
02 January 2025

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Dynamic Beam Width Tuning for Energy-Efficient Recurrent Neural Networks / Jahier Pagliari, Daniele; Panini,
Francesco; Macii, Enrico; Poncino, Massimo. - ELETTRONICO. - (2019), pp. 69-74. (Intervento presentato al convegno
Great Lakes Symposium on VLSI tenutosi a Tysons Corner (USA) nel May 2019) [10.1145/3299874.3317974].

Original

Dynamic Beam Width Tuning for Energy-Efficient Recurrent Neural Networks

Publisher:

Published
DOI:10.1145/3299874.3317974

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2785759 since: 2020-01-30T11:34:35Z

ACM

Dynamic BeamWidth Tuning for Energy-Efficient Recurrent
Neural Networks

Daniele Jahier Pagliari, Francesco Panini, Enrico Macii and Massimo Poncino
Politecnico di Torino

Turin, Italy
name.first_surname@polito.it

ABSTRACT
Recurrent Neural Networks (RNNs) are state-of-the-art models for
many machine learning tasks, such as language modeling and ma-
chine translation. Executing the inference phase of a RNN directly
in edge nodes, rather than in the cloud, would provide benefits
in terms of energy consumption, latency and network bandwidth,
provided that models can bemade efficient enough to run on energy-
constrained embedded devices.

To this end, we propose an algorithmic optimization for improv-
ing the energy efficiency of encoder-decoder RNNs. Our method
operates on the Beam Width (BW), i.e. one of the parameters that
most influences inference complexity, modulating it depending on
the currently processed input based on a metric of the network’s
“confidence”.

Results on two different machine translation models show that
our method is able to reduce the average BW by up to 33%, thus
significantly reducing the inference execution time and energy
consumption, while maintaining the same translation performance.

CCS CONCEPTS
•Computingmethodologies→Neural networks; •Hardware
→ Power estimation and optimization; • Computer systems
organization→ Embedded software.

KEYWORDS
Energy Efficiency; Neural Networks; Deep Learning

1 INTRODUCTION
Deep learning models are increasingly being used in many machine
learning applications [1]. In particular, Recurrent Neural Networks
(RNNs) are now able to deliver state-of-the-art performance in
sequence modeling tasks such as machine translation and image
captioning [2]. Unlike traditional feed-forward deep neural net-
works, RNNs have memory and can handle variable-length inputs
and outputs.

The high quality of the results achieved by these models, how-
ever, comes at the cost of high computational complexity. Currently,
the execution of deep learning models is mostly performed in the
cloud, using multicore CPUs and clusters of GPUs which consume
hundreds of watts of power [3, 4]. On the other hand, there is an
increasing demand for intelligent behavior in “edge” nodes (mo-
bile devices, IoT sensors, wearables), which are typically battery-
powered and have limited energy budget and computational power.
Implementing neural networks directly on the device would provide
clear benefits in terms of network bandwidth, response latency and
ultimately energy consumption [1]. This applies in particular to the
inference phase, i.e. the actual classification, whereas the training

can conveniently be left to the cloud, as a unique (or sporadic, in
the case of re-training) task [1, 5] As a result, the energy-efficient
design of neural networks and the development of optimized infer-
ence methods are acquiring a key role for the development of new
applications [4, 6].

In literature, many works have tackled this problem proposing
different solutions [1, 3–15]. However, the great majority of these
works focuses on Convolutional Neural Networks (CNNs), while
only few consider RNNs [6, 14].

One approach that has proven effective for CNNs is to exploit the
trade-off between quality of results (e.g. classification accuracy) and
model complexity. Complexity reductions can be obtained in differ-
ent ways, ranging from bit-width reductions in data and computa-
tions to algorithmic optimizations. Most of these studies propose
static solutions, in which the complexity is kept constant through-
out the whole inference. However, recent works have shown that
a static approach is suboptimal, since for most classification tasks
not all inputs are equally difficult to process. Dynamic solutions
have therefore been devised to exploit this data dependency: here,
the complexity of the model is adapted to the currently processed
data at runtime, based on some metric of the “confidence” of the
output produced by the network [3, 5, 7].

In this work, we take a similar approach, but we apply it for the
first time to RNN models, focusing specifically on encoder-decoder
networks for Neural Machine Translation (NMT). We propose a
method to dynamically tune one of the main parameters of the net-
work, the so-called Beam Width (BW), depending on the currently
processed data. Increasing the BW is beneficial for the quality of
the translations produced by a RNN, but also has a strong impact
on the computational complexity of the inference task. In order
to optimize this trade-off, we propose to monitor the translation
“confidence” in each decoding step, and adapt the BW accordingly.
This allows to reduce the average BW by up to 33% with respect to
a fixed-BW baseline, while producing comparable or even better
outputs. Considering a single-threaded SW implementation of the
target RNNs, i.e. the most common scenario for embedded devices,
this corresponds to a 25% reduction of the average inference execu-
tion time, which in turn translates into significant energy savings
for a fixed translation throughput.

2 BACKGROUND AND RELATEDWORK
2.1 Background
2.1.1 Encoder-Decoder RNNs. A comprehensive description of the
existing types of deep neural network can be found in [16]. Herein,
we only focus on Recurrent Neural Networks based on the encoder-
decoder structure, i.e. the main targets of this work, which are state-
of-the-art models for sequence modeling and translation tasks [2].

Encoder Decoder

Embedding
xi ŷi-1

Embedding

ŷi

hi si

Output Sel.
pihi-1 si-1

Figure 1: Architecture of an encoder-decoder RNN.

A high-level diagram of the architecture of an encoder-decoder
RNN is reported in Figure 1. The Encoder andDecoder blocks contain
two separate neural networks, with one or more layers of neurons
each. The internal structure of these neurons is typically different
from that of feed-forward networks; common models include the
so-called Vanilla RNN, the Gated Recurrent Unit (GRU) and the
Long-Short Term Memory (LSTM). The details of these models are
immaterial for our method, and the reader is referred to [16] for
the details. The Embedding layers at the input of both RNNs are
typical in NMT applications; they are used to map words from the
input/output vocabularies (e.g. English and German in the following
example) onto a compact representation as arrays of floats, while
respecting semantic similarities (i.e. similar words produce similar
embeddings).

To perform a sequence-to-sequence mapping, first the Encoder
and then the Decoder are executed multiple times. This process is
described herein with the terminology of NMT (sentences, transla-
tions, etc.), but the same concepts apply also to other applications.
To translate a sentence, initially the Encoder is iteratively fed with
all input words X = x<1> , ...,x<T > in order. In each iteration, the
Encoder updates its hidden state vector (h), which is then fed-back to
the network in the following step (similar to a FSM). This feedback,
also present in the decoder, provides RNNs with memory and is
their peculiarity with respect to feed-forward networks. When the
last word has been processed, the corresponding Encoder hidden
state contains a fixed-length representation of the input sentence,
generally called context (C).

The context is then used to initialize the hidden state (s) of the
Decoder, whose task is to produce the predicted output sentence
Ŷ = ŷ<1> ,, ŷ<T

′> . Specifically, besides updating its internal
state, the Decoder also produces an output p<i> at every step. This
is an array of the same size as the output vocabulary, containing in
its k-th position the likelihood of a sentence that contains all words
predicted in previous steps, and that has the k-th word from the
vocabulary as its i-th element. This likelihood is conditioned on
the input sentence, represented by the context vector. Mathemati-
cally: p<i> = [p(ŷ<1> , ...ŷ<i−1> ,y<i> = yk |X)],∀k . To model the
dependency on previous predictions, the Decoder is also fed with
the latest predicted word y<i−1> , initialized at NULL in the first
iteration. The block labeled Output Sel. is in charge of selecting
the predicted output word(s) based on the likelihoods in p<i> , as
detailed in Section 2.1.2.

An example of the functionality of this type of RNNs is depicted
in Figure 2a, where horizontal copies of the Encoder and Decoder
represents executions of the same network in different iterations. In
general, input and output sentences may have different lengths, so
their termination is typically signaled by a special End of Sentence

(<EOS>) value. During training, the parameters of the Encoder and
Decoder RNNs are tuned to maximize p(y<1> , ...,y<T ′> |X), where
y<1> , ...,y<T

′> are the elements of the target output sentence [16].
Several variations of this basic scheme have been proposed in or-

der to improve performance. Notable examples include bidirectional
RNNs, in which the hidden state can capture information coming
both from previous and following words and attention-based RNNs,
in which an additional layer is used to weigh the “importance” of
each input element for the generation of a given output [2, 16]. The
detailed description of these advanced models is out of the scope
of this paper.

2.1.2 Beam Search. Basic encoder-decoder RNNs, such as the one
of Figure 2a, produce output sentences using the so-called Greedy
Search algorithm. That is, the predicted word at every iteration is
selected simply as the one that generates the “partial sentence” with
the largest likelihood. While this method produces good-enough
outputs on average, it can be proven mathematically that the most
likely partial sentence at a given decoding step does not neces-
sarily correspond to the beginning of the most likely sentence
overall [16]. Finding the most likely translation is actually a NP-
complete problem, which involves searching through all possible
word combinations. In practice, most real applications of RNNs
utilize an intermediate solution called Beam Search [16]. Rather
than greedily picking a single word, Beam Search considers a fixed
number of most likely partial sentences as translation candidates
in each decoding step; this number is called the Beam Width (BW).
Once the decoding phase has completed (i.e. all sentences in the
“beam” have reached <EOS>), the final translation is selected as
the candidate with the highest joint probability.

An example of Beam Search decoding for BW = 3 is depicted in
Figure 2b, where the encoding phase is not reported, being iden-
tical to that of Figure 2a. As shown, Beam Search corresponds to
expanding a tree of possible translations, adding a level at each
iteration and keeping the number of vertices in each level equal
to BW. The Embedding and Decoder blocks are identical to those
of Figure 2a, but they are both executed BW times per iteration.
The main difference is in the output selection, which now takes the
probabilities generated by the BW Decoder executions, and selects
the words that generate the BW most likely partial sentences. The
latter can be generated by any combination of the decoders, as
shown by the dashed lines in the figure.

2.2 Related Work
A popular approach to improve the energy efficiency of neural
networks inference consists in designing dedicated hardware ac-
celerators for FPGAs [14, 15] or ASICs [3, 6, 8–10]. These designs
combine algorithm-level, architecture-level and circuit-level tech-
niques to optimize the most energy consuming operations in the
network. The vast majority of these solutions, however, focus solely
on feed-forward models and in particular on Convolutional Neural
Networks (CNNs) for image recognition. Despite their importance
from an application perspective, fewer efforts have been devoted
to improving the efficiency of RNNs by acceleration [6, 14].

Despite its effectiveness, hardware acceleration is mostly des-
tined to high-end devices, that can afford specialized SoCs. Vice

2

Encoder Encoder Encoder Encoder

Decoder Decoder Decoder Decoder

Embedding Embedding Embedding Embedding

x1 (I) x2 (love) x4 (<EOS>)x3 (you)

NULL

Embedding Embedding Embedding Embedding

ŷ1 (ich) ŷ2 (liebe) ŷ3 (dich) ŷ4 (<EOS>)

h0 h1 h2 h3

h4 = C

s1 s2 s3

Out. Sel. Out. Sel. Out. Sel. Out. Sel.

(a) Translation example with greedy search.

Dec

Dec
Dec

Dec

ŷ 1
(e

r)

Em
b

Em
b

Em
b

Dec
Dec

Dec

Em
b

Em
b

Em
b

Dec
Dec

Dec

Em
b

Em
b

Em
b

ŷ1 (ich)

ŷ
1 (sie)

ŷ2 (mag)

ŷ2 (liebe)

Etc.

ŷ3 (dich)

Step 1 Step 2 Step 3

ŷ2 (liebe)

Out. Sel.

Out. Sel. Out. Sel.

ŷ3 (ihn)

ŷ3 (sie)

(b) Beam search with BW = 3.

Figure 2: High-level view of an encoder-decoder RNN.

versa, lower-end embedded systems typically execute RNN infer-
ence on general purpose CPUs. While our work focuses on the
latter scenario, the proposed algorithmic optimization is agnostic
of the underlying platform, and would be equally effective even if
applied to the hardware of [6, 14].

At the algorithm level, many studies (again mostly focusing
on feed-forward models) apply approximate computing techniques
to reduce neural networks complexity, exploiting their intrinsic
error resilience, which allows the injection of significant approxima-
tions without dramatically impacting output quality [1, 4, 12, 17].
Common approaches include quantization, i.e. the replacement
of floating-point data with reduced bit-width fixed-point [4, 11]
and pruning, in which redundant computations (e.g. entire neu-
rons) that do not affect output quality are eliminated [12, 13]. The
former approach is brought to the extreme by Binarized Neural
Networks[8, 17] , in which most arithmetic computations are re-
placed by bit-wise operations, while still retaining good output
quality.

All aforementioned works implement static energy-vs-quality
tradeoffs, in which the amount of approximation (e.g. the fixed
point bit-width or the amount of pruning) are decided at design
time. More recently, dynamic approaches have been proposed [3,
5, 7], starting from the observation anticipated in Section 1 that a
static approach may be sub-optimal when inputs are not all equally
hard to process. In such cases, a static network would either over-
approximate complex inputs, hence producing poor results or under-
approximate simple ones, resulting in a waste of energy.

Most dynamic techniques work at the algorithm-level and are
hardware independent. The authors of [7] propose a sort of “Big/Little”
network, in which two CNNs of different size and complexity are
used for an image classification task. When a new input is received,
at first the “Little” (least complex) network is executed. According
to the confidence of the classification produced, the result is com-
mitted as is, or the “Big” network is triggered to provide a more
accurate classification. As long as the larger network is employed
rarely, total energy consumption is reduced. However, the total
model size (number of weights to be stored) increases significantly,
and the training effort is substantially doubled. To cope with these
limitations, in [3], “Little” networks are generated starting from
“Big” ones and using only a portion of each layer. Finally, in [5],
a similar dynamic solution is adopted for tuning the bit-width of

fixed-point operations depending on the considered input com-
plexity. These dynamic approaches are the most similar to our
proposed methodology, yet they are focused on CNNs; to the best
of our knowledge, this work is the first to apply data-dependent
optimizations for energy efficiency on encoder-decoder RNNs.

3 PROPOSED METHODOLOGY
3.1 Motivation: RNNs Execution Time Analysis
In this work, we focus on optimizing the execution of the inference
process on single thread CPUs, i.e. the most common computational
devices available in edge nodes. As mentioned in Section 2, en-
coding and decoding in RNNs are iterative processes, involving
multiple calls to the same network. Since each step involves the
same operations, the power consumption of a CPU will remain ap-
proximately constant throughout each phase. Therefore, the most
straight-forward way to improve the energy efficiency of the net-
work at the algorithm level is to reduce its execution time.

Based on the analysis of Section 2.1.2, the BeamWidth parameter
is expected to strongly influence the overall execution time of the
decoding phase. In fact, a BW of k corresponds to performing the k
decoding operations at each step (Figure 2b); in a single-threaded
CPU, these k executions must be carried out sequentially. Typical
values of BW found in state-of-the-art models are in the range
of 3 to > 5 [18]. Consequently, reducing the BW configures as a
promising way to speed up the entire network execution.

To confirm this intuition, we have characterized the dependency
on BW of the execution time of two complex RNN models for
NMT applications; the networks and the experimental platform
are presented in more detail in Section 4. This experiment has
been performed on a single core and with a batch size of 1 (i.e.
no concurrent processing of multiple sentences) to simulate an
embedded scenario. Results are reported in Figure 3, where the
vertical axes of the two graphs report the average execution time
per sentence over the entire validation subsets, normalized to the
result of greedy decoding (i.e. BW=1).

A first observation is that the execution time of the encoding
phase, which is expectedly independent from BW, is also negligi-
ble with respect to decoding. This gives even more value to the
choice of BW as our target. Vice versa, the decoder accounts for a
significant portion of the total execution in both networks, and is

3

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

1 2 3 4 5N
or

m
al

iz
ed

 E
x.

 T
im

e/
Se

nt
en

ce

Beam Width

Encoder
Decoder
Entire RNN

(a) EN-DE

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

1 2 3 4 5N
or

m
al

iz
ed

 E
x.

 T
im

e/
Se

nt
en

ce

Beam Width

Encoder
Decoder
Entire RNN

(b) DE-EN

Figure 3: CPU execution time vs. BeamWidth for two RNNs.

significantly influenced by BW. The dependency is not perfectly
linear due to optimizations in the adopted computational frame-
work; nonetheless, going from BW=1 to BW=5 causes an increase
of 84% (EN-DE) and 87% (DE-EN) in the total execution time of the
networks.

3.2 Input-Dependent BeamWidth Tuning
In standard implementations of encoder-decoder RNNs, the Beam
Width is kept constant throughout the inference phase. Therefore,
this parameter is typically chosen conservatively, so that good
enough translations are generated even for the most complex sen-
tences. In consideration of the results presented in Section 3.1,
however, the BW should be reduced as much as possible to contain
the inference computational cost.

In order to do so without sacrificing translation performance, we
propose a novel dynamic Beam Search algorithm, in which the BW
is varied according to the evolution of a translation. This allows the
network to self-tune, at each step, the effort required to produce
a good translation. Our method is based on the intuitive concept
that not all inputs, sentences or part of them, are equally difficult
to translate. For easier, unambiguous sentences, a small BW could
be sufficient, and vice versa.

More specifically, we propose to evaluate the outputs of the de-
coder at each step, and use them as an indicator on how to adjust
the Beam Width for the following step. As explained in Section 2.1,
decoder outputs represent the likelihoods of partially formed sen-
tences. Therefore, their distribution can provide information on
the difficulty of a translation. When there are one or few highly
likely partial sentences, one of them is probably going to corre-
spond to the final correct output; hence, there is no need to keep
many elements in the beam, and BW should be reduced. Vice versa,
when the highest likelihoods are all similar (indicating that the
network is striving to select a word, e.g. among verbs with different
tenses or synonyms), BW should be increased to avoid losing the
correct output in favor of partial sentences with higher temporary
probability. The details of our proposed policy for mapping decoder
outputs to the next BW are presented in Section 3.3.

Figure 4 shows an example of the proposed Dynamic Beam
Search, where the blocks labeled Out. Sel. + Policy encompass the
selection of the predicted word(s) and of the next BW. For example,
during Step 2, the decoder may have produced an output with much
higher probability than all others, so the policy sets a BW of 1. Then,

in Step 3, the distribution of the likelihood is more uniform, so the
policy increases the BW to 3.

Dec

Dec
Dec

ŷ1 (ic
h)

Em
b

Em
b

Dec

Em
b

Dec
Dec

Dec

Em
b

Em
b

Em
b

ŷ
1 (sie)

ŷ2 (liebe)

Etc.

ŷ3 (dich)

Step 1 Step 2 Step 3

Out. Sel.
+ Policy

ŷ3 (ihn)

ŷ3 (sie)

Out. Sel.
+ Policy

Out. Sel.
+ Policy

Figure 4: Dynamic Beam Search example.

With this dynamic strategy, we aim at reducing the execution
time of the Decoder, while producing comparable or even better
results with respect to a standard implementation using a fixed
BW. Notice that, although this idea is inspired by previous work on
CNNs [3, 5, 7], the knob used to adapt the complexity versus per-
formance trade-off (i.e. the BW in our case) is completely different,
as well as the proposed decision policy and off course the type of
neural network.

3.3 Beam-Width Selection Policy
Many different policies can be used to map the decoder outputs
to a value of BW. In this work, we introduce a simple yet effec-
tive approach based on analyzing the distribution of the largest
likelihoods; more advanced policies will be object of future work.

The proposed policy considers at each steps the top-k scores pro-
duced by the decoder, where k = BWmax is the maximum allowed
BW and is a parameter of the algorithm. The standard deviation σ
of these scores is then computed to evaluate their dispersion; large
values of σ correspond to large differences among the top-k scores,
and therefore will be mapped to smaller values of BW, and vice
versa. Specifically, the mapping is performed using a piece-wise
linear equation having σ as the independent variable, shown in
Figure 5.

BWmax

σmin

BWmin

σmax σ

BW

Figure 5: BeamWidth selection policy.
Between a minimum and a maximum standard deviation value

(σmin and σmax) BW is decreased proportionally to the increase
of σ (red diagonal curve). Clearly, BW can not assume fractional
values, hence it is rounded to the nearest integer, producing the
blue stair-like curve. For values of σ smaller than σmin or larger
than σmax , the BW is saturated to BWmax and BWmin respectively.

The range of allowed Beam Widths can be set depending on the
target application: a reasonable value for BWmin is 1 (although this

4

is not mandatory), whereas BWmax can be set to any value typi-
cally adopted in the target domain. For identifying good minimum
and maximum values for σ , instead, designers should collect the
standard deviation of the top-k likelihoods produced by the original
(fixed BW) network when inferring on representative data. The dis-
tribution of these standard deviations can provide a good starting
point for exploring the parameters space. For example, selecting as
initial σmin the 5-th percentile of the collected standard deviations
corresponds to using BWmax only in the ≈5% most difficult cases;
similarly, a σmax equal to the 50-th percentile corresponds to using
BWmin in ≈50% iterations. Tuning these parameters requires some
exploration, which however can be done offline using multi-core
CPUs or GPUs.

4 EXPERIMENTAL RESULTS
4.1 Setup
We have tested our methodology on two complex encoder-decoder
RNNs for NMT applications, using the OpenNMT framework in its
PyTorch implementation [18]. This choice was motivated by the
fact that the dynamic computational graph model of PyTorch makes
it easier than in other frameworks to dynamically change the BW
at runtime. The two selected RNNs perform English to German
(Deutsch) and German to English translation, and are hereafter
referred to as EN-DE and DE-EN respectively. Both networks are
made available by OpenNMT online as pre-trained models. The
EN-DE network is composed of a total of 6 layers, each composed
of 512 LSTM neurons, whereas the DE-EN network is composed
of 2 layers of 500 LSTM neurons. More details on the network
architectures and datasets can be found in [18]. The default Beam
Width for both models is set to 5.

Parameter explorations have been performed on a workstation
equipped with a NVIDIA Titan XP GPU, whereas the measurement
of execution times with and without our dynamic Beam Width
mechanism have been performed on a laptop equipped with an
Intel Core i7 CPU and 32GB of RAM. This choice is due to the
fact that no porting of the OpenNMT framework onto embedded
devices is currently available. However, in order to get a more ac-
curate estimate of the execution times benefits obtainable on an
embedded node, we have constrained all executions to use only
one CPU thread and a batch size of 1. Therefore, while absolute
execution times collected would not be representative of the actual
implementation on an embedded CPU, relative trends should be
a reasonable proxy. All tests have been performed on the valida-
tion sets of each network. Translation quality has been evaluated
using two common machine translation scores, i.e. the BiLingual
Evaluation Understudy (BLEU) and the Perplexity (PPL) [16].

4.2 Comparison with Fixed BeamWidth
As we do not have dynamic BW tuning methods to compare against,
we use as reference a standard RNN inference using a fixed Beam
Width. Specifically, we have compared against BWs ranging from 1
(greedy) to 5.

The results of this comparison are shown in Figure 6. For each
RNN we report three graphs; the leftmost two show the trade-off
among the average inference execution time per sentence over the
validation set, and the average BLEU and PPL scores. Execution

times are normalized to the one of the original network with BW =
1. The rightmost graph shows on the horizontal axis the average
Beam Width over all decoding iterations. For fixed BW inference,
this value simply corresponds to the selected BW, whereas for
our method, it is the result of the choices made by the mapping
policy. This plot has particular relevance since it reports a platform-
independent result, which does not depend on the target CPU.
Similar plots for the PPL score are not reported for sake of space.

As expected, on the original network (blue curve), increasing the
BW generally has a positive effect on both BLEU (for which larger
is better) and PPL (smaller is better). It is worth emphasizing that,
although the absolute differences in the two scores for the extremes
of the range (BW=1 and BW=5) appear to be relatively small, they
correspond to significant improvements of the translation quality.
As a matter of fact, most state-of-the-art models use BW in the
range 3 to 5, indicating that even such small improvements in
the metrics are relevant. However, even a small increase of these
metrics requires a large increase of execution time. For instance,
for the EN-DE network, increasing the BLEU of 0.6 requires a 40%
longer execution on average (from BW=1 to BW=2). In contrast,
our proposed dynamic BW tuning allows to obtain many more
fine-grain settings. This is shown by the orange triangles in the
figure, which correspond to some of the Pareto points obtainable by
experimenting with policy parameters. The numerical values of the
selected parameters (BWmin, BWmax, σmin and σmax, described in
Section 3.3) and the corresponding results are reported in Table 1.

RNN BWmin/
BWmax

σmin /
σmax

Avg.
BW

Ex.
Time BLEU PPL

EN-DE

1/2 0.1/2.2 1.36 1.13 32.45 1.568
1/2 0.1/3.1 1.55 1.17 32.70 1.563
1/3 0.1/1.7 1.48 1.13 32.58 1.564
1/3 0.1/3.1 2.02 1.37 32.80 1.554
2/4 0.1/1.7 2.27 1.40 32.94 1.552
2/4 0.1/1.3 2.77 1.51 33.02 1.545
2/5 0.1/1.7 3.33 1.59 33.13 1.543

DE-EN

1/2 0.1/2.2 1.51 1.17 31.16 1.623
1/2 0.1/3.1 1.69 1.22 31.38 1.612
1/3 0.1/2.2 1.88 1.27 31.48 1.605
1/3 0.1/3.1 2.19 1.34 31.61 1.596
2/4 0.1/0.6 2.35 1.34 31.69 1.600
2/4 0.1/1.7 2.86 1.51 31.79 1.590
2/5 0.1/1.7 3.59 1.54 31.80 1.586

Table 1: Numerical results.

Most importantly, the figure shows that our method allows to
consistently achieve a better trade-off compared to a fixed BW so-
lution, thanks to the fact that the BW is automatically tuned to the
“difficulty” of the current translation. In practice, comparable or
even better performance can be achieved (according to both scores)
while requiring a lower BW on average. For example, for the EN-DE
model, an average BW=3.33 is sufficient to reach a BLEU score of
33.13, superior even to the one achieved by the standard network
with BW=5 (33% reduction). On the target platform, this causes
a reduction of the average execution time of ≈25%, for the same
performance. Similarly, on the DE-EN network, a PPL of 1.61 is
obtained with an average BW of 1.69 as opposed to a fixed BW of 2,
causing an execution time reduction of ≈11%. As mentioned in Sec-
tion 3, these execution time reductions correspond to proportional
energy savings.

5

32

32.2

32.4

32.6

32.8

33

33.2

1 1.2 1.4 1.6 1.8 2

Av
er

ag
e

BL
EU

Normalized Ex. Time per Sentence

1.53

1.54

1.55

1.56

1.57

1.58

1.59

1.6

1 1.2 1.4 1.6 1.8 2

Av
er

ag
e

PP
L

Normalized Ex. Time per Sentence

32

32.2

32.4

32.6

32.8

33

33.2

1 2 3 4 5

Av
er

ag
e

BL
EU

Average Beam Width

Fixed BW

Proposed

(a) EN-DE

30.8

31

31.2

31.4

31.6

31.8

32

1 1.2 1.4 1.6 1.8 2

Av
er

ag
e

BL
EU

Normalized Ex. Time per Sentence

1.58
1.59

1.6
1.61
1.62
1.63
1.64
1.65
1.66
1.67

1 1.2 1.4 1.6 1.8 2

Av
er

ag
e

PP
L

Normalized Ex. Time per Sentence

30.8

31

31.2

31.4

31.6

31.8

32

1 2 3 4 5

Av
er

ag
e

BL
EU

Beam Width

Fixed BW

Proposed

(b) DE-EN

Figure 6: Comparison with a fixed BeamWidth approach.

5 CONCLUSIONS
We have proposed a methodology for reducing inference complex-
ity in an encoder-decoder RNN, by dynamically tuning the Beam
Width depending on the currently processed input. By applying
this technique, we have been able to significantly speedup the
translation process (hence also reducing its energy consumption)
while achieving comparable or even better output quality. Impor-
tantly, our approach can be applied to existing networks without
re-training. In future work, we plan on experimenting with more
policies for setting the Beam Width, and on integrating our ap-
proach with other knobs for exploring the energy-quality trade-off
(e.g. quantization).

REFERENCES
[1] V. Sze et al., “Efficient processing of deep neural networks: A tutorial and survey,”

Proc. of the IEEE, vol. 105, no. 12, pp. 2295–2329, 2017.
[2] A. Vaswani et al, “Attention is all you need,” Proc. NIPS, 2017, pp. 5998–6008.
[3] H. Tann et al., “Runtime configurable deep neural networks for energy-accuracy

trade-off,” Proc. IEEE/ACM CODES + ISSS, 2016, pp. 1–10.
[4] B. Moons et al., “Energy-efficient convnets through approximate computing,”

Proc. IEEE WACV, 2016, pp. 1–8.
[5] D. Jahier Pagliari, E. Macii, and M. Poncino, “Dynamic bit-width reconfigura-

tion for energy-efficient deep learning hardware,” Proc. IEEE/ACM ISLPED, 2018,
pp.47:1–47:6.

[6] F. Silfa et a., “E-pur: An energy-efficient processing unit for recurrent neural
networks,” arXiv:1711.07480, 2017.

[7] E. Park et al, “Big/little deep neural network for ultra low power inference,” Proc.
IEEE/ACM CODES + ISSS, 2015, pp. 124–132.

[8] R. Andri et al., “Yodann: An architecture for ultralow power binary-weight cnn
acceleration,” IEEE TCAD, vol. 37, no. 1, pp. 48–60, 2018.

[9] J. Zhu et al., “Sparsenn: An energy-efficient neural network accelerator exploiting
input and output sparsity,” Proc. DATE, 2018, pp. 241–244.

[10] Y. Chen, J. Emer and V. Sze, “Eyeriss: A Spatial Architecture for Energy-Efficient
Dataflow for Convolutional Neural Networks,” Proc. ACM/IEEE ISCA, 2016, pp.
367–369.

[11] F. Sun, J. Lin and Z. Wang, “Intra-layer nonuniform quantization of convolutional
neural network”, Proc. WCSP, 2016, pp. 1-5.

[12] T. Yang, Y. Chen and V. Sze, “Designing Energy-Efficient Convolutional Neural
Networks Using Energy-Aware Pruning,” Proc. IEEE CVPR, 2017, pp. 6071–6079.

[13] Y. Guo, A. Yao and Y. Chen, “Dynamic Network Surgery for Efficient DNNs”,
Proc. NIPS, 2016, pp. 1379–1387.

[14] C. Gao et al., “DeltaRNN: A Power-efficient Recurrent Neural Network Accelera-
tor,” Proc. ACM FPGA, 2018, pp. 21–30.

[15] C. Zhang et al, “Optimizing FPGA-based accelerator design for deep convolutional
neural networks,” Proc. ACM FPGA, 2015, pp. 161–170.

[16] G. Ian, B. Yoshua, and C. Aaron, Deep Learning, MIT Press, 2016.
[17] I. Hubara et al, “Binarized neural networks,” Proc. NIPS, 2016, pp. 4107–4115.
[18] G. Klein et al, “OpenNMT: Open-source toolkit for neural machine translation,”

arXiv:1701.02810, 2017.

6

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 Proposed Methodology
	3.1 Motivation: RNNs Execution Time Analysis
	3.2 Input-Dependent Beam Width Tuning
	3.3 Beam-Width Selection Policy

	4 Experimental Results
	4.1 Setup
	4.2 Comparison with Fixed Beam Width

	5 Conclusions
	References

