivapalan & Blöschl, 2015). These human‐flood interactions have been explored in the past either
by using dynamic sociohydrological models or by empirical data analyses.

1.1. Sociohydrological Flood Models

Di Baldassarre et al. (2013, 2015) developed conceptual models to describe the dynamics of the human
system that lead to the levee and adaptation effects. They simulate the differences in behavior between
technological societies dealing with flood risk by building flood protection, and green societies, which deal
with flood risk by reducing the exposure in the floodplain. Viglione et al. (2014) used the same type of model
to further investigate the different approaches to flood risk management and the role of different societal
characteristics (collective memory, risk‐taking attitude, and trust). These studies use stylized models to
describe the behavior of a hypothetical system and explore the development of the system variables by
varying synthetic input data and parameter values. In a similar way, Girons Lopez et al. (2017) developed
a model to study the impact of society's preparedness on flood loss mitigation by early warning systems.
They assume that social preparedness can be approximated by the recency of flood experience. Yu et al.
(2017) include in their model social processes such as social norms and collective actions, instead of the
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social memory variables used by the previous models. All these studies show the potential of using
sociohydrological flood models to explain the long‐term dynamics of human‐flood systems (Barendrecht
et al., 2017).

While these studies describe general phenomena in a stylized way, only a fewmodels have been developed to
describe the dynamics of a particular case study. Chen et al. (2016) use a sociohydrological model to mimic
the feedbacks due to shifts in value of flood protection and wetland conservation in the Kissimmee basin,
United States, and the model proposed by Yu et al. (2017) is based on the interactions observed in the coastal
system of Bangladesh. Ciullo et al. (2017) use data from the human‐flood systems of Rome and Bangladesh
and compare them to the outputs of the model developed by Di Baldassare et al. (2015). They show that tech-
nological societies who build protection to deal with flood risk have lower flood risk (i.e., expected loss per
year) but are more prone to individual catastrophic event loss and are less resilient than green societies that
deal with flood risk using nonstructural measures.

Even though Chen et al. (2016), Yu et al. (2017), and Ciullo et al. (2017) have developed their models based
on specific case studies, they compare their model outputs to real world data in a qualitative way, by looking
at similarities between simulated dynamics and data, without quantifying the parameters of their models
through a formal estimation procedure. We argue that using data to estimate the parameters of sociohydro-
logical models may uncover unique features of the particular systems under study and allow for a compar-
ison between them. Taking Viglione et al. (2014) as an example, determining the parameter values of the
model can help explain whether the society in a specific case study is a rabbit (risk avoiding) or a lion (risk
taking), whether it is an elephant (forgetting slowly) or a cicada (forgetting quickly), and how
similar/different it is compared to other cases. This is illustrated in Figure 1, which shows possible

Figure 1. The panels present different behavioral attitudes after experiencing a flood. From left to right the panels show a
change in risk taking attitude from risk taking to risk avoiding (i.e., how quickly households move away from the river
after experiencing flooding). From top to bottom the panels show a change in activeness from passive to active (i.e., how
quickly they implement measures for reducing loss after experiencing flooding).
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behavioral attitudes in terms of risk taking attitude (i.e., how quickly households move away after experien-
cing flooding) from left to right and in terms of how active households are (i.e., how many measures they
take to reduce loss after experiencing flooding) from top to bottom. If, for example, in a certain case study,
the parameters of a model that includes these dynamics are estimated, this particular society can then be
placed in the top left panel indicated by the red dashed square. This then could be used to determine whether
it might be worth implementing policies that move this society to the panel marked in blue (middle right).
Defining the range of different behavioral attitudes also allows for comparison of the society circled in red
with another society that is located in the panel marked in brown (bottom left), and to investigate why these
societies are behaving differently. Moreover, using data to estimate the parameters of a dynamic model not
only provides quantitative information about the parameter values but also is a test of whether the hypoth-
esis about the real world processes that generate the observed behavior (i.e., the hypothesis that the model
structure represents the real world) is consistent with the observed data (Oliva, 2003). This does not mean
that one model can be verified or validated as the true representation of reality. As explained by Oreskes
et al. (1994) this cannot be fully achieved for open systems like the ones in sociohydrology. This means that
the model/hypothesis can be compared to, updated, or substituted by other models/hypotheses as discussed
by Troy et al. (2015).

1.2. Empirical Studies

Several attempts have been made to find factors that influence the relationship between damage and flood
magnitude, using empirical research methods. The relationships between flood risk perception, awareness,
protective behavior (e.g., the uptake of precautionary measures), and flood damages have been studied using
interview data collected in the Czech Republic (Duží et al., 2017), Greece (Fuchs et al., 2017), Scotland
(Owusu et al., 2015), Spain (Raaijmakers et al., 2008), France (Poussin et al., 2014; Poussin et al., 2015),
Germany (Bubeck et al., 2012, 2013; Kreibich et al., 2005; Kreibich & Thieken, 2009; Kreibich et al., 2011;
Osberghaus, 2015; Thieken et al., 2007), the Netherlands (Botzen et al., 2009), Iceland (Pagneux et al.,
2011), and Italy (Miceli et al., 2008; Scolobig et al., 2012). Although some of these studies (Duzi et al.,
2017; Fuchs et al., 2017) do not find correlation between flood experience and the uptake of precautionary
measures, the majority of them have shown that a correlation exists and is indeed significant (Bradford
et al., 2012; Bubeck et al., 2013; Kreibich & Thieken, 2009; Osberghaus, 2015; Owusu et al., 2015; Poussin
et al., 2014; Wachinger et al., 2013). Aside from the direct experience of damages, other factors have been
found that may influence protective behavior, like coping appraisal (Bubeck et al., 2012, 2013), maladaptive
coping responses (Bubeck et al., 2013; Grothmann&Reusswig, 2006), worry (Miceli et al., 2008; Raaijmakers
et al., 2008), or trust in structural protection (Scolobig et al., 2012; Wachinger et al., 2013).

Empirical studies also show that the implementation of precautionary measures can greatly reduce damages
due to a flood event (Bubeck et al., 2012; Hudson et al., 2014; Kreibich et al., 2005; Poussin et al., 2015; Wind
et al., 1999). How big this reduction is depends on the region and its flooding characteristics (Poussin et al.,
2015), whether damage is to buildings or contents (Kreibich et al., 2005) and on the type of measure that has
been implemented (Hudson et al., 2014; Kreibich et al., 2005).

While empirical research quantifies, for specific case studies, the relationships between damages and
damage reducing measures, the use of empirical data also has its limitations. Most of the empirical data
are collected after one specific flood event. Longitudinal studies, which undertook a survey before an event
as well as repeatedly after it, are scarce, which hampers the analysis of temporal changes in awareness and
precautionary behavior and their relation to flood experience (Weinstein, 1989; Osberghaus, 2017).
Similarly, not many cross‐sectional data sets covering the same area at different points in time are available
to unravel the temporal changes in the relationship between flood magnitude, exposure, private, and insti-
tutional risk mitigation and damages (exceptions are, e.g., Kienzler et al., 2015; Kreibich et al., 2017).
Statistical analyses of empirical data are useful for finding correlations between the different variables,
but they do not allow for the explicit investigation of the dynamic relationships with feedback mechanisms
between the variables. Empirical studies are always limited to specific case studies, which all have their own
characteristics, making it a challenge to retrieve generic, transferable results (Schröter et al., 2014). Also, risk
mitigation and behavior influencing flood impacts are strongly context and location specific (Dzialek et al.,
2016). For instance, socioeconomic, cultural, and environmental settings influence what options for redu-
cing vulnerability are realistic (Kreibich et al., 2017). Approaches to tackle this challenge to retrieve
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generic results are comparative analyses of large sets of case studies (e.g., Blöschl et al., 2013; Kreibich et al.,
2017) and theory or model driven empirical analyses (e.g., Bubeck et al., 2013; Kreibich et al., 2011).
Additionally, there is the inherent difficulty of measuring awareness and human and societal level beha-
vior (Aerts et al., 2018). Common approaches are surveys or detailed interviews with various stakeholders
(e.g., Bubeck et al., 2013; Grothmann & Reusswig, 2006; Kreibich & Thieken, 2009), but uncertainty
remains as to whether people act as they state. Also, time series analyses of proxies or indicators are
sometimes used to investigate temporal changes in awareness and protective behavior, such as the change
in flood insurance coverage, news media coverage, or number of Google searches (e.g., Hanak, 2011;
Quesnel & Ajami, 2017).

1.3. Estimating Parameter Values of a Sociohydrological Model Using Empirical Data

The aim of this paper is to demonstrate the feasibility of estimating the parameters of a sociohydrological
model using empirical data and to explore the value of data availability (i.e., amount, type, and timing of
observations) for simulating the system as accurately as possible. We suggest that since both dynamic socio-
hydrological modeling studies and empirical data analyses have advantages and limitations, combining the
twomethods may exploit the positive aspects of both methods and compensate for the respective limitations.

The gain of using a sociohydrological modeling approach in combination with empirical data is that it allows
for a consistent interpretation of all available data together, including their interactions. By estimating the
parameters of the model, we formulate a quantified hypothesis of the real world processes that lead to the
observed system behavior. Parameter estimation is more difficult for sociohydrological models than it is
for regular hydrological models (Sivapalan & Blöschl, 2015) because the processes are less well known
and more nonlinear, and the data are of different types (qualitative versus quantitative, more or less uncer-
tain, etc.) and incomplete, or not complete to the same extent (like precipitation and discharge time series
usually are).

In the field of system dynamics several methods have been proposed for the quantification of parameter
values of nonlinear dynamic models. Parra et al. (2018) test the performance of four commonly used optimi-
zation methods that find a parameter set based on an objective function (Genetic Algorithms, Simulated
Annealing, Powell's Algorithm, and Hybrid Algorithms). These methods depend on the availability of a long
time series of observations and are therefore not suitable for use in sociohydrology where data availability is
limited. Hosseinichimeh et al. (2016) propose a method for the estimation of parameters that does not
depend on the availability of long time series of data. They use indirect inference, which is based on match-
ing the auxiliary statistics (like themean or variance of the data at one time point) of empirical and simulated
data. While this method does not depend on the availability of long time series it does require a large amount
of data at one point in time to be able to calculate the auxiliary statistics. Since this type of data is also not
available in sociohydrology (e.g., we usually have one value for the flood loss in a certain year), indirect infer-
ence may not be feasible for application in this study.

Here we use Bayesian inference (Gelman et al., 2014) for the parameter estimation of a sociohydrological
model. This method is suitable for the incorporation of the different types of data that are available in socio-
hydrology and allows for the use of prior information (e.g., expert knowledge) to constrain model para-
meters. Another advantage is that Bayesian inference does not produce point estimates for parameter
values, but distributions that account for uncertainties in the parameter estimates.

In the following sections, after proposing a sociohydrological model that describes the interactions between
floods, settlement density, damages, awareness, and preparedness, Bayesian inference is used to estimate the
parameters of this model with empirical data for the case study of Dresden, Germany. A sensitivity analysis
is performed to explore which type of data is most important and at what point in time data should
be collected.

2. Methods
2.1. The Model

Risk is often defined as hazard x exposure x vulnerability (Kron, 2005). In this paper, we are considering
households or residential buildings at risk of flooding. The adaptation of households to flooding is an impor-
tant phenomenon that has been described extensively for the case of Germany and Dresden by Kreibich and
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Thieken (2009) and others (Kreibich et al., 2005; Thieken et al., 2007, 2016). Therefore, the data availability
for the human‐flood system that describes the adaptation of households for the case study of Dresden is rela-
tively high, which fits the purpose of this paper.

Hazard in the definition of risk is determined by high discharges or high water levels and their frequency of
occurrence. The frequency can be reduced by increasing the protection level, through, for example, raising
dike heights. Since the model aims to explain the behavior of households, while increases in structural pro-
tection level are a decision that is made by the government and institutions, the protection level is modeled
as exogenous to the system, differently from Di Baldassarre et al. (2013) and Viglione et al. (2014). The pro-
tection level is assumed to be given and households' behavior to reduce the residual risk is modeled. The resi-
dual risk can be reduced by changing the exposure and/or vulnerability. Exposure is defined as the amount
of residential buildings that are at risk of being flooded when high discharges occur, that is, the settlement
density. Vulnerability can be reduced by increasing households' preparedness, through the implementation
of precautionary measures (Kreibich & Thieken, 2009).

The following variables are defined to describe this system and its feedbacks (see also Table 1): floods (W),
protection level (H), loss (L), settlement density (D), relative loss (R), awareness (A), and preparedness (P).
Based on expert judgment and a review of the literature, these are the variables that best describe the
dynamics we are interested in. Floods (W) and protection level (H) are exogenous variables. We assume
the dynamics of the other variables over time can be described by the system of differential equations in
equations (1a)–(1e). The system consists of only three differential equations (they have been split up into five
equations for readability), which means the number of equations is small and the model is relatively simple
compared to other sociohydrological studies.

L ¼ RD €= €½ � (1a)

R ¼ Rmax−βR exp −αR Pmax−Pð Þ W
Wmax

� �
; W>H

0; W≤H

8><
>:

€

m2

� �
=

€

m2

� �� �
(1b)

dD
dt

¼ U 1−αDAð ÞD 1−
D

Dmax

� �
m2=m2½ � (1c)

Table 1
Model Variables and Model Parameters, nm Is the Number of Precautionary Measures, nh Is the Number of Households

External variable Internal variable Parameter Definition Unit

W Maximum annual discharge ((m3/s)/(m3/s))
H Protection level ((m3/s)/(m3/s))
U Urbanization rate (1/t)

A Awareness (nh/nh)
P Preparedness (nm/nm)
D Settlement density (m2/m2)
R Relative loss ((€/m2)/(€/m2))
L Loss (€/€)

Wmax Maximum flood discharge (m3/m3)
αD Risk taking attitude (1/(nh/nh))
Dmax Maximum settlement density (m2/m2)
αA Anxiousness (1/(€/€))
Amax Maximum awareness (nh/nh)
μA Forgetfulness (1/t)
μP Decay rate of precautionary measures (1/t)
Pmax Maximum preparedness (nm/nm)
αP Activeness ((nm/nm)/(nh/nh))
Rmax Maximum relative loss ((€/m2/(€/m2))
βR Discharge to loss relationship ((€/m2)/(€/m2))
αR Effectiveness of preparedness (1/(nm/nm))

10.1029/2018WR024128Water Resources Research

BARENDRECHT ET AL. 5



dA
dt

¼ αAL 1−
A

Amax

� �
−μAA nh=nh½ � (1d)

dP
dt

¼ αP
dA
dt

1−
P

Pmax

� �
−μPP; R>0

−μPP; R ¼ 0

8><
>: nm=nm½ � (1e)

Some of the equations are based on the equations formulated in Di Baldassarre et al. (2013) and Viglione
et al. (2014; parts of equations (1b), (1d), and (1e)). The other equations are based on discussion about the

Table 2
Summary of the Data

Variable
Time
points Definition Data used Source

W 1798–2013 Annual maximum discharge divided
by the discharge with a 500‐year
return period

Discharge time series from the
gauge at Dresden

BMBF‐Project (2007) (maximum
discharge from Umweltamt Dresden,
personal communication, 19 July 2017)

H 1798–1811,
1812–1830,
1831–2010,
2011–2013

Protection design discharge divided
by the discharge with a 500‐year
return period

Reconstructed based on
historical reports of floods

Pohl (2004), Weikinn (2000), Weikinn
and Börngen (2002), Kreibich and
Thieken (2009), and
Landestalsperrenverwaltung
des Freistaates Sachsen (2013)

U 1798–1879
1880–1889,

Growth rate of the settlement density Based on growth rate of urban
areas in the cities of Germany

Hanze data set (Paprotny, 2017)

1890–1899,
1900–1909,
1910–1919,
1920–1929
1930–1939
1940–1949
1950–1959,
1960–1969,
1970–1974,
1975–1979,
1980–1984,
1985–1989
1990–1994,
1995–1999,
2000–2004,
2005–2009,
2010–2014

A 2002, 2003,
2007, 2014

Percentage of households aware
of flood risk

Based on survey data Kreibich et al. (2005), Kreibich and
Thieken (2009), and Thieken et al. (2016)

P 1798/1845,
2002, 2003,
2006, 2007,
2013, 2014

Percentage of precautionary
measures taken

Based on survey data Kreibich et al. (2005), Kreibich and
Thieken (2009), and Thieken et al. (2016)

Increase in P at the beginning of
the period based on qualitative
narrative

Poliwoda (2007)

D 1880, 1900,
1940, 1953,
1968, 1986,

1998

Percentage of the floodplain that
is classified as urban area

Urban area based on
reconstructed land use maps

Gruner (2012; floodplain maximum discharge
from Umweltamt Dresden, personal
communication, 19 July 2017)Total area based on the

floodplain corresponding to
maximum discharge

L 1799, 2002,
2006, 2013

Residential loss after event divided by
the total value of residential properties
in the floodplain

Loss values based on reported
values in the literature

Korndörfer et al. (2006), Kreibich et al. (2011),
LfULG (2015), and Internationale
Kommission zum Schutz der Elbe (2007)

Total values based on
Kleist et al. (2006)

Kleist et al. (2006)

Value in 1799 based on historical
reports and converted to Euro

Weikinn (2000), Poliwoda (2007),
and Deutsche Bundesbank (2017)
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dynamics of the system with flood risk experts (the authors of this paper, who work on flood risk quantifica-
tion at the German Research Centre for Geosciences). The equations are formulated to reproduce the
dynamics as expected by these flood risk experts, which we describe as follows: flooding occurs when the dis-
charge (W) is higher than the design discharge of the flood protection (H). This leads to potential or relative
loss (R) as described in equation (1b), that is, when W is smaller than H the relative loss is zero and as W
increases the relative loss gets closer to the maximum. The actual loss (L) that is caused by the flooding event
(equation (1a)) is equal to the relative loss (R) times the settlement density (D), since if the floodplain is
empty, no loss can occur. The loss is defined as the percentage of the value in the floodplain that is lost after
an event. It is thus the actual loss divided by the value of the residential property in the floodplain. In this
way the effects and changes of the value of the development in the floodplain are taken into account.

The relative loss (R) may be lower if preparedness is higher, that is, if people take precautionary measures.
According to the literature, the uptake of precautionary measures is influenced bymany factors. Households
have to be aware of the risk and have a high threat appraisal (Bubeck et al., 2012). Here it is assumed that
households' awareness of the flood risk is mainly influenced by prior experience of flood damage. The aware-
ness (A) increases with a shock when households experience loss and decreases exponentially over time
when no flooding occurs (equation (1d)). How much awareness increases due to the experience of loss
depends on the parameter αA, the anxiousness of the society (i.e., if the society is very anxious loss will have
more effect on their awareness). Awareness decreases over time with a rate μA, which is called here the for-
getfulness of society.

Protective behavior or the uptake of precautionary measures is represented by preparedness (P). An increase
in awareness leads to (part of) the households taking precautionary measures and increasing preparedness
(equation (1e)). The fact that not all households that are aware of the risk or have a high threat appraisal take
precautionary measures is represented by the parameter αP, the activeness, which determines the level of
increase in preparedness due to an increase in awareness. The increase in preparedness also depends on
the level of preparedness itself, that is, if preparedness is high already, the increase is less, since there is less
possibility to take additional measures. Like awareness, preparedness only increases with a shock when a
loss occurs, but the size of the increase does not depend on the size of the loss (it depends on the size of
the awareness), this is represented with a step function (equation (1e)). Since it is assumed that when people
forget about the flood risk, they will also forget how to implement or to maintainmeasures, the preparedness
decays exponentially over time with a rate μP, the decay rate of precautionary measures.

The literature suggests that taking precautionary measures can greatly reduce the damages caused by a
flood (Bubeck et al., 2012; Kreibich et al., 2005, 2014; Poussin et al., 2015). In this model, the amount
of precautionary measures that have been taken by the households in the study area is represented by
the preparedness. Thus, the preparedness influences the loss (L) that occurs because of flooding by redu-
cing the relative loss (R; equation (1b)). For the same flood magnitude a higher preparedness ensures that
the relative loss is lower. How big this influence is depends on the parameter αR, the effectiveness
of preparedness.

The awareness also influences the growth rate of the settlement density (D; equation (1c)), that is, if people
experience loss because of a flood event, they may decide to slow down the development of the area or des-
ignate certain areas as part of the river (Umweltbundesamt‐Federal Environmental Agency, 2003). The para-
meter αD, the risk taking attitude, controls how much influence the awareness has on the growth rate. If the
awareness does not have any influence, the settlement density will grow with an exogenous urbanization
rate (U) depending on the current value of the settlement density, (i.e., ifD is close to one,Dwill grow slowly,
and if D is close to zero, D will grow faster). Other factors that may influence the decision to move into or
away from the floodplain are taken into account through the parameter αD. Its magnitude indicates whether
the growth is more influenced by flood loss or by other factors (like real estate prices and government com-
pensation). If government compensation is high, for example, then households will have less incentive to
move, even though their awareness is high. In this case αD would have a low value. If households have to
pay for the damage themselves and are not compensated for their loss by someone else (e.g., the government
or insurance companies), αDwould have a high value. The settlement density influences the loss that occurs
due to a flood event, since the loss will be higher if there are more households that can potentially experience
damage during flooding.
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All variables are defined in such a way that they are scaled between zero and one. This means that the values
Rmax, Wmax, Dmax, Amax, and Pmax (equations (1a)–(1e)) are equal to one in this application of the model.

2.2. Bayesian Inference

The model has 12 parameters that determine its behavior over time. Table 1 shows the parameters, their
descriptions, and their units. The aim is to estimate the values of these parameters from data for the
human‐flood system of Dresden, thus quantifying its societal/cultural characteristics, such as activeness
and forgetfulness, and determining how this particular system has developed over time.

Data come from very different sources and are of different types: qualitative versus quantitative, less uncer-
tain versus more uncertain, many data points versus only a few data points (see section 3). Bayesianmethods
(Gelman et al., 2014) allow for the inclusion of all of these different types of data. Using the Bayes' theorem
(equation (2)) for inference, the posterior distribution of a set of parameters is derived from a combination of
observations and prior knowledge about the parameter distribution.

p θjyð Þ ¼ p yjθð Þp θð Þ
∫p yjθð Þp θð Þdθ

(2)

p(θ|y) is the posterior estimate of the distribution of the parameters given the prior information and the
observations y. p(y|θ) is the likelihood of the observations, given the model parameter values, which incor-
porates the information about the observed values y and the uncertainty of these observations. p(θ) is a dis-
tribution that quantifies the prior information on the parameter values. Prior information can be
implemented quite easily usingmore or less detail depending on the information that is available. If no infor-
mation is available at all, an uninformative prior is used. Observed values can be included as data points with
a specified uncertainty. As using Bayesian inference to estimate parameter values yields parameter distribu-
tions, rather than one single set of parameter values, this method naturally yields an estimation of their
uncertainty (or their credibility) under the assumption that the model structure is correct.

Since the integral in the denominator of Bayes' rule is in this case not explicitly solvable, the posterior dis-
tribution of parameters is approximated using a Markov Chain Monte Carlo (MCMC) simulation method.
MCMC methods are a class of algorithms for sampling from probability distributions based on constructing
a Markov chain that has the desired distribution (in this case, the posterior probability model) as its equili-
brium distribution (see, e.g., Gelman et al., 2014; Robert & Casella, 2004). The states of the chain after a large
number of steps are then used as a sample from the desired distribution (the quality of the sample improves
as a function of the number of steps). Here the software Stan (Carpenter et al., 2017) is used to perform the
MCMC inference. Stan makes use of Hamiltonian Monte Carlo sampling, which speeds up convergence and
parameter exploration by using the gradient of the log posterior (Stan Development Team, 2017). To solve
the system of differential equations in Stan, the equations are written in finite difference form using the for-
ward Euler method (see Text S1 in the supporting information for a more detailed description of the imple-
mentation of the Bayesian inference).

We have scaled the variables of the model between 0 and 1 by dividing all values by their maximum values,
whereby the maximum values correspond to the total volume of the system under consideration (i.e., the
maximum discharge is equal to the maximum discharge considered in the flood maps of the Umweltamt
Dresden [personal communication, 19 July 2017], the maximum settled area is assumed equal to the system
area, the maximum awareness is assumed equal to all households within the system boundaries being
aware, etc.). This means that the maximum values of the variables in equations (1a)–(1e) are equal to 1.
This leaves seven parameters for which a value has to be determined through the inference. The parameters
βR (discharge to loss relationship) and αR (effectiveness of preparedness) have a similar influence on R (a big
βR and a small αR, has the same effect as a small βR and a big αR). Since it is not possible to determine a value
for both of them (Gelman et al., 2014) from the available data (see section 3), we have set βR equal to one. The
values of αR, αD, αA, μA, αP, and μP are determined using Bayesian inference.

Because the evolution of some of the variables in the model is described by differential equations, the initial
values of those variables have to be imposed. Since there is no data available for the initial values of the
awareness (A0), preparedness (P0), and settlement density (D0), they are estimated as well.
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2.3. Sensitivity Analysis

To explore the importance of data, and the importance of the time of mea-
surement of the data, a sensitivity analysis is conducted. The parameters
are estimated using varying combinations of timing and availability of
data. The average values of the estimates for the parameter values for
the case study of Dresden are used to simulate time series for all variables
with the model. Then two flooding events are sampled from these time
series. For each event the loss and settlement density before and the pre-
paredness and awareness before and after the event are taken as sample
observations. The timing of these samples is varied as follows: (1) two
samples at the beginning of the time series (BB); (2) two samples at the
end of the time series (EE); (3) one sample at the beginning and one at
the end of the time series (BE); (4) two samples in the middle of the time
series (MM); (5) one sample at the beginning and one in the middle of the
time series (BM); (6) one sample in the middle and one at the end of the
time series (ME).

The importance of the availability of the data is investigated by varying
the combination of the data as follows: (1) all data: two samples for settle-
ment density, loss, awareness, and preparedness; (2) no awareness data:
two samples for settlement density, loss, and preparedness; (3) no prepa-
redness data: two samples for settlement density, loss, and awareness;
(4) no settlement density data: two samples for loss, awareness, and prepa-
redness; (5) no loss data: two samples for settlement density, awareness,
and preparedness.In the sensitivity analysis the uncertainties in the data

points are all set using a variance of 0.001 times the mean and uninformative priors are used for all para-
meters (including the initial values; see sections 3.2 and 3.3 for an explanation of data uncertainty and
prior distributions).

The bias (equation (3)) and uncertainty (equation (4)) in estimating the parameters are calculated for each
combination of sample timing and included variables.

Bias ¼
mean bθ� �

−θ

θ
(3)

Uncertainty ¼
sd bθ� �

mean bθ� � (4)

where θ is the real parameter value and bθ the estimated one.

3. The Case Study

The case study for which we estimate the model parameters is the city of Dresden, Germany, which is
located along the Elbe River (Figure 2). Dresden experienced a long period without flooding followed by a
severe flood in 2002. The flood in 2002 caused high loss and was followed by a smaller flood in 2006 and
another severe flood in 2013. The damage due to the flooding in 2013 was much lower than in 2002, and
it is believed that this is caused by an increase in awareness and an increased uptake of precautionary mea-
sures, such as adapted interior fitting or the use of water barriers (Thieken et al., 2016). Discharge data,
damage data, and interview data that have been collected in the city of Dresden as well as qualitative infor-
mation from narratives are used to estimate the parameter values of the model described in section 2.1
through Bayesian inference (section 2.2).

3.1. Data

Figure 3 shows the available empirical data projected in the space of the model variables. The system con-
sidered here is spatially bounded by the outline of the maximum floodplain. In the case of Dresden the

Figure 2. Floodplain in Dresden in Saxony, Germany, with the residential
areas, the Elbe and the outlines of the floodplain for a flood with a return
period of 1 in 500 years. (data sources: Administrative boundaries from
https://gadm.org/index.html [accessed 1 July 2017]; river outline from
http://www.diva‐gis.org/gdata [accessed 18 June 2018]; flood outline from
Umweltamt Dresden, personal communication, 19 July 2017; urban area
from Gruner, 2012)
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maximum floodplain corresponds to the area that would be flooded when a flood with a return period of
500 years occurs (i.e., a flood with a discharge of 6255 m3/s, Umweltamt Dresden, personal
communication, 19 July 2017).

In the model, floods (W) are represented by discharges, which are scaled between zero and one by dividing
them through the discharge of 6,255 m3/s, which would cause the maximum floodplain inundation. The
unit is thus (m3/s)/(m3/s). Discharges measured at the Elbe gauge in Dresden in the period from 1798 to
2013 are used as an input (BMBF‐Projekt, 2007).

The protection level (H) is equal to the discharge the flood protection is designed to withstand. It is also
scaled by dividing through the maximum discharge and has a unit of (m3/s)/(m3/s). The development of
the protection level over the years was reconstructed based on historical reports of flooding (Pohl, 2004;
Weikinn, 2000; Weikinn & Börngen, 2002). Weikinn collected and reported all historical mentions of hydro-
logical events from CE zero until 1850. It is assumed that when a flooding is mentioned in a report, the pro-
tection level must have been lower than the discharge at that time. In addition, Kreibich and Thieken (2009)
report that the last time damage occurred before 2002 was in the 1940s, which means that we assume the
protection level since those years was higher than the observed discharges. Since 2011, protection levels have
been increased to protect against a discharge with a return period of 100 years (Landestalsperrenverwaltung
des Freistaates Sachsen, 2013).

The loss (L) is equal to the total residential building loss after a flood event divided by the total residential
building value and has a unit of €/€. Estimated residential building loss for 2002 (average of two reported
values, Korndörfer et al., 2006; Kreibich et al., 2011) and 2013 (LfULG, 2015) is divided by the residential
building value as calculated by Kleist et al. (2006) for 2002 and an updated value for 2013 (and 2006) using
the method described by Kleist et al. (2006). The values by Kleist et al. (2006) are for the whole city of
Dresden, while the system boundary is the 500‐year floodplain. Therefore, they are first multiplied by the
area of the floodplain divided by the area of the city of Dresden. For 2006, only estimated total loss is avail-
able (Internationale Kommission zum Schutz der Elbe, 2007); therefore, the residential building loss is

Figure 3. Empirical data. Figure to the left shows the values of the data in time, with the 95% uncertainty bounds. The figure on the right shows the density of each
of the data points. The line of values that are zero in the loss subplot represents the knowledge that since the 1940s there have not been any flood events
causing damages in Dresden. The dashed lines in the preparedness subplot represent the knowledge that the preparedness in 1845 was higher than at the beginning
of the time series.
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approximated by multiplying it with the average ratio of the residential building loss and total loss for 2002
and 2013 (Kreibich et al., 2005; Landesamt für Umwelt, Landwirtschaft und Geologie, 2015).

According to Weikinn (2000) and Poliwoda (2007), the loss in 1799 was higher than the loss in 1784, which
was 33556 Thaler, the loss in Thaler is transformed to Euro using estimates of the purchasing power from the
Deutsche Bundesbank (Deutsche Bundesbank). Since no data is available for the total value of residential
buildings in 1799, the ratio of the settlement densities in 1780 and 1998 (the years closest to 1799 and
2002 for which settlement density data are available) is assumed to be equal to the ratio of the residential
building value in 1799 and 2002.

The settlement density (D) is the area within the system boundaries that is covered with residential buildings
divided by the total area within the system boundaries and therefore has a unit of m2/m2. The settlement
density within the floodplain area is estimated for seven points in time (1880, 1900, 1940, 1953, 1968,
1986, and 1998), based on the area that is reported as residential fabric in reconstructed land use maps
(Gruner, 2012) divided by the total area of the floodplain. The settlement density grows with an urbanization
rate U. This U is equal to the average growth rate of the cities in Germany and is calculated based on the
HANZE land use maps (Paprotny et al., 2018).

Awareness (A) is defined as the number of households within the system boundaries that are aware of the
flood risk divided by the total number of households within the system boundaries and has a unit of number
of households/number of households. After the 2002, 2006, and 2013 flood events a telephone survey was
conducted in the Elbe region with 300, 21, and 117 households, respectively (the details of the survey can
be found in Kreibich et al., 2005; Kreibich & Thieken, 2009; Thieken et al., 2016). During these interviews
the person in each household with the best knowledge about the flood event and the incurred loss was asked
(among other questions) whether he or she experienced a flood before this one, whether they knew that the
household was situated in an area at risk of flooding, and how likely he/she thought it is that they will
experience damage due to a flood again. The first two questions could be answered with a yes or a no. To
the last question, respondents answered on a scale from 1, very unlikely, to 6, very likely. The percentage
of people that answered yes to the first or the second question in 2002 is used as an approximation of the
awareness before the 2002 flood. The percentage of people that answered four, five, or six to the third ques-
tion in 2002, 2006, and 2013 is used as an approximation of the awareness of the society after the 2002, 2006,
and 2013 flood events, respectively. Values based on the first two questions to approximate the awareness
before the 2006 and 2013 floods are not used because the percentage of people who thought that it was likely
that they would experience damage due to a flood again after 2002/2006 was lower than the percentage of
people that was aware of living in a floodplain before the flood of 2006/2013. Therefore, it seems that the
knowledge of living in an area that is at risk of flooding is not a good approximation for the awareness before
the flood events of 2006 and 2013. Note that these data are obtained from stated answers and not observed
behavior. The actual behavior of people may differ from their answers to the questions asked during a sur-
vey. However, data collected through surveys are the best data available for this case study and we assume
they lead to a sufficiently close approximation of the awareness.

Similarly to awareness, preparedness (P) is defined as the number of precautionary measures taken by the
households within the system boundaries divided by the total number of precautionary measures that could
have been taken by the households. Preparedness has a unit of number of measures/number of measures.
The same set of interview data that is used to calculate the awareness is used to approximate the prepared-
ness. Households were asked when they had implemented each measure of a set of precautionary measures.
The available answers were before the flood, during/after the flood, within the next six months, and not
planned. The average preparedness of society before the events in 2002, 2006, and 2013 is approximated
by the total amount of measures taken by the interviewed households before the event divided by the total
amount of measures that is available. The average preparedness of society after the events in 2002, 2006, and
2013 is approximated by the total amount of measures taken by the interviewed households before the event,
during/after the flood event, and within 6 months after the flood event, divided by the total amount of mea-
sures that is available. In addition to the interview data, Poliwoda's (2007) description of how the society in
Dresden adapted to the floods in the period between 1784 and 1845 is used as an approximation for the pre-
paredness in that period. From this qualitative story we can deduce that the preparedness must have been
higher in 1845 than in 1798.
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3.2. Uncertainties in the Data

Since the variables are scaled between zero and one, the data and variables are assumed to be distributed
according to beta distributions (whose product forms the likelihood function in equation (2)). The beta dis-
tribution can be parameterized using mean (μ) and a parameter ν, which represents the uncertainty in the
data. The parameter ν can be expressed as

μ 1−μð Þ
variance−1

(5)

Therefore, we quantify the uncertainties of the data in terms of their variance. The uncertainties are based on
expert judgment of uncertainty across variables. We use large uncertainties, which is equivalent to saying
that, for example, the awareness after the 2006 event was most probably higher than after the 2002 event.
A sensitivity analysis (not shown here) revealed that the influence of the choice of data uncertainties on
the results of the inference does not affect the results in a significant way.

It is assumed that the data for the settlement density are the most certain and the variance is set to be 0.005
times the mean, corresponding to a coefficient of variation ranging from 0.12 to 0.18. The uncertainty in the
measurements of the loss is higher than the uncertainty in the settlement density, so for 2002 and 2013 the
variance is set to 0.01 times the mean, corresponding to a coefficient of variation of 0.37 and 1.2, respectively.
For the 2006 loss more assumptions are made and therefore the variance is higher than for the loss in the
other years and equal to 0.03 times the mean, corresponding to a coefficient of variation of 2.24. The same
holds for the loss in 1799 (a coefficient of variation of 3.36). The data for the awareness and preparedness
are also quite uncertain so a variance of 0.02 times the mean is used, corresponding to a coefficient of varia-
tion ranging from 0.14 to 0.41. In 2006 only 21 interviews were conducted, while in 2002 and 2013 this was
300 and 117, respectively, so the uncertainty for 2006 is higher than for the other years (a variance of 0.03
times the mean is used, corresponding to a coefficient of variation ranging from 0.2 to 0.31). This results
in the data points having distributions as shown in the right panel of Figure 3.

3.3. Prior Parameter Distributions

As explained in section 2.2, the posterior distribution of the parameters is calculated using the likelihood of
the data and a prior distribution for the parameters. If information is available, it is possible to use an infor-
mative prior distribution; otherwise, a noninformative prior should be specified (Gelman et al., 2014).
According to the literature, the half time of awareness, that is, the time after which awareness is halved,
is 7 (International Commission for the Protection of the Rhine [ICPR], 2002) to 10 years (Bornschein &
Pohl, 2014). Based on this information, an informative prior is constructed for μA, the forgetfulness. We
assume μA is normally distributed with a mean of 0.08 and a standard deviation of 0.015. Since the prepared-
ness most likely has a slower decline than the awareness, we have chosen the prior for μP as normally dis-
tributed with a mean of 0.04 and a standard deviation of 0.03. In addition, μA is constrained to be higher
than zero and μP to be in between zero and μA; therefore, we truncated the normal distribution for both para-
meters. Since we do know the order of magnitude of the parameters values, we choose to use a truncated
normal distribution instead of a lognormal distribution. No information is available for the other parameters
except that they are constrained to be above 0. All other parameters have a truncated normally distributed
prior with a mean of 0 and a standard deviation of 10, for αP and αR, or 100, for αD and αA (since αP and
αR cannot be too high, to avoid numerical problems).

The initial values for the awareness and the preparedness have been assigned an uninformative normal prior
distribution with a mean of 0.5 and a standard deviation of 0.5, with A0 truncated between 0 and 1 and P0
truncated between 0 andA0, since the preparedness in 1798must have been lower than the awareness (based
on the definitions). The settlement density in 1780 has been calculated as 0.048, based on Gruner (2012);
therefore, the D0 has been assigned a normally distributed prior with mean 0.048 and standard deviation
0.2 and is truncated between 0 and 1.

For the priors, we assume independence between the parameters and initial conditions, that is, we do not
use multivariate distributions for the parameters, since the model is too complex for us to be able to say any-
thing about their dependencies. This of course does not mean that the posterior distributions will also
show independence.
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4. Results
4.1. Time Series With Estimated Parameter Values

The model described in section 2.1 is fitted to the data described in sections 3.1 and 3.2 (and shown in
Figure 3) through the Bayesian MCMC method. The results of the fit are presented in Figures 4–6.
Figure 4 shows the evolution of the variables over time given the estimated parameter distributions. The

Figure 4. Discharge and protection level (input data) are plotted in (a). The evolution of the mean (solid line) and 95%
credible bounds (dashed lines) of the fitted model variables over time are plotted in red (b–e). The empirical data (mean
and 95% uncertainty bounds) that are used to estimate the parameter values are shown in black.

Figure 5. Estimated loss (red points) and loss if preparedness would have been zero (blue circles) versus normalized dis-
charge (a). Estimated relative loss (red points) and relative loss if preparedness would have been zero (blue circles) versus
normalized discharges (b). This figure shows the effects of only the preparedness, that is, only the relative loss (R), not
taking into account the exposure at the time of the event (D).
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solid red lines give the mean estimated values, and the dashed lines show the 95% credible interval. Mean
loss is shown as red crosses, and the whiskers provide the 95% credible bounds. The data used to estimate
the parameter values are shown in black.

There is a slight increase in loss over time, due to an increasing settlement density. The model does seem to
capture the effect of a raised awareness and the following increase in preparedness on the loss: due to an
increase in awareness, the preparedness increases after 2002 and consequently the modeled loss in 2013
has a mean of 112 million € compared to a mean of 166 million € in 2002 (expressed in 2013 values
for comparison).

Figure 5a shows the relationship between modeled loss (relative loss times the settlement density) and
discharges when preparedness is included (red) and when preparedness is always zero (blue). The loss is
not always high when the discharges are high. They vary due to changes in preparedness and also due to
changes in settlement density as can be seen when comparing Figures 5a and 5b. Figure 5b shows the

Figure 6. Model parameter and initial value prior (black) and posterior (red) distributions. The univariate density distri-
butions are plotted in the panels on the diagonal, with the parameter values on the x axis and the density on the y axis.
Above the diagonal the plots show samples from the bivariate prior distributions of the different combinations of para-
meters and below the diagonal the plots show samples from the bivariate posterior distributions of the different combi-
nations of parameters. In these cases the axes represent parameter values.
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relationship between the relative loss and discharges. Depending on the level of preparedness, the (relative)
loss is lower than it would have been if society had not been prepared. In 2002 preparedness was low and
thus the difference between the modeled loss and the loss without preparedness is small. In 2013 (and in
2006), the preparedness has increased to 39% of the maximum possible value, meaning that on average
the people in Dresden have implemented 39% of the measures they could have implemented, and therefore,
relative loss is much lower than in 2002. Comparing Figure 5b to Figure 5a clearly indicates the influence of
the settlement density or exposure on the size of the loss as well. The relative loss (Figure 5b) in 1845 is
almost as high as in 2002 and the relative loss in 1890 was even higher than in 2013; however, because
the settlement density was much lower, the actual loss (Figure 5a) is much lower in 1845 and 1890 than
in 2002 and 2013, respectively.

Figure 4 shows that the preparedness at the start of the modeled period, although increasing, is not as high as
it is at the end of the modeled period. This can be explained by the fact that the increase in preparedness
depends on the increase in awareness, which in turn depends on the size of the loss. Since the settlement
density influences the size of the loss, the loss in the first couple of years is lower than the loss at the end
of the modeled period and as a consequence the preparedness is lower in that period, too.

According to the model, the awareness does not increase as much as the data suggest, even though the mod-
eled awareness lies within the confidence bounds of the data, and society seems to forget less quickly than
suggested by the literature, that is, μA is lower than expected. μA has a mean of 0.04, which is equivalent
to a half time of 17 years and much longer than the 7 to 10 years that can be found in the literature
(Bornschein & Pohl, 2014; ICPR, 2002). μP has a mean of 0.02, indicating that the preparedness has a half
time of 34.5 years. Even though the forgetfulness of society seems to be lower than suggested in the litera-
ture, it is high enough for the awareness and preparedness to be almost zero in 2002, when the first flood
in a period of more than 50 years occurred, meaning that on average almost 0% of the population in
Dresden was aware of the risk and was prepared to deal with flooding. The awareness at the start of the mod-
eling period is as high as at the end of the modeled period. This estimate seems to be reasonable since there
were severe floods in 1784 and 1789 (Weikinn, 2000), just before the start of the modeling period, that may
have raised awareness. The initial value of the awareness being so high, especially compared to the prepa-
redness, results in the fact that during the period until 1845, on the long term, the awareness gradually
decreases, while the preparedness gradually increases, because preparedness has a longer half time than
the awareness. The preparedness has smaller credible bounds than the awareness in this period, which is
a result of the fact that we have some qualitative data for the preparedness in the first couple of years.

The settlement density increases over time from 18% of the floodplain covered with households in 1798 to
37% covered in 2014 and does not seem to be influenced by the occurrence of floods that much. During
the first 15 years, the credible bounds of the settlement density are quite big because we do not have any data
available. During this period there may have been a decrease in the settlement density and thus a bigger
effect of the awareness on settlement density. However, overall, the results indicate that there is almost
no influence of households' awareness on the development of the settlement density over time.

4.2. Prior Versus Posterior Parameter Distributions

Figure 6 gives the prior (black) and posterior (red) distributions of the model parameters and the initial
values. The marginal distributions are plotted in the panels on the diagonal, with the prior density distribu-
tion in black and the posterior density distribution in red. Samples from the bivariate prior and posterior dis-
tributions of the different combinations of parameters are plotted above and below it, respectively. The
density of the points in the graphs above and below the diagonal is proportional to the prior and posterior
probability of the parameters having a particular combination of values. Since we use flat uninformative
priors for most of the parameters, the prior densities (in black above the diagonal) are very wide and in some
cases most of the points fall outside the plotting area. The posterior densities (in red below the diagonal) are
narrower, which indicates that the data provide information to update the parameter distributions.

As mentioned before, the forgetfulness μA is lower than expected and the posterior distribution of μA is
shifted to the left compared to the prior distribution. Since the prior was constructed so that the value of
μP should be lower than μA, the posterior distribution of μP also lies to the left of the prior distribution.
The other prior distributions were flat, weakly informative distributions, and they did not influence the
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posterior distributions much, as is apparent from the fact that we are able to identify the posterior
distributions of these parameters with quite narrow credible bounds.

Since it was assumed that P0 should be below A0 and there is some information available about the prepa-
redness in the beginning of the simulation period, the credible bounds of the preparedness are narrower
than those of the awareness at the start of the modeled period and the posterior distribution of P0 is narrower
than the posterior distribution of A0. The posterior distribution of D0 is narrower than the prior distribution,
and D0 seems to be a bit higher than assumed a priori.

In general, there seems to be enough data for the posterior distributions not to be influenced toomuch by the
prior distributions, even though the uncertainties in the data are assumed to be high. The prior distributions
were assumed mutually independent. The posterior bivariate distributions show that for most parameters,
this is indeed the case. However, there is a correlation between μA and αD and between αA and αR. When
μA is small, that is, awareness declines less fast, the effect of the awareness on the growth of the settlement
density, αD, is also small. This can be interpreted as the people in Dresden on average being either very for-
getful (big μA) and not very risk taking (big αD) or not so forgetful (small μA) and very risk taking (small αD).
The opposite is true for αA and αR, when αR is small and thus the preparedness has a smaller effect on the size
of the loss; the increase in the awareness due to the loss, αA, is bigger. One could interpret this as the people
of Dresden being very anxious (big αA) but the measures being not so effective in diminishing loss (small αR)
or them being not so anxious (small αA) and the measures being very effective (big αR). Further information
would be needed to better constrain these parameters.

4.3. Sensitivity Analysis

The mean values of the posterior distribution of the model parameters (see Figure 6) are used to simulate
synthetic time series for all variables. Then selected values of these variables are sampled as data, and the
ability to correctly estimate the parameter values by using these data is investigated (as explained in
section 2.3). Figure 7 shows the results of this sensitivity analysis. The six boxes present the sensitivity of esti-
mation of the six model parameters. The colors of the points represent bias and their size variance (uncer-
tainty) in parameter estimation. The grids contain each combination of available variables (whether all

Figure 7. Bias and uncertainty of the parameter estimates for different combinations of data availability for the variables
(all of them or leaving out data for awareness, settlement density, preparedness, or loss) and time of observation (B stands
for at the beginning, M for in the middle, and E for at the end of the time series). Circled positions correspond to the
time series plotted in Figure 8 (dotted circle), Figure 9 (solid circle), and Figure 10 (dashed circle).
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variables are observed or one of them is not) in each row and the timing of the observations in the columns.
In general, the α parameters are most affected by leaving the data for one of the variables out of the
inference, while the μ parameters are most affected by the timing of the observations. This is to be
expected since the αs describe the relationship between the different variables, while the μs determine the
progress of a single variable over time.

As expected from the equations, the parameter that determines the effect of the loss on the awareness, αA, is
most affected by the absence of data for awareness or loss. The absence of loss data in combination with the
timing of the samples at the beginning of the modeled period causes the parameter to be underestimated,
leading to the belief that the society is much less anxious than it is in truth, while taking samples at the
end of the period causes an overestimation of the parameter, leading to the belief that the society is more
anxious than it really is. The absence of awareness data has the opposite effect: a positive bias when samples
are taken at the beginning and a negative bias when they are taken at the end of the modeled period.

The parameter relating the awareness and preparedness, αP, is most affected by not having awareness or pre-
paredness data. The effect of not having awareness data changes with the timing of the samples, whereas the
timing does not affect the effect of the absence of preparedness data.

Figure 8. The synthetic time series from which data are sampled are plotted in green. Data points that are sampled from
the synthetic time series and used to estimate the parameter values are plotted in purple (mean and 95% uncertainty
bounds). The evolution of the mean (solid line) and 95% credible bounds (dashed lines) of the fitted model variables over
time are plotted in red. In this case both samples are taken at the end of the modeled period and loss data is missing
(corresponding to the dotted circle in Figure 7). An absence of loss data mostly affects the estimation of the loss. The other
variables are estimated quite well.
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The effects of the absence of data on the bias and uncertainty of the estimation of αR, which determines the
relationship between preparedness and the relative loss, change depending on which type of data is missing.
If data on loss or settlement density are missing, the bias is very large and positive and the uncertainty is
high. If awareness data are absent, the bias is very small and the estimate has a low uncertainty, indicating
that for estimating the loss parameters and dynamics right, the awareness data are not very important. The
effect of missing preparedness data varies with the timing of the samples. In all cases the uncertainty is very
small, but in some cases the bias is large and negative. This is particularly bad because the model suggests
that something precise can be said about preparedness, which in reality is wrong.

The availability of settlement density does not seem to affect the estimation of αD, the effect of the awareness
on the settlement density, very much. This is probably due to the fact that there is an external growth rate for
the settlement density, making the actual settlement density data less important. The estimation of αD is
much more affected by the absence of awareness data. If the awareness data is not available, the bias in
the estimation of αD is very large.

The bias in the estimation of μA and μP (the decay rates of the awareness and preparedness) becomes very big
and positive if there is an absence of awareness or preparedness data, respectively. In this case the parameter
values are overestimated. The availability of other variables does not affect the bias or uncertainty that much.
Instead, the timing of the samples has a much bigger influence on the estimation of μA and μP. This also

Figure 9. Same as Figure 8 but in this case preparedness data are missing (corresponding to the solid circle in Figure 7).
An absence of preparedness data affects the estimation of the preparedness. The loss is overestimated and has bigger
credible bounds than in the case where preparedness data is available, other than that the other variables are estimated
quite well.
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follows from the equations because these parameters describe the changes in time of a certain variable and
not the relationship between two variables. For the estimation of both parameters two data points at the
beginning of the modeled period give the highest uncertainties in the estimation of the parameters. The
bias in the estimation of μP is also largest with this timing of the samples and smallest if samples are
taken at the end of the period. In this case, however, the estimate for μA has the highest bias, and a small
uncertainty, meaning that after the inference we think we know the parameter with high precision, but in
fact we are underestimating its value. Biases are small if a sample in the middle is combined with a
sample at the beginning or at the end.

Overall, having two data points at the end of the period is best, since both bias and uncertainty are low or
relatively low. This was to be expected since the present state (i.e., at the time when data are available) holds
information about the past and how the situation ended up as it is (if the system does not forget very
quickly), but not about the future. The parameters αA and μA are an exception to this, since they are both
overestimated when samples are taken at the end of the period. Thus, after the estimation we would think
that the households are less anxious (increasing the awareness not so much after an event) and also forget
less fast, while in fact they are more anxious and they forget faster.

In order to better present some results of the sensitivity analysis, Figures 8–10 show the effect of not having
data for the awareness, preparedness, or loss, respectively (i.e., the cases No A – EE, No P – EE, and No L –

EE), on the estimation of the variables, when samples are taken at the end of the modeled period. For all
three cases, the effect of not having data on the estimation of the model variables is highest for the

Figure 10. Same as Figure 8 but in this case awareness data are missing (corresponding to the dashed circle in Figure 7).
An absence of awareness data mostly affects the estimation of the awareness and settlement density. The other variables
are estimated quite well.

10.1029/2018WR024128Water Resources Research

BARENDRECHT ET AL. 19



variable for which data are absent, which is to be expected. In case loss data is missing, the estimation of the
other variables does not seem to be affected that much (Figures 8c and 8d). The absence of preparedness
causes a small overestimation of the loss with large credible bounds (Figure 9b). The figures do show that
at the start of the period, the estimated mean of most variables is quite far off from the synthetic time
series, but this seems to be due to the incorrect estimation of the initial values and not because the
behavior of the system is not estimated correctly. The dynamics of the behavior of the estimated variables
over time is similar to the synthetic data time series. In case awareness data is missing, however, the
dynamics (i.e., the oscillations) of the estimated settlement density are very different from the dynamics of
the real settlement density (Figure 10a): the estimated time series goes up and down, whereas the real
time series are smooth. This occurs because the estimate of αD has a large positive bias, which means that
we think the awareness has a much bigger influence on the settlement density than it has in reality. The
fact that missing awareness data has such a big influence on the inference may be because it is such an
important variable in the model that is proposed in this study. From equations (1a)–(1e) one can see that
it influences both the preparedness and the settlement density, so if awareness data are missing it
becomes very difficult to estimate the model dynamics correctly.

To investigate whether we can make up for an absence of awareness data by using more loss and settlement
density data, we redo the analysis using 10 data points for the settlement density and loss (see Figure 11) and
no data for the awareness or preparedness. We also exclude the preparedness because both kinds of data are
collected with the use of surveys; therefore, if awareness data are not available, preparedness data will not be
available either. Figure 11 shows that this does not solve the problem, as both awareness and preparedness

Figure 11. Same as Figure 8 but in this case both awareness and preparedness data are missing and 10 data points for loss
and settlements density are used.
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are not estimated correctly and the estimated time series of the settlement density still show oscillations
indicating that the parameter αD is still overestimated.

5. Discussion and Conclusion
This paper demonstrates that studying specific case studies and using empirical data to estimate the para-
meters of sociohydrological models provides us with many insights into the dynamic interactions between
humans and floods. In the case of Dresden, the inference shows that increasing awareness leads society to
take precautionary measures to reduce loss rather than decrease exposure. It also allows for investigating
hidden factors, like the forgetfulness of a society. In the case of Dresden, the inference indicates that after
about 17 years, society has lost half of the awareness accumulated after an event, which is longer than what
literature suggests (a half time of 7 to 10 years, Bornschein & Pohl, 2014; ICPR, 2002). Also, the model allows
for the inference of the development of variables at time points where no data are available. For example, in
the case of Dresden, losses after the 1845 and 1890 floods have been quantified to be similar to the one in
2006, because even if exposure was lower in the nineteenth century than in 2006, the preparedness was

Figure 12. The panels show the effect of different behavioral attitudes after experiencing a flood on the expected flood loss
as a consequence of floods with a flood magnitude from zero to one. The red line gives the loss if preparedness is zero, and
the settlement density is one (a completely settled floodplain). The blue line gives the loss as modeled with the
parameter values shown on the axes. From left to right the panels show a change in αD, the risk taking attitude, from risk
taking to risk avoiding. From top to bottom the panels show a change in αP, the activeness, from passive to active. The
human‐flood system of Dresden is located in the panel indicated with a black dashed square.
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lower too. The modeling procedure presented in this paper therefore produces quantitative hypotheses that
may be checked by retrieving other data. Figure 12 shows the effect of risk taking attitude (the parameter αD)
and activeness (the parameter αP) on the behavior of a society, as represented in Figure 1. The panels are
filled with values of loss and related flood magnitudes generated by the model. They show the decrease in
expected loss (the difference between the blue line and the red line) as a result of decreases in settlement den-
sity and increases in preparedness. The size of the decrease in loss depends on the values of αD and αP. For
the case study of Dresden, the parameter values are those of the panel in the middle (indicated by a black
dashed square). Applying the same model and parameter estimation procedure to other case studies will
enable a comparison between their behavior and its consequences.

We have investigated the usefulness of data availability through a sensitivity analysis. We show that it is
most useful to have data at the end of the modeled period. In that case, the estimates of the parameters
have the smallest bias, with the exception of the estimates for the parameters determining the dynamics
of the awareness. Since for the case study of Dresden we mostly have data at the end of the time period,
this may indicate that the forgetfulness of Dresden (equivalent to a half time of 17 years) could have been
underestimated and that the real value is in fact closer to the value that was found in the literature (a half
time of 7 to 10 years and thus a bigger forgetfulness μA (Bornschein & Pohl, 2014; ICPR, 2002). In general,
the fact that having data at the end of the modeling period is most useful is good news, since for most
sociohydrological systems, this is the time when data is usually available. However, it should be noted
that prediction of future dynamics is difficult and that it should be done with caution. The prediction
should rather be a mapping of possibility space (Srinivasan et al., 2017) taking into account all the differ-
ent possible futures. The estimation of the parameter values as proposed in this paper does allow for the
determination of the state of the system at present, which provides a better starting point for mapping the
possibility space.

Which type of data has the most value for the estimation of the parameters depends on what is of most
importance to the model user. The sensitivity analysis shows that data about loss and settlement density
are least important, unless the user is most interested in modeling the loss with a higher degree of accuracy.
In contrast, data about awareness are very important for the estimation of all parameters. If awareness data
are absent, most of the parameter estimations are biased and the modeled dynamics of the variables over
time is wrong. Preparedness data are also important, especially when the modeler is interested in estimating
the preparedness and/or the loss more accurately. However, if preparedness data are missing the behavior of
the variables over time is still modeled correctly, even though the mean estimated preparedness is biased.
Awareness data are not only the most important data for estimating the parameter values correctly, it is also
the most difficult and most expensive data to obtain (together with preparedness data), because the data is
gathered through surveys, which are rather time consuming and expensive. Unfortunately, the analysis
shows that it is not possible to correct for missing awareness and preparedness data by using more data
points of the more easily obtainable loss and/or settlement density. In this specific model structure the
awareness is a very important variable and has a big influence; therefore, awareness data are so important.
In cases with model structures where awareness plays a less important role, not having data on awareness
may have less influence on the estimation of the parameter values. However, in general, one could say that
awareness is a very important factor in human‐flood interactions and it will most probably be included in
most models, therefore, easier, less costly methods to collect awareness and preparedness data than using
surveys should be sought, for example, using social media (e.g., Vieweg et al., 2010).

As this paper shows, even when uncertainty in the data is high, it is feasible to estimate the parameters of
sociohydrological models. We have used Bayesian inference to accommodate data uncertainty, which results
in estimated uncertainties in the estimated model parameters. However, as explained in section 1.2,
measuring social processes is difficult and the values of the social variables for the system of Dresden are
approximated based on stated answers rather than the observed behavior, which may be very different.
This means that the data used for the parameter estimation may be biased or misinterpreted and one should
keep this in mind when model results are used for further analysis or policy making.

While uncertainty in the data is accounted for, the Bayesian inference does not account for the fact that the
model could miss some significant processes. Other models could give a different hypothesis of the most
important variables in the system and their interactions, which could be tested and compared to the
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model proposed here. For example, the model proposed here is a lumped model, that is, the variables repre-
sent an average value for society. The literature on empirical data studies indicates that households can
have different reasons for implementing precautionary measures or not (Bubeck et al., 2012, 2013; Miceli
et al., 2008; Raaijmakers et al., 2008; Scolobig et al., 2012; Wachinger et al., 2013), but in this case, these
are all represented by a single parameter. While this model does not tell us anything about individual
household choices, it does give an indication about the average uptake of precautionary measures and
the changes over time. In future work, the model could be extended to account for the different coping
mechanisms more explicitly, to model households separately or to include, for example, real estate prices
and insurance incentives as variables in the model. Also, we assume that the model parameters are con-
stant values in time, while they may evolve (slower than the other variables) due to cultural changes. To
test different hypotheses, different models could be developed and their performance compared with
Bayesian inference (Gelman et al., 2014).

The authors believe that the method presented here is an important step in the field of sociohydrological
research. For the case of Dresden, themodel structure, and thus the hypothesis about the processes and feed-
back mechanisms, seems to be consistent with the data. The same model could be fit to other case studies
that have similar feedback mechanisms but may have different characteristics, for example, a higher or
lower forgetfulness. This would allow for performing comparative sociohydrology among case studies,
which have the same possible development trajectories but may follow a different particular trajectory.
Comparing and contrasting different systems is the way forward to advancing the general understanding
about the sociohydrology of human‐water systems (Sivapalan et al., 2012).
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