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Abstract—The market of small drones has been recently
increasing due to their use in many fields of application. The
most popular drones are multirotors, in particular quadcopters.
They are usually supplied with batteries of limited capacity, and
for this reason their total flight time is also limited.

As a consequence of the non linear characteristics of batteries,
estimation of the real flight time may become an issue, since
most battery models do not include all the non idealities.
Consequently, applications such as delivery service, search and
rescue, surveillance might not be accomplished correctly because
of inaccurate energy estimations.

This paper describes a battery-aware model for an accurate
analysis of the drone energy consumption; this model is then
applied to a scenario of drone delivery. Results show an accuracy
greater of about 16% with respect to the traditional estimation
model.

Index Terms—Battery modeling; power/energy estimation; Un-
manned Aerial Vehicles.

I. INTRODUCTION

In recent years, the utility of unmanned aerial vehicles

(UAVs) or drones have increased in different application fields

(e.g., monitoring, mapping, delivery) [1]. In this context, small

drones are now very popular [2], such as multirotor helicopters

also known as multicopters. As a consequence of the limited

energy available from the small size lithium polymer (LiPo)

batteries, which are typically installed on these mini drones,

the energy consumption is a critical variable that impacts on

various figures of merit (FOM). For instance, in a scenario of

delivery services, the following should be considered:

• quality of service on meeting delivery deadlines;

• throughput regarding the number of packages delivered

per charge cycle;

• battery state-of-health by reducing the number of charge

cycles in a given time slot.

The key for assessing these quantities is a reliable

power/energy consumption model, which allows a careful

planning of a set of delivery tasks for a given drone con-

figuration. In the literature, many such models have been

proposed; they consider various parameters such as payload

weight, flying altitude, UAV speed, and distance flown. These

models combine the basic equations of flight dynamics and

translate them into the electrical domain assuming the power

is provided by an electrical motor [3], [4], [5]. The systematic

drawback of these models is that they are not battery-aware,

i.e., they assume that the power drawn by the motor is in a 1:1

correspondence to the power drawn by the battery. This is not

the case, however, since a battery supplies power with different

efficiency values depending on its state-of-charge (SOC), and

this efficiency is also non-linearly dependent on the amount

of the power requested [6]. As a consequence, the omission

of the real battery performance analysis may result in a wrong

estimation of the real flight time of the drone [7].

In this work we will show how including battery awareness

in a drone power model is essential to avoid significant

mispredictions.

II. BACKGROUND AND RELATED WORK

A. Quadcopter Dynamics Fundamental Principles

Basically, there are three forces acting on a quadcopter as

shown in Figure 1:
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Figure 1. Forces acting on a drone.

FW is the total weight of the drone with a payload, which

pulls down the drone due to the force of gravity, whereas FDH

and FDV are drag forces in horizontal and vertical direction,

respectively, that are caused by the disruption of airflow. Drag

opposes a movement of the drone in horizontal and vertical

directions. FT is the thrust produced by the rotating propellers

of the drone; it opposes the weight and drag to sustain the

height and speed of the drone. Figure 1(a) and Figure 1(b)

show the overall forces when a drone moves vertically at a

constant speed vv , and flies horizontally at a constant speed

vh, respectively. The sum of the weight and drag equals to the

thrust in both cases.



FW , FDH and FDV are modeled by the following:

FW = (md +mp)g (1)

FDV =
1

2
ρAtCdv

2

v; FDH =
1

2
ρAfCdv

2

h (2)

where md and mp are the mass of the drone and payload,

respectively, g is the gravity acceleration, Af and At are the

cross sectional areas in horizontal and vertical directions, Cd

is a drag coefficient, and ρ is the air density. The required

thrusts FT,v and FT,h are then described as:

FT,v = FW + FDV

= (md +mp)g +
1

2
ρAtCdv

2

v (3)

FT,h =
√

F 2

W + F 2

DH

=

√

((md +mp)g)2 +

(

1

2
ρAfCdv

2

h

)2

(4)

The thrust to oppose the weight and drag is obtained through

the induced air passing a rotating propeller as shown in

Figure 2. A basic formula for thrust is the following:

FT = 2ρApv
2

i (5)

where Ap is the disk area of the propellers, and vi is the

induced air flow velocity.

The power consumption necessary to induce thrust is de-

rived simply as:

PT = FT vi =

√

T 3

2ρAp
(6)
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Figure 2. Thrust by rotating propeller.

However, the power consumed by the actual motors differs

from the power obtained by dynamics because of the efficien-

cies of the motor angular speed and torque. In this context,

it is possible to estimate an accurate power consumption by

measuring the power with respect to the motor angular speed.

The higher motor angular speed, the higher induced air passing

the propellers, thus higher thrust.

FT , in terms of motor angular speed, is then modeled by:

FT =
1

2
NρApCt(ωr)

2 (7)

where N is the number of rotors, Ct is a thrust coefficient, ω

is the angular speed of the rotors, and r is the radius of the

propellers. In general, Ct has a value in a range from 0.01

to 0.05 [8]. Therefore, for a given drone flight, We can easily

solve the required thrust for a given drone flight from (1)–(4)

and the required angular speed to obtain the required thrust

from (7). The maximum payload and maximum horizontal

speed are bounded by the maximum angular speed of the

motor speed.

B. Related Works

Nowadays, drones are used in so many different contexts

such as emergency services in humanitarian operations (e.g.,

search and rescue), traffic surveillance, package delivery tasks,

telemetry and mapping, among others [1], [9], [10].

In the literature, various algorithms have been proposed for

energy-aware path planning for UAVs. However, most works

do not consider a real performance analysis of the battery. For

instance, in [11] the authors face the problem of the minimum-

energy path through a model for brushless DC motors and

solve it with respect to the angular acceleration of the pro-

pellers of a quadrotor. In [3], the authors present an algorithm

that solves the problem of minimizing the total energy of

the IRIS quadrotor, in the application of area coverage in

photogrammetry, through a power model that characterizes the

consumption of the drone operating in different conditions.

However, also in this case the electrical energy source is not

considered. On the other hand, in [12] the authors analyzed the

performance of different LiPo batteries applied to AR Drone

2.0. In this case, the models considered for battery runtime are

related to the capacity rate effect, even the Peukert’s law [13].

Nevertheless, the experimental results show, as expected, a

difference with respect to the data obtained from these models.

For small UAVs, both fixed wings and multirotors, an alti-

tude controller based on battery SOC is described in [14]. In

this case, the battery model relies on the equivalent electrical

circuit of [6] applied to LiPo batteries, and the relationship

between nominal thrust and battery SOC is also provided.

Routing optimization for drone delivery service was ana-

lyzed in [4]; however, the proposed power model only includes

the weight of the battery, in addition to payload. In this

context, a model for solving the problem of minimization of

the delivery time for a certain number of packages, is provided

in [15]. In this case, the battery performance is however

considered just from a service time point of view.

III. PROPOSED BATTERY-AWARE MODEL

Firstly, from (1)-(7) we derive the motor angular speed

necessary for a drone (i) to fly at a constant horizontal speed

vh and (ii) to move at a constant vertical speed vv with a

payload weight wp (i.e., wp = mp ·g), during vertical take-off

and landing (VTOL):

ωh =
(4(md +mp)

2g2 + ρ2A2

fC
2

dv
4

h)
1/4

(r2ρApCt)1/2

= fh(wp, vh) (8)

ωv =
(2(md +mp)g + ρAtCdv

2

v)
1/2

(r2ρApCt)1/2

= fv(wp, vv) (9)
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Figure 3. Drone battery current versus motor angular speed [16].

We refer to the experimental data of [16] about motor

current, voltage and angular speed for quadcotper Parrot AR.

Drone 2.0. They also include the related motor efficiency.

Figure 3 reports the characteristics of the motor current vs.

angular speed at different battery voltages. The function g

for the motor power consumption P dependent on angular

speed ω (max. 500 rad/s), is then extracted by fitting these

experimental data to a polynomial as follows:

P ≈ g(ω) = 2.258 · 10−07ω3 + 3.866 · 10−05ω2

+ 5.137 · 10−3ω + 2.616. (10)

Finally, the motor power consumptions Ph and Pv for

horizontal and vertical flight, respectively, are obtained as

functions of both payload and speed by plugging the expres-

sions of ωh and ωv in (8) and (9), respectively, into (10):

Ph(wp, vh) ≈ g(fh(wp, vh)) (11)

Pv(wp, vv) ≈ g(fv(wp, vv)) (12)

A. Characterization of a Delivery Task
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Figure 4. A drone flight model (a) going to place B with a payload and (b)
returning to place A without payload.

The multi-plot chart in Figure 4 shows the power consump-

tion of a drone during the task of delivering a parcel (weight

wp) from location A to location B:

1) in place A, take-off at constant vertical speed vv until

reaching a given height h;

2) horizontal flight at constant speed vh for the entire

distance d;

3) in place B, landing at the same vertical speed vv .

4) Then, the drone returns to the place A without the

payload.

In this scenario, the initial acceleration and final deceleration

during VTOL and horizontal flight are neglected. The delivery

distance d is 500 m, payload wp is 300 g and the horizontal

velocity vh is 7 m/s. The gray horizontal dashed lines indicates

hovering power (vh = vv = 0) with and without the payload.

An important note: in general the maximum payload for

AR.Drone 2.0 is about 200 g; however, in order to show how

in general payload affects the energy consumption of a drone,

we do not consider loss power for the effect of turbulence

during take-off and landing, acceleration to approach vv or

vh, and stability during the flight. Then, in this scenario

the power model allows virtually a greater payload than the

aforementioned value.

So, the overall energy consumption for one delivery is

simplified by

E ≈ Pv(wp, vv)
h

vv
+ Ph(wp, vh)

d

vh
+ Pv(wp,−vv)

h

| − vv|

+ Pv(0, vv)
h

vv
+ Ph(0, vh)

d

vh
+ Pv(0,−vv)

h

| − vv|
. (13)

We assume the vertical speed vv of 3 m/s, which is the

maximum vertical speed of AR.Drone 2.0, whereas. the height

h is 40 m.

Figure 5 shows the relationship of Ph by horizontal flight

speed vh and payload wp. The power consumption at vh = 0
coincides with the hovering power, whereas it is almost

constant when the drone flights slower than 4 m/s; in truth,

it increases at faster speeds because the drag forces are no

longer negligible.
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Figure 5. Drone motor power vs. flight speed and payload.

In (13), the energy for a given delivery task is mostly a

3-variable function of weight wp, distance d, and horizontal

flight speed vh. In general, the maximum horizontal speed

decreases with payload because the maximum thrust opposing

the weight and drag is bounded by the maximum motor

angular speed. Moreover, there is an energy-optimal horizontal

speed for a given delivery task. A drone flying at too slow

horizontal speed, causes a huge energy consumption because it

consumes most energy to maintain the altitude during the long

delivery time. On the other hands, too fast horizontal speed



increases air drag, which is proportional to the square of the

horizontal speed. Therefore, the energy-optimal speed should

be increased as the payload increases, in order to reduce the

delivery time. Section IV provides various 3D plots for these

characteristics, as a result for the scenario considered in this

work.

B. Battery-Aware Energy Model

The battery current at different voltage (see Figure 3) and

the drone power model refer to the drone hardware. Next step

is to map their relation to relevant quantities such as weight,

distance, and delivery time as a consequence of the flight

speed, in order to estimate the real energy consumption of

the drone. This step requires facing the following issues: load

current-dependent battery efficiency and non-ideal conversion

efficiency.

1) Current-dependent battery efficiency: In general, prod-

uct data reports the nominal capacity of a battery as the

total energy capacity after considering the constant discharge

current depleting the battery in one hour. Nonetheless, higher

the current, smaller is the total available energy of the battery

during runtime. This effect is called rated capacity. It is

present in both primary (non-rechargeable) and secondary

(rechargeable) battery cells. In the case of primary cells, this

effect is normally visible in voltage vs. time multi-plot charts.

For secondary cells, it is typically expressed in voltage vs.

discharge capacity multi-plot charts.

In addition, as a consequence of the rated capacity effect,

there is another side effect: as the battery SOC decreases, for

instance at constant power, the discharge current increases as

well as the battery voltage decreases; therefore, the battery

typically depletes faster than expected. As a consequence of

these effects, mapping the drone energy to battery energy

requires a conversion adapted to the real characteristics of

the energy source, instead of considering a direct conversion.

For these reason, we adopt a battery model that is able to

analyze the energy necessary for accomplishing a certain task

(after considering the flight speed, payload and distance) with

respect to the real battery SOC. For this purpose, we use the

model by [17], in which the well-known equivalent electrical

circuit model of [6] is extended in such a way that it can track

the SOC depletion based on the dynamics of the load current.

In the scenario of drone delivery service, the related battery

power model is defined through an offline pre-characterization,

as described in Section III-B3.

2) Conversion Efficiency: Most battery-powered devices

require an electronic block for leveling the battery voltage

to the load. In the context of small multirotors, this block

is typically a DC/DC converter. In the case of a switching

converter, the conversion efficiency is also non-linear, and it

depends mainly on the voltage difference between input and

output and the load current [18]. In general, the best efficiency

is obtained at medium current load, while very low/high

currents typically lead to a worst conversion efficiency. In this

paper, we assume this efficiency to be constant in order to

focus on the first effect.

3) Construction of the Power Model: The flow chart in

Figure 6 describes the main steps for generating the battery-

aware power model, which consists of a 5-dimensional table

(i.e., T).

@90% SoC
@80% SoC

…

@70% SoC

∆SoC(w1,d1,v1)

∆SoC(w2,d2,v2)

…

∆SoC(wmax,dmax,vmax)

@100% SoC

…

Table T

∆SoC(w1,d1,v1)

∆SoC(w2,d2,v2)

…

∆SoC(wmax,dmax,vmax)

∆SoC(w1,d1,v1)

∆SoC(w2,d2,v2)

…

∆SoC(wmax,dmax,vmax)

∆SoC(w1,d1,v1)

∆SoC(w2,d2,v2)

…

∆SoC(wmax,dmax,vmax)

wi ∈ [0,wmax], vi ∈ [0,vmax], di ∈ [0,dmax]

P(t)|w=wi,v=vi,d=di

Drone power model

Vbatt

SoCi ∈ [10,100]

I(t)|w=wi,v=vi,d=di,SoC=SoCi

Battery power model

∆SoC|w=wi,v=vi,d=di,SoC=SoCi

Ibatt calculation

Battery characteristics

Figure 6. Offline Model Characterization.

The five parameters are the following: payload w, distance

d, flight speed v, initial SOC in percentage (these are the input

data), and the decrease of SOC (i.e., ∆ SOC) as a result. Table

T stores all the possible ∆ SOC for a given task of delivery

service after considering the initial battery SOC.

In order to translate the drone power profile P (t) into

the battery-aware power model, and starting from the battery

characteristics, we extract the battery current Ibatt(t) after

considering the voltage Vbatt at the beginning of the service.

Then, we apply this current profile to the battery model.

Finally, the amount of ∆ SOC is stored into table T.

From a computational cost of view, the complexity of the

model and the size of T is determined by the number of

discretized levels of the parameters:

• |W | = 4 for payload w ∈[100,400], step=100 g

• |D| = 10 for distance d ∈[100,1000], step=100 m

• |V | = 10 for speed s ∈[1,10], step=1 m/s

• |S| = 10 for initial SOC ∈[10,100], step=10%.

The characterization process of the power model is fully

implemented in an automatic way through a Python program.

4) Usage of the Power Model: After generating table T, the

pre-feasibility analysis of a sequence of delivery tasks requires

to select the optimal battery-aware flight speed based on the

initial SOC when starting the task. Figure 7 shows a diagram

of these steps. In the example, for task τa with payload

wa, delivery distance da, and initial battery SOC SoCa, we

extract from the projection T(v)|w=wa,d=da,SOC=SoCa
of T

the optimal flight speed vopt,a at the minimum ∆SoC, which

is ∆SoCa. At the end, the current battery SOC is updated as

SoCa −∆SoCa. This process is then repeated for all the next

tasks.
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IV. RESULTS

A. Simulation Experiment Setup

For our simulations we selected the quadcopter AR Drone

2.0 Elite Edition made by Parrot manufacturer, because of the

comprehensive measurements data provided in [16]. That doc-

ument describes two measurement experiments: one concerns

the angular speed of the rotors, torque, thrust and motor current

at constant supply voltage, wheres the other concerns the same

measurements but at varying voltages, as shown in Figure 3.

The latter allows us to build the drone power consumption

model as described in Section III.

In terms of energy source device, we used the Ultimate PX-

04 LIPO battery, whose single cell physical parameters are

shown in Table I. We considered a battery pack composed

by four cells connected in series, in order to increase the

total capacity to 4, 000 mA; in addition, we assumed the

four battery cells to be ideally balanced. Then, we followed

the methodology proposed in [17] to populate the circuit-

equivalent battery model, which is characterized to the differ-

ent discharge current rates provided by the battery datasheet.

Table I
MANUFACTURER’S PARAMETERS OF THE SELECTED BATTERY.

Parameters Ultimate PX-04 LIPO

Dimension 104x8.75x6.25 mm

Rated Capacity 1000 mAh

Nominal Voltage 11.1 V

Cut-off voltage 9.0 V

As mentioned in the Section III-B2, we assumed the con-

verter efficiency between drone motor and battery to be con-

stant, and set at 90%. The whole system under our simulation

is composed of one circuit equivalent battery model and

the drone motor power consumption mathematical equation

model. We implemented it by using SystemC as it supports

multiple MoCs (Model of Computation) for modeling the

drone motor and battery using different ways, whereas the

extension version SystemC-AMS provides Electrical Linear

Network (ELN) MoC, which facilitates constructing circuit

equivalent models.

B. Deriving Battery-Aware Power Model of the Drone

We followed the characterization of our proposed battery-

aware drone power model through the methodology described

in Section III-B. We ran the simulation for different distances

of delivery, payloads, and horizontal speeds. The specific

values of these quantities are reported in Table II, where each

set of data includes the minimal and maximum values of

the interval for a specific parameter, and the step value. In

addition, for each simulation we included the initial battery

SOC at the beginning of each task, as defined in Section III-B.

As indicated in [19] the maximum weight of payload carried

by the drone is 200 g, while to make our exploration space

wider, we set the maximum weight of payload at 400 g.

This is not in conflict with the realistic situation since we

do not consider some power losses, as described in Section

III-B3, and because our simulation results even demonstrate

that the delivery tasks with 400 g cannot be delivered for long

distances and low speeds.

Table II
SPECIFIC VALUES OF DISTANCE, PAYLOAD, SPEED FOR DERIVING

PROPOSED BATTERY-AWARE POWER MODEL.

Variable Parameters Set of values

Distance (m) 100:100:1000

Speed (m/s) 1:1:10

Payload (g) 100:100:400

In the following sub-sections, we firstly show the drone

power consumption dependence on the distance of delivery,

weight of payload and its speed; secondly, we show the

drone energy consumption under different levels of battery

SOC at the beginning of the delivery task, which is the main

contribution in this work.

1) Energy consumption dependence on Distance, Payload

and Speed: Due to space limitation, only a subset of the

results about the weight of dependence of the battery energy

on the parameters, is reported. The subplots in the first row

of Figure 8 show ∆SOC, that is the energy consumption

for each task under 100% initial SOC and different distances

of delivery. The results show that ∆SOC increases with

increasing distance. It is worth notice that ∆SOC equals to

zero under the case of 800 m distance, 0.4 kg payload and

1 m/s speed, as shown in the fourth subplot of the first row

in Figure 8; it means that the battery cannot provide enough

energy for such delivery task.

Figure 9 illustrates similar results about the dependence

on horizontal speed and distance of delivery: ∆SOC has

a positive proportional relation to the weight of payload.

However, the ∆SOC dependence on horizontal speed has an

inversely-proportional relationship, as indicated in Figure 10.

In general, the drone consumes less energy when it travels

at high horizontal speed during the task; therefore, low speed

is not really optimal for the drone from the point of view of

energy. The reason is that the hovering power is a constant

value during the flying time, and it requires a relatively high

horizontal speed to be compensated.
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Figure 8. Energy consumption under fixed initial SOC of battery and delivery distance situations with two different initial SOC.
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Figure 9. Energy consumption under fixed initial SOC of battery and delivery payload situations with two different initial SOC.

2) Energy consumption dependence on SOC of battery:

Our main contribution of this work is deriving a battery-

aware power model of drone by investigating the dependence

of the power consumption on the battery SOC. In order to

indicate how the proposed model accounts for the dependence

of the drone energy consumption on the battery characteristics,

we conducted various simulations to calculate the energy

consumption at different distance, speed, payload and initial

battery SOC from 10% to 100% with 10% step. Due to space

limitation, we only show two cases with different battery SOC

at the beginning of the delivery task. However, the results from

all the cases demonstrate that the drone consumes more and
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Figure 10. Energy consumption under fixed initial SOC of battery and horizontal speed situations with two different initial SOC.

more energy while the SOC of the battery decreases.

The ∆SOC values in the first row of Figures 8, 9 and

10 represent the energy consumption when the battery SOC

is 100% at the beginning of the delivery, while the ∆SOC

values of initial SOC of battery is 60% as shown in the second

row of each figure. There are apparently differences between

the subplots in the first and second rows of each figure, when

analyzing some specific situations such as the long distance of

delivery shown in Figures 8, heavy weight of payload indicated

in Figures 9, and low horizontal speed revealed in Figures 9.

Obviously, the number of undeliverable tasks increases under

60% initial SOC cases, especially in the case of long distance,

heavy weight of payload and low horizontal speed, as shown

in Figure 9. In fact, in this context 0 of ∆SOC represents

that the battery does not have enough energy to accomplish

the delivery task. This results means that the proposed model

plays a decision-making role to determine the specific tasks

that can be executed.

C. A case study of the proposed battery-aware model used as

an accurate SOC estimator

For the purpose of illustrating how the proposed model can

be beneficial in a general delivery task scheduling framework,

we present a case study in order to demonstrate how this model

improves the estimation accuracy with respect to a traditional

model ignoring the battery non-idealities. In this scenario, a

drone for deliveries has to carried out a number n of tasks

{τ1, ...τn}. Each task τi = (wi, di) is characterized by a

payload having weight wi, and a target distance di. We assume

that the drone delivers packages, one task at a time, until its

battery is mostly fully depleted. In addition, time constraints

or other priorities for delivery are not here considered as our

objective is to minimize the energy required to carry out the n

deliveries, and the case study is generated just for the purpose

of demonstrating the usefulness of the proposed energy model.

According to the statement of [20], the best scheduling

policy of multiple delivery tasks always starts with the task

having the heaviest payload and longest distance, because

the battery is more efficient in providing larger currents

when fully charged; therefore, an effective scheduling policy

would be heaviest-and-longest-first. Consequently, the optimal

scheduling policy can be determined in advance.

In order to analyze the real number of tasks can be really

accomplished, we adopted this scheduling policy on the task

set listed in Table III, and then we compared the results of the

proposed energy model against the classical one.

Table III
DELIVERY TASKS WITH VARIOUS PAYLOADS AND DISTANCES.

Task Weight (g) Distance (m) No. of Items

A 100 200 2

B 300 200 2

C 400 500 1

D 400 700 1

The optimal scheduling is then D → C → B → B → A

→ A. The comparison of the battery SOC during simulation,

after considering the proposed battery-aware model and the

traditional one, is shown in Figure 11. The upper subplot

indicates the battery is depleted during the last delivery task,

according to the proposed model, as the total runtime of the

battery is indeed 992 s. On the contrary, when considering the

traditional model the residual battery SOC is overestimated to



15.98% after delivering all the tasks, as the bottom subplot

shows.
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Figure 11. Battery current and SOC profiles of proposed battery-aware model
and traditional model.

Therefore, when evaluating the two models, the difference

in the estimation of the battery SOC is about 18%. The reason

of this result is that the traditional model ignores the non-ideal

characteristics of the battery during the discharge phase. In this

scenario, the drone will land unexpectedly before ending all

the tasks. On the other hand, our proposed model can be useful

to avoid starting and executing delivery tasks that could not be

accomplished if the real energy level of the battery is actually

insufficient.

V. CONCLUSION

The remarkable rise of small drones with their many appli-

cations, requires a very detailed model for both mechanical

and electrical parts, in order to predict correctly the true

performance of these UAVs, which have generally very limited

energy. This paper demonstrates that a model accounting for

the non-linear characteristics of the battery, is essential from

this point of view to estimating the real state-of-charge of the

battery. A case study for a quadrotor operating at different

working conditions was analyzed. In particular, simulations

of various delivery tasks at different distance, payload, and

horizontal speed were conducted. Results showed that a failure

to take into account the real battery performance, leads to a

notable inaccuracy about the estimation of the available energy

and, consequently, of the overall flight time.
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