
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Convolutional Neural Network Fully Implemented on FPGA for Embedded Platforms / Bettoni, Marco; Urgese,
Gianvito; Kobayashi, Yuki; Macii, Enrico; Acquaviva, Andrea. - ELETTRONICO. - (2017), pp. 49-52. (Intervento
presentato al convegno New Generation of Circuits and Systems NGCAS 2017 tenutosi a Genova nel 7-9 September
2017) [10.1109/NGCAS.2017.16].

Original

A Convolutional Neural Network Fully Implemented on FPGA for Embedded Platforms

Publisher:

Published
DOI:10.1109/NGCAS.2017.16

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2687168 since: 2020-10-21T10:52:15Z

IEEE

A Convolutional Neural Network Fully
Implemented on FPGA for Embedded Platforms

Marco Bettoni∗, Gianvito Urgese∗, Yuki Kobayashi†, Enrico Macii∗, and Andrea Acquaviva∗
∗ Politecnico di Torino, Torino, Italy, 0039 011 090 7042. Email: gianvito.urgese@polito.it

† NEC Corporation, Kawasaki, Japan. Email: y-kobayashi@hq.jp.nec.com

Abstract—Convolutional Neural Networks (CNNs) allow fast
and precise image recognition. Nowadays this capability is highly
requested in the embedded system domain for video processing
applications such as video surveillance and homeland security.
Moreover, with the increasing requirement of portable and
ubiquitous processing, power consumption is a key issue to be
accounted for.

In this paper, we present an FPGA implementation of CNN
designed for addressing portability and power efficiency. Perfor-
mance characterization results show that the proposed imple-
mentation is as efficient as a general purpose 16-core CPU, and
almost 15 times faster than a SoC GPU for mobile application.
Moreover, external memory footprint is reduced by 84% with
respect to a standard CNN software application.

I. INTRODUCTION

In this paper, we propose the design of a hardware architec-
ture implementing a customizable Convolutional Neural Net-
work (CNN) framework where several CNN schemas can be
configured and executed. We analyzed the CNN computational
flow for identifying the most critical points to be parallelized in
the FPGA implementation. We described the CNN framework
architecture using a High Level Synthesis (HLS) language and
tested the new HW-CNN module on an Altera Stratix V FPGA
embedded in a Terasic DE-5-Net board.

The CNN algorithm performs fast and precise image recog-
nition, which is a highly requested feature in the context of
embedded systems. The biggest involvement of this type of
algorithms can be found in the Artificial Intelligence field,
bringing contribution to numerous applications, such as in
fire detection in forests [1], robotics [2], autonomous driving
[3] and mobile applications [4]. In this latter domain, battery
lifetime and memory resources are a serious concern for CNN
implementations.

Several CNN models are available in the literature for
general purpose applications. In 2012, Alex-Net Model [5]
has been the first efficient application of the CNN and lately
more accurate models have been proposed, such as GoogLe-
Net [6] featuring the Inception concept and Fast R-CNN [7]
with advanced capabilities for detecting the position of the
subject in the picture.

For teaching the CNN to recognize defined objects, the
network needs to be Trained. During the Training Phase, a set
of labeled images is used for generating the set of parameters
to be applied in the neural network. By means of the Test
Phase, the capability of the network to identify and classify
the pictures is evaluated.

The chosen model defines how to perform the training and
the computation involved during the test, specifying parame-
ters and functions to be used for CNN recognition. The CNN
flow is summarized as follows:
• Convolution: The matricial convolution operator is applied

over the feature maps of the Input image, such as the RGB
color channels. The computation is shown in Equation 1,
where O is the number of Output feature maps of size H×
W , I is the number of Input feature maps, and K ×K is
the size of the Kernel, which is the convolution operand
obtained from the training.

Out[O][H][W] = ΣI
i=0ΣK

kh=0ΣK
kw=0

In[i][H + kh][W + kw] ×Kernel[O][i][kh][kw] (1)

• Activation: A threshold function which is applied on the
convolution output. The ReLU(x) = max(0, x) function
is widely adopted, but others are common as well, such as
Tanh and Sigmoid.

• Pooling: The average or maximum value over an input re-
gion is evaluated, generating a resized image representative
of the pool values. Equation 2 shows the Pooling by Average
operation, where Ph× Pw is the pooling window size.

Out[O][H][W] = (ΣPh
ph=0ΣPw

pw=0

In[O][H + ph][W + pw])/Ph/Pw (2)

• Fully-Connected (FC): Implemented at the end of a CNN,
the FC layers provides the classification of the features
extracted by convolution. The FC layers are implemented
as in Equation 3:

Out[O] = ΣI
i=0In[i] ×Kernel[O][i] (3)

Fig. 1: Convolution process representation. The magnifications are
representative of the CNN edge-detection.

The Alex-Net model is used as a reference in this work,
since it performs an accurate recognition (84.7% Top-5 ac-
curacy) and it is generally used as a benchmark for CNN
implementations. This model includes 5 Convolutional Layers
followed by 3 FC Layers, and makes use of both Activation
and Pooling, requiring in total nearly 1.5 billions operations.

Figure 1 shows an example of the Alex-Net model used
to set-up our HW-CNN architecture running on the FPGA.
The RGB channels of an image are provided as inputs and
processed by the following 8 layers. The intermediate images
are shown, highlighting the edge-detection capability of the
CNN.

A common approach for CNN acceleration exploits GPU
cards, able to perform recognition over several hundreds of
images per second [8]. An alternative state-of-art approach
leverages on FPGA for matricial convolution acceleration
while the other computation steps are performed on a general
purpose CPU [9].

In this paper we proposed a CNN fully implemented
in FPGA, which executes Convolution, Activation, Pool-
ing and FC layers. More specifically, the proposed so-
lution named HW-CNN has the following characteristics:

• Standalone Implementation, (no GPU, no CPU);
• Power efficient CNN computation;
• Low FPGA resources and memory dependency;
• Software reprogramming for CNN model compliance.

To characterize the proposed implementation, we performed
comparative performance and power evaluations against a
software version running on a general purpose CPU and a
mobile SoC GPU. Memory utilization results are also reported.
Overall, the results show that the proposed implementation
is power efficient and lend itself to be adopted in mobile
application with stringent power and resource requirements.
The rest of the paper is organized as follows: a description
of the internal implementation (Section II), the performance
and obtained results (Section III) and finally the conclusion
(Section IV).

II. IMPLEMENTATION

The developed architecture can be configured for execute all
the steps of a CNN model defined by users. Thus, it can be
entrusted for computing recognition of a picture or a video-
stream. The HW-CNN allows great compatibility with any
CNN model because the CNN parameters can be reconfigured
in software. For computing a classification, the input image
is passed from an external communication interface (LAN or
Serial connection). Then, the HW-CNN compute all the CNN
steps generating a list of recognition decision that is sent back
to the host. The recognition is completely performed on the
FPGA, which requires a DDR-RAM to store the raw input
image and the intermediate results.

A. FPGA Implementation

We developed the HW-CNN implementation using the NEC
CyberWorkBench HLS compiler (CWB) [10], exporting the

Fig. 2: CNN Pipeline. The data-flow pass through the DL, CV, AT,
PL, UL Units, all controlled by the CU. A double buffering system
is implemented as PP buffers, allowing concurrent operation on the
picture tiles.

component described in pseudo-C to an RTL format.
We implemented a parallel version of a general and cus-

tomizable CNN architecture. For this purpose, we used two
parallelization techniques: the Tiling Technique designed by
Zang et al. [9] and the Pipelining Technique commonly
implemented for data stream elaborations.

The Tiling Technique has been exploited to overcome the
data dependency of the CNN calculation, which, due to the
massive recurrence of the data, does not allow to fit the FPGA
internal memory. The input image is therefore fragmented
in tiles smaller than the original picture, and the CNN can
performed by computing each tile individually. The biggest
advantage of performing the tiling technique on an FPGA is
the significant parallelization degree achievable by computing
several tiles efficiently on the hardware logic. In our HW-
CNN implementation, up to 8 tiles of size 32× 32 pixels are
computed in parallel.

The Pipeline is composed of 5 units: Download (DL),
Convolution (CV), Activation (AT), Pooling (PL) and Upload
(UL), which perform the homonyms functions. The scheduling
of the function is managed by the Control Unit (CU), which
generates the parameters for each unit depending on the CNN-
Model size and structure.

This configuration is shown in Figure 2. The computation
flow passes through all the units from DL to UL, where the
extremes are dedicated to the data transfer with the on-board
RAM. In order to avoid the data hazard existing between
two consequent unit, a double buffering [11] system has
been adopted, implementing the Ping-Pong Technique already
exploited in [9]. The buffer duplication prevents the units to
read uncompleted data, or to update data which has not been
elaborated yet. In the successive pipeline stage, the CU unit
swaps the data by means of control logic depicted in the Ping
Pong (PP) Buffer of Figure 2.

B. Convolution Unit

The core of the CNN computation is the CV Unit, where
both Convolution and Fully-Connected layers are computed.

Fig. 3: Convolution Unit (CV) schema. The iI matrices on the left
side are the Input tiles, the oO matrices in the right side are the
Output tiles and the Ko,i are the Kernel matrices.

The convolution operator requires to perform a considerable
amount of MAC operations, which is proportional to the
Neural Network size and the image resolution. The HW-CNN
implementation optimizes this computation by parallelizing 24
times the MAC operator.

In Figure 3 is represented the CV schema of the HW-
CNN implementation, where it is possible to notice the MAC
parallelization of I Input tiles and O outputs.

The CV Unit has been efficiently optimized by an internal
scheduling which avoids idleness among the CV components.
In fact, for the MAC computation, data must be acquired by the
input buffer, and after the operation, stored in the output buffer.
The process has been internally pipelined for guaranteeing that
the address calculation, MAC execution, buffer reading and
writing were performed in a single clock cycle. This internal
pipelining has been efficiently coded by means of the CWB
automatic pipelining feature, and proved on the real hardware
with the scheduling shown in Figure 4.

The CV operation is repeated for each pixel that compose
the Output tile. The loop logic has been hard-coded for the
Twidth × Theight dimension of the Output tile. Eventually,
Equation 4 computes the number of clock cycles necessary
to the CV unit to complete a CNN stage, which depends on
the kernel size K×K, the Output tile size and the CV internal
pipeline latency Tpl.

CVtime = Tpl + K2 × Twidth × Theight (4)

Fig. 4: Convolution Unit internal pipeline.

III. RESULTS AND DISCUSSIONS

We configured the HW-CNN with the Alex-Net model structure
and parameters used in the Cong work [9]. The following eval-
uation has been compared with a software implementation, since
the FPGA-based implementation [9] found in literature reports only
performances the CNN steps computed on FPGA and not considering
all the other steps executed on the host. Thus making impractical a
direct comparison between the two architectures. We tested the per-
formances by comparing different CNN software implementations:
an optimized C code designed by Zhang et al. [9], the Caffe Python
Library working in CPU-only mode (without GPU parallelization)
[12] and, for the GPU mobile comparison, the clBLAS OpenCL
library which has been evaluated by Lokhmotov et al. [13].

A. Timing and Power Results
For the timing performances, we considered the time required to

compute an image recognition. The time required by our HW-CNN is
reported in Figure 5a where it is compared with the Caffe execution
over an Intel Xeon CPU E5-2630 v3 @ 2.40GHz 32-CPU and with
the clBLAS library tested on an ARM Mali-T628 GPU.

For the power comparison, the Performance per Watt unit has
been used, a value obtained by the Equation 5 where the number
of operations executed by the device is considered, altogether with
the Thermal Device Power in Watt.

Performance per Watt =
Operations

T ime× Power
(5)

The aim of this comparison is to give an idea of the different
timing performances, considering the discrepancies in terms
of hardware and level of portability. We designed the HW-
CNN module with the clear intent to reduce at minimum the
hardware requirements, while relaxing the timing constraint to
a reasonable value, still bearable for the mobile user. On the
other side, the FPGA adoption brings a speed-up by almost
15 times over the SoC GPU.

Table I reports the CNN power efficiencies of the considered
implementations. The general purpose CPU values have been
extracted from [9], where the results has been obtained by
executing an optimized CNN code on an Intel Xeon CPU E5-
2430 (@2.20GHz).

This comparison shows that running the Alex-Net Model
on the FPGA using our HW-CNN architecture is as power
efficient as the CPU implementation running on 16 threads
and almost 3 times more efficient than the software exe-
cution without parallelization. The comparison with mobile

(a) Time Performances (b) Memory Reduction

Fig. 5: In 5a are compared the recognition times over a CPU, on the
FPGA implementation and a SoC GPU, highlighting the performance
cost for the sake of portability. 5b compares the RAM memory
requirements, where the FPGA makes efficient use of on-chip data
compared with the other software implementations.

TABLE I: Power performances.

OP/s Power Perf. per Watt
Device [GOP/s] [W] [GOP/s/W]
GPU Mobile OpenCL [13] 0.02 3 0.007
CPU single thread [9] 3.54 95 0.037
CPU 16-threads [9] 12.87 95 0.135
FPGA HW-CNN [This work] 0.75 5.54 0.135

hardware shows that the current mobile implementation of
CNN are outperformed by the FPGA by more than a 19×
factor. This demonstrates the effectiveness of the low-power
FPGA computation, and the possibility to adopt similar CNN
implementation for mobile applications where battery life is
the major constrain.

B. Resource usage

The percentage of required FPGA resources is reported
in Table II. The synthesis report shows that few resources
have been implemented, allowing the architecture to fit more
compact FPGAs, such as the Xilinx Zynq. The most required
is the on-chip memory, which has been exploited for the main
purpose of caching the intermediate CNN results on FPGA.

TABLE II: FPGA Resources.

Resource Stratix V - FPGA Chip Usage
Logic 65,463 ALMs (28%)

Register 3.5kB (3%)
DSP 104 blocks (41%)

Memory 4,752kB (73%)

The memory necessary on the on-board DDR RAM is
greatly reduced, as it is shown in Figure 5b. The chart reports
the comparison of RAM memory requirements for performing
the Alex-Net model on both FPGA and software. The values
are motivated by the fact that during the CNN execution, the
intermediate results are stored in the PP buffers along the
pipeline, rather than transferred to the RAM memory.

The reduced amount of external Memory and FPGA re-
sources are significant figures for encourage the adoption of
HW-CNN-like architectures in mobility applications. While
this allows the implementation to be placed on smaller FPGA
or silicon component, the architecture can be easily adapted
to fit the smallest FPGA devices, exploiting the versatility of
the HLS synthesis coupled with the modular programming
technique.

IV. CONCLUSION

In this paper we propose a Convolutional Neural Network
(CNN) fully implemented in FPGA, that enables image recog-
nition in low-power embedded systems with limited resources.
This features have been made feasible by extending state-
of-the-art implementations where only the convolution step
is accelerated on FPGA, with the modular addition of extra
functionalities. This modularity guarantees compliance with
existing CNN models, but also the possibility to easily intro-
duce new functionalities.

The experiments show that our HW-CNN can quickly per-
form image recognitions, outperforming the reference SoC

GPU in both terms of timing (15×) and power (16×). The
proposed implementation is even 3 times more power efficient
with respect to the reference CPU, and equivalently efficient
to the same CPU parallelized 16 times. Moreover, the require-
ment of an external memory has been reduced by 83%, when
compared to the software version of CNN.

Finally, this architecture has been designed to allow software
reconfiguration, which allows the user to apply various CNN
model and to efficiently test the same picture against different
trained data and recognized classes.

ACKNOWLEDGMENTS

The HLS compiler and the technical support was provided
by NEC Corporation, Japan.

REFERENCES
[1] Qingjie Zhang et al. “Deep Convolutional Neural Networks for Forest

Fire Detection”. In: 2016 International Forum on Management, Edu-
cation and Information Technology Application. Atlantis Press. 2016.

[2] Lei Tai and Ming Liu. “Deep-learning in Mobile Robotics-from
Perception to Control Systems: A Survey on Why and Why not”. In:
arXiv preprint arXiv:1612.07139 (2016).

[3] Mariusz Bojarski et al. “End to end learning for self-driving cars”. In:
arXiv preprint arXiv:1604.07316 (2016).

[4] Ryosuke Tanno and Keiji Yanai. “Caffe2C: A Framework for Easy
Implementation of CNN-based Mobile Applications”. In: Adjunct
Proceedings of the 13th International Conference on Mobile and
Ubiquitous Systems: Computing Networking and Services. ACM. 2016,
pp. 159–164.

[5] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet
classification with deep convolutional neural networks”. In: Advances
in neural information processing systems. 2012, pp. 1097–1105.

[6] Christian Szegedy et al. “Going deeper with convolutions”. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2015, pp. 1–9.

[7] Shaoqing Ren et al. “Faster r-cnn: Towards real-time object detection
with region proposal networks”. In: Advances in neural information
processing systems. 2015, pp. 91–99.

[8] NVIDIA. GPU-Based Deep Learning Inference. URL: https:/ /www.
nvidia . com / content / tegra / embedded - systems / pdf / jetson tx1
whitepaper.pdf (visited on 01/18/2017).

[9] Chen Zhang et al. “Optimizing fpga-based accelerator design for
deep convolutional neural networks”. In: Proceedings of the 2015
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. ACM. 2015, pp. 161–170.

[10] Kazutoshi Wakabayashi. “CyberWorkBench: Integrated design envi-
ronment based on C-based behavior synthesis and verification”. In:
VLSI Design, Automation and Test, 2005.(VLSI-TSA-DAT). 2005 IEEE
VLSI-TSA International Symposium on. IEEE. 2005, pp. 173–176.

[11] Wikipedia. Multiple buffering. URL: https : / / en .wikipedia .org /wiki /
Multiple buffering (visited on 02/28/2017).

[12] Evan Shelhamer Yangqing Jia. Caffe - Deep learning framework by the
BVLC. URL: http://caffe.berkeleyvision.org (visited on 01/20/2017).

[13] Anton Lokhmotov and Grigori Fursin. “Optimizing convolutional neu-
ral networks on embedded platforms with OpenCL”. In: Proceedings
of the 4th International Workshop on OpenCL. ACM. 2016, p. 10.

