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Abstract
We present an optimal hybrid control approach to the problem of stochastic route
planning for sailing boats, especially in short course fleet races, in which minimum
average time is an effective performance index. We show that the hybrid setting is
a natural way of taking into account tacking/gybing maneuvers and other discrete
control actions, and provide a practical example of a hybrid model for this problem.
Moreover, we carry out a numerical validation of the approach and show that results
are in good agreement with theoretical and practical knowledge.

Keywords Hybrid systems · Optimal control · Route planning

Mathematics Subject Classification 93E20 · 65C20 · 65N06

1 Introduction

In the last decades, the sport of sailing has experienced an increasing impact of new
technologies and notably of scientific computing. Among all computational problems
relevant for sailing, we focus here on route planning and race strategy, i.e., the opti-
mization of the yacht route.

In the most typical and basic form, the route planning problem requires reaching
a windward mark in minimum time within a variable wind field. According to the
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Fig. 1 (left) Evolution of the wind observed during a race (thickened plot the average over 180s) (left).
Upwind tacking: to go from the Leeward to the Windward mark it is not possible to point directly to the
target (right)

previous literature and experimental evidence, this problem is approached from a
stochastic viewpoint, in which the wind field is modeled as having both a deterministic
and a stochastic component [1]. Even having a reliable forecast of its evolution, the
wind field is affected by random fluctuations (Fig. 1, left) that represent a crucial part
of the problem.

Among the various tools, used to tackle the route planning problem,wewill concen-
trate on dynamic programming, which is the basis for some state-of-the-art techniques.
A discrete Markov chain approximation of the stochastic route planning problem has
been proposed, for example, in [2], based on an assumption ofMarkovian behavior for
the wind model, and similar ideas are also developed in [3–5]. The common feature of
these techniques is to be conceived from the very start in discrete form. On the other
hand, a continuous stochastic control model has been developed in [6], in which the
optimal strategy, at least in a simplified setting, is characterized via a switching curve,
resulting from the solution of a free boundary problem. We also quote [7,8], which
address the modeling and racing strategy for the specific case of match races, but also
provide an excellent review of the relevant literature.

The velocity of a sailing boat is usually characterized via the so-called polar plot
(see Sect. 3), which shows, at fixed wind speed, the boat velocity as a function of the
angle between the boat direction and the wind direction (true wind angle or TWA)
and speed (true wind speed or TWS). In every polar plot, the boat speed goes to zero,
when pointing in the direction of the wind; this implies that, when there is a change
of direction while passing through the zero TWA (i.e., when tacking), the boat slows
down. This delay is a crucial point in the model: Avoiding to take it into account may
result in unrealistic optimal paths, possibly heading directly against the wind via an
infinitely fast switching (“chattering”) between a positive and a negative angle.
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A very natural form of taking into account the delay effects of tacking, without
increasing the dimension of the problem, is to use the framework of hybrid systems.
This notion has been proposed in the 1990s to treat control systems operated by both
continuous and discrete control actions. Among the extensive literature on hybrid
control, we quote here the general approach proposed in [9], along with the study
in [10,11], aimed at treating optimal hybrid control problems in the framework of
viscosity solutions, for, respectively, the deterministic and the stochastic case (see
also [12]). In the present work, this specific framework is used to obtain a sound
theoretical background [13] for the convergence ofmonotone schemes. Previousworks
in this direction are [14,15], both of which, however, treat the deterministic case. A
stochastic route planning problem, close to the hybrid formulation although with a
slightly different model, has been considered in [16].

In the problem under consideration, we will regard as continuous control the choice
of a particular route on a fixed tack and as discrete control a change in the dynamics
(including tacking and any other discrete action like a change in the sail configuration).
The dynamic programming approach, in the relatively low dimension of this problem,
gives some clear advantages:

– we obtain a static feedback control, which is computed once and for all for a given
target and wind model;

– costs associated with discrete controls (tacking, changes in configuration) may be
easily taken into account;

– we can deal with the presence of a stochastic term in the system, modeling the
variations in the wind with respect to the expected data;

– the presence of state constraints (coasts, obstacles), as well as current and tides,
can be handled in a relatively straightforward way.

At a comparison with the other approaches proposed, the one pursued in this work
is much in the same spirit as [6]. We characterize the optimal solution through a
continuous Bellman equation, which provides a solid background for fairly general
formulations. Opposite to [6], however, we handle the problem by numerical tech-
niques. Convergence of the fully discrete approximations to the underlying continuous
problem (see Sect. 4) ensures that the approximate optimal strategy has a relatively
minor dependence on the discretization.

The paper is structured as follows: in Sect. 2, we introduce the mathematical frame-
work of stochastic hybrid systems. In Sect. 3, we discuss in detail the modeling of the
route planning problem, while Sect. 4 describes and analyzes the numerical frame-
work. Last, in Sect. 5, we perform various tests to validate the approach and show the
effectiveness of the technique in different scenarios of application.

2 Hybrid Control Framework for the Route Planning Problem

We start the section by introducing a motivating example, which will be generalized
later.
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2.1 A Basic Example

In the simplest situation, the route planning problem may be formulated as follows.
A boat must reach in minimum time a windward target (e.g., a mark) in a wind of
constant strength and random angle θ with zero mean value, centered at the vertical
direction as in Fig. 1, which evolves as

θ(t) = σ̄Wt , (1)

with Wt a standard Brownian process. On the x1 − x2 plane, the boat moves at an
angle with the wind (say, ±π/4) corresponding to the highest windward component
of the speed, i.e., it moves starting from X(0) and according to

Ẋ1(t) = r̄ sin(−θ(t) ± π/4)

Ẋ2(t) = r̄ cos(θ(t) ± π/4), (2)

where the plus sign applies on the starboard tack (i.e., with a TWA between 180◦ and
360◦), the minus sign applies on the port tack (i.e., with a TWA between 0◦ and 180◦)
and the magnitude of the speed is r̄ . Such a “composite” dynamics is controlled by
changes in tack, which imply a loss of speed, to be taken into account via a switching
cost C̄ . In a more formal way, we can associate with the two dynamics an additional
function Q(t) ∈ {1, 2} which indicates the active dynamics. If, for example, the port
tack is coded with the value Q = 1 and the starboard tack with Q = 2, then (2) can
be rewritten as

Ẋ1(t) = r̄ sin
(
−θ + (−1)Q(t)π/4

)

Ẋ2(t) = r̄ cos
(
θ + (−1)Q(t)π/4

)
. (3)

Since the optimal solution depends not only on the position X(0), but also on Q(0),
the function Q should be regarded as part of the state of the system.

To sum up, the problem is to drive to a target set a stochastic system (boat) which is
controllable via discrete changes in the dynamics (tacking), so as to minimize the sum
of travel time and tacking delays. Note that, in a more general framework, we can also
consider continuous adjustments in the direction via a conventional control function
u(t), as well as changes in the configuration of the sails via discrete switches in Q(t)—
the former extensionwill be given in Sect. 3,whereas the latterwill not be pursued here.

We will now describe how this problem admits a natural description in terms of
hybrid control.

2.2 Hybrid Stochastic MinimumTime Problem

A hybrid control system is a system that, in addition to the usual continuous control,
can undergo discrete control action, like switching between different dynamics or
jumping from one state to another, in a discontinuous way.

123



Journal of Optimization Theory and Applications

Among the various mathematical formulations describing a hybrid system, we
refer here to a simplified version of the one proposed in [11]. (Similar formulations
for the deterministic case have been proposed in [9,10], while a stochastic hybrid
problem similar to the one under consideration has been studied in [17].) Let I =
{1, 2, . . . , NI} be finite, and consider the controlled system (X , Q) described by:

dX(t) = f (X(t), Q(t), u(t))dt + σ(X(t), Q(t)) dWt ,

X(0) = x, Q(0+) = q, (4)

where x, X ∈ R
d , q, Q ∈ I and dWt is the differential of a d-dimensional standard

Brownian process. Here, X(t) and Q(t) denote, respectively, the continuous and the
discrete component of the state at time t , and, in order to end up with a stationary
dynamic programming equation, we are assuming that f depends on t only via X , Q
and u. The function f : Rd × I ×U → R

d represents the continuous dynamics, for
a set of controls given by:

U = {u :]0,∞[→ U | u measurable, U compact},

and we assume both f and σ to be globally bounded and uniformly Lipschitz contin-
uous w.r.t. x .

The term Q(t) models possible switches between the various dynamics of the
system and takes values in a set of piecewise constant functions Q:

Q =
{
Q(·) :]0,∞[→ I | Q(t) =

∑
i∈N

wiχti (t)

}
,

where χti (t) = 1 if t ∈ [ti , ti+1[ and 0 otherwise, {ti }i∈N are the (ordered) switching
times and {wi }i∈N are values in I. With respect to the more general setting, we are
assuming some simplifications, and in particular:

– The discrete control is in the form of a switching, i.e., it can only change the
discrete component of the state Q(t), leaving X(t) unchanged;

– A controlled switching can occur in the whole state setRd ×I and, for simplicity,
no “autonomous” switching (e.g., because of obstacles or state constraints) is
included in the model.

The trajectory starts from (x, q) ∈ R
d × I. The choice of the control strategy

defined as S := (
u, {ti }, {Q(t+i )}) has the objective of minimizing the following cost

functional of discounted minimum time type:

J (x, q;S) := E

(∫ τx,q

0
e−λtdt +

N∑
i=0

C
(
X(ti ), Q(t−i ), Q(t+i )

)
e−λti

)
, (5)
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where E denotes the expected value, τx,q is the first time of arrival in a given compact
set T ⊂ R

d , i.e.,

τx,q := min
t∈[0,+∞[{t : X(t) ∈ T },

λ > 0 is the discount factor, and C : Rd ×I ×I → R+ is the switching cost between
the dynamics, which is assumed to have a strictly positive infimum, to be bounded
and Lipschitz continuous w.r.t. x and to satisfy the condition

C(x, q1, q2) < C(x, q1, q3) + C(x, q2, q2), (6)

for any triple of indices q1, q2 and q3.
The value function v of the problem is defined, for S ∈ U × R

N+ × IN, as:

v(x, q) := inf
S

J (x, q;S), (7)

and is characterized via a suitable Hamilton–Jacobi–Bellman (HJB) equation. Conti-
nuity of the value function, which allows to apply the framework of viscosity solutions,
is a delicate matter in deterministic hybrid control problems (we refer the reader to
[10] for a precise set of assumptions), whereas in the stochastic case the literature
reports somewhat weaker assumptions (see [11]).

We recall some basic analytical results about the value function (7). Using a suitable
generalization of the dynamic programming principle, it is possible to prove that
the value function of the problem solves a Bellman equation in a quasi-variational
inequality form. More precisely, defining for x, p ∈ R

d and q ∈ I the Hamiltonian
function by

H(x, q, p) := sup
u∈U

{− f (x, q, u) · p − 1} (8)

and the controlled switching operator N by:

Nφ(x, q) := inf
q ′∈I

{φ(x, q ′) + C(x, q, q ′)},

we have a Bellman equation of the following form:

max

(
v − N v,

1

2
tr

(
σσ t D2v

)
+ λv + H(x, q, Dv)

)
= 0, (9)

defined on (Rd \T )×I, i.e., a system of quasi-variational inequalities, complemented
with the boundary condition

v(x, q) = 0 (x ∈ ∂T ).
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In what follows, we will assume that the problem is posed on a set Ω of the state
space and that either Ω = R

d , or a stopping cost is defined on the boundary of Ω

(in the form of a weak Dirichlet condition, see [18]), so as to enforce state constraints
by penalization, and work on a finite computational domain. We will give suitable
examples in the numerical test section.

In (9), we can identify two separate Bellman operators, which provide, respectively,
the best possible switching and the best possible continuous control. The argument
attaining the maximum in (9) represents the overall optimal control strategy.

3 Practical Hybrid Models for Route Planning

In order to apply the techniques introduced above to solve route planning problems,
we outline in this section some general ideas toward a formal modeling of the problem.

In general, we expect that a reliablemodeling should use at least a three-dimensional
state space, i.e., d ≥ 3. In this setting, two components x1 and x2 of the state space
represent the position of the boat, while the components x3 to xd account for the
evolution of the wind.

We start by describing the motion of the boat as resulting from both the wind
vector field and the boat characteristics. We will make the standing assumption that
the control u denotes the (unsigned) angle between the boat direction and the wind,
so that u(t) ∈ U = [0, π ], and that the stochastic component of the dynamics appears
only in the wind evolution (described by the wind speed s and direction θ ). Keeping
the conventions of (3), the motion of the boat is then described by

Ẋ1(t) = r(s(X(t), t), u(t)) sin
(
−θ(X(t), t) + (−1)Q(t)u(t)

)

Ẋ2(t) = r(s(X(t), t), u(t)) cos
(
θ(X(t), t) + (−1)Q(t)u(t)

)
. (10)

The function r : R+ × [0, π ] → R+ models the polar plot of the boat and provides
the boat speed as a function of the angle u of the trajectory w.r.t. the wind and of the
wind speed s. Figure 2 summarizes the geometric setting.

The polar plot is related to the technical characteristics of the craft and is determined
via experimental measures. It differs from one boat to another, but we can typically
assume it to be Lipschitz continuous w.r.t. both variables s and u, to be independent
of both time and position and to satisfy the condition r(s, 0) = 0, which means that
the boat always has zero speed when “pointing directly against the wind.”

In (10), the wind is characterized by two functions: direction θ and speed s. These
function may depend on position and time, but we assume that they evolve in time
according to a lumped parameter model, i.e., the system of stochastic differential
equations (SDEs)

ds(x, t) = g1(x, s(x, t), θ(x, t))dt + g2(x, s(x, t), θ(x, t))dW (1)
t

dθ(x, t) = h1(x, s(x, t), θ(x, t))dt + h2(x, s(x, t), θ(x, t))dW (2)
t , (11)
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Fig. 2 (Left) Geometric setting: Wind (gray arrow), boat speed (black arrow) and control u (left). Polar
plot of the boat speed as a function of the TWA, with fixed TWS (right)

in which x is considered as a parameter, dW (i)
t (i = 1, 2) denotes the differential of

a standard Brownian process, and, depending on the complexity of the model, both s
and θ could be multi-dimensional.

3.1 A Detailed Example

We will discuss now in detail a simplified model, still containing the basic features
of the full problem, at least in an upwind leg of a race. We assume that d = 3, the
third state variable being the wind direction, x3 = θ , whereas the wind speed s is kept
constant w.r.t. position and time, s(x, t) ≡ s̄. With the notations used in (3), we have
Q ∈ I = {1, 2}, and we can write

Ẋ1(t) = r(s̄, u) sin
(
−θ + (−1)Q(t)u

)

Ẋ2(t) = r(s̄, u) cos
(
θ + (−1)Q(t)u

)
. (12)

Assuming further that the control u is frozen at the most efficient angle u∗ w.r.t. wind,
for example, u ≡ u∗ = π/4 and that tacking is the only control action at all (see
Fig. 3), then, for r̄ = r(s̄, u∗), we recover dynamics (3).

The evolution of the wind direction is given by the one-dimensional SDE

dX3 = a(X3)dt + σ̄dWt . (13)

In particular, taking a(X3) = ā (constant) would model a situation in which the wind
direction comes from the superposition of a constant (clockwise or anticlockwise)
drift with a random fluctuation. [In particular, for ā = 0 we obtain (1).] Dynamics
(12) and (13) correspond then to choosing
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Fig. 3 One of the two dynamics of the system (q = 1), superposed on the polar plot of the speed (left) and
simplified dynamics (right) based on the angle of largest windward component of the speed

σ = (0, 0, σ̄ )T ,

and the diffusion term in the HJB Eq. (9) degenerates and acts only along the third
dimension. Note that, roughly speaking, assuming a one-dimensional model for θ

parallels the assumption of discrete Markov process without memory as in [2].

3.1.1 Resulting Hamilton–Jacobi–Bellman Equation

We collect now all the information in an explicit HJB equation. Concerning the deter-
ministic component of the dynamics, we have, substituting (13) into (12):

f1(x, q, u) = r(s̄, u) sin
(−x3 + (−1)qu

)

f2(x, q, u) = r(s̄, u) cos
(
x3 + (−1)qu

)

f3(x, q, u) = a(x3),

which results in a Hamiltonian function of the form

H(x, q, p) = sup
u∈U

{ − r(s̄, u)
[
sin

(−x3 + (−1)qu
)
p1

+ cos
(
x3 + (−1)qu

)
p2

] } − a(x3)p3 − 1. (14)

The term related to the stochastic component of the evolution reads in turn:

1

2
tr

(
σσ t D2v

)
= σ̄ 2

2
vx3x3 .

Last, we assume a constant switching cost C̄ > 0. Defining q̂ = 2 if q = 1, q̂ = 1
if q = 2, we have that, if optimal, the only possible switch may be from q to q̂ . The
switching operator N can therefore be simplified as:
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Nφ(x, q) = φ(x, q̂) + C̄ . (15)

Then, the Bellman equation takes the form of the following system of two quasi-
variational inequalities (for x ∈ R

3, q = 1, 2):

max
(
v(x, q) − v(x, q̂) − C̄ ,

σ̄ 2

2
vx3x3(x, q) + λv(x, q) + H(x, q, Dv)

)
= 0,

(16)

in which H is defined by (14) and the supu is clearly dropped if u ≡ u∗.

3.2 Possible Generalizations of theModel

While the previous model seems a reasonably simple way of taking into account
the major processes involved in the route planning problem, we sketch some related
models which lead to a different definition of the state space.

– x-dependence of the wind direction/speed Note that it is possible to introduce in
(12) and (13) an x-dependence without increasing the conceptual difficulty of the
problem. This change only results in making the Hamiltonian depend on x1 and
x2 and has no consequences on the definition of the state space.

– 1D (possibly stochastic) evolution for wind speed In this case, dynamics (12) for
the wind would be replaced by

dθ = a(θ, s)dt + σ̄1dW
(1)
t

ds = b(θ, s)dt + σ̄2dW
(2)
t .

Then, we would define x4 = s and obtain a state space of dimension d = 4. In the
relevant literature, this model is usually simplified taking b(θ, s) ≡ 0.

– Different configurations of the sails A change in configuration should appear as
a discrete control. If Nc different configurations of the sails are possible, then
every sail configuration should be replicated on both tacks, and we would obtain
NI = 2Nc, with fixed dimension d. In this case, the polar of the vessel would
depend on Q, i.e., we would have r = r(s, Q, u).

– Long course racing When long course racing is concerned, a local wind model
like (13) is no longer possible. In this case, the deterministic component in the
wind model might be dependent on time (and could be taken, e.g., from suitable
weather forecasts like GRIB data), and in the simplest case, the problem could be
modeled via two state variables plus time. Accordingly, the HJB equation would
be recast in the time-dependent form, with d = 2 and NI = 2Nc.

4 Numerical Solution via Monotone Schemes

In order to set up a numerical approximation for (9), we construct a discrete grid of
nodes (x j , q) in the state space with discretization parameters Δx and, possibly, Δt .
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(Time discretization should be understood in the “time marching” sense; see [18].) In
what follows, we denote the discretization steps in compact form by Δ = (Δt,Δx)
and the approximate value function by VΔ.

Following [14], we write the scheme at (x j , q) in fixed point form as

VΔ(x j , q) = min
(
NVΔ(x j , q),Σ

(
x j , q, VΔ

))
. (17)

In (17), the numerical operator Σ is related to the continuous control, or, in other
terms, to the approximation of the Hamiltonian function (8). As it has been done in
(15), the discrete switch operator N is computed as

NVΔ(x j , q) := VΔ(x j , q̂) + C(x j , q, q̂), (18)

and, in fact, this corresponds to the exact definition.

4.1 Theoretical Analysis for Monotone Schemes

The theoretical analysis of monotone schemes for HJB equations arising in stocha-
stic hybrid control problems can be carried out using (with some adaptations) the
arguments in [14], which will be sketched here. We start by proving that the value
iteration for (17), i.e.,

VΔ
k+1(x j , q) = min

(
NVΔ

k (x j , q),Σ
(
x j , q, VΔ

k

))
(19)

is convergent. To this end, we denote by S(VΔ
k ) the vector (indexed by j) of the values

at the right-hand side of (19).

1. If the scheme Σ is monotone, then the mapping S(·) is also monotone.
Assume that U ≥ W element by element. Since, as proved in [14], the operator
N is monotone, we only have to use the property that the min of two monotone
operators is monotone and therefore that S(U ) ≥ S(W ).

2. The sequence VΔ
k is monotone decreasing if VΔ

0 is chosen so that VΔ
0 ≥ S(VΔ

0 ).
In fact, this condition implies that VΔ

1 ≤ VΔ
0 , so that by monotonicity of S we

have S(VΔ
1 ) ≤ S(VΔ

0 ), that is, VΔ
2 ≤ VΔ

1 , and, inductively, VΔ
k+1 ≤ VΔ

k . Note
that this also entails that the scheme is stable in the ∞-norm.

3. If, for any admissible Δ, VΔ
k is positive, then VΔ

k converges to a fixed point VΔ

solution of (17).
We recall that, under the assumptions made on the cost functional, positivity of
solutions is a natural assumption, which is typically satisfied bymonotone schemes
(upwind, Lax–Friedrichs, semi-Lagrangian) under stability conditions. Conver-
gence to a fixed point follows then from monotonicity and boundedness for all
elements of the vectors VΔ

k .

Last, once ensured that (17) has a solution (which can be obtained by value
iteration), the convergence of VΔ to the value function v is ensured by the Barles–
Souganidis theorem [13], provided the scheme Σ is consistent with the Hamiltonian
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function (8), since a comparison principle holds for the continuous problem (see [11]).
We have therefore the following.

Theorem 4.1 Let the basic assumptions of Sect. 2 hold. Let moreover VΔ
0 be chosen

so that VΔ
0 ≥ S(VΔ

0 ). If the operator Σ is monotone and such that S(V ) ≥ 0 for any
V ≥ 0, then the value iteration (19) converges to VΔ solution of (17). Moreover, if
the scheme V = Σ(V ) is also consistent with the equation

1

2
tr

(
σσ t D2v

)
+ λv + H(x, q, Dv) = 0,

then VΔ(x j , q) → v(x j , q) for Δ → (0, 0).

4.2 Example: A Semi-Lagrangian Scheme

A viable technique for solving (9) is a semi-Lagrangian scheme, obtained by adapting
the scheme proposed in [19]. The main advantage of such approach is unconditional
stability of the scheme with respect to the discretization parameters, still keeping
monotonicity.

The scheme requires extending the node values to all x ∈ R
d using an interpolation

I. We denote by I
[
VΔ

]
(x, q) the interpolation of the values VΔ(x j , q) computed at

(x, q). With this notation, a standard semi-Lagrangian discretization of the Hamilto-
nian and the diffusive term in (16) is given by

Σ
(
x j , q, VΔ

) = Δt + e−λΔt min
u∈U

{
1

2

(
I
[
VΔ

]
(ξ+

j , q) + I
[
VΔ

]
(ξ−

j , q)
)}

,

(20)

where ξ±
j := x j + Δt f (x j , q, u) ± √

Δt σ̄e3, with e3 = (0, 0, 1)T . Then, the full
scheme is obtained by substituting (18)–(20) in (17). Note that, in the basic setting, the
use of a positive discount factor λ ensures convergence of the value iteration. However,
this solver may show a very slow convergence, and more efficient techniques include:

– Fast solvers Since the control problem is in the form of a target problem, a careful
discretization preserving causality would allow for the use of fast-marching/fast-
sweeping solvers. We refer the reader to the discussion and references in [18].

– Modified policy iteration In this technique, an inexact policy iteration is imple-
mented by alternating iterations in which a new feedback policy is computed to
iterations of plain linear advection. Again, we do not provide details and rather
refer the reader to [15] and the references therein, for a detailed study of the hybrid
case.

– Parallel computing In order to apply domain decomposition techniques, the hyper-
bolic nature of the problem requires some care to optimize the communication
between the treads. Recent works on this subject are [20–22]. In particular, the
obstacle problem treated in [22] has a strong link with our case.
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5 Numerical Tests

We provide in this section a numerical validation of the technique under consideration,
using some typical situations in race strategy, and computing the value functions via
the semi-Lagrangian scheme (20). According to the general features of dynamic pro-
gramming techniques, the optimal control is computed in feedback form: In particular,
the optimal choice for u at a point (x j , q) is the value achieving the min in (20), while
the need for a switch is indicated by the situation in which

min
(
NVΔ(x j , q),Σ

(
x j , q, VΔ

)) = NVΔ(x j , q) = VΔ(x j , q̂) + C̄, (21)

moreover, in this case, the optimal switching is toward the dynamics q̂ . Then, the
numerical tests have been carried out in two phases. In the first (offline) phase, the
value function of the problem has been computed, and both the optimal feedback u
and the optimal switch have been suitably stored in memory. In the second (real-time)
phase, a sample trajectory of the Brownian process is generated, with the increments
ΔW of the process simulated via a pseudorandom Gaussian number generator, and a
standard stochastic Euler scheme (see [23]) is used to approximate the state Eq. (12),
applying the approximate optimal control/switching computed in the offline phase.

5.1 Test 1

As a first test, we choose the very basic case of a constant average direction of wind
(ā = 0), with (x1, x2, x3) ∈ [−1.4, 1.4]× [0, 2]× [−1, 1] taking as target (windward
mark) a disk centered in (0, 1.8) of radius 0.04. The goal of this test is to observe the
effects of variations in the diffusion coefficient σ̄ .

State constraints have been implemented by penalization of the boundary value,
introducing a stopping cost b̄ = 100, with λ = 10−6, and tacking cost C(x, 1, 2) =
C(x, 2, 1) ≡ 2. We have adopted both the complete and the simplified dynamics
described in Sect. 3.1. In the first case, the vessel speed around the optimal angle
u∗ = π/4 is given by

r(s, u) ≡ r(u) = 0.05
(
(π/4)2 − (u − π/4)2

)
, (22)

whereas in the simplified case we choose a constant vessel speed r ≡ 0.05. The
approximation is computed with uniform steps Δx = 0.02 and Δt = 0.1.

The test is performed for σ̄ = 0, 0.02, 0.1. In each case, the starting point of the
trajectory is set at the points x = (−0.7, 0, 0), (0, 0, 0), (0.7, 0, 0), for q = 1, 2. The
results are shown in Fig. 4.

In the case σ̄ = 0, the problem is deterministic, and the best strategy is to minimize
the number of switches, by reaching the lay lines and switching just once until the
target. In practice (see the upper plots of Fig. 4), the solution computedwith the simpli-
fied dynamics shows a second (and, possibly, a third) switch closer to the target. This
effect is caused by the combination of numerical viscosity (see [18]) and reduced con-
trollability. In fact, with the parameters chosen, the scheme has a numerical viscosity
of the order of
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Fig. 4 Test 1, sample optimal trajectories for various starting points and different diffusion coefficients.
The red circle identifies the target (above/left σ̄ = 0, simplified dynamics; above/right σ̄ = 0, complete
dynamics; bottom/left σ̄ = 0.02; bottom/right σ̄ = 0.1)

Δx2

8Δt
= 5 · 10−4,

which corresponds to a (fictitious) diffusion term σ̄ ≈ 0.03. Thus, the switching
strategy is computedas if itwere related to a stochastic problem, and if the onlypossible
control action is switching, then the optimal control implements a more conservative
strategy, in order to avoid to miss the target at all. This problem does not occur in the
complete dynamics, in which the route can be adjusted continuously without tacking.
For larger diffusion terms, the numerical viscosity becomes secondary, and the two
models provide comparable results. (We have avoided duplicating the plots.)

The number of switches in the dynamics increases at the increase in σ̄ , i.e., in case of
a larger diffusion coefficient for thewind direction, the optimal dynamics prefers to pay
more times the cost of switching to remain in the center of the domain. The trajectories
tend then to cluster inside a cone (termed tacking triangle) that progressively shrinks
for increasing σ̄ . This effect is well recognized in empirically based sailing tactics
theory [24] as well as in [3].

The generation of the tacking triangle results from a strategy known as tacking on
a lift: When the wind direction shows both clockwise and anticlockwise variations,
the former should be preferably used to tack to starboard, while the latter should be
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Fig. 5 Test 1: (left) automatic evaluation of the optimal tacking in the presence of wind perturbations and
(right) a classical strategy of “tacking on a lift”

Fig. 6 Test 1: Three sections of the switching sets computed for θ = x3 = −0.25, 0, 0.25, compared with
the corresponding directions of the wind (arrows)

preferably used to tack to port. This is schematically shown in Fig. 5 (right), in which
A tacks when the wind rotates, and gains on B that does it later.

The model under consideration correctly reproduces this strategy (see Fig. 5, left).
Figure 6 shows three section of the switching sets, computed as in (21), for the sim-
plified dynamics and σ̄ = 0.1. Here, the dark gray corresponds to a switching toward
the starboard tack, the light gray to a switching to port and the average gray to no
switching. The sections are at, respectively, θ = x3 = −0.25, θ = x3 = 0 and
θ = x3 = 0.25, and arrows show the corresponding wind directions. The “no tack”
region is split into two parts: The upper one is made of points from which the target
is unreachable, whereas the lower one is the actual tacking region. Note that if, for
example, a boat is on the port tack and the wind rotates strongly clockwise, the dark
gray region may hit the boat position and thus cause a tack to starboard, as required
by the correct strategy.

5.1.1 Test 2

In the second typical scenario, we impose a nonzero value to the drift ā in (11) to obtain
an average anticlockwise rotation. In this case, we adopt the complete dynamics. Using
the same setting of Test 1, we compare the optimal trajectories obtained for various
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Fig. 7 Test 2: some sample optimal trajectories for various starting points and different drift values. The
diffusion coefficient is fixed σ̄ = 0.05, variable drift (above/left a = 0, above/right a = 0.05, bottom/left
a = 0.15, bottom/right a = 0.3)

values of the drift ā, for a constant value of diffusion σ̄ = 0.05. As in the previous
test, we consider trajectories starting from the points (−0.7, 0, 0), (0, 0, 0), (0.7, 0, 0)
and q = 1, 2. The results are shown in Fig. 7.

Observe that, as ā > 0, the approximatex symmetry of optimal trajectories in the
previous test is progressively lost. In practice, if the average rotation of the wind is
anticlockwise, then the best strategy is to occupy the left region of the domain (i.e., for
x1 small or negative), and this behavior is enhanced by higher values of ā and lower
values of σ̄ .

This resulting solution also includes the “tacking on a lift” strategy, which also
holds in the situation of a variable average wind direction with stochastic variations.
The computed optimal solutions correctly blend the two strategies.

6 Conclusions

We have shown how a hybrid control framework can be an efficient tool in route
planning problems of minimum time type for a single sailing boat, and lend itself
to a very general setting of the problem. A natural development of the model is to
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include the presence of other competitors, which would cause a more complicated
(non-convex) structure of the HJB equations associated with the problem, and result in
a higher dimension of the state space. However, in the case of two playerswith opposite
goals (a match race, see [7]), the problem becomes a differential game of pursuit–
evasion type and allows for a simplified treatment. The study of the corresponding
techniques for this case is the object of an ongoing work [25].
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