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Summary

This work presents a set of techniques concerning image forensics, more specifi-
cally, the core of the thesis deals with image clustering based on camera fingerprints.
Image clustering using camera fingerprints is a blind problem, and clustering is per-
formed in the absence of any prior information. The clustering process faces some
serious issues of high computational cost, input-output (I/O) cost and NC ≫ SC
problem, i.e., when the number of cameras NC is much larger than the average
number of images per camera SC. Reducing the computational cost and finding a
solution to the NC ≫ SC problem are the main objective of this thesis. Several
algorithms have been proposed and presented, including reduced complexity image
clustering (RCIC), fast image clustering algorithm based on fingerprints ordering
(FICFO), canopy based image clustering (CIC) and compressed fingerprints based
image clustering (CFIC) algorithms. The RCIC and FICFO are also implemented
with an optional stage of attraction. The attraction process helps to improve the
quality of the clusters. The RCIC and FICFO with attraction are represented as
RCIC-A and FICFO-A, respectively.

For every algorithm, an estimate of the camera fingerprint for each available
image is computed using standard techniques, then the algorithm tries to cluster
those fingerprints according to the source camera. RCIC randomly selects a camera
fingerprints from a set of un-clustered fingerprints as a reference and uses it as an
attractor to construct a cluster. The remaining fingerprints are processed in the
same manner by randomly choosing the next reference fingerprint out of the set
of currently un-clustered fingerprints, and building another cluster. The RCIC is
applied until all fingerprints are assigned to a cluster. The clusters are refined using
the attraction process in the RCIC-A algorithm. The RCIC and RCIC-A clusters
images with significantly lower computational cost in comparison with existing
clustering algorithms, while maintaining similar or even better performance.

Moreover, these algorithms are robust to the NC ≫ SC problem. The cluster-
ing process is further simplified and made faster in FICFO by sorting the camera
fingerprints using the inherent information of images. A factor of goodness called
ranking index ℜI is computed for each fingerprint, using the gray level, saturation,
and textures level of the respective image. The higher the ℜI, the lower is the
estimation error on the fingerprint and vice versa. Therefore, all the fingerprints
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are arranged in the descending order of the ℜI and the best fingerprint i.e., the
fingerprint on the top, among the un-clustered fingerprints, is selected as reference
fingerprint to attract other fingerprints of the same camera and construct a cluster.
The results confirm that the FICFO and FICFO-A result in a cluster of high quality
and at lower computational complexity. The sorting of fingerprints helps to reduce
the computational cost with respect to RCIC and RCIC-A. The method efficiently
handles the problem of NC ≫ SC. The results show that these algorithms are
more suitable for large scale clustering.

The CIC algorithm is another approach to cluster images using the camera
fingerprints. The CIC algorithm uses the sorted camera fingerprints and operates
in two stages. In the first stage, a relaxed threshold is set to construct fewer raw
clusters of large sizes. The raw clusters are further clustered using a strict threshold.
This results in a large number of pure clusters; most of them are singleton clusters.
The clusters are refined using the attraction stage, which helps to reduce the number
of clusters and improve the quality of clusters. The results show that the CIC
algorithm does not suffer from the NC ≫ SC problem and has a significantly
lower computational cost. However, even though the computational complexity of
the CIC algorithm is lower than FICFO and RCIC, sometimes the performance of
the CIC algorithm is degraded with respect to RCIC-A and FICFO-A. Furthermore,
the lower computational complexity of the CIC algorithm for large image datasets
makes it suitable for large scale clustering.

To reduce the computational cost further, reduced and full camera fingerprints
are employed in the CFIC algorithm. The initial clustering is done using reduced
fingerprints to construct clusters. The clustering performed on reduced fingerprints
has a lower computational cost than that of using full fingerprints. The full finger-
prints of each initially created cluster are merged by taking the average of them and
standardizing the result to zero mean and unit norm. The merged fingerprints are
used to refine the cluster and construct fine clusters. The CFIC algorithm, before
clustering, computes ℜI for each fingerprint, and arranges all fingerprints i.e., full
and reduced fingerprints, in the descending order of ℜI. The CFIC method results
in high quality clusters, comparable to the state-of-the-art techniques, at a signif-
icantly lower computational cost. The results show that the CFIC algorithm is
suitable for large scale clustering and does not suffer from the NC ≫ SC problem.
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Chapter 1

Introduction

In its initial era, photography was a chemical process and images were acquired
on a photographic film contrived of silver halide emulsion, a light-sensitive material,
coated on a flexible base. With the advancement of technology, analog photography
has been replaced with digital photography [52, 76]. The coated films and chem-
icals have been substituted with arrays of photo-sensors and computer software.
Nowadays, digital imaging has become an integral part of our life, together with
other technologies [75]. The essential life events can be captured, and memories can
be stored in digital pictorial documents. The photos can be posted on the internet
and shared with family and friends on social media [94]. It becomes possible to use
images in several computer applications e.g., to create presentations, documenta-
tion, pamphlet, journals, magazines, and much more. The images captured with
cameras can play a role of evidence on crimes in the court of law and can help to
solve cases such as bank fraud, child smut, street crime, and violence, etc. [7, 5].

The universally accessible nature of digital cameras, in the modern world, makes
all these applications of digital images very easy. But, along with these advantages,
digital imaging has brought many new challenges, including modification of digital
images, origin identification of digital photos, grouping images based on a common
source, and so on. Consequently, the forensic analysis of images becomes imper-
ative, especially in crime inquiries [66, 100]. The different forensic tasks can be
classified in the categories of source classification, device identification, device link-
ing, recovery of processing history, integrity verification and anomaly inspection
and analysis [4].

For the investigation of criminal cases, in order to reach a possible solution
with the help of images, it is often essential to know the source of the images. For
example, analyzing the source of images can help in linking an anonymous account
to a known account by comparing the respective image galleries. Reliable and
inexpensive camera identification techniques are beneficial to recognize the device
which has been used to catch a particular image or video [15, 106]. The most
common and straightforward approach is to obtain such information by looking
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1 – Introduction

for clues inside the digital image file. The information related to camera type and
the condition under which the image has been taken is present in the header file
and the metadata, e.g., the Exif header [96, 65]. However, this information is not
present in all images of all camera models, and even if the information is available,
it can be easily altered [32]. The embedding of a watermark, visible or invisible
[63, 113], carrying the camera-related information is another solution for camera
identification and device linking. The use of watermarking is highly appreciated in
different forensics tasks, but it depends on the fact that the camera vendor should
embed it in the firmware and it can be removed with different attacks [35, 108].
In general, it can not be adopted as a source of camera identification and device
linking.

Therefore, intrinsic, non-removable, stable, and unique features of images are
needed to get source information of the camera. For this purpose, it is reported in
the literature that pixels of the camera sensors contribute some noise to the image
taken by the camera [1, 123]. These include shot noise or random noise, readout
noise, and pattern noise. The shot noise is caused by the random fluctuation in the
density of photons, striking the pixels of the sensor [11, 55]. The shot noise varies
from image to image depending on environmental conditions; therefore, it can not
be used as a unique camera fingerprint for source identification and device linking.
The readout noise is introduced by reading the data from the sensor. However, this
varies with light intensity i.e., the brightness of images and can not be treated as
a unique fingerprint. Pattern noise is deterministic and remains stable [16, 105].
Every image that is captured with a camera sensor has a specific pattern noise.
By averaging multiple images of the same camera, random noise components can
be reduced, improving the relative strength of pattern noise and making it more
readable.

The pattern noise is a combination of fixed pattern noise (FPN) and photo
response non uniformity (PRNU) noise, [86, 14]. The FPN is additive by nature
and is caused by the dark current [10, 24]. The problem with FPN is that it can
be eliminated from the image by simply subtracting the dark frame of the camera
from the image. The PRNU is added in an image due to the pixel non uniformity.
It is the preeminent component of the pattern noise. The non uniformity occurs
during manufacturing [14, 61]. This makes the PRNU a unique and stable noise
component that remains unaffected by temperature or humidity [86, 51]. Due to
these characteristics, PRNU can be adopted as a unique camera fingerprint and
used for camera identification, device linking, and other forensics tasks [78, 25].
The PRNU can be used to identify the source of an image, finding the brand and
model of a camera used for taking an image, or group together the images coming
from a common source camera [25, 89]. The camera fingerprint is usually estimated
from an image by subtracting the de-noised image from the original image [86, 14].
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Figure 1.1: Camera fingerprint.

1.1 Problem Statement
The main focus of this work is to cluster digital images using camera fingerprints.

The grouping becomes very easy if either source cameras or appropriate candidate
images for the cameras are available [104]. The fingerprints are estimated from
images taken by available cameras, or from the candidate images. Which are used
to cluster the set of unknown images. However, in real scenarios, the source cameras
and candidate images of the source cameras are not available. Usually, only a bunch
of images are available to forensic analysts without any prior knowledge of source
camera or candidate images. But, it is still essential to cluster images, so that each
cluster is composed of images from the same camera [101, 102].

The clustering of images using the camera fingerprints, without any other in-
formation available, by itself is a significant research problem for forensics experts.
However, the unique and stable PRNU makes it possible to group images from the
same sources. Several image clustering algorithms using camera fingerprints have
been proposed in the literature [8, 21, 77]. Usually, a correlation mechanism is
employed, such as the peak correlation energy (PCE) or normalized cross correla-
tion (NCC). Both the similarity measure i.e., PCE and NCC, can be used for the
clustering of images based on camera fingerprints. The PCE is a much stable test
statistic than NCC, but the PCE is computationally expensive and the NCC is a
key factor for computing PCE [35, 110]. Due to the less computational cost, we
prefer to use NCC instead of PCE. Therefore, in our proposed work, the clustering
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is done by computing the NCC among the PRNU patterns, onward called camera
fingerprints, and using the NCC as a similarity measure. Pair of fingerprints with
NCC above a predefined threshold value are grouped together and considered to
come from the same device. However, calculating the NCC between camera finger-
prints is computationally very expensive, especially when the number and size of
images become very large.

Several existing algorithms [77, 83, 125, 12] compute the NCC between each pos-
sible pair of camera fingerprints. These algorithms develop a full cross-correlation
matrix among n fingerprints, at the cost of n(n − 1)/2 correlations. This large
number of correlations make these algorithms unsuitable for clustering large image
datasets. The large number and large size of camera fingerprints also increase the
memory requirements. Along with the computational cost and memory require-
ments, the input-output (I/O) cost is another important problem related to the
clustering of images using camera fingerprints.

In the most challenging setting, clustering is performed in a complete blind
environment, and we do not have any information regarding the number of cam-
eras and number images contributed by each camera in the dataset. However, for
clustering images using camera fingerprints, efficiently, it is also vital to have a
reasonable number of images from each camera, contributing to the dataset. The
absence of a reasonable number of candidate images from each camera affects the
reliability of estimated fingerprints. Usually, a fingerprint estimated from a single
image has a large estimation error. While the presence of a suitable number of
images reduces the estimation error and increases the reliability by merging the
camera fingerprints. The merging is done by taking the average of the estimated
fingerprints, which helps to suppress the disturbances like the shot noise, the read-
out noise, high frequency contents of the image, and other noise sources [27]. The
problem is called NC ≫ SC problem, and it arises when the number of cameras
NC is much larger than the average number of images taken per camera SC [81].
Many current algorithms [77, 83, 12, 116, 40] face this problem.

These severe limitations of high computational cost, I/O cost, large memory
requirements, NC ≫ SC, sensitivity to outliers, and the need for prior information,
make the clustering problem very difficult. The solution to these problems is the
prime purpose of this research work.

1.2 Contributions
With the increasing role and effect of digital images in human life, it is essen-

tial to authenticate the source and the contents of the images. The forged and
modified contents can mislead us. Several techniques have been developed for the
authenticity of images. These techniques are broadly classified into two categories,
i.e., active techniques and passive techniques [30, 84]. The active authentication

4



1.2 – Contributions

techniques need prior information. The data hiding is used to embed a code in the
image at the time of acquisition [126]. The passive authentication techniques do
not need prior information and need the image contents itself [99]. The main focus
of the thesis has been on passive techniques that exploit camera fingerprints to link
a photo to the device that acquired it.

In this thesis, the focus of the research is to cluster digital images using their
camera fingerprint without exploiting any other source of information. The image
clustering faces some serious problems, as discussed in Section 1.1. The main issues
that are addressed in this thesis are computational complexity, cluster quality, and
NC ≫ SC problem. Many solutions are devised to solve these problems.

The first contribution towards the image clustering is reduced complexity. The
algorithm clusters images based on their camera fingerprints. The camera finger-
print is estimated for each image of an unknown source. A set of un-clustered
fingerprints is processed, and a fingerprint is randomly selected as a reference fin-
gerprint. The reference fingerprint is used as an attractor to construct a cluster.
NCC is computed between the reference fingerprint and each of the un-clustered
fingerprints one by one. The fingerprints that satisfy threshold criteria are consid-
ered from the same camera as the reference fingerprint. The algorithm is explained
in [70]. The algorithm results in high quality clusters at significantly reduced com-
putational cost. Moreover, the algorithm is robust to the NC ≫ SC problem.

Our second contribution is the clustering of sorted fingerprints. The finger-
prints are arranged in the descending order of a factor called ranking index ℜI.
The ranking index is computed using the inherent gray level, saturation, and tex-
ture information of the images. Flat images that are neither too dark nor too
saturated results in good quality camera fingerprints that can be used more reli-
able as attractors. Therefore, ℜI is computed for camera fingerprints using their
own images. The camera fingerprints are sorted in the descending order of the
values of ℜI. The algorithm clusters images using these sorted camera fingerprints.
The clustering algorithm selects the best fingerprint, from the set of sorted and
un-clustered fingerprints, as reference fingerprint and uses it as an attractor to con-
struct a cluster. The sorting of fingerprints helped to reduce the computational
cost further. The clustering based on the sorted camera fingerprint is presented in
[69]. The algorithm results in high quality clusters at much reduced computational
cost. The algorithm also provides a solution to the NC ≫ SC problem.

The Canopy based image clustering is the third contribution of this thesis.
The sorted camera fingerprints are first grouped in large clusters using relaxed
threshold criteria with a higher probability of false alarm (PFA). This process
builds fewer clusters of large size. The large clusters are called Canopies, which are
further clustered using a hard threshold with a very low PFA. The clusters are
refined to get final clusters. The algorithm constructs quality clusters at a lower
computational cost.

The compressed fingerprints based image clustering is another contribution to
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the thesis. The full fingerprints are estimated from the images under the test. The
full fingerprints are compressed to get reduced camera fingerprints. This framework
performs clustering on compressed camera fingerprints. The compressed finger-
prints based clustering has a significantly lower computational cost and results in
high-quality clusters. The full fingerprints of each constructed cluster are merged
and used for fine clustering to refine the clusters. The compressed fingerprints based
clustering has the lowest computational cost out of the proposed techniques. The
computational cost is also quite lower than in state-of-the-art clustering algorithms.
The NC ≫ SC problem is also solved by this framework.

We also investigated an active technique based on data hiding. Ant colony
optimization (ACO) based data hiding has been devised to hide information in the
complex region of cover images. The ACO-based data hiding in a complex area
develops a pheromone matrix that identifies the complex region. The pixels that
belong to the edges are then subjected to the LSB substitution technique. The LSB
of the pixels of the complex region is substituted with secret message bits and hide
a secret message in these pixels. The results show that the ACO based data hiding
in the complex region result in quality stego images, and the hidden information is
undetectable for the human visual system (HVS).

1.3 Organization of the thesis
The thesis is organized in the following chapters:

• Chapter 2 presents the camera sensor output model, camera fingerprints esti-
mation, and matching procedure. It also presents a detailed literature review
of image clustering algorithms based on camera fingerprints, discussing the
advantages and the problems these algorithms face.

• Chapter 3 presents the proposed image clustering algorithms. The steps in-
volved and the detail implementation of the algorithms are discussed in this
chapter.

• Chapter 4 presents a detailed discussion on the experimental setup and the
evaluation metrics. It then shows extensive experimental results to analyze
the clustering algorithm for large and small scale clustering. The robustness
of the algorithms against the NC ≫ SC problem is also examined. The
comparison of the proposed algorithm among themselves and with state-of-
the-art techniques is also presented in this chapter.

• Chapter 5 presents a data hiding technique in the image complex region
based on ant colony optimization. The proposed technique is implemented on
different cover images, and the algorithm is evaluated based on the quality of
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stego images and hiding capacity achieved. The performance of the proposed
algorithm is also compared with some of the previous data hiding techniques.

• Chapter 6 concludes the work. It also states the possible future work in this
field.

7



8



Chapter 2

Background on Image Clustering
based on Camera Fingerprints

Digital cameras usually use charge-coupled device (CCD) and complementary
metal-oxide semiconductor (CMOS) as imaging sensors [82, 92, 91]. The sensor is
composed of several photo detectors, called pixels in imaging terminology. These
pixels capture the light incident on them and transform the photons into electrons
in compliance with the well-known photoelectric effect. The number of generated
electrons depends on the intensity of incident light and the dimension of the light
sensitive area of the pixel. The dimension of the sensor’s active area and the
contribution of impurities in the semiconductor material vary from sensor to sensor
due to the non-ideal manufacturing environment and tools. These factors, along
with many other factors, introduce both systematic and random variations in the
images. These fluctuations are independent of the scene and do not vary with the
image capturing conditions. These play a vital part in the forensic examination of
the digital images acquired with these sensors.

The sensor imperfections contribute several types of noise to the image captured
with the camera. These include shot noise or random noise, readout noise, and
pattern noise. The random noise is caused by the random fluctuation in the density
of photons, striking the pixels of the sensor [11, 55]. The pattern noise is composed
of two major components [86, 14]. The first component is the fixed pattern noise
(FPN), which is additive by nature and is caused by the dark current [10, 24]. The
problem with FPN is that it can be eliminated from the image by simply subtracting
the dark frame of the camera from the image. The other component of pattern noise
is known as photo response non-uniformity (PRNU) in literature [27, 74]. PRNU is
added in an imaged due to the pixel non uniformity. It is the preeminent component
of the pattern noise. The PRNU is unique, stable, and multiplicative in nature.
Therefore, PRNU uniquely represents the camera acquisition device and is used
as a camera fingerprint. The PRNU is used to accomplish several forensic tasks
e.g., camera identification, device linking, and tampering detection, etc. [106, 27].
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To exploit the use of PRNU for the mentioned task, it is essential to estimate the
PRNU from the images. For estimating the PRNU, it is useful to introduce a sensor
output model.

2.1 Sensor Output Model
The image acquisition is a complex process and varies with different camera

models. But, the basic concept, elements, and functions are shared by most cam-
era models. Each camera has a batch of sensors, and the light is directed onto
the array of the image sensor, also called pixels. The incident light generates cur-
rent due to the photoelectric effect. The current is enhanced by amplification and
quantized. The pixels use a color filter that allows only a single color (red, blue, or
green) light incident on a pixel. This array of filters is called the color filter array
(CFA). The signal is interpolated or demosaicked to get a color image [27, 85]. To
correctly display an image on a screen, the colors are adjusted using color correc-
tion and gamma correction. Some camera models also use denoising or sharpening
techniques. The processed image is stored in an appropriate format e.g., JPEG.

Let us consider the quantized signal I[i] acquired at pixel i, i = 1, ..., w × h,
before demosaicking. Where w × h is the dimension of the image. Let us denote
as Y [i] the intensity of the light incident on pixel i. For a clearer and readable
representation of the camera model, the pixel indices are dropped. According to
Fridrich [27], the output of the camera can be modeled as given in Eq. 2.1.

I = gγ.[(1 +K)Y + Ω]γ +Q (2.1)
In Eq. 2.1, the factors g and γ represent the color gain and gamma correction,

respectively. The term K is noise signal i.e., PRNU, of zero-mean. Ω represents a
mix of other types of noises, i.e., shot noise, the dark current, and readout noise
[54, 42]; Q represents quantization and compression distortion.

The scene light is the major factor in an image that is not dark and is represented
by the terms in square brackets in Eq. 2.1. Applying the Taylor expansion [60] and
keeping the first two terms, we remain with the terms expressed in Eq. 2.2 and Eq.
2.3.

I = (gY )γ.(1 + γK + γΩ/Y ) +Q (2.2)

I = I(0) + I(0)K + Θ. (2.3)
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2.2 PRNU Fingerprint
In the absence of all other noise sources, when the light of intensity Y strikes on

the imaging sensor, the sensor registers a I(0)+I(0)K signal. The signal I(0)+I(0)K,
is a combination of two components, scene I(0) and the noise pattern K. The term
K represents the PRNU and is used as a camera fingerprint.

The noise components are much smaller than the image contents. To improve
the signal to noise ratio (SNR) between the signal of interest (pattern noise) and
the image contents I, the image contents are suppressed. PRNU noise residual W
is obtained by subtracting the denoised signal D (I) of a sensor from the original
signal I [14, 54].

W = I −D (I) (2.4)
W = IK + Ξ (2.5)

The Ξ represents the sum of Θ and other noise introduced by the denoising
filter. Ξ is present in the content I − D(I) due to the inability of the denoising
filter to separate content from noise. The D(.) represents the Mihcak denoising
filter [86]. The wavelet coefficients based denoising filter is modeled by treating
the high wavelet coefficient of the noisy image as a concoction of stationary i.i.d.,
signal of zero mean and stationary white Gaussian noise N(0, σ2

0).
Let us consider a set of n images I1, I2,..., In. We estimate noise residual

W1, W2,...,Wn and model the Ξ1, Ξ2,...,Ξn as white Gaussian noise (WGN) with
variance σ2. The Ξ term is technically not independent from the PRNU signal of
IK. But, the energy of Ξ is smaller than IK; therefore, these terms are assumed
to be independent of each other.

For the noise residual of each image I the Eq. 2.5, can be written as

Wk

Ik

= K + Ξk

Ik

(2.6)

The maximum likelihood estimator is used to estimate the fingerprint K̂ shown
in Eq. 2.7.

K̂ =
∑︁n

k=1 IkWk∑︁n
k=1 I

2
k

(2.7)

The K̂ for a camera sensor is estimated from the n images taken with the same
camera. This can be an effective way of computing K̂ when a suitable number
of known candidate images are available. Usually, it is preferred to use several
candidate images to estimate camera fingerprints. As the optimal estimator is a
bit more complex, therefore, the fingerprint for a sensor is obtained by taking an
average of camera fingerprints estimated from individual images of the same camera
sensor. The averaging helps to suppress the disturbances like the shot noise, the
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readout noise, high frequency contents of the image, and other noise sources [27]
and also improve the PRNU pattern noise.

But, in the clustering problem, it is not possible to take an average of multiple
fingerprints, because the source of images, the number of cameras and the images
taken with a camera are not known. Therefore, the clustering is done using PRNU
estimated from every single picture.

The fingerprint of a single image can be given as

K = IW

I2 (2.8)

We suppose that the PRNU is the representative of the camera, which has
captured it.

The term K is mainly responsible for the camera fingerprint. According to the
Cramer-Rao Lower Bound (CRLB) [64], the bright and unsaturated images with
small σ2, i.e., smooth contents, are most suitable for fingerprints estimation. The
fingerprints estimated from unsaturated, uniformly illuminated, and low textured
images are more reliable to represent the source camera [14, 26]. Moreover, the
PRNU signal varies among cameras of different models. It changes from camera
to camera of the same model. That’s why it is unique for each camera and is
considered as a unique fingerprint for the camera.

2.2.1 Fingerprints Post-processing
The estimated PRNU fingerprint is processed to remove non-unique artifacts

(NUA), the artifact shared by different cameras. The fingerprint estimate K con-
tains several artifacts, systematically present in images. These artifacts occur due
to color interpolation, JPEG compression, on-sensor signal transfer [29], and sensor
design. These non-unique artifacts (NUA) are shared among the cameras of the
same model or sensor design, while the PRNU is unique for each sensor. In the
presence of these artifacts, PRNU of two different cameras may be slightly corre-
lated and may result in false identification. Most of these artifacts are, fortunately,
due to demosaicking algorithms that depend on the CFA and are periodic in na-
ture. These can be eliminated by zero-meaning the rows and columns of the PRNU
separately for each pixel type, as defined by the CFA. The fingerprint is further
processed using a Wiener filter with noise variance σ2 in the frequency domain, to
suppress any remaining NUAs, such as non-periodic artifacts [13].
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2.3 Device Identification and Fingerprint Match-
ing

After the estimation of fingerprints, this section demonstrates how the finger-
prints can be used to identify whether a specific image is acquired by a particular
device or not. In such cases, the device and the unknown images are available.
Let us consider an unknown image I of size d, and a fingerprint Ki is estimated
from the image, following the previously presented procedure. The fingerprint K̂
is computed for the device using the images captured with it. Then the NCC ρ
between the fingerprint of the device and the fingerprint Ki estimated from the
image I is computed as given in Eq. 2.9

ρ = 1
d

d∑︂
x=1

K̂[x]Ki[x] (2.9)

If the NCC ρ, between the K̂ and Ki, is higher than a predefined threshold
value, the image is considered to be captured with the device under test.

However, when the device is not available, we have only images without any
information about their sources. We are still interested to know whether two images
are acquired with the same device or not, which is the usual case in blind clustering.
To determine whether a group of images is taken with a specific common source
camera or not, PRNU, i.e., fingerprints are used. For the decision, whether two
images share a common source or not, the normalized cross-correlation (NCC) ρ
between their respective, estimated fingerprints are computed. Let us consider two
fingerprints K1 and K2 estimated from I1 and I2, respectively. The NCC ρ between
a couple of fingerprints is calculated as given in Eq. 2.9.

If the NCC ρ ≥ Th, the K1 and K2 are considered of the same sensor, and the
corresponding images are considered to be captured with the same camera. The
threshold value is calculated according to Eq. 2.10.

Th =
√︄

2× 1
d
erfc−1(2× PFA) (2.10)

Where erfc−1(.) is the inverse of the complementary error function, and PFA
represents the desired probability of false alarm.

According to the Central Limit Theorem (CLT) [43], if we have two normalized
fingerprints X and Y of size equal to d and belonging to two distinct cameras, the
NCC ρ between them is approximately distributed as a normal distribution with
zero mean and 1/d variance, i.e., ρ(X, Y ) ∼ N(0,1/d) [89]. Hence, the probability
of declaring two fingerprints from the same camera when they, in fact, comes from
different cameras is bounded by PFA.
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Figure 2.1: Fingerprint matching.

2.4 Literature review
The source identification and image clustering based on camera fingerprints is an

area of great interest to forensic experts. The image clustering, which we focus on,
deals with a set of images from unknown sources. The images are grouped without
any prior information about the source camera, the number of source cameras
and the number of images contributed by individual cameras. Therefore image
clustering problem can be seen as a blind process. Many techniques related to
image clustering have been reported in the literature. The camera fingerprinting
and image clustering (BCFIC) [8] and large scale image clustering (LSIC) [81] are
the two most prominent algorithms. The performance of our proposed algorithms is
compared with these two algorithms. Therefore, the BCFIC and LSIC algorithms
are presented in detail in this section. We also present a summary of some other
selected image clustering techniques in the following sections. The details of the
techniques can be found in the respective papers.

2.4.1 Blind Camera Fingerprinting and Image Clustering
(BCFIC)

Bloy was the first who proposed a blind image clustering (BCFIC) algorithm
[8]. The algorithm was based on the pairwise nearest neighbor (PNN) technique
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reported in [21]. The PNN technique deals with each element as a single point
cluster and calculates the pairwise distances between all single point clusters. The
closest point clusters are merged to get a new cluster with its own centroid. The
process ends when a stopping condition is met. Bloy in [8] used the modified version
of the PNN algorithm to reduce complexity and accelerate the clustering process.

The BCFIC, before the clustering process, estimates the camera fingerprints
from a set of images. The fingerprints enable the source camera identification of
each image without any prior information of the source. The BCFIC does not
rely on any training set and needs only the pre-calculated threshold, which plays a
decisive role in the clustering process.

Bloy’s algorithm constructs a cluster using the following process.

• Randomly selects a pair of fingerprints and computes the correlation between
them. If the correlation value is higher than or equal to the threshold value,
the process of searching for a pair of fingerprints stops and the algorithm
moves to the next step. Otherwise, another pair of fingerprints is selected, and
the process is repeated. The process continues until a pair with a correlation
value greater than the threshold is obtained or a certain number of attempts
are made. If no couple meets the criteria, the clustering process ends and the
fingerprints are declared unclustered.

• As the pair is found, the pair of fingerprints are merged by averaging them.
The averaged fingerprint is used as a reference fingerprint for constructing
clusters, from remaining un-clustered fingerprints. The correlation between
the reference fingerprint and the remaining fingerprint is calculated one by
one. The fingerprint with correlation value greater than the threshold, are
assigned to the same cluster as that of reference fingerprint. The process con-
tinues until the size of the cluster reaches 50, or all un-clustered fingerprints
are processed.

• The fingerprints of the constructed cluster are merged by taking an average
of them. The unclustered fingerprints are again processed by computing the
correlation between the average reference fingerprint and each un-clustered
fingerprint. If the threshold criterion is met, the fingerprint is assigned to the
same cluster; otherwise, it is left as un-clustered. The process ends when all
the un-clustered fingerprints are processed.

• Repeat the process until all fingerprints are assigned to a cluster or enough
number pairs have been tried without success in the first step.

The algorithm results in different clusters and each cluster is composed of images
acquired with the same camera. The images not assigned to a cluster are labeled as
un-clustered image. However, the algorithm suffers from the NC ≫ SC problem.
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For efficient clustering, it is essential to have a suitable number of images in the
dataset for each camera, which is not the usual case in real life.

2.4.2 Large Scale Image Clustering Algorithm (LSIC)
Lin and Li in [81], presented a large scale image clustering (LSIC). LSIC is

an attempt to address to clustering issue of large datasets and also NC ≫ SC
problem. The algorithm split the large dataset into small sub-datasets, which
can be efficiently loaded on RAM. The computational cost is reduced by using
reduced fingerprints, obtained by using sparse random projection [80, 2]. The
LSIC algorithm consists of the following steps.

• Preparation: The dark or saturated images are eliminated from the set of
images. Then full camera fingerprint is estimated and standardized to zero
mean unit norm, from each non-eliminated image. The dimension of the
fingerprints is reduced using the sparse random projections [80]. The full and
reduced fingerprints are stored and used for clustering the images.

• Coarse Clustering: The set of the reduced fingerprints is split into small
batches so that it can be easily loaded on RAM. Initially, two batches are
loaded on RAM and processed to construct a graph L. Each node Li of the
constructed graph L contains the list of the indices of the vertices adjacent
to the ith fingerprint. The remaining batches are loaded one by one, and the
graph L is constructed. The Graclus [17] graph partitioning algorithm is used
to create coarse clusters.

• Fine Clustering: After the coarse clustering, the correlation matrix is cal-
culated and binarized for each coarse cluster using the full fingerprints. The
cluster is split into sub-clusters based on the binary correlation matrix. Each
sub-cluster is represented by its centroid, computed by averaging all the fin-
gerprints in that sub-cluster. Using the centroid, the full correlation matrix
is calculated and binarized using a threshold of τ . Larger clusters are con-
structed by merging the sub-clusters satisfying the threshold criteria.

• Attraction: Then centroids are computed for the merged clusters and are
equalized to reduce the NUAs, which are further used as attractors to attract
the unclustered fingerprints.

• Post-processing: The fingerprints of the cluster smaller than a threshold
size are assigned to the unclustered set of fingerprints, and the remaining clus-
ters are declared as final clusters. The algorithm ends when no more notable
clusters are obtained. The unclustered fingerprints and the fingerprints of
clusters with a size smaller than the threshold size are declared unclustered.
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LSIC algorithm generates quality clusters specifically for large databases and
also solves NC ≫ SC problem. Although the computational complexity of cluster-
ing has been reduced, but still significantly high and needs to be reduced further.

2.4.3 Other Image Clustering Algorithms
In [77], Li used enhanced fingerprints for clustering. The fingerprints are con-

sidered as random variables and repeatedly clustered using a Markov random field
(MRF). A bunch of images is randomly picked, and fingerprints are extracted and
enhanced. A pairwise similarity matrix is generated and using the matrix, a sim-
ilarity criterion and membership committee are determined. The fingerprints are
used to calculate the likelihood probability of belonging to a class. The fingerprints
are assigned to a class on the bases of the highest likelihood probability in the
membership committee. This procedure continues when the class label changes in
consecutive iterations. If no change in the class label is observed after two consec-
utive iterations, the process stops. In the end, the fingerprints not included in the
training set are assigned to the closest clusters constructed in the training process.
This algorithm performs significantly well and is very efficient for clustering small
datasets. The algorithm needs the likelihood probability of each class and each
fingerprint in the class, which is computationally expensive. The time complexity
is about O(n3) for clustering n fingerprints in the first iteration. The high compu-
tational cost makes this algorithm inadequate for clustering large datasets. Along
with high computational cost, the algorithm also faces a NC ≫ SC problem. The
NC ≫ SC problem arises when the cameras NC are much larger in number than
the average number of images taken per camera SC [81].

In [83], camera fingerprint clustering was treated as a graph partitioning and
considered it a weighted unidirectional graph. The fingerprints are regarded as the
vertexes of the graph. The similarity between the fingerprints is used as the weight
of the edge that links the fingerprints. The k-nearest graph is built by randomly
selecting a vertex as an initial center, and the edge weights with the rest of ver-
tices are computed. Then (K + 1)th closest vertex to the center is chosen as the
new center. The edge weights of the new center are calculated with the remaining
vertices, excluding the already selected center. K is the sparsity controlling factor
of the graph. The selection of center vertices and calculating edges’ weights ter-
minates when the number of vertices not chosen as the center becomes less than
K. Afterward, the partition of the vertices of the k-nearest graph is done using
a multi-class spectral clustering algorithm [125]. The algorithm in [83] has high
I/O cost as well as high computational cost. Because during computing similarity
of fingerprints with selected centers, the fingerprints are read multiple times from
memory, while the algorithm in [125] has a computational cost of O(n 3

2m+ nm2).
The m represents the total number of partitions. If the total of fingerprints n is
much larger than m, i.e., n≫ m the algorithm performs better than Li’s algorithm
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in [77]. But, the algorithm needs information about the number of partitions m in
advance, which is not possible in practical scenarios. However, to reach the best
value of m, the clustering is repeated for various values of m, until a single element
cluster is achieved. This process makes the algorithm computationally expensive
and makes this unsuitable for clustering large image datasets.

A hierarchical image clustering is proposed in [12]. The fingerprints are en-
hanced using the technique given in [77]. Instead of using the complete dataset for
clustering, a set of the randomly selected training set is used for clustering. Each
member of the training is handled by an individual cluster, and a pairwise similarity
matrix for the full training set is calculated. The clusters with maximum similar-
ity are merged, and the matrix is updated. Following the updating, the overall
measure of the aptness of the existing partition is obtained by calculating the sil-
houette coefficient [23] of each fingerprint and averaging the silhouette coefficients.
The partition having the highest aptness is assumed to be the best partition. The
algorithm in [12] is faster than the algorithm expressed in [77], with acceptable
accuracy. However, the computational cost is very high to cluster large datasets.
In [31], instead of original full fingerprints, compressed fingerprints are used. At the
start, each fingerprint is considered as a cluster, and the similarity matrix is calcu-
lated. The clustering is performed iteratively. In each iteration, a couple of clusters
having the highest correlation are selected and merged if the correlation between
a couple of clusters is higher than a predefined threshold; otherwise, the clustering
stops. The work presented in [23] further improved the clustering results by using
Hu’s moment vector mechanism for refinement. Smart-phone image clustering is
presented in [116]. The algorithm proposed in [12] has been used for clustering with
some modifications. The smart-phone image clustering algorithm calculates the sil-
houette coefficient for each cluster rather than for each fingerprint. The algorithm
produces a cluster with good quality but is computationally expensive.

In [79], a fast source-oriented image clustering technique is presented. The algo-
rithm works in a complete blind environment, deals camera fingerprints as random
variables, and calculates the pairwise correlation between camera fingerprints. The
MRF technique is used to assign a class label to each fingerprint. The class label is
assigned using a cost function. The function is formulated with a different voting
power of neighbors of the fingerprints, depending on their similarity.

Following the belief of sparse subspace clustering (SSC) [20] that a data point
can be represented by the linear combination of other points in the same subspace,
Phan et al., in [101] presented as new clustering technique based on the SSC.
The algorithm obtains the sparse representation of each camera fingerprint, using
l1-regularized least squares and estimated suitable parameters in a data-driven
manner. The clustering is done using a divide and conquers approach, that enables
the proposed algorithm to cluster large datasets efficiently.

Several classical clustering algorithms exist in the literature. But they are not
suitable for use in the clustering of images based on camera fingerprints due to
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large size of datasets and individual images, absence of prior knowledge about the
sources and the number of sources of images. The K-means [53] and CLARANS [98],
clustering algorithms need the number of clusters in advance, which is not possible
in practical scenarios. Besides, the algorithm performs several iterations to process
the whole database, which does not fit well to cluster large-scale camera fingerprint
clustering. The DBSCAN [22], is another efficient classical clustering algorithm
that processes the whole database at a time, and a large memory is required along
with a substantial I/O cost [40]. The DBSCAN is also sensitive to its parameters,
and the noise-like nature of camera fingerprints can generate clusters of different
sizes. The hierarchical clustering techniques like [40] and [41], solve the memory
requirement issue by reducing the input size, especially for large databases, but
will face the NC ≫ SC problem. The BIRCH [127] and CHAMELEON [62], are
devised for large databases. However, these techniques are considered unsuitable
for camera fingerprints databases because these are very sensitive to outliers and
have high I/O cost while building the K-nearest neighbor graph.

In [90], McCallum et al. presented an algorithm to cluster large datasets. The
algorithm is composed of two main stages. In the first stage, the algorithm divides
large datasets into several overlapping subsets, called canopies, using inexpensive
and approximate distance measures. In the second stage, the elements present in
the same canopies are further clustered using exact distance measurement. The
canopies based approach convert large dataset clustering problem to several small
dataset clustering problems and make large dataset clustering practical. The algo-
rithm is computationally very economical without losing the clustering efficiency
significantly. Canopies can have many applications in different domains and can be
used in a collection of clustering methodologies, e.g., including Greedy Agglomer-
ative Clustering [97], K-means [59], and Expectation-Maximization [56].
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Chapter 3

Low Complexity Clustering
Algorithms

This chapter presents the proposed image clustering algorithms. All the algo-
rithms cluster images in a blind manner and need no prior information regarding
the candidate image, the source cameras, the number of images contributed by
each camera and the number of cameras. The first algorithm, which is used as a
baseline for the other algorithms, has been named reduced complexity image clus-
tering (RCIC) algorithm. The RCIC algorithm clusters images based on camera
fingerprints. An additional and optional stage of attraction is also used to refine the
clustering quality. Therefore, the RCIC algorithm can be implemented without and
with attraction. The RCIC algorithm without attraction is abbreviated as RCIC,
whereas the version with attraction is represented with RCIC-A. RCIC and RCIC-
A are simple but very efficient clustering algorithms with a reduced computational
cost and provide a solution to the NC ≫ SC problem.

The fast image clustering based on the fingerprint ordering (FICFO) algorithm
further reduces computational complexity. Ordering depends on the quality of the
fingerprints. The ordering factor called ranking index ℜI is computed for each
fingerprint using the image features that usually correlate with fingerprint quality
and all fingerprints are arranged in descending order of ℜI. The FICFO can also be
implemented with attraction, in which case it is denoted as FICFO-A. The FICFO
and FICFO-A have a reduced computational cost with respect to RCIC and RCIC-
A algorithms, respectively. These algorithms are also robust to the NC ≫ SC
problem.

The canopy based image clustering (CIC) algorithm uses two step clustering
approach i.e., raw clustering and fine clustering, using two different threshold cri-
teria. The CIC algorithm is composed of fingerprints sorting, raw clustering, fine
clustering, and attraction stages. The raw clustering generates few large clusters
using relaxed threshold criteria. The raw clusters are further processed using a
stricter threshold in the fine clustering stage. The attraction process is applied to
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refine the clustering quality. The CIC algorithm also has reduced computational
cost as compared to the state-of-the-art.

The compressed fingerprints based image clustering (CFIC) algorithm is based
on reduced and full camera fingerprints. The initial clustering is performed on
reduced fingerprints, and full fingerprints are used for refining the clustering. The
CFIC algorithm is composed of full and compressed fingerprints estimation, sorting
of fingerprints, initial clustering, and fine clustering.

The proposed algorithms achieve a performance comparable to state-of-the-
art algorithms, with a significantly lower computational cost. Large datasets are
clustered with a considerably lower computational cost. These methods are suitable
for large scale clustering and are robust to NC ≫ SC problem.

The above algorithms are discussed in detail in the following sections.

3.1 RCIC Algorithm
The RCIC technique explores the image dataset, without any prior information

about source camera, number of cameras, number of images captured by a camera
and candidate images. Since images come from different cameras with different
dimensions, the size of all images is equalized by center cropping them. Then
camera fingerprints, i.e., PRNU patterns, are extracted from all resized images.
Each image is de-noised using Mihcak filter operation [86] and subtracted from
the original image to get the noise residual W [14, 54] as given in Eq. 2.4 and
Eq. 2.5. Then, the noise residual of each image is further processed to estimate
PRNU fingerprint as given in Eq. 2.8. The PRNU is further processed using zero-
meaning and Wiener filter to remove the suppress the periodic and non-periodic
artifacts. The denoising filter i.e., Mihacak filter is implemented with a 4 level
Wavelet decomposition using the Daubechies 8 tap Wavelet filter. The same process
is adopted in all proposed clustering algorithms [86]. The resulting PRNU is used
as camera fingerprint. For details refer to Section 2.2. A set of, initially un-
clustered, camera fingerprints M is obtained from the dataset of images I, where
each fingerprint is standardized to zero mean and unit norm as given in Eq. 3.1
and Eq. 3.2.

Ki = {XiWi

X2
i

∧ 1 ⩽ i ⩽ n,Xi ∈ I} (3.1)

M = {Fi|Fi = Φ (W (Ki)) ∧ 1 ⩽ i ⩽ n} (3.2)
Where W is the Wiener filter operator, Φ(.) is the standardization function, n is
the number of images in dataset, Xi is the ith image in dataset and Fi is the camera
fingerprint obtained from Xi.

The clustering algorithm is applied to the set of un-clustered fingerprints Mk,
to construct kth cluster Ck. Initially Mk is equal to M . All extracted fingerprints in
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the dataset are in random order. The total number of fingerprints in the dataset is
equal to |M |. To start clustering, an empty cluster Ck is initiated, and a fingerprint
Fi is randomly selected as reference fingerprint RFk and assigned to cluster Ck. The
clustering is done by calculating the normalized cross-correlation (NCC) ρ between
all other fingerprints Fi and reference fingerprint RFk, as given by Eq. 2.9.

If the fingerprint Fi has an NCC ρ value greater than a threshold value Th, it
is assigned to the cluster Ck; otherwise, the fingerprint Fi is left un-clustered. The
threshold Th is calculated as given in Eq. 2.10. The probability of assigning to
cluster Ck a fingerprint from a different camera is bounded by PFA.

After processing all fingerprints a total of |Mk|−1 correlation operations are per-
formed to construct cluster Ck. The fingerprints grouped in cluster Ck are removed
from the dataset Mk and we are left with |Mk| − |Ck| un-clustered fingerprints.

To cluster the remaining fingerprints, new cluster Ck+1 is initiated and a fin-
gerprint Fi is randomly selected from Mk+1 as reference fingerprint RFk+1. The
un-clustered fingerprints are processed by repeating the same procedure used for
constructing the first cluster Ck. The algorithm stops when all fingerprints are
assigned to a cluster. The implementation of the RCIC algorithm is presented in
Algorithm 1. The implementation of RCIC algorithm is also explained in Figure
3.1, in detail.
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Algorithm 1 RCIC Algorithm
Input: M : Set of Fingerprints, K : Cluster index, PFA : Probability of false

alarm, d dimension of fingerprint
Output: Ck : kth Cluster

Initialization : k = 1 , Mk = randomize(M)
1: Th =

√︂
2× 1

d
erfc−1(2× PFA)

2: N = |Mk|
3: while (N /= 0)
4: UCk = ∅
5: Ck = ∅
6: RFk = Fi

7: CK ← Fi

8: for j = 2 to N do
9: ρ(j) = 1

d

∑︁d
x=1 RFK [x]Fj[x]

10: if (ρ(j) ≥ Th) then
11: Ck ← Fj

12: else
13: UCk ← Fj

14: end if
15: end for
16: k = k + 1
17: MK = randomize(UCk)
18: N = |Mk|
19: endwhile

The constructed clusters are further refined by using an attraction stage. In
attraction, an average reference fingerprint ARFk is calculated by averaging all
fingerprints in cluster Ck and standardizing it to zero mean and unit variance. The
set A of average reference fingerprints is obtained as expressed in Eq. 3.3.

A = {ARFi|ARFi = Φ
⎛⎝∑︁|Ci|

y=1 Ci[y]
|Ci|

⎞⎠ ∧ 1 ⩽ i ⩽ k} (3.3)

Each of the average reference fingerprints is treated as a single fingerprint, and
the previously adopted procedure is repeated. The clusters whose average reference
fingerprints have an NCC ρ greater than threshold Th are merged; otherwise, the
clusters are left unaffected. The pseudo code of the attraction process is expressed
in Algorithm 2.
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Figure 3.1: Implementation of RCIC algorithm without attraction.

Algorithm 2 Attraction
Input: A, PFAh, d
Output: Ci, CostAtt

Initialization : CostAtt = 0
1: Thh =

√︂
2× 1

d
erfc−1(2× PFAh)

2: N = |A|
3: while (N /= 0)
4: RFi = ARFi

5: A = A− ARFi

6: for j = 1 to (N − 1) do
7: ρ(j) = 1

d

∑︁d
y=1 RFI [y]ARFj[y]

8: CostAtt = CostAtt + 1
9: if (ρ(j) ≥ Thh) then

10: Ci = merge(Ci, Cj)
11: A = A− ARFj

12: else
13: Ci = Ci

14: end if
15: end for
16: N = |A|
17: endwhile
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The attraction is an optional stage, and the proposed technique can be imple-
mented with attraction as well as without attraction.

The attraction stage is applied to the clusters constructed with the RCIC algo-
rithm. The RCIC and attraction stage are collectively called the RCIC-A algorithm.
The complete implementation and clustering process of the RCIC-A algorithm is
shown in Figure 3.2.

Figure 3.2: Implementation of RCIC-A algorithm.

3.1.1 Complexity, I/O Cost and RAM Requirement of RCIC
and RCIC-A

The total complexity of the proposed clustering algorithm is measured in terms
of the total number of NCC operations performed during the clustering. The total
complexity of RCIC Tc(RCIC) and RCIC-A Tc(RCIC−A) are given by Eq. 3.4 and Eq.
3.5, respectively.

Tc(RCIC) =
nc∑︂

k=1
(|Mk| − 1) (3.4)

Tc(RCIC−A) =
nc∑︂

k=1
(|Mk| − 1) + CostAtt (3.5)

Where, |Mk| = |Mk−1| − |Ck−1|,∀ k ≥ 2 and M1 = M , nc is the number of clusters
constructed by the algorithm before attraction and CostAtt is the complexity of
attraction stage and is evaluated experimentally.

Along with less computational complexity, the RCIC and RCIC-A algorithms
have very low RAM requirements. The RCIC has a reference fingerprint RF and

26



3.2 – FICFO Algorithm

one full fingerprint F loaded on RAM, at a time. As the reference fingerprint and
full fingerprint have the same size, therefore we can say that two full fingerprints
are present in RAM at a time. The maximum RAM requirement of the RCIC
algorithm RAMRCIC is given by Eq. 3.6.

RAMRCIC = 64× (|RF |+ |F |) = 64× 2× |F | bits (3.6)
While the maximum RAM required by RCIC-A is higher than the RCIC as it

also has the averaged reference fingerprints ARF loaded in the RAM. The maximum
RAM usage of RCIC-A i.e., RAMRCIC−A, is given by Eq. 3.7

RAMRCIC−A = 64× nc× |F | bits (3.7)
The I/O cost of RCIC and RCIC-A is the same and is given by the Eq. 3.8 and

Eq. 3.9, respectively.

I/ORCIC = 64×
nc∑︂

k=1
|Mk| × |F | bits (3.8)

I/ORCIC−A = 64×
(︄

nc∑︂
k=1
|Mk|+ n

)︄
× |F | bits (3.9)

Eq. 3.9 shows that the I/O cost of the RCIC-A algorithm is higher than the
RCIC, because all the n fingerprints are read to estimate average reference finger-
prints for attraction. The RCIC and RCIC-A have a high I/O cost. Which can be
reduced by loading more than two fingerprints in RAM. However, it will increase
the maximum RAM requirement. Therefore, a compromise can be made between
the RAM requirement and the I/O cost.

3.2 FICFO Algorithm
Image clustering using the camera fingerprints would be more straightforward

if the centroids of clusters, to attract other fingerprints of the same camera, were
known in advance. But, in real life situations, such centroids are not available or
known and, usually, we establish the centroids from the estimated fingerprints of
the available images. It is assumed that fingerprints with lower estimation errors
are closer to their centroid. The FICFO algorithm uses the same assumption and
tries to sort camera fingerprints using inherent information of the respective images
to predict fingerprint estimation quality.

According to the Cramer-Rao Lower Bound on the variance of the fingerprint
[14, 78], the fingerprints estimated from dark or textured images are not reliable and
do not represent the source cameras appropriately. Therefore, a better estimation
of a fingerprint is made from a flat image that is uniformly bright and not saturated.
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The fingerprints estimated from flat, uniformly vivid and unsaturated images have
lower estimation errors and are more suitable to be used as centroid to attract other
fingerprints of the same cameras.

Therefore, instead of selecting a random reference fingerprint e.g., in RCIC and
RCIC-A, it is more suitable to select the best fingerprint with lower estimation
error as reference fingerprints. The best reference fingerprints are deemed closer to
the respective centroid, so as to help the attraction of fingerprints belonging to the
same camera.

The detailed implementation of the algorithm is presented in the following sub-
sections.

3.2.1 Fingerprints Ordering
All estimated fingerprints are sorted using a factor of goodness. This factor is

termed as ranking index ℜI. The ℜI is computed for each fingerprint using the
inherent gray level, saturation and texture level of the corresponding image. We
assume that fingerprints estimated from images with high ℜI have lower estimation
errors.

The average and normalized gray-level G and saturation S for an image Xi are
calculated as in Eq. 3.10 and Eq. 3.11, respectively.

Gi =
∑︁d

j=1 Xi (j)
255× d (3.10)

Si =
∑︁d

j=1 (Xi (j) == 255)
d

(3.11)

Where d is the size of image Xi.
To calculate the texture T of an image Xi, we use a Laplacian filter [107] that

highlights the regions of rapid gray-level change. The Laplacian Li of an image Xi

is computed as given in Eq. 3.12.

Li = imfilter (Xi, A) (3.12)
Where, imfilter(.) denotes 2D filtering and A is a kernel that approximates the
second order derivative [117].

A =

⎡⎢⎣ 0 −1 0
−1 4 −1
0 −1 0

⎤⎥⎦ (3.13)

The texture level Ti is calculated as given in Eq. 3.14.

Ti =
∑︁ |Li|2∑︁ |Xi|2

(3.14)
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Finally, the ℜIi for image Xi is obtained by combining the values of Gi, Si, and
Ti according to Eq. 3.15.

ℜIi = G
1
α
i × (1− Si)

1
β × (1− Ti)

1
γ (3.15)

Where, α, β and γ are factors defining the contribution of Gi, Si and Ti in RIi,
respectively. The α > 1, β > 0 and γ > 0, the ℜI increases with increase in
α and γ, while decrease with increase in β. The changes are very fast for small
values of these factors and after certain values a steady state is reached. As, these
factor control the contribution of different features of image in ℜI, therefore, it is
important to chose suitable values of these factor to compute ℜI.

Eq. 3.15 shows that flat images having a reasonable gray level but not saturated,
result in high ℜI and vice versa. The fingerprints estimated from images having
high ℜI have lower estimation errors.

Then, the images are processed for fingerprint estimation. A set of camera
fingerprints M , standardized to zero mean and unit variance, is obtained from the
images in dataset I as given in Eq. 3.2. The estimated fingerprints are arranged in
decreasing order of ℜI, to get a set of sorted fingerprints MS. These fingerprints
are then used for clustering.

3.2.2 Fingerprint Clustering
At a generic clustering step denoted by index k, a cluster Ck = ∅ and a set of un-

clustered fingerprints UCk are considered. When we start clustering, i.e., k = 1, all
un-clustered fingerprints are assigned to UCk i.e., UC1 = MS. To construct Ck, the
kth cluster, the proposed algorithm always selects as reference fingerprint RFk the
first fingerprint from the set of sorted and un-clustered fingerprints UCk and assigns
it to cluster Ck. If the ranking index is consistent, RFk will be the best estimated
fingerprint among all the un-clustered fingerprints UCk and the best representative
of the respective cluster Ck. The NCC ρ between all other fingerprints Fi and
reference fingerprint RFk is calculated according to Eq. 2.9.

If the NCC ρ between fingerprint Fi and reference fingerprint RFk has a value
greater than a threshold value Th, Fi is assigned to the cluster Ck; otherwise
the fingerprint Fi is attached to the set of un-clustered fingerprints UCk+1. The
threshold Th value is computed as given in Eq. 2.10.

While constructing the cluster Ck, a total of |UCk|−1 correlation operations are
performed, and a total of |UCk+1| = |UCk| − |Ck| fingerprints are left un-clustered.

To cluster the remaining fingerprints, if any, the cluster index k is incremented
by 1, i.e., k = k+1 and the un-clustered UCk fingerprints, are processed to construct
a new cluster Ck by repeating the same procedure. The process continues till
all fingerprints are assigned to a cluster and UCk+1 remains empty. The FICFO
algorithm is presented in Algorithm 3. The implementation of the FICFO algorithm
is also explained in Figure 3.3 with details.
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Algorithm 3 FICFO Algorithm
Input: M : Fingerprints, ℜI : Ranking Indexes, k : Cluster index, PFA : Proba-

bility of false alarm, d dimension of fingerprint
Output: Ck : Cluster K , RFk : Reference Fingerprint

Initialization : k = 1 , UCk = MS = sort(M,ℜI)
1: Th =

√︂
2× 1

d
erfc−1(2× PFA)

2: N = |UCk|
3: while (N /= 0)
4: UCk+1 = ∅
5: Ck = ∅
6: RFk = F1
7: Ck ← F1
8: for i = 2 to N do
9: ρ(j) = 1

d

∑︁
x = 1d

RFk[x]Fi[x]
10: if (ρ(j) ≥ Th) then
11: Ck ← Fi

12: else
13: UCk+1 ← Fi

14: end if
15: end for
16: k = k + 1
17: N = |UCk|
18: endwhile

Extract 
Fingerprints

Image 
Dataset

Standardize Fingerprints 
(μ=0, σ2=1) RFk=Fi

Cluster “Ck”

if(i≠j)
𝛒=NCC(Fi,RFk)

𝛒≥Th?

No

Yes

Un-clustered 
Fingerprints

Size≠0?

Fingerprints

Yes

No

Stop

k=k+1

I 
Calculations

Sorting of 
Fingerprints

Figure 3.3: Implementation of FICFO algorithm without attraction.
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The constructed clusters are further refined by using an attraction stage. In
attraction, an average reference fingerprint ARFk is calculated by averaging all
fingerprints in cluster Ck and standardizing it to zero mean and unit variance. The
set A of average reference fingerprints is obtained as expressed in 3.3. Each of the
average reference fingerprints is treated as a single fingerprint. As each cluster is
constructed by selecting the best fingerprints among the un-clustered fingerprints
as a reference, therefore, we can assume that the constructed clusters are present
in the descending order of their goodness. That is, the ranking used by FIFCO
also propagates to the attraction process. Therefore, in the attraction process, the
clusters are scanned according to their goodness and the average fingerprint of the
first cluster among all clusters is selected as reference fingerprint and the NCC ρ
between the reference fingerprint and all other averaged fingerprints is computed
one by one. If the NCC ρ is greater than the threshold, the corresponding clusters
are merged; otherwise, the clusters are left unaffected. This process continues until
all average fingerprints are treated as reference fingerprint or their corresponding
clusters are merged with some other cluster. The attraction process is explained in
Algorithm 2.

To implement the FICFO-A technique of image clustering, the fingerprints esti-
mation, sorting of fingerprints, clustering of fingerprints, and attraction process are
used. The implementation of the FICFO-A technique is explained with the help of
a diagram in Figure 3.4.

Extract 
Fingerprints

Image 
Dataset

Standardize Fingerprints 
(μ=0, σ2=1) RFk=Fi

Cluster “Ck”

if(i≠j)
𝛒=NCC(Fi,RFk)

𝛒≥Th?

No

Yes

Un-clustered 
Fingerprints

Size≠0?

Fingerprints

Yes

No

Stop

k=k+1

Attraction

Final Clusters “Ck”

I 
Calculations

Sorting of 
Fingerprints

Figure 3.4: Implementation of FICFO-A algorithm.
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3.2.3 Complexity, I/O Cost and RAM Requirement of FICFO
and FICFO-A

The total complexity of the FICFO Tc(F ICF O) and FICFO-A Tc(F ICF O−A) are
measured as given in Eq. 3.16 and Eq. 3.17, respectively.

Tc(F ICF O) =
nc∑︂

K=1
(|UCK | − 1) . (3.16)

Tc(F ICF O−A) =
nc∑︂

K=1
(|UCK | − 1) + costatt (3.17)

Where costatt is the complexity added by the attraction process and is evaluated
experimentally. While, the total complexity of FICFO is same as FICFO-A except
the attraction cost costatt.

The FICFO and FICFO-A do the computation in calculating G, S, T , and
ℜI and sorting process. However, the computational cost of calculating G, S, T
and RI is negligible concerning the estimation cost of fingerprints and complexity
of sorting fingerprints is far less than computing correlation of very long vectors.
Therefore, these are neglected in calculating the total complexity of tc.

Similar to RCIC, the FICFO algorithm has very low RAM requirement and
it always has only two fingerprints, i.e., reference fingerprint and one other full
fingerprints, loaded in RAM. The maximum RAM occupied by FICFO algorithm
is given in Eq. 3.18.

RAMF ICF O = 64× 2× |F | (3.18)
While compared to RCIC and FICFO, the FICFO-A has large RAM require-

ments. The FICFO-A, similar to RCIC-A, have the averaged reference fingerprints
ARF loaded in the RAM. The RAM occupancy reaches its peak when the cluster-
ing process end and the average fingerprints are computed for each cluster. All the
average fingerprints remain in the RAM in bits. As the attraction process starts
and clusters start merging, the load on RAM reduces gradually. The maximum
RAM occupied by the FICFO-A is given by Eq. 3.19

RAMF ICF O−A = 64× nc× |F | bits (3.19)
The I/O costs of FICFO and FICFO-A are equal and is given by the Eq. 3.20

and Eq. 3.21, respectively.

I/OF IF CO = 64×
nc∑︂

K=1
|UCK | × |F | bits (3.20)

I/OF IF CO−A = 64 times
(︄

nc∑︂
K=1
|UCK |+ n

)︄
× |F | bits (3.21)
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The Eq. 3.20 and Eq. 3.21 show that the FICFO has lesser I/O cost than the
FICFO-A.

3.3 CIC Algorithm
The CIC algorithm takes its inspiration from the work of McCallum et al. [90].

McCallum et al. presented a canopy based technique to cluster large datasets.
The main idea of the canopy based approach is to divide the large datasets into
overlapping subsets using a cheap, approximate distance measure. These subsets
are called canopies. These canopies are then considered as individual self-contained
datasets. The canopies are then clustered using the exact measuring distances
among the elements of a common canopy. The canopies approach convert the
large scale clustering problem into a number of small scale clustering problem and
make the large clustering problems possible that were formerly impossible. Using a
suitable cheap distance metric reduces the computational complexity and without
any loss in clustering accuracy. McCallum used the canopy based approach for
clustering article citations into sets containing citations to the same article. We
used the canopy based concept for image clustering based on camera fingerprints.

However, the CIC algorithm, instead of two different distance measures, uses
a single distance measure in both stages. In the first stage, a relaxed threshold
value is used to construct a few, non-overlapping large raw clusters i.e., canopies.
The raw clusters are further clustered using a hard threshold value. In the end,
refined clusters are obtained using the attraction process. The main difference
between the McCallum et al. work and the CIC techniques is that McCallum
et al. uses two different distance measures and creates overlapping subsets while
the CIC technique uses normalized correlation as a single distance measure but
with two different threshold values and creates non-overlapping subsets. Dealing
with non-overlapping subsets makes the algorithm computationally more efficient.
When using overlapping subsets, some candidates are present in more than one
subset and are processed multiple times when constructing final clusters, while in
the CIC algorithm, each candidate exists only in one subset so, it will be processed
for clustering only in one subset.

The essential steps involved in the CIC techniques are camera fingerprints esti-
mation, ranking index ℜI calculation for each fingerprint, sorting of the fingerprints
based on the ranking index, raw clusters i.e., canopies construction, fine clustering,
and attraction.

3.3.1 Fingerprint Estimation and Sorting
As a preliminary step, camera fingerprints, i.e., PRNU patterns, are extracted

from the images and standardized to zero mean and unit variance. Let’s have a
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dataset of randomly ordered images I, a set of camera fingerprints M , standardized
to zero mean and unit norm, estimated from the images in dataset I using the
mathematical expression as in Eq. 3.2.

The fingerprints are arranged in the descending order of ℜI. The ℜI of each
fingerprint is computed from the inherent information of the respective images.
The ℜI is computed as given in Eq. 3.15. The set of ordered fingerprints MS is
used for clustering.

3.3.2 Raw Clustering
After the estimation of camera fingerprints and computation of ℜI for each

image in the image dataset to be clustered, the camera fingerprints M are arranged
in the descending order of ℜI to get a set of sorted camera fingerprints MS. The
arranged fingerprints have the best fingerprint on top while the worst fingerprint
at the bottom. Then fingerprints are clustered to construct raw clusters. The raw
clustering is an iterative process and is repeated until each fingerprint is assigned to
a raw cluster. For the construction of a cluster, the best fingerprint Fi among the
un-clustered fingerprints is selected as reference fingerprint RFKr and is assigned to
a raw cluster RCKr, where Kr represents the index of a raw cluster and iteration
number. Then normalized correlation ρ between the reference fingerprint and all
un-clustered fingerprints is calculated, one by one, as given by Eq. 2.9.

The fingerprints having ρ value equal to or greater than a threshold value are
assigned to the same raw cluster RCKr as that of the reference fingerprint; other-
wise, the fingerprints are assigned to a set of un-clustered fingerprints UCKr. In
this way, one raw cluster RCKr is constructed in one complete iteration.

In order to create raw clusters, we use the same criterion based on NCC as for
the previous algorithms; however, a larger value of PFA is used which, results in
a relaxed threshold.

The set of un-clustered fingerprints is then processed repeating, the same pro-
cedure to construct another raw cluster, and so on. The cluster index Kr is incre-
mented i.e., Kr = Kr+1, and in each iteration, a raw cluster RCKr is constructed.
Here, it is important to mention that in each iteration, the best fingerprint with
the highest value of ℜI is selected as reference fingerprint RFKr, from the set of
un-clustered fingerprints. The process ends when all fingerprints are assigned to a
raw cluster.

Due to the relaxed threshold, the fingerprints are easily attracted. That’s why
the raw clustering results in a few large non-overlapping clusters. Each large cluster
may have fingerprints of different cameras in it. However, these clusters are con-
structed with a lesser computational cost. The raw clustering can be view as the
division of a large dataset of un-clustered fingerprints into small datasets. There-
fore, these raw clusters further processed to get fine clusters in the fine clustering
stage, by considering each raw cluster as a dataset of un-clustered fingerprints.
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Algorithm 4 Raw clustering algorithm
Input: M , Kr, PFAr and d
Output: RCKr :

Initialization : Kr = 1 , UCKr−1 = MS

1: Thr =
√︂

2× 1
d
erfc−1(2× PFAr)

2: N = |UCKr−1|
3: while (N /= 0)
4: UCKr = ∅
5: RCKr = ∅
6: RFKr = Fi and RCKr ← Fi

7: for j = 1 to (N − 1) do
8: ρ(j) = 1

d

∑︁d
x=1 RFKr[x]Fj[x]

9: if (ρ(j) ≥ Thr) then
10: RCKr ← Fj

11: else
12: UCKr ← Fj

13: end if
14: end for
15: Kr = Kr + 1
16: N = |UCKr|
17: endwhile

3.3.3 Fine Clustering
The raw clusters have images from different source cameras and that need to

be processed further to get fine clusters. The fine clusters are constructed by
setting strict threshold criteria with a significantly low probability of false alarm
PFA. The clusters are supposed to have images from the same camera. The fine
clustering processes each raw cluster RCKr and initially considers it as a set of un-
clustered fingerprints UCkr

Kf−1. Where Kf is the clustering index of a fine cluster
contracted, and Kr is the index of a raw cluster being processed. The fingerprints
are already present in the order of decreasing ℜI and the best fingerprint among
the un-clustered ones is selected as reference fingerprint RFKr

Kf and is assigned to a
fine cluster FCKr

Kf .
The NCC ρ between the reference fingerprint RFKr

Kf and an un-clustered fin-
gerprint FKr

i of raw cluster RCKr is calculated as given in Eq. 2.9. The NCC ρ
between the reference fingerprint RFKr

Kf and the each of the un-clustered finger-
prints is computed one by one. The fingerprint having ρ value equal to or greater
than the threshold, called hard threshold, is assigned to the same fine cluster FCKr

Kf .
Otherwise, the fingerprint is attached to a set of un-clustered fingerprints UCkr

Kf .
The hard threshold Thh value is computed as follows.
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Thh =
√︄

2× 1
d
erfc−1 (2× PFAh) (3.22)

Where PFAh is the desired probability of false alarm for the strict threshold.
The un-clustered fingerprints are then processed using the same procedure, and

fine clusters are constructed repeatedly. The process of fine clustering ends when
all fingerprints in all raw clusters are assigned to a fine cluster. Here, it is essential
to mention that the clustering index Kf is set to 1 at the start of the clustering of
each raw cluster RCKr and is incremented with the construction of each new fine
cluster from the same raw cluster RCKr. The fine clustering process ends when all
fingerprints of all raw clusters are assigned to a fine cluster FCKr

Kf .

Algorithm 5 Fine clustering
Input: RCKr, Kf , PFAh, d
Output: FCKr

Kf

Initialization : Kf = 1, UCKr
0 = {}

1: for Kr = 1 to NRC do
2: UCKr

Kf−1 = RCKr

3: Thh =
√︂

2× 1
d
erfc−1(2× PFAh)

4: N = |UCKr
Kf−1|

5: while (N /= 0)
6: UCKr

Kf = ∅
7: FCKr

Kf = ∅
8: RFKr

Kf = FKr
i

9: FCKr
Kf ← FKr

i

10: for j = 1 to (N − 1) do
11: ρ(j) = 1

d

∑︁d
x=1 RF

Kr
Kf [x]FKr

j [x]
12: if (ρ(j) ≥ Thh) then
13: FCKr

Kf ← FKr
j

14: else
15: UCKr

Kf ← FKr
j

16: end if
17: end for
18: N = |UCKr

Kf |
19: Kf = Kf + 1
20: endwhile
21: end for

The fine clustering creates various purified non-overlapping clusters, most of
them are singleton clusters. These clusters are of good quality, and the chances
of placing two fingerprints from two different cameras, in the same cluster are
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negligible. However, a large number of singleton clusters is an issue. We can
not ignore these singleton clusters because some cameras may possibly have only
a single candidate image in the dataset and the singleton clusters represent the
respective cameras. At the same time, it is also possible that the singleton clusters
are generated because the fingerprints are not correctly classified. Therefore, the
quality of the clusters is further refined using the attraction process.

3.3.4 Attraction
The attraction process is used to refine the clustering quality and merge the

clusters having fingerprints from the same camera. To start attraction, we have
a set of Nfc fine clusters. To avoid confusion and make the symbols simple, let’s
consider a set Z of fine clusters, each represented by FCi.

Z = {FC1, FC2, FC3, FC4, ......FCNfc−1, FCNfc
} (3.23)

Then average fingerprint AFi is computed for each fine cluster FCi by averag-
ing all member fingerprints of the fine cluster FCi and the standardizing to zero
mean unit variance. Hence, we get a set of average fingerprints A, with each AFi

representing the corresponding fine cluster FCi. textcolorblueThe set A is obtained
as expressed in Eq. 3.3.

The average reference fingerprints are present in the same order as that of the
reference fingerprints used in fine clustering, i.e., the ranking propagates also to the
attraction process. Then the best average fingerprint AFi is selected as reference
fingerprintRFKa for attraction process and NCC ρ between the reference fingerprint
RFKa and all other average fingerprints AFi is calculated as given in Eq. 2.9.

If the NCC ρ between average fingerprint AFi and the reference fingerprint
RFKa has a value higher than a threshold value Thh as given in Eq. 3.22, the
corresponding fine clusters are merged. Otherwise, the fine cluster is left as it is.
The process stops when each of the average fingerprints is either used as reference
fingerprint for attraction or the respective fine cluster is merged with other fine
clusters. The implementation of the attraction process is explained in Algorithm
2. The computational cost of the attraction process CostAtt is evaluated experi-
mentally. The attraction process improves clusters quality which is reflected in the
improvement of recall R and F −measure but, along with this, it contributes to
computational complexity.

The implementation of CIC algorithm has been demonstrated here with the
help of the tree diagram in Figure 3.5.

Figure 3.5 shows the initial the fingerprints are clustered using the raw clustering
process and a small number of canopies or raw clusters RC are obtained, which are
further processed using fine clustering and each cluster is divided into several fine
clusters FC. This process builds several high quality clusters.
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Sorted  Fingerprints
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Dataset of Fingerprints
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Figure 3.5: Block diagram of the CIC algorithm.

3.3.5 Complexity, I/O Cost and RAM Requirement of CIC
The CIC algorithm consists of raw clustering, fine clustering and attraction and

each of the processes has its own computational complexity. The raw clustering,
while constructing a raw cluster RCKr, in an iteration Kr, performs |UCKr−1| − 1
correlation operations. If a total of NRC raw clusters are constructed and the total
computational cost of the raw cluster tr, is given by Eq. 3.24.

tr =
NRC∑︂
Kr=1

(|UCKr−1| − 1) (3.24)

The fine clustering process computes |UCKr
Kf |−1 correlations while constructing

a fine cluster FCKr
Kf . If a total of NfKr fine clusters are constructed from a raw

cluster RCKr, then the total computation cost tf of fine clustering is given by Eq.
3.25.
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tf =
NRC∑︂
Kr=1

NfKr∑︂
Kf=1

(︂
|UCKr

Kf−1| − 1
)︂

(3.25)

Where NRC is the total number of raw clusters and NfKr is the number of fine
clusters generated from Krth raw cluster. The total number of fine clusters Nfc is
given as

Nfc =
NRC∑︂
r=1

NfKr. (3.26)

Adding the computational cost of the attraction process, the total computa-
tional cost Tc of the proposed algorithm is equal to the sum of the computational
cost of raw clustering Tr, cost of fine clustering Tf and cost of attraction CostAtt.

Tc = Tr + Tf + CostAtt (3.27)
Now, to discuss the RAM requirements of the CIC algorithm, the CIC algorithm

always has a maximum of two fingerprints loaded on RAM during the raw clustering
and fine clustering process. However, at the start of the attraction, the RAM
load reaches its maximum. Because the average reference fingerprint is computed
for each fine cluster and the average reference fingerprints remain in the RAM.
Therefore, the maxim RAM requirement of the CIC algorithm in bits in given by
Eq. 3.28.

RAMCIC = 64×Nfc × |F | bits (3.28)
The maximum RAM requirement of the CIC algorithm is higher than that of

RCIC, RCIC-A, FICFO and FICFO-A as the total number of fine clusters Nfc

before the attraction process is larger than the number of clusters nc of RCIC-A
and FICFO-A before attraction.

The I/O cost of the CIC algorithm is also higher than the RCIC, RCIC-A,
FICFO and FICFO-A and is given by Eq. 3.29.

I/OCIC = 64×
⎛⎝ NRC∑︂

Kr=1

NfKr∑︂
Kf=1

|UCKr
Kf−1|+

NRC∑︂
Kr=1

|UCKr−1|+ n

⎞⎠× |F | bits (3.29)

3.4 CFIC Algorithm
The CFIC algorithm uses both reduced and full fingerprints for image cluster-

ing. The fingerprints are sorted in descending order of ℜI. The primary clustering
is done with the reduced fingerprint. The clusters are refined using full finger-
prints. The use of reduced fingerprints contributes to a significant reduction in
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computational complexity. Here it is worth noting that, differently from [101, 102],
the CFIC and other proposed algorithms, we have proposed, do not exclude any
image from the clustering process based on darkness, saturation, and texture level.
The removal of saturated and dark images improves the clustering quality of [101,
102] and enhances the precision of clusters. While the proposed algorithms do not
exclude any image based on saturation and darkness. However, the removal of
saturated and dark images will also help to improve the quality of the proposed
algorithms. The implementation of the CFIC algorithm consists of the following
processes.

• Fingerprint estimation

• Fingerprint compression

• Sorting of fingerprints

• Initial clustering

• Fine clustering

3.4.1 Fingerprints Estimation
The camera fingerprints are estimated using the procedure explained in Section

2.2.

3.4.2 Fingerprint Compression
The compression of camera fingerprints is one of the key processes in the im-

plementation of the proposed algorithm. The compression process reduces the size
of the camera fingerprint, which in turn helps to reduce the computational cost
and memory requirement of the clustering process. The compression is done in
several ways, and several techniques have been proposed to compress the cam-
era fingerprints. These include trimming and cropping [87], digest[87], Gaussian
random projections [115] and binarization [6]. Trimming unwrap camera finger-
print column-wise and trim the fingerprint by preserving only the first Pr samples.
While cropping preserves only the center portion of the camera fingerprint and
unwrap the cropped camera fingerprint. The fingerprint digest technique builds a
digest by keeping the Pr highest energy components and their positions, from the
camera fingerprints. The digest technique relies on the assumption that the most
prominent peaks of the extracted camera fingerprints can be used as a suitable
camera attribute. The Gaussian random projections based compression technique
was introduced by Valsesia et al. The basic idea is to project the one-dimensional
unwrapped camera fingerprint from a vector space of large dimension to a subspace
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of reduced dimension Pr. This technique is a very effective way of camera finger-
print compression. The binarization technique is a very effective way of reducing
the bit-rate. This can be used even after the earlier mentioned camera fingerprints
compression techniques. The binarization technique transforms camera fingerprint
from a real number to a binarized version by performing an element-wise quanti-
zation operation.

In the proposed algorithm, fingerprint compression is done in two different man-
ners. The first way to get a reduced fingerprint is to use decimation, random pro-
jection computation, and dead-zone quantization process. The random projections
process determines the total number of elements of the reduced fingerprint. The
reduced fingerprints obtained by this method are approximate representations of
their respective full camera fingerprints. The second way of computing a reduced
fingerprint is by applying the dead-zone quantization directly on the decimated
camera fingerprint. The reduced fingerprint obtained has the same number of el-
ements as in decimated fingerprint, but the size is significantly reduced by the
dead-zone quantization. Each process, i.e., decimation, random projection, and
dead-zone quantization, introduces some sort of noise to final reduced fingerprints.
But, despite these noises, the reduced fingerprints are good enough to be used for
clustering, instead of using full camera fingerprints.

The steps involved in the compression of the fingerprints are presented in the
following subsections.

Decimation

It is known from the literature [37], that when a camera fingerprint is estimated
from the lossy compressed image, the statistical properties of the detection change.
For example, the JPEG compression increases the variance of cross-correlation val-
ues between the noise residual. In [9], Bondi et al. considered the estimated
fingerprints extracted from flat-field and natural images to analyze the effect of
JPEG compression on the power spectral density (PSD) of noise residual for dif-
ferent quality factors. The analysis reveals that increasing compression lowers the
power of the residue at high spatial frequencies. While, the residual, i.e., the cam-
era fingerprint, contributions in high-frequency bins are combined with residuals
of blockiness artifacts from JPEG compression that cannot be removed entirely by
the residue extraction process [9].

The previously mentioned observations are kept in mind, and a straightforward
approach of decimation is adopted. The decimation reduces the dimensionality of
the camera fingerprint F . The decimation process attenuates the high-frequency
components by decimating F by a factor df > 1 along rows and columns. The cubic
kernel Hc(z) [67] is used to decimate the fingerprint via interpolation as given in
Eq. 3.30.
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hc (z) =

⎧⎪⎪⎨⎪⎪⎩
1.5|z|3 − 2.5|z|2 + 1 if |z| ≥ 1
−0.5|z|3 + 2.5|z|2 − 4|z|+ 2 if 1 < |z| ≤ 2
0 otherwise

. (3.30)

Given a vector y of length Ly, if the vector y is decimated by a factor df then
the ith element of the decimated vector yd is obatined as given in Eq. 3.31[9].

yd (i) =
Ly−1∑︂
j=0

hc (j − i.df) .y (j) , ∀i ∈ {0, ..., ⌊Ly/df⌋}. (3.31)

After applying a decimation process on a camera fingerprint F , we get a deci-
mated camera fingerprint Fd of reduced size |F |/df 2. The decimation process results
in a loss in performance. Therefore, the decimation factor df is chosen in such a
way that the detection performance of the reduced fingerprint Fd is not affected
severely.

Random Projection

After decimation, the next step is to generate random projections for the given
decimated camera fingerprint Fd. The random projections are obtained using the
Gaussian sensing matrix [115], which has proven to be an effective way of compress-
ing camera fingerprints. The sensing matrix Ψ of dimension |Fd × Pr| is generated
with sample being extracted from a i.i.d zero-mean Gaussian distribution. The
decimated camera fingerprint Fd is column-wise unwrapped with Pr random pro-
jections. The resulting projection RP of the decimated camera fingerprint Fd is
obtained by taking a matrix product between the sensing matrix Ψ and the deci-
mated camera fingerprint Fd.

RP = Ψ⊙ Fd (3.32)
The random projection process reduces the size of camera fingerprints from |Fd|

to Pr, where Pr ≤ |Fd|.

Dead-Zone Quantization

Binarization of random projections is an effective technique to preserve good
performance in terms of detection [9]. In order to generalize binarization, here we
adopt the dead-zone quantization approach, as suggested in [9]. The dead-zone
quantizer processes the random projections RP and generates reduced fingerprint
Fr. Given σ, the standard deviation of RP , the ith element of Fr for i = 1, ..., Pr

is obtained as
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Fr (i) =

⎧⎪⎪⎨⎪⎪⎩
+1 if RP (i) > δσ

0 if −δσ ≤ RP (i) ≤ δσ

−1 if RP (i) < −δσ
. (3.33)

Where the δ is the quantization factor. Higher values of δ will increase the proba-
bility of zero samples in the Fr. Therefore, the value of δ is carefully chosen.

The dead-zone quantization has two advantages; first, it preserves the peaks,
which are very important in terms of cross-correlation. Secondly, the variable
threshold of the quantization process allows reducing the bit-rate of Fr via en-
tropy coding by increasing δ while keeping Pr fixed. The dead-zone quantization,
as given in Eq. 3.33 results in Fr with three intensity levels i.e., +1, 0 and −1.
With proper entropy codes, we can use fewer bits to represent the intensity levels
of Fr; however, a simpler two-bit encoding facilitates the computation of similarity
scores between quantized fingerprints. Hence, the size of the Fr in terms of bits
will be 2× Pr bits.

Algorithm 6 Method 1: Camera Fingerprint Compression
Input: F : Camera Fingerprint, df : Decimation Factor, Pr : Number of Random

Projections, Ψ : Sensing Matrix, δ : Zero sample controlling factor
1: Fd = Decimate(F, df)
2: RP = Ψ⊙ Fd

3: Fr(i) =

⎧⎪⎪⎨⎪⎪⎩
+1 if RP (i) > δσ

0 if −δσ ≤ RP (i) ≤ δσ

−1 if RP (i) < −δσ
.

Algorithm 7 Method 2: Camera Fingerprint Compression
Input: F : Camera Fingerprint, df : Decimation Factor, Pr : Number of Random

Projections, δ : Zero sample controlling factor
1: Fd = Decimate(F, df)

2: Fr(i) =

⎧⎪⎪⎨⎪⎪⎩
+1 if Fd(i) > δσ

0 if −δσ ≤ Fd(i) ≤ δσ

−1 if Fd(i) < −δσ
.

3.4.3 Ranking Index Computation and Sorting of Finger-
prints

The ℜI for each image is calculated as explained in FICFO using Eq. 3.15. The
reduced and full fingerprints i.e., Fr and F are arranged in the descending order of
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ℜI to get a set of sorted fingerprints MO. Which are further used for clustering.

3.4.4 Initial Clustering
The processes of camera fingerprint estimation, computation of compressed cam-

era fingerprints, ℜI computation, and sorting of camera fingerprints based on ℜI,
are followed by clustering. The clustering is performed in two steps. The first step
of clustering is named as Initial clustering and 2nd stage is called fine clustering.
The initial clustering is performed using decimated and quantized camera finger-
prints, also called reduced camera fingerprints Fr. The clusters are refined in the
fine clustering step using full camera fingerprints, hereafter named as full finger-
prints F . The clustering process works iteratively, following different rounds and
each round results in a cluster. The clustering round is generally denoted by cluster
index K. At the start of each round, an empty cluster CK = {}, is initiated. The
set of un-clustered fingerprints is represented by UCK .

During the initial stage, the proposed algorithm uses the reduced camera fin-
gerprints Fr to cluster images. At the start of clustering, the cluster index K is
set to one, i.e., K = 1, all sorted camera fingerprints are assigned to the set of
un-clustered fingerprints UCK i.e., UC1 = MO. The Kth cluster Cr

K , is constructed
by selecting a reference fingerprint RF r

K . The CFIC algorithm selects the best-
reduced fingerprint Fr from the set of sorted and un-clustered fingerprints UCK

as reference fingerprint. The full fingerprint F corresponding to Fr is assigned to
cluster Cr

K . If the ranking index is consistent, RF r
K will be the best-estimated fin-

gerprint among all the un-clustered fingerprints UCr
K and the best representative

of the respective cluster Cr
K . The normalized cross-correlation (NCC) ρ between

all other fingerprints Fri and reference fingerprint RF r
K is used to decide whether

the given Fri
belongs to the same camera as that of RF r

K , or not.
The reduced camera fingerprints are quantized in the dead zone quantization

process, and each entry of these has only three possible values of +1, 0 and −1. If
the probability of zeros entries is Po, then the probability of +1 assumed equal to
the probability of −1, is (1− Po)/2. Hence, the variance of reduced fingerprints is
1/
√︂
Pr(1− Po). The NCC ρ between Fri and RF r

K is given by in Eq. 3.34.

ρ (i) = 1√︂
Pr (1− Po)

Pr∑︂
x=1

RF r
K [x]Fri[x] (3.34)

where Pr is the dimension of the reduced fingerprint FRi.
If the NCC ρ between the reduced fingerprint F r

i and reference fingerprint RF r
K

has a value greater than or equal to a threshold value Th, Fi is assigned to the cluster
Cr

K . Otherwise, the reduced fingerprint F r
i and corresponding full fingerprint Fi

are attached to the set of un-clustered fingerprints UCK+1. The threshold value is
computed as expressed in Eq. 3.35.
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Th =
√︄

2× 1
Pr

erfc−1 (2× PFA) (3.35)

According to the Central Limit Theorem (CLT), the NCC ρ between two d-dimensional
normalized fingerprints, X and Y , from different cameras approximately follows a
normal distribution with zero mean and 1/|X| variance, i.e., ρ(X, Y ) ∼ N(0,1/|X|)
[89]. The same supposition can used for reduced fingerprints. Because if we have
two normalized reduced fingerprints Xr and Yr, of size |Xr|, then the NCC will have
a variance of 1

|Xr| . Hence, it can be said that the normalized reduced fingerprints
also follow normalized distribution with zero mean and 1

|Xr| variance.
While constructing the cluster Cr

K , a total of |UCK | − 1 correlation operations
are performed, and a total of |UCK+1| = |UCK | − |Cr

K | fingerprints are left un-
clustered.

To cluster the remaining fingerprints, if any, the cluster index K is incremented
by 1, i.e., K = K + 1 and the un-clustered UCK fingerprints, are processed to
construct a new cluster Cr

K by repeating the same procedure. The process continues
till all fingerprints are assigned to a cluster and UCK+1 gets empty.

At the end of each round K a cluster Cr
K is constructed, which is composed of

only full fingerprints F . The full fingerprints F in each cluster Cr
K are merged by

taking the average of them, to compute a full reference fingerprint RF f
K for each

cluster Cr
K . The full reference fingerprints RF f

K is then used in the fine clustering
stage to attract other clusters.

The clustering based on reduced camera fingerprints is a convenient way of
grouping the fingerprints because cross-correlation is performed between the re-
duced and quantized camera fingerprints. The clustering creates quality clusters.
But it also generates small clusters, most of which are singleton clusters. Moreover,
the process requires very little memory.

The fingerprint clustering algorithm is explained here as:
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Algorithm 8 Algorithm of Initial Clustering
Input: MO, K, PFA, Pr

Output: Cr
K ,RF f

K

Initialization : K = 1 , UCK = |MO|
1: Th =

√︂
2× 1

Pr
erfc−1(2× PFA)

2: while (|UCK | /= 0)
3: UCK+1 = ∅
4: Cr

K = ∅
5: RF r

K = Fr1
6: Cr

K ← F1
7: for j = 2 to |UCK | do
8: ρ(j) = 1√

Pr(1−Po)

∑︁Pr
x=1 RF

r
K [x]Frj[x]

9: if (ρ(j) ≥ Th) then
10: Cr

K ← Fj

11: else
12: UCK+1 ← Frj

13: UCK+1 ← Fj

14: end if
15: end for
16: RF f

K =
∑︁|Cr

K
|Fi

i=1
|Cr

K | where Fi ∈ Cr
K

17: K = K + 1
18: endwhile

3.4.5 Fine Clustering
The fingerprint clustering in the previous stage generates several clusters; some

of them are singleton clusters. These clusters may be less accurate than those ob-
tained using full fingerprints because they are created by using the reduced camera
fingerprints, which have been obtained by quantizing the Gaussian random projec-
tion of the decimated version of full camera fingerprints. These reduced camera
fingerprints are the approximate fingerprints, not the exact fingerprints. There is
a possibility of improving the clusters’ quality. Therefore, the clusters are further
processed using fine clustering.

The fine clustering process uses the full reference fingerprints RF f
K for the pos-

sible attraction of clusters Cr
K . Initially, we have a set of full reference fingerprints

MRF f . All the reference fingerprints are treated as un-clustered fingerprints. The
fine clustering index H is initiated and set to one i.e., H = 1 and all reference finger-
prints are assigned to the set of un-clustered fingerprints UCH i.e., UC1 = MRF f .
To construct A fine CF

H , the H th cluster, the proposed algorithm always selects
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as reference fingerprint RF f
H the first full reference fingerprint RF f

1 from the un-
clustered full fingerprints UCH and all the fingerprints in the corresponding cluster
Cr

H are assigned to the fine cluster CF
H , i.e., CF

H ← Cr
H . The NCC ρ between the

full reference fingerprint RF f
H all other full reference fingerprints RF f

i is calculated
one by one as given in Eq. 2.9.

If the NCC ρ, between the reference fingerprints, is greater than or equal to a
threshold value Th, all the fingerprints in cluster Cr

i , are assigned to the cluster Cf
H

and the reference fingerprints are merged; otherwise, the reference fingerprint RF f
i

is assigned to the set of un-clustered fingerprints UCH+1 and the corresponding Cr
i

is left unaffected. The threshold value of Th is computed as given in Eq. 2.9.
At the end of round H, a fine cluster Cf

H is constructed. While constructing
the cluster Cf

H , a total of |UCH | − 1 correlation operations are performed, and a
total of |UCH+1| = |UCH | − |Cf

H | fingerprints are left un-clustered.
The cluster index H is incremented by 1, i.e., H = H + 1 and the full reference

fingerprints in UCH , are processed to construct a new fine cluster Cf
H by repeating

the same procedure. The process continues till all fingerprints in any of the Cr
H are

assigned to a fine cluster Cf
H and UCK+1 gets empty.

The fine clustering uses the average of multiple full fingerprints F as reference
fingerprint RF f

H in round H and the average reference fingerprints are more sta-
ble and reliable [86]. Therefore, the clusters constructed are more reliable. The
fine clustering results in good quality clusters and lesser in number than that con-
structed in the initial clustering.

The fine clustering algorithm is explained here as:
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Algorithm 9 Algorithm of Fine clustering
Input: MRF f , H, RF f

H , PFA
Output: Cf

H

Initialization : H = 1 , UCK = |MRF f |
1: T =

√︂
2× 1

|F | erfc
−1(2× PFA)

2: while (|UCH | /= 0)
3: UCH+1 = ∅
4: Cf

H = ∅
5: RF f

H = RF f
1

6: Cf
H ← Cr

H

7: for j = 2 to |UCH | do
8: ρ(j) = 1

|F |
∑︁|F |

x=1 RF
f
H [x]RF f

j [x]
9: if (ρ(j) ≥ T ) then

10: Cf
H ← Cr

j

11: RF f
H = (RF f

H+RF f
j )

2
12: else
13: UCH+1 ← RF f

j

14: Cr
j un-affected

15: end if
16: end for
17: H = H + 1
18: endwhile

With the completion of fine clustering, we reach the end of the clustering process,
and we have fine clusters in hand. The implementation of the CFIC algorithm is
also explained in the block diagram shown in Figure 3.6.

3.4.6 Complexity, I/O Cost and RAM Requirements of
CFIC

In this section, we discuss the total computational complexity, I/O cost and
RAM requirements and the reasons for the suitability of the proposed algorithm
for large scale clustering.

Computation Complexity

The CFIC algorithm performs initial clustering on reduced fingerprints and the
clusters are then refined using average full fingerprints during the fine clustering
process. The two stages of clustering contribute to computational cost. The compu-
tation cost is important in clustering, since this is directly related to the execution
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Figure 3.6: Block diagram of the CFIC algorithm.

time needed to cluster images. The computational cost T r
c of the initial clustering

stage is given by Eq. 3.36.

T r
c = ζ ×

(︄
NCr∑︂
i=1
|UCi| −NCr

)︄
(3.36)
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Where NCr, is the total number of clusters constructed in initial clustering and
ζ is the ratio between the sizes (in bits) of the reduced and full fingerprints. As
the compressed fingerprints are made of ternary symbols {−1 , 0, 1}, therefore the
correlation can be computed using simple sums and avoiding multiplications. For
example the correlation of the compressed fingerprints is equivalent to the Opposite
Absolute Distance (OAD) [9], which uses only sums to compute the OAD. This
implementation can help to reduce run time.

The computational cost of the fine clustering is measured only in terms of the
total number of correlations performed. The computational cost T f

c of the fine
clustering stage is given by Eq. 3.37.

T f
c =

NCf∑︂
i=1
|UCi| −NCf (3.37)

Where, NCf is the total number of clusters obtained after fine clustering.
The total computational cost T t

c of the proposed algorithm is the sum of the
computational cost of fine clustering T f

c , scaled computational cost of initial clus-
tering stage T r

c and the cost of merging fingerprints Costmerging, given by Eq. 3.38.

T t
c = T f

c + T r
c + Costmerging (3.38)

T t
c =

⎛⎝NCf∑︂
i=1
|UCi| −NCf

⎞⎠+ ζ ×
(︄

NCr∑︂
i=1
|UCi| −NCr

)︄
+ Costmerging (3.39)

The merging of fingerprints requires only additions equal to the number of full
fingerprints in the dataset while the correlations are larger in number and require
multiplications. The cost of merging is negligible as compared to the combined cost
of the correlations of both initial clustering and fine clustering. Therefore the cost
of merging is neglected from the total cost of CFIC, which is significantly less than
the reference complexity i.e., n(n − 1)/2, when the number of images per camera
SC is greater than or equal to 2 i.e., SC ≥ 2, while for SC = 1 the computation
cost is comparable to the reference complexity. For example, if we have a dataset of
n fingerprints with SC = 1 and the fingerprints are correctly clustered without any
false positive, then the CFIC will perform ζ(n(n−1)/2) and n(n−1)/2 correlations
in initial and fine clustering respectively. And the total cost of clustering will be
(ζ + 1)(n(n− 1)/2) which is (ζ + 1) times larger than the reference complexity i.e.,
n(n − 1)/2. However, if SC ≥ 2, the computational complexity of the proposed
algorithm, as compared to the reference complexity, decreases as the size of the
dataset increases. This makes the algorithm suitable for large scale clustering.
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RAM requirement

The CFIC algorithm, during the initial clustering has one reduced fingerprint
Frj, and a reduced reference fingerprint RF r

K is RAM. The maximum RAM occu-
pied during the initial clustering always remains constant is equal to 2 × Pr bits.
The RAM occupancy reaches its peak when the full fingerprints of each constructed
cluster are merged together by averaging them. The average full fingerprints remain
in the RAM and are used in the fine clustering stage. The RAM load decreases
with the possible merging of clusters during the fine clustering. The maximum
RAM RAMCF IC required by CFIC algorithm is given by Eq. 3.40.

RAMCF IC = 64×
(︄

NCr∑︂
i=1

NCr × |F |
)︄
bits (3.40)

I/O Cost

Here it is also important to discuss the I/O cost of the CFIC algorithm. The
I/O cost of the algorithm depends on the number of clusters constructed in the
initial clustering. The I/O cost I/OCF IC of the CFIC algorithm is given in Eq.
3.41.

I/OCF IC = 2×
(︄
Pr ×

NCr∑︂
i=1
|UCi|+ 32× |F | × n

)︄
bits (3.41)

Where n is representing the I/O cost of full fingerprints. The each full fingerprint
is loaded once while computing the average full fingerprints and the I/O cost due
to full fingerprints is equal to n.
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Chapter 4

Experimental Results

In this section, we provide experimental validation of the proposed clustering
algorithms. We validate the performance of our algorithms under different set-
tings, on datasets exhibiting different size and distribution of the clusters. The
performance of algorithms is also analyzed for the NC ≫ SC scenario.

4.1 Datasets
The proposed clustering algorithms have been evaluated on the Dresden image

database [33, 34]. The algorithms are evaluated for both small scale and large
scale clustering. It is very challenging to cluster images of different cameras of the
same model based on camera fingerprints. This is due to the shared in-camera
processing of images by different devices of the same model. Therefore, based on
the fact mentioned, the datasets are classified as easy and hard datasets. The
easy datasets include images taken by cameras of different distinct models, while
the hard datasets are composed of images from different devices of similar models.
Along with this, in real scenarios, the images taken by the cameras vary in number,
which is responsible for different contributions of cameras in a dataset. According
to different distributions, the datasets are classified into symmetric and asymmetric
ones. In symmetric datasets, all cameras contribute equally to the dataset while,
in asymmetric, the contribution is not equal.

We have up to 53 cameras in the Dresden dataset [33, 34]. If we fix the number
of cameras, the proposed algorithms can be analyzed in the NC ≫ SC scenario, by
varying the average number of images per camera SC. Hence, to have a meaningful
analysis of the behaviour of the proposed algorithms under the NC ≫ SC problem,
we need a larger number of cameras. The dataset with a large number of cameras
is built using the images of the existing cameras. The image of an existing camera
is divided into different non-overlapping patches of size 1023 × 1023 which are
considered as separate images. The patches do not share any part of the camera
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sensor; therefore, each created image will have unique PRNU. The part of a sensor
array which has captured the particular patch is considered as a single camera.
By using this procedure, a dataset of images coming from 295 "virtual" cameras
and a contribution of 20 images by each camera is generated. The dataset can be
classified as symmetric hard as it has equal contributions from different cameras of
different brands and models.

Finally, we set up the following seven datasets for the experiment:

• D0: Small dataset. It consists of 600 images taken by 15 cameras, each
equally contributing 40 images. The 15 cameras are of different models and
cover 8 popular camera brands.

• D1: Easy symmetric dataset. It consists of 1,000 images taken by 25 cameras,
each equally contributing 40 images.The 25 cameras are of different models
and covering 8 popular camera brands, such as Canon, Nikon, Olympus,
Pentax, Samsung, and Sony.

• D2: Easy asymmetric dataset. The dataset is also composed of 1,000 images
taken by the same 25 cameras as inD1. These camera alternatively contribute
20, 30, 40, 50 and 60 images.

• D3: Hard symmetric dataset. It consists of 1,000 images taken by 50 cameras,
each contributing 20 images. The 50 cameras only cover 12 popular models,
so some of them are of the same model.

• D4: Hard asymmetric dataset. The same 50 cameras as in D3 are part of
this dataset, alternatively contributing 10, 15, 20, 25 and 30 images.

• D5: Large Scale dataset. It consists of 5900 images from 295 cameras, each
contributing 20 images.

• D6: Dresden dataset. The dataset is composed of 10960 images from 53
cameras of 18 different models and 10 different brands.

The D0 dataset is used to investigate the parameters of the algorithms e.g.,
finding the suitable sigma δ for computing the compressed fingerprint in the CFIC
algorithm and α β and γ in FICFO. The other four datasets, i.e., D1, D2, D3,
and D4, are used for examining the performance of the algorithms on different
types of small and medium datasets. These datasets are also used for comparing
the proposed algorithms among them and with state-of-the-art algorithms. The
Dresden database is used for large scale clustering analysis and investigating the
NC ≫ SC problem. While D5 dataset is used for the extensive analysis of the
proposed algorithms under the NC ≫ SC problem.

As datasets have images from different cameras of different models and different
sizes, they result in images and fingerprints of different sizes too. Therefore to avoid
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fingerprints with different sizes and cluster images based on camera fingerprints,
the images used for clustering are center cropped to 1023 × 1023 pixels. Camera
fingerprints are extracted from the images using the process explained in Section
2.2 [86, 14].

4.2 Evaluation Metrics
A measure of agreement is essential for the evaluation and comparison of the

clustering algorithms with state-of-the-art techniques. Therefore, evaluation and
comparison of clustering algorithms are done using a suitable evaluation metric.
Some of the metrics, used for assessment of clustering algorithms, are based on the
matching of sets, e.g., Precision P , Recall R and F-measure, on information theory,
e.g., mutual information MI and normalized mutual information NMI, and pair
of objects counting e.g., rand index RI and adjusted rand index ARI [109, 118].
However, the clustering solutions with more clusters results in higher values of
NMI when compared with ground truth classes [3]. This may be misleading while
comparing different clustering algorithms yielding different numbers of clusters. For
this reason, MI and NMI are not used in this thesis. RI and ARI count the pair
of objects, either in the same cluster or different clusters. The RI is equal to 1
if two groups agree entirely. The RI faces a problem that the expected value of
the RI of two random partitions does not take a constant value (say zero). The
problem is corrected by the ARI that assumes the generalized hyper-geometric
distribution as the model of randomness. The ARI has the maximum value of 1,
and its expected value is 0 in the case of random clusters. Hence, there is a wider
range of values that the ARI can take on, thus increasing the sensitivity of the
index. A larger ARI means a higher agreement between two partitions. Therefore,
ARI is recommended for measuring agreement even when the partitions compared
have different numbers of clusters [95].

The P , R, F − measure, RI and ARI are used for evaluating the proposed
clustering framework and comparing it with the state-of-the-art algorithms. These
metrics are computed using ground truth classes Ω and generated clusters C. Let’s
denote the ground truth as

Ω = {ω1, ω2, ω3, . . . . . . . . . . . . . . . . . . ...ωNC} (4.1)
Where each ω denotes a set of fingerprints coming from the same camera. C is

the set of clusters generated by clustering algorithm and is given as

C = {c1, c2, c3, . . . . . . . . . . . . . . . . . . . . . . . . ...cy} (4.2)
Where each c denotes a set of fingerprints assigned to a cluster.
The precision P and recall R are calculated from the classes and clusters as

given in the following equations.
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P =
∑︁

k(maxj|ck ∩ ωj|)∑︁
k |ck|

(4.3)

R =
∑︁

j(maxk|ck ∩ ωj|)∑︁
j |ωj|

(4.4)

Where |ck| and |ωj| are cardinalities of cluster ck and ground truth class ωj,
respectively, maxj|ck ∩ ωj| is used to find the largest number of fingerprints in
cluster ck that comes from a ground truth class and maxk|ck ∩ ωj| return the
largest number of fingerprints in ground truth class ωj that are also in a recovered
cluster.

The F −measure is calculated using P and R as

F −measure = 2× (P ×R)
(P +R) . (4.5)

All the metrics have values between 0 and 1, 0 being the worst and 1 being the
best.

The RI and ARI are computed using Eq. 4.6 and Eq. 4.7, respectively [103,
48, 124].

RI = (a+ d)
a+ b+ c+ d

= (a+ d)(︂
n
2

)︂ . (4.6)

Where, a is the number of pairs of fingerprints which are in the same set in Ω and
in the same set in C, b is the number of pairs of fingerprints which are in the same
set in Ω and in different sets in C, c is the number of pairs of fingerprints which
are in different sets in Ω and in the same set in C and d is the number of pairs of
fingerprints which are in different sets in Ω and in different sets in C [49].

ARI = RI − E[RI]
1− E[RI] . (4.7)

Where E[RI] is the expected value of RI.
Along with the quality of clusters of an algorithm, it is also essential to know

how fast an algorithm is and for this purpose and a metric called complexity re-
duction Cr [70, 69] is introduced. For Cr, we consider as reference complexity the
computation of all pairwise correlations in a set of n fingerprints and the value tc
estimates the number of pairwise correlations performed by the algorithm under
test. The Cr is computed as given by Eq. 4.8 and it gives the relative complexity
of an algorithm with respect to the reference complexity n(n− 1)/2.

Cr = n× (n− 1)
2× tc

. (4.8)
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Where, tc is the total computational cost of the clustering and n is the size of
the dataset. The total complexity tc of BCFIC, RCIC, RCIC-A, FICFO, FICFO-A,
and CIC is computed in the same manner as all of these algorithms use full camera
fingerprints of the same size. However, the total complexity of the LSIC and CFIC
algorithms is computed in a bit different way. The two algorithms use two different
types of fingerprints of different sizes, called reduced and full fingerprints. But the
reduced fingerprints in the case of LSIC are computed in a different way than the
CFIC algorithm. The size of the reduced fingerprint used in the CFIC algorithm
is much less than that of LSIC, thanks to dead-zone quantization. Therefore,
the number of correlation operations performed on reduced and full fingerprints
are weighed differently. In case of LSIC, the total complexity tc is calculated as
tc = ncf+(r/d)×ncr, where, ncf and ncr are the number of correlation among full
and reduced fingerprints respectively. While, in case of CFIC, total computational
cost is computed as given tc = ncf + (ζ×ncr), where ζ = Pr

32×|F | . While Pr and |F |
are the dimensions of the reduced fingerprints and full fingerprints, respectively.
Here it is important to mention that the FICFO, FICFO-A, CIC and CFIC algo-
rithms perform some computation while calculating G, S, T and ℜI and also in
sorting fingerprints. However, the cost of calculating G, S, T , and ℜI is negligible
with respect to the estimation of fingerprints. The cost of sorting fingerprints is
also far less than computing correlations of very long vectors. Therefore, the cost
of computing ℜI and sorting fingerprints is neglected, while computing the total
computational complexity tc and Cr.

4.3 Performance of RCIC and RCIC-A
The RCIC and RCIC-A algorithms have been evaluated on the Dresden image

database [33, 34], and sub datasets, as discussed in 4.1. The PFA is set to 10−6,
to compute threshold Th as given by Eq. 2.10 and is used in all the subsequent
experiments. The same setup is used throughout experimentation.

4.3.1 Effect of Randomization
As the clustering algorithm randomly selects reference fingerprints to construct

clusters, each experiment is repeated a different number of times to obtain an
average performance metric. The RCIC algorithm is applied to the D0 dataset,
as given in Section 4.1. The clustering process is repeated a different number of
times i.e., 25, 20, 15, and 10 times. The precision P , recall R, and F −measure are
computed in each of these experiments. The variation in the parameters in different
experiments is checked by calculating the variance of the evaluation parameters, i.e.,
σ2(P ), σ2(R) and σ2(F −measure). The results obtained are listed in Table 4.1.
The experimental results show that the values of σ2(P ), σ2(R) and σ2(F−measure)
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vary very little, and the variation can be ignored. The small values of σ2(P ), σ2(R)
and σ2(F −measure) show that the RCIC algorithm is very stable.

Table 4.1: Variance of evaluation measures of RCIC for different No. of experi-
ments.

No. of Experiments σ2(P ) σ2(R) σ2(F −measure)
10 4.468× 10−6 1.118× 10−4 4.137× 10−5

15 1.737× 10−6 1.349× 10−4 5.110× 10−5

20 1.982× 10−5 1.773× 10−4 7.504× 10−5

25 1.276× 10−6 1.510× 10−4 5.955× 10−5

Similarly, the RCIC-A algorithm is applied to cluster the images in the dataset
D0, and the experiments are repeated the same 25, 20, 15 and 10 times. The preci-
sion P , recall R and F-measure F−measure are computed for each experiment and
the variance of the evaluation parameters i.e., σ2(P ), σ2(R) and σ2(F −measure)
is computed. The experimental results are listed in Table 4.2. The experimental
results show that the values of σ2(P ), σ2(R) and σ2(F − measure) do not vary
significantly and the variances recorded are even much lower than that of RCIC al-
gorithm. The small values of σ2(P ), σ2(R) and σ2(F−measure) in the case of both
RCIC and RCIC-A algorithm show that these algorithms are very stable. Here-
after, clustering is repeated 15 times for each experiment and the average values of
evaluation metrics are reported for both RCIC and RCIC-A.

Table 4.2: Variance of evaluation measures of RCIC-A for different No. of experi-
ments.

No. of Experiments σ2(P ) σ2(R) σ2(F −measure)
10 5.054× 10−8 1.851× 10−6 4.893× 10−7

15 3.001× 10−8 1.879× 10−6 5.750× 10−7

20 2.855× 10−8 2.231× 10−6 7.980× 10−7

25 1.957× 10−8 1.988× 10−6 6.149× 10−7

4.3.2 Small Scale Clustering
The small scale and large scale clustering are equally crucial for forensic experts.

As discussed in Section 4.1, the small datasets can have the same or different contri-
butions from different cameras and the number of cameras may also vary. Therefore,
We are investigating the performance of the RCIC and RCIC-A algorithms on all
the four different small datasets, i.e., D1, D2, D3 and D4. The experiments are
performed on these datasets considering the different average number of images
SC per camera while keeping the number of cameras NC fixed. The number of
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cameras in symmetric easy and asymmetric easy datasets is 25, while in symmetric
hard and asymmetric hard datasets, the number of contributing cameras NC is 50.

A number of 200, 400, 600, 800 and 1000 fingerprints are selected in each ex-
periment. The number of images is selected in such a way that only the number
of images per camera SC changes and the number of cameras NC do not change
for each dataset. Therefore, the 200, 400, 600, 800, and 1000 images correspond
to a SC of 8, 16, 24, 32 and 40 respectively in case of easy datasets i.e., D1 and
D2. While, in the case of hard datasets i.e., D3 and D4, the mentioned number
of images related to a SC of 4, 8, 12, 16 and 20 respectively. The fingerprints are
clustered using the RCIC and RCIC-A algorithms. Each experiment is repeated
15 times and P , R, F −measure, RI, ARI and Cr are computed in each exper-
iment. The average values of P , R, F −measure, RI, ARI, and Cr are used for
performance analysis of the RCIC and RCIC-A algorithm.

The experimental results show that the RCIC and RCIC-A algorithms, when
applied to D1, D2, D3, and D4 with the different number of images per source
camera, generate good quality clusters. The evaluation metrics measured are shown
in Figure 4.1. The experimental results show that both RCIC and RCIC-A result
in a high P for all datasets and the different numbers of images, as shown in Figure
4.1a and Figure 4.1b. It can be observed that P of the RCIC algorithm remains
constant while small fluctuations occur in the P of RCIC-A. This fluctuation can be
due to some false merging of clusters during the attraction stage. Closely observing
the values of P , obtained from experiments, a slight reduction in P occurs with an
increase in SC.

Considering the metrics R and F −measure of RCIC and RCIC-A algorithm, it
can be observed that both versions of the algorithm perform better on easy datasets
as compared to hard datasets, as shown in Figures 4.1c-f. The results also reveal
that the performance of the RCIC algorithm on the asymmetric dataset is relatively
better than on symmetric datasets. However, due to the attraction stage, the R
and F −measure of RCIC-A algorithm is higher than the RCIC algorithm. The
RCIC results in some singleton clusters which are attracted and merged with the
other closest clusters, in the attraction stage in the RCIC-A algorithm. Hence, the
RCIC-A gives a clustering result that is closer to the ground truth and results in
higher values of R and F −measure.
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Figure 4.1: P , R and F −measure of the RCIC and RCIC-A algorithm on small
datasets.
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Figure 4.2: RI and ARI of the RCIC and RCIC-A algorithm on small datasets.

The P , R, and F−measure are highly dependent on the number of constructed
clusters. A few singleton clusters can affect these evaluation measures. Therefore,
to evaluate the strength of the RCIC and RCIC-A algorithms, the evaluation met-
rics of RI and ARI are used. The two parameters are independent of the number
of clusters and depend highly on the quality of clusters. The experimentally ob-
tained results of RI and ARI are shown in 4.2. The results show that both RCIC
and RCIC-A algorithms result in high values of these evaluation metrics. The RI
for RCIC and RCIC-A is high and remains constant and does not vary with the
change in the number of images of different types of datasets. A little drop in RI
is observed for easy datasets at 400 images. But, this is not much significant. The
results obtained show that RCIC and RCIC-A result in higher values of RI on
hard datasets with respect to easy datasets. The ARI is also good for the different
numbers of images of different datasets. The ARI of the RCIC algorithm does not
vary significantly; however, for RCIC-A, the ARI remains stable for hard datasets
and increases for the easy dataset. The increase in the ARI is due to the attraction
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process. The performance of RCIC and RCIC-A algorithms, in terms of ARI is
higher on the easy dataset as compared to hard datasets.

The construction of a high quality of clusters is essential while analyzing a
clustering algorithm. But, at the same time, the computational cost is also crucial.
It is highly desired to construct clusters with the least possible computational cost.
The complexity reduction of Cr is a parameter used in this work, to describe the
computational cost. The Cr of the RCIC and RCIC-A algorithm computed in the
different experiments is shown in Figure 4.3. The experimental results show that
the Cr of both the RCIC and RCIC-A algorithm increases with an increase in the
number of images used in clustering, and hence the relative computational cost
decreases. The results also show that RCIC-A has less Cr than RCIC due to the
additional computational cost of the attraction process. The RCIC and RCIC-A
have higher Cr on easy datasets than hard dataset and on asymmetric datasets
than symmetric datasets.
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Figure 4.3: Cr of the RCIC and RCIC-A algorithm on small datasets.

4.3.3 Medium and Large Scale Clustering
After the analysis of RCIC and RCIC-A algorithms on different small datasets,

it is important to study the performance of these clustering algorithms on medium
and large datasets. Therefore, in this section, the RCIC and RCIC-A algorithms
are applied to different subsets of images selected from Dresden [33, 34]. Different
numbers of images are considered from the Dresden datasets and are clustered
with RCIC and RCIC-A algorithm. The images are selected in such a manner that
cameras NC is set fixed, i.e., NC = 53, and the average number of images from
each camera SC is varied. For number of images, the evaluation metrics i.e., P , R,
F − measure, RI and ARI are computed. Along with the evaluation measures,
the complexity reduction, Cr is also computed for each experiment.
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The experimental results of P , R and F −measure for both RCIC and RCIC-A
are shown in Figure 4.4. The results demonstrate that both techniques perform
well for different sizes of datasets and different SC. The results show that as the
number of images increases, P of the RCIC algorithm is almost constant, and R
and F −measure also do not change significantly. While, in the case of RCIC-A,
the R and F −measure are stable, but P decreases due to the attraction of some
wrong clusters, when the number of images and SC grows. The results obtained
reveal that for smaller values of SC, the RCIC, and RCIC-A algorithm performs
very well. This shows that the RCIC and RCIC-A algorithms do not suffer from
the NC ≫ SC problem.
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Figure 4.4: P , R and F −measure for increasing SC and fixed NC = 53, (a) RCIC
(b) RCIC-A.

The experimental values RI and ARI for different number of images are shown
in Figure 4.5. The results demonstrate that the RI is very high and remains
constant in the case of RCIC, while in the case of the RCIC-A algorithm, the RI
is very high but slightly decreases when the number of images gets much larger.
The ARI is also good for both the techniques. The ARI obtained for the RCIC
algorithm fluctuates a bit when the number of images changes, which can be due to
the variation in the nature of images. The ARI in the case of the RCIC-A algorithm
first increases with an increase in SC and the number of images and then decreases.
The increase in ARI is due to the attraction process and as the SC increases, the
number of images in the major clusters before attraction increases, which results
in average reference fingerprints of good quality. Which attracts more and more
fingerprints in the minor clusters of the same camera towards its cluster. However,
the decrease in ARI at larger SC and larger number of images may be due to the
presence of higher variations in the images and also due to false attraction.

It can be observed that as SC increases, the size of the dataset increases and
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Figure 4.5: RI and ARI for increasing SC and fixed NC = 53, (a) RCIC (b)
RCIC-A.
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Figure 4.6: Cr for increasing SC and fixed NC = 53, (a) RCIC (b) RCIC-A.

the evaluation measures decrease, especially in the case of the RCIC-A algorithm.
However, this decrease in evaluation measures is compensated by the significant
reduction in computational complexity. The results in Figure 4.6, show that as
the size of the dataset increases, the complexity of both versions of the proposed
algorithm decreases with respect to the complexity i.e., n(n − 1)/2 and hence the
complexity reduction Cr factor increases. The decrease in computational complex-
ity proves the strength of the RCIC and RCIC-A algorithm to cluster large datasets.
Thus, the above techniques are considered suitable for large scale clustering.
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4.3.4 NC ≫ SC analysis
The NC ≫ SC problem has been discussed in the previous sections of small

scale and large scale clustering. But in Section 4.3.2, the datasets used are small
and have a limited number of cameras while in Section 4.3.3, the number of images
is large enough but again has limited NC. To use the Dresden dataset [33, 34]
for NC ≫ SC problem we have only 53 cameras in it. In this section, we are
evaluating the robustness of RCIC and RCIC-A algorithms under the NC ≫ SC
scenario on D5 dataset, which has a significantly larger NC.

Firstly, the experiments are performed for different SC and fixed NC = 295.
The SC equal to 2, 3, 5, 10, 15 and 20 is used for experimentation. The P , R,
F − measure, RI, ARI and Cr are computed. The results obtained at different
values of SC are shown in Figure 4.7, Figure 4.8 and Figure 4.9.

The results in Figure 4.7 show that the P of the RCIC algorithm is significantly
good and constant for different SC, while the P of RCIC-A is also quite good and
decreases a little when the SC increases. The change in the P may be due to the
possible false attraction. Looking at the values of R and F −measure, both the
parameters are higher for smaller values of SC and decrease with an increase in
SC. It can also be observed that as expected the RCIC-A results in higher R and
F −measure than that of RCIC, due to the attraction process. The better values
of P , R and F −measure for smaller values of SC, prove that RCIC and RCIC-A
can withstand the NC ≫ SC problem.
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Figure 4.7: P , R and F − measure for increasing SC and fixed NC = 295, (a)
RCIC (b) RCIC-A.

The resulting values of RI and ARI for different values of SC using both RCIC
and RCIC-A techniques are shown in Figure 4.8. The results show that both
methods have high values of RI and ARI. The results further confirm that RI
does not vary with SC. However, the ARI increases with an increase of SC.
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Figure 4.8: RI and ARI for increasing SC and fixed NC = 295, (a) RCIC (b)
RCIC-A.

Now, analyzing the complexity, as expected the Cr increases with an increase in
SC for both RCIC and RCIC-A. The increase in Cr with SC is due to an increase
in the size of the dataset n. This is due to the fact that the increase in complexity
in our algorithms is subquadratic in n, so when we compare it with n(n−1)/2, this
reduction is larger as n grows. As observed in Figure 4.8, the Cr for RCIC and
RCIC-A increases with an increase in the size of the dataset. The Cr of RCIC-A is
less than that of the RCIC algorithm, due to the additional computational cost of
the attraction in RCIC-A. Hence, the increase in Cr with the increase in the size
of the dataset proves that the RCIC and RCIC-A techniques are suitable for large
scale clustering.
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Figure 4.9: Cr for increasing SC and fixed NC = 295, (a) RCIC (b) RCIC-A.

After the experimental results obtained for different SC at fixed NC = 295,
the NC ≫ SC is further analyzed by varying NC and keeping SC fixed at 20.
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The RCIC and RCIC-A are applied to different datasets with NC equal to 50,
75, 100, 125, 150, 175, 200, 250 and 295 at SC = 20. The constructed clusters
are evaluated using P , R, F −measure, RI and ARI. While the computational
complexity relative to the upper bound on complexity is measured in terms of Cr.
The computed P , R and F − measure are shown in Figure 4.10. The results in
Figure 4.10a show that as the NC gets larger and larger relative to SC, the P , R
and F − measure remain stable. The little fluctuation in the values of R is due
to some images that are not attracted by the correct cluster. The P obtained for
RCIC-A is less than that of RCIC, as given in Figure 4.10b. However, the R and
F −measure of RCIC-A is relatively higher than that of RCIC. The decrease in P
is due to the attraction of some wrong singleton clusters. Similarly, the attraction
is also responsible for an increase in R and consequently, in F − measure. The
results show that RCIC and RCIC-A have significantly good P , R and F−measure
even when the NC ≫ SC problem gets worst and worst. Hence, it can be said
that both RCIC and RCIC-A are robust to NC ≫ SC.
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Figure 4.10: P , R and F − measure for increasing NC and fixed SC = 20, (a)
RCIC (b) RCIC-A.

The RCIC and RCIC-A are also examined using RI and ARI. The results
obtained for different NC and fixed SC = 20 are displayed in Figure 4.11a-b.
While evaluating the RCIC and RCIC-A using the RI and ARI, the results show
that RI remains stable with increasing NC and fixed SC = 20 but, the ARI
decreases with increase in the NC and then start improving when NC get much
larger at fixed SC = 20. The higher values of RI and ARI for higher NC with
respect to SC prove that the RCIC and RCIC-A do not suffer from NC ≫ SC
problem. Hence, the quality of clusters constructed with RCIC and RCIC-A are
not affected by the increase in NC with respect to SC and RCIC and RCIC-A are
considered robust to NC ≫ SC problem.
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Figure 4.11: RI and ARI for increasing NC and fixed SC = 20, (a) RCIC (b)
RCIC-A.

Along with the quality of the constructed clusters, the computational cost of
clustering is also analyzed for different NC and fixed SC = 20. The results also
show that as the NC increases relative to SC, the Cr fluctuates, and no increasing
or decreasing trend is followed by Cr. The results are shown in Figure 4.12a-b.
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Figure 4.12: Cr for increasing NC and fixed NC = 20, (a) RCIC (b) RCIC-A.

The increase in NC increases the size of the dataset. Which tries to increase
the Cr, as discussed in the large scale analysis of RCIC and RCIC-A. At the time,
the increase in NC makes the dataset harder and as the hardness increases the
Cr decreases, as shown in the small scale analysis. Both the effect equalizes each
other, and the Cr does not show an increasing or decreasing trend and fluctuates
with increasing NC and fixed SC = 20. The fluctuations in Cr are probably due
to the large variance in the quality of the images. The results in Figure 4.12b show
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that the Cr of RCIC-A is less than that of RCIC. Because the attraction stage
adds extra computational cost.

4.4 Performance of FICFO and FICFO-A
Similar to the RCIC and RCIC-A algorithms, the FICFO and FICFO-A tech-

niques are also examined on small and large datasets. The robustness of the tech-
niques against the NC ≫ SC problem is also evaluated experimentally. The effec-
tiveness of the ℜI is also evaluated. The values of PFA is set to 10−6 for computing
the Th and is followed in all subsequent experiments.

The evaluation metrics of P , R, F −measure, RI and ARI are used to judge
the clusters quality while Cr is computed to measure the computational complexity
relative to the upper bound n(n−1)/2. The evaluation metrics and Cr are defined
and discussed in Section 4.2.

4.4.1 Analysis of ℜI and NCC ρ

The ranking index ℜI computed form the average gray level, saturation, and
texture level of an image, should represent how close an estimated fingerprint is to
the ideal noiseless fingerprint. To study the contribution, we design an experiment
that shows the effectiveness of ℜI to fingerprint based image clustering and its
contribution to the reduction in computational complexity. For this test, natural
and flat images of the Dresden dataset [33, 34] with different camera brands and
models are considered. The reference fingerprints for each camera are obtained by
averaging the estimated fingerprints from flat field images of the cameras. The
averaged reference fingerprints are standardized to zero mean unit variance. Then,
the camera fingerprint is estimated fro each image among the natural images. The
camera fingerprints are standardized, and ℜI is computed for each of these camera
fingerprints using the respective images Eq. 3.15.

To find the relationship between the ℜI of a fingerprint and the NCC ρ, the NCC
ρ between each fingerprint of every camera model and average reference fingerprint
of the corresponding camera model is calculated. The values ℜI of images are
plotted against the resulting values of ρ, as displayed in Figure 4.13.
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Figure 4.13: Analysis of ℜI vs NCC ρ.

The scatter plot shows the relationship between the ℜI and NCC ρ, to have a
much clear view of the trend, a regression line is fitted to the data using a linear
regression model. From experiments, it has been observed that the slope of the
linear model varies with α, β and γ. In the following, we will use ℜI obtained
when α = 2, β = 0.5 and γ = 2.

The values of α, β and γ are obtained experimentally using flat field and nat-
ural images of different camera models available in Dresden dataset. The average
camera fingerprints estimated flat field and natural images. Then average reference
fingerprints are obtained from the camera fingerprints of flat field images. The
ℜI for each natural image is computed and camera fingerprints of natural images
from each camera are sorted in the descending order of ℜI. The NCC between
the average reference fingerprints of a camera and the fingerprints estimated from
natural images the same camera is computed. The ℜI are plotted against the NCC
computed. The process is repeated for different values of α, β and γ. It has been
found from experiments that α = 2, β = 0.5 and γ = 2 best describes the relation
between the NCC and ℜI.

The results show that the fingerprints with a high value of ℜI result in high
NCC ρ and ℜI can be used to predict the correlation between a fingerprint and the
corresponding reference fingerprint. From this, it can be concluded that fingerprints
with a high value of ℜI are the best choice to be used as reference fingerprints during
clustering. In all subsequent experiments, the fingerprints are sorted using ℜI with
the same values of parameters. The FICFO and FICFO-A techniques are evaluated
for different types of small datasets, large scale clustering, and NC ≫ SC problem.
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4.4.2 Small Scale Clustering
The performance of FICFO and FICFO-A on small datasets is examined using

four different types of small datasets, i.e., D1, D2, D3 and D4. The details of the
datasets are given in Section 4.1. The experiments are performed on 200, 400, 600,
800, and 1000 images of each dataset. The number of images is selected in such
a way that only the number of images per camera SC changes and the number
of cameras NC do not change for each dataset. This experimental setup helps
to evaluate the techniques not only on different types and different size of small
datasets but also to study the NC ≫ SC problem for different types of small
datasets.

The FICFO and FICFO-A, when applied to the above mentioned datasets of
different types, generate high quality clusters. The evaluation measures computed
during the various experiments on small datasets are shown in Figure 4.14. Figure
4.14a demonstrates the P obtained in the case of FICFO, remains constant for
the different number of images of each small dataset. On the other hand, the P
obtained for FICFO-A, shown in Figure 4.14b, shows a little inconsistency and
reduction with the increasing number of images. The reason for the fluctuations is
some false merging of small clusters during the attraction process, and the minor
modification may be due to the presence of some bad images. As mentioned above,
the size of the dataset is increased by increasing the SC with fixed NC. It can be
seen that the P is not affected by varying SC and result in significantly high P even
for very small SC. Hence, the FICFO and FICFO-A are robust to the NC ≫ SC
problem on datasets of different configurations.
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Figure 4.14: P , R and F − measure of the FICFO and FICFO-A algorithm on
small datasets.

Along with P , the R and F −measure are also crucial for the analysis of clus-
tering algorithms. The R and F −measure obtained from clustering the different
number of images of different types of small datasets using FICFO and FICFO-A
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are displayed in Figure 4.14c-f. The results reveal that both FICFO and FICFO-A
perform well on all small datasets, but the performance is better on easy datasets
relatively to hard datasets, as shown in Figures 4.14c-f. It can be observed that due
to the attraction process, FIFCO-A results in a higher R and F −measure than
the FICFO algorithm. The FIFCO-A attracts the singleton clusters and merges
them with the closest cluster, based on the similarity criteria. Hence, the FICFO-A
results in higher values of R and F −measure.
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Figure 4.15: RI and ARI of the FICFO and FICFO-A algorithm on small datasets.

The number of constructed clusters has a great influence on R and F−measure
and the generation of few singleton clusters can affect these evaluation metrics.
Therefore, the FICFO and FICFO-A are also evaluated using another couple of
related evaluation metrics of RI and ARI. The two parameters are independent of
the number of clusters and depend on the quality of clusters only. The experimen-
tally obtained results of RI and ARI are shown in 4.15. The results show that both
FICFO and FICFO-A result in high and constant RI for the different number of
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images of different types of small datasets. While the value of ARI is also high for
both the algorithms. The algorithms result in higher values of RI on hard datasets
with respect to easy datasets. The ARI values are higher on the easy dataset as
compared to hard datasets for both FICFO and FICFO-A.

Along with the quality of clusters, the computation cost of clustering is also
a critical factor in analyzing a clustering algorithm. The high computational cost
means the need for more resources and time. Hence, the lesser the computational
cost faster the algorithm and lower the time needed. Time is gold, and therefore,
it is highly desired to make the clustering process faster and with the least possible
computational cost. The complexity reduction of Cr is a parameter used in this
work, to describe the computational cost. The Cr of FICFO and FICFO-A is com-
puted while clustering the different number of images of the various small datasets,
and the results obtained are shown in Figure 4.16. The experimental results show
that the Cr of both the FICFO and FICFO-A increases as the number of images
increases, and hence the computational cost decreases. The results also show that
the Cr of FICFO-A is less than the Cr the FICFO, due to the additional compu-
tational cost of the attraction process. The Cr is higher for easy than hard dataset
and on asymmetric than symmetric datasets for both FICFO and FICFO-A.
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Figure 4.16: Cr of the FICFO and FICFO-A algorithm on small datasets.

4.4.3 Medium and Large Scale Clustering
The analysis of the FICFO and FICFO-A using small datasets is presented

in the previous section. But, it is also important to evaluate the performance of
the techniques on medium and large datasets. A different number of images are
selected from Dresden [33, 34]. The subsets with the different numbers of images
are constituted by varying Sc and keeping the NC fixed, i.e., NC = 53. Therefore
each subset has NC × SC images. The SC is set to 2, 5, 7, 9, 10, 15, 25, 35,
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45, 55, 65 and 75 to check the performance of FICFO and FICFO on different
size of datasets from small to large and also to evaluate the robustness under the
NC ≫ SC scenario.

The evaluation metrics i.e., P , R, F − measure, RI and ARI as well as the
complexity reduction Cr are computed in each experiment. The results obtained in
terms of P , R, F −measure are shown in Figure 4.17. The results in Figure 4.17a,
show that the FICFO performs well for datasets of different sizes. The evaluation
metrics P , R, and F −measure show a constant and stable trend of FICFO with
the increasing SC and the size of the dataset. The experimental results obtained
using FICFO-A are shown in Figure. 4.17b. The displayed results show that R
remains stable with an increase in the number of images and SC, however, P and
F −measure, decrease with the increase in the size of the dataset. The decrease
in P can be due to the attraction of some wrong clusters, and consequently, the
F − measure also decreases. The better response of FICFO and FICFO-A on a
larger number of images supports the suitability of both techniques for large scale
clustering, at the same time, remarkable performance on the datasets with smaller
SC prove their robustness against NC ≫ SC problem.
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Figure 4.17: P , R and F − measure for increasing SC and fixed NC = 53, (a)
FICFO (b) FICFO-A.

The experimental results obtained in terms of RI and ARI for the different
numbers of images are shown in Figure 4.18. The results in Figure 4.18a show that
RI and ARI computed for FIFCO are high and remain stable at different values of
SC and the number of images. The results displayed in Figure 4.18b, reveal that
RI for FICFO-A is also high, but slightly decrease with the increasing number of
images and SC. While, the ARI for FICFO-A initially increases with an increase
in the number of images to be clustered and then decreases. This shows that some
wrong cluster, singleton clusters, are attracted at the attraction stage in FICFO-A,
which result in a decrease in RI and ARI.
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Figure 4.18: RI and ARI for increasing SC and fixed NC = 53, (a) FICFO (b)
FICFO-A.

Figure 4.19 shows the Cr of both FICFO and FICFO-A followed an increasing
trend with the increase in the size of the dataset. The growing trend of Cr proves
that the computational cost of FICFO and FICFO-A decreases with respect to
the upper bound on complexity i.e., n(n − 1)/2 on the same number of images n.
The results prove the suitability of FICFO and FICFO-A for large scale clustering.
Hence it is claimed that FICFO and FICFO-A can cluster large datasets faster and
can solve the NC ≫ SC problem efficiently.
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Figure 4.19: Cr for increasing SC and fixed NC = 53, (a) FICFO (b) FICFO-A.

4.4.4 NC ≫ SC analysis
The analysis of FICFO and FICFO-A algorithm on small and large datasets is

done in the previous two sections. Along with the small and large scale clustering
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analysis, the techniques are also analyzed for the NC ≫ SC problem in Section
4.4.2 and Section 4.4.3, respectively. To check the performance of the FICFO and
FICFO-A in scenarios, the NC ≫ SC problem is more evident; the algorithms are
evaluated using D5 dataset. The experiments are performed on images with SC
equal to 2, 3, 5, 10, 15 and 20 and while keeping the NC = 295 fixed.

The results shown in Figure 4.20a show that the FICFO results in high P , R
and F −measure and the evaluation measures remain constant for different SC at
fixed NC = 295. While the P of FICFO-A is significantly high at smaller SC and
decreases with an increase in SC. The decrease in the P may be due to some false
merging of minor clusters during the attraction process. But, due to the attraction
process, the recall increases with an increase in the SC. Due to the attraction, the
FICFO-A results in a higher R and F −measure than that of FICFO. The better
values of P , R and F −measure for smaller values of SC, prove that FICFO and
FICFO-A can withstand the NC ≫ SC problem.
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Figure 4.20: P , R and F −measure for increasing SC and fixed NC = 295, (a)
FICFO (b) FICFO-A.

The P , R, and F −measure depend on the number of constructed clusters and
fluctuate with small changes in the number of clusters. Therefore, RI, ARI are
computed for each experiment for both the techniques to get clear observations. The
resulting values of RI and ARI for different values of SC are shown in Figure 4.21.
The results show that both FICFO and FICFO-A results in a higher and constant
RI, while the ARI increases with an increase in SC. The results obtained in terms
of RI and ARI prove that FICFO and FICFO-A are robust to the NC ≫ SC
problem.
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Figure 4.21: RI and ARI for increasing SC and fixed NC = 295, (a) FICFO (b)
FICFO-A
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Figure 4.22: Cr for increasing SC and fixed NC = 295, (a) FICFO (b) FICFO-A.

Now, analyzing the Cr, the results in Figure 4.22, show that the Cr of both
FICFO and FICFO-A increases with an increase in SC. This is because with the
rise in SC at fixed NC = 295, the number of images and size of dataset increases
and the Cr increases with increasing size of the dataset. This trend of Cr has been
observed in the clustering of small and large datasets. However, the attraction
performed in FICFO-A has some computation cost, which results in a reduction of
Cr for FIFCO-A as compared to FICFO. The whole experimentation and results
prove that the computational cost of FICFO and FICFO-A relative to the reference
computational complexity i.e., n(n−1)/2, decreases with the increase in the size of
the dataset and hence prove the suitability of FICFO and FICFO-A for large scale
clustering.
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Now, the FICFO and FICFO-A are examined on datasets with different NC
i.e., 50, 75, 100, 125, 150, 175, 200, 250 and 295 and fixed SC = 20. The con-
structed clusters are evaluated using P , R, F −measure, RI and ARI. While the
computational complexity relative to the upper bound on complexity is measured
in terms of Cr. The computed P , R and F −measure are shown in Figure 4.23.
The results in Figure 4.23a show that as the NC gets larger and larger relative to
SC, the P , R and F − measure of FICFO algorithm remain stable. The minor
fluctuation in the values of R is due to the addition of some bad images. The
results in Figure 4.23b show that the P obtained for FICFO-A is less than that
of RCIC. However, the R and F −measure of FICFO-A is relatively higher than
that of FICFO. The decrease in P is due to the false attraction of some singleton.
Similarly, the attraction is also responsible for an increase in R and consequently,
in F − measure. The results show that FICFO and FICFO-A give higher P , R
and F −measure even when the NC ≫ SC problem gets worst and worst. Hence,
it can be said that both FICFO and FICFO-A are robust to NC ≫ SC.
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Figure 4.23: P , R and F − measure for increasing NC and fixed SC = 20, (a)
FICFO (b) FICFO-A.

The FICFO and FICFO-A are also examined using RI and ARI, and the results
obtained for different NC and fixed SC = 20 are displayed in Figure 4.24a-b.
While evaluating the FICFO and FICFO-A using the RI and ARI, the results
show that RI remains stable with increasing NC and fixed SC = 20. While the
ARI decreases with an increase in NC, initially, and then increases at larger NC.
The higher values of RI and ARI for higher NC concerning SC prove that the
FICFO and FICFO-A do not suffer from NC ≫ SC problem. Hence, the quality
of clusters constructed with FICFO and FICFO-A are not affected by the increase
in NC with respect to SC, and FICFO and FICFO-A are considered robust to
NC ≫ SC problem.
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Figure 4.24: RI and ARI for increasing NC and fixed SC = 20, (a) FICFO (b)
FICFO-A.

The quality of clusters and computational complexity are important to analyze
a clustering algorithm. Therefore, the FICFO and FICFO-A are evaluated based
on the computational cost using various NC and fixed SC = 20. The results also
show that as the NC increases relative to SC, the Cr fluctuates, and no increasing
or decreasing trend is followed by Cr. The results are shown in Figure 4.25a-b.
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Figure 4.25: Cr for increasing NC and fixed SC = 20, (a) FICFO (b) FICFO-A.

The increase in NC increases the size of the dataset. The increase in the
dimension of the dataset tries to raise the Cr, as shown in the large scale analysis
of FICFO and FICFO-A. At the same time, the increase in NC makes the dataset
harder and as the hardness increases, the Cr decreases, as shown in the small
scale analysis. Both the effects equalize each other, and the Cr does not show
an increasing or decreasing trend and fluctuates with increasing NC and fixed
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SC = 20. The fluctuation in Cr is probably due to the addition of different quality
images in the datasets with an increase of NC. The Cr improves when good images
are added and decreases when bad images are added to the dataset. The results in
Figure 4.12b show that the Cr of FICFO-A is less than that of FICFO. Because
the attraction stage adds extra computational cost.

The FICFO and FICFO-A algorithm result in high quality clusters. The perfor-
mance of FICFO and FICFO-A on small, medium and large datasets is comparable
to RCIC and RCIC-A, respectively, in terms of evaluation metrics. But, Cr of
FICFO and FICFO-A higher than the RCIC and RCIC-A algorithms, respectively.
The reduction in the computational complexity is due to the fingerprints ordering
based on ℜI and the use of best fingerprints as a reference fingerprints among the
unclustered ones.

4.5 Performance of CIC
The CIC algorithm is initially analyzed to find the best values of probability

of false alarm for the relaxed and hard threshold. After finding the best values
of PFAr and PFAh, the values of the respective relaxed and hard threshold are
used to examine the algorithm on different types of small datasets, in the large
scale clustering scenario and in the presence of the NC ≫ SC problem. The PFA
analysis is done on D0 dataset, while the Dresden image database [33, 34] and sub
datasets i.e., D1, D2, D3, D4 and D5 are used for the other experiments. The
details of these datasets are given in Section 4.1.

4.5.1 PFA Analysis
The CIC algorithm first constructs a small number of large non-overlapping

clusters using a relaxed threshold; then, the initial clusters are further clustered
using a hard threshold. Both of these thresholds depend on the PFA values: for a
relaxed threshold we set larger PFA whereas, for a hard threshold, a smaller PFA
is used.

To find appropriate values of PFAr and PFAh, the CIC algorithm is applied
to cluster dataset D0, as explained in Section 4.1. The camera fingerprints are
estimated from the images and center cropped to a size of 1023× 1023. Then the
camera fingerprints are standardized to zero mean and unit variance. The ℜI for
each camera fingerprint is computed using the corresponding resized image. The
ℜI obtained at α = 2, β = 0.5 and γ = 2. The fingerprints are arranged in the
descending order of ℜI. Then the CIC algorithm is applied to cluster the images
using the estimated camera fingerprints. Clustering using the CIC algorithm is
repeated using the different values of PFAr and PFAh to set the relaxed and hard
threshold, respectively. Complexity reduction Cr and the evaluation metrics P , R
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and F −meaure are computed for each experiment.
P and R can not be considered alone for the evaluation of the best PFA value:

a very small PFA value will yield a very high P , at the cost of lowering the R;
conversely, smaller PFA values will tend to increase the R, but will decrease the
P . F which is the combination of both P and R, is the best suitable metric for the
evaluation of the CIC algorithm for different PFAs. The F metric is used along
with P and Cr to evaluate the CIC algorithm for different values of PFA. The
experimental results are shown here in Figure. 4.26.

Figure 4.26: Analysis of F −Measure and Cr for different values of relaxed and
hard threshold PFAs.

The experimental results show that for a fixed value of PFAr, the complexity
reduction Cr decreases with an increase in PFAh. However, precision P and F −
measure increases. While increasing PFAr, the complexity reduction of Cr first
increases and then decreases. A highest complexity reduction Cr is observed for
PFAr of 1×10−2 and PFAh of 5×10−4. But, the precision P and F-measure F , the
two important factors describing the quality of the clusters, are very low for these
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values of PFAr and PFAh. Closely observing the experimental results for different
pairs of values of PFAr and PFAh, it can be seen that best value of precision P ,
along significantly good values of F −measure and complexity reduction Cr can
be obtained with PFAr and PFAh equal to 5 × 10−2 and 1 × 10−6, respectively.
Therefore, these values are selected and used in all subsequent experiments.

4.5.2 Small Scale Clustering
The small datasets i.e., D1, D2, D3 and D4, are used to examine the perfor-

mance of the CIC algorithm on small scale clusters. The experiments are performed
by selecting 200, 400, 600, 800, and 1000 images. The change in SC results in a
change in the number of images in a dataset. While the NC remains and equal to
the total number of cameras in the dataset. This setup is used to evaluate the CIC
algorithm not only on different types but also on datasets of different sizes with
different SC. The results are used to check the robustness of the CIC algorithm
against the NC ≫ SC problem for different types of small datasets.

Following the experimental setup, the CIC algorithm is applied to cluster each
set of images from each dataset, and the evaluation measure P , R, F−measure, RI
and ARI are computed in the experiment. Along with cluster quality measure the
computational complexity, relative to the upper bound on complexity i.e., n(n −
1)/2, is also measured in terms of Cr. The results obtained in these experiments are
shown in Figure 4.27. The experimental results show that the CIC algorithm gives
a high P for each set of images, as shown in Figure 4.27a. The results showed that
P slightly fluctuates with an increasing number of images and SC, which can be
due to the addition of some bad images, which are wrongly attracted and clustered
in the attraction stage. The results confirm that the P of the CIC algorithm is not
affected when NC ≫ SC.

The Figure 4.27b, shows that CIC algorithm results in a high value of R. The
R obtained on easy datasets is higher than hard datasets, which show that the CIC
algorithm performs better on the easy datasets while compared to hard datasets.
The result obtained in terms of F −measure also shows the same trend as R and
is shown in Figure 4.27c.

83



4 – Experimental Results

200 400 600 800 1000
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

No. of images

P

D1 D2 D3 D4

(a) Precision

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

200 400 600 800 1000

R

No. of images

D1 D2 D3 D4

(b) Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

200 400 600 800 1000

F
-m

ea
su

re

No. of images

D1 D2 D3 D4

(c) F-measure

200 400 600 800 1000
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

No. of images

R
I

D1 D2 D3 D4

(d) Rand Index

200 400 600 800 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

No. of images

A
R

I

D1 D2 D3 D4

(e) Adjusted Rand Index

0

2

4

6

8

10

12

14

16

18

200 400 600 800 1000

C
r

No. of images

D1 D2 D3 D4

(f) Complexity Reduction

Figure 4.27: Small scale analysis of CIC algorithm.

The RI and ARI as given in Figure 4.27d and Figure 4.27e, respectively, show
that the CIC algorithm results in very high values of RI. Similar to the previous
algorithms, the CIC algorithm performs better on hard datasets with respect to
easy datasets, in terms of RI. The ARI obtained for the different number of
images is high. The ARI computed for the CIC algorithm has higher values of
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easy datasets as compared to the hard datasets.
The resulting Cr on a different set of images shows that the Cr increases with

the increase in the number of images as displayed in Figure 4.27f. Along with
the increasing trend of Cr with the number of images, it can be seen that the
CIC algorithm has less computational complexity on easy datasets than the hard
dataset, which is apparent from the higher values of Cr on easy datasets.

4.5.3 Medium and Large Scale Clustering
The CIC algorithm is applied to different subsets of images chosen from Dresden

[33, 34] using the same and fixed NC, i.e., NC = 53, and varying the SC. The
number of images to be clustered increases with increasing SC. The experimental
results are shown in Figure 4.28a, and demonstrate that the proposed technique
performs well for different sizes of datasets and different SC. The results show that
as the average SC changes with respect to NC, P is almost constant but R and
F − measure, decrease and then increase with the increasing number of images
and SC due to attraction of some wrong clusters. While the other two clustering
quality measuring parameters i.e., RI and ARI are shown in Figure 4.28b. The
results show that the RI does not change with an increase in the number of images
under test. While, the ARI shows some fluctuations in its values with the change
in the number of images. The fluctuations may be due to the variations in the
nature of images.
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Figure 4.28: Evaluation measure of CIC algorithm vs increasing SC and fixed
NC = 53.

The higher values of the evaluation metrics on large number images make the
CIC algorithm suitable for large scale clustering. Moreover, high P , R, F −
measure, RI and ARI for small number images per camera SC show that this
algorithm does not suffer from NC ≫ SC problem.
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Figure 4.29: Cr of CIC algorithm vs increasing SC and fixed NC = 53.

Figure 4.29 shows the complexity reduction Cr obtained in the different cases.
It has been observed that the complexity, with respect to the reference complexity
i.e., n(n− 1)/2, of the CIC algorithm decreases with increasing size of dataset i.e.,
the number of images. Hence the complexity reduction Cr factor increases. The
less computational cost and higher Cr at a large number of images prove that the
CIC algorithm can be a good choice for large scale clustering.

4.5.4 NC ≫ SC analysis
Like the RCIC, RCIC-A, FICFO, and FICFO-A algorithms, the CIC algorithm

is also analyzed for the NC ≫ SC problem using the D5 dataset. The robustness
of the CIC algorithm against the NC ≫ SC problem is also discussed in both
Section 4.5.2 and Section 4.5.3 on small and large datasets respectively. However,
to examine the CIC algorithm on harder scenarios for what concerns the NC ≫ SC
problem, theD5 dataset with 295 different cameras is used. The camera fingerprints
are estimated from each image of each camera in the dataset. The experiments are
performed on images with SC equal to 2, 3, 5, 10, 15 and 20 and while keeping the
NC = 295 fixed.

The results shown in Figure 4.30a show that the CIC algorithm results in high
and constant P , while the R and F −measure decreases with increase in SC at
fixed NC = 295. The decrease in the R and F − measure can be due to the
presence of some bad images. The fingerprints of the bad images are not clustered
properly and result in several singleton clusters. The singleton or small clusters
have image/s from a single camera. That’s why the P remains high and the R and
F − measure drop. The results show that the CIC algorithm has higher values
of P , R, and F −measure, which prove that the CIC algorithm is robust to the
NC ≫ SC problem.

The R and F − measure are highly dependent on the number of constructed
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cluster and a generation a single singleton cluster affect these metrics. Therefore,
we examine the CIC algorithm using the parameters of RI and ARI. And the
results obtained, shown in Figure 4.30b for different SC at fixed NC = 295, show
that the CIC algorithm has a high and constant RI. The ARI obtained for different
SC increases initially and then decreases. The decrease in the values of ARI at
higher SC is due to the false attraction during the attraction process.
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Figure 4.30: Evaluation measure of CIC algorithm vs increasing SC and fixed
NC = 295.

Now, analyzing the Cr, as expected, the Cr of the CIC algorithm increases
with an increase in SC. The results shown in Figure 4.31. This is because with the
increase in SC at fixed NC = 295, the number of images and size of the dataset
increases and consequently, the Cr increases with increasing size of the dataset.
This trend of Cr has been observed in the clustering of small and large datasets
too. The results prove that the computational cost of the CIC algorithm relative to
the reference computational complexity i.e., n(n−1)/2, decreases with the increase
in the size of the dataset and hence endorse the suitability of the CIC algorithm
for large scale clustering.
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Figure 4.31: Cr of CIC algorithm vs increasing SC and fixed NC = 295.

To further analyze the CIC algorithm for NC ≫ SC problem, the NC is
changed to 50, 75, 100, 125, 150, 175, 200, 250 and 295 while the SC is kept fixed
at 20. The datsets with different NC are clustered using the CIC algorithm and
the evaluation measure i.e., P , R, F −measure, RI and ARI are computed. The
resulting evaluation measures are shown in Figure 4.32. While the computational
complexity relative to the upper bound on complexity is measured in terms of Cr.
The results obtained for Cr are displayed in Figure 4.33.

The results in Figure 4.32a show that the P for the CIC algorithm is very high
and stable for the datasets with different NC. While R and F −measure are high
but, minor fluctuations occur with the change in NC. The changes in the value of
R and F −measure is due to the possible presence of some bad images. Similarly,
the resulting RI and ARI are very high and remain stable with the change in NC,
as displayed in Figure 4.32b. The results show that the CIC algorithm give higher
P , R, F −measure, RI and ARI for NC ≫ SC. Hence, the quality of clusters
constructed with the CIC is not affected by the increase in NC with respect to SC,
and the CIC algorithm is considered robust to the NC ≫ SC problem.
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Figure 4.32: Evaluation measure of CIC algorithm vs increasing NC and fixed
SC = 20.

Besides the analysis of the quality of the clusters constructed by the CIC algo-
rithm, the algorithm is also analyzed based on the computational cost of clustering
for different NC and fixed SC = 20. The results also show that as the NC in-
creases relative to SC, the Cr fluctuates, and no increasing or decreasing trend is
followed by Cr. The results are shown in Figure 4.33.
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Figure 4.33: Cr of CIC algorithm vs increasing NC and fixed the SC = 20.

The CIC algorithm results in high quality clusters. The performance of the CIC
algorithm on small, medium and large datasets is quite good. But, as compared
to the RCIC, RCIC-A, FICFO and FICFO-A algorithms, the computational cost
is higher. While the quality of clusters is comparable with the RCIC, RCIC-A,
FICFO and FICFO-A algorithms. Like, the previously mentioned algorithms, the
CIC algorithm also does not suffer from the NC ≫ SC problem.
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4.6 Performance of CFIC
The CFIC algorithm is examined for the best way of computing the reduced

fingerprints, and the best value of quantization level δ while applying the dead-zone
quantization. After that, the CFIC algorithm is analyzed for small, medium and
large scale clustering for different scenarios of NC ≫ SC. The datasets presented
in Section 4.1 are used in different experiments.

4.6.1 The performance of CFIC algorithm using different
reduced fingerprints.

To cluster images based on camera fingerprints, the proposed algorithm uses re-
duced fingerprints Fr and full fingerprints F for clustering and refining the clusters,
respectively. The full camera fingerprints are estimated directly from the images.
However, to obtained reduced camera fingerprints, we have various possibilities.
We can use decimation, random projections, and dead-zone quantization or we can
apply dead-zone quantization directly to full fingerprint after decimation or with-
out decimation. Along with these, we may use a different number of projections
and values of quantization factor δ to get the reduced fingerprints. Therefore, it
is important to investigate which of the above methods is the most suitable for
clustering. It is also important to find the appropriate value of the number of pro-
jection, quantization factor δ, and decimation factor. For this analysis, the image
dataset D0 is used in the following subsections.

Reduced Fingerprints with decimation, random projections, and quan-
tization.

In a first experiment, the reduced fingerprints Fr are obtained by decimating
the estimated full camera fingerprint F , computing the random projections using
the Gaussian sensing matrix and quantizing the random projections using dead-
zone quantization. The full camera fingerprints F , each of the size 1023 × 1023,
are decimated by a factor of 2. The random projections of length Pr equal to 1000,
20000, 30000, 60000, 80000, 90000, 96000 and 192000 are generated using Gaussian
sensing matrix of appropriate sizes for each decimated camera fingerprint. The
random projections of each camera fingerprint are quantized at different levels of δ
i.e., 0, 0.1, 0.2, 0.3, 0.35, 0.4, 0.5, 0.6, 0.7, 0.8 and 1, using dead-zone quantization.
The fingerprints are clustered using the reduced camera fingerprints Fr and average
full camera fingerprints, at initial clustering and fine clustering stages, respectively.
The performance of the clustering algorithm is analyzed based on the measured
evaluation metrics.

The evaluation metrics obtained for reduced fingerprints Fr of different sizes,
i.e., Pr, are plotted against the different values of quantization factor δ. The results
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are shown in Figure 4.34.
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Figure 4.34: Performance of CFIC algorithm using reduced fingerprints Fr of dif-
ferent size Pr at different values of δ.
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The results shown in Figure 4.34a, show that the proposed algorithm results in
a reasonably good values of precision almost above 0.9 for different sizes of reduced
fingerprints Pr and quantization factor δ, except Pr = 192000, which results in
a low precision at most values of qunatization factor δ. The recall computed for
different parameters varies from a minimum of 0.78 to maximum 0.8387. Recall
greater than 0.8 is obtained for the majority of the quantization factor δ values at
Pr equal to 60,000, 80,000, 90,000 and 96,000, as shown in Figure 4.34b. Now,
from the results shown in Figure 4.34c it is apparent that the F −measure greater
or equal to 0.9 is obtained for very few combination of Pr and δ. A maximum value
of 0.91087 for F −measure is obtained at Pr = 90,000 and δ = 0.3. Similarly, if
we look at the resulting RI and ARI, as shown in Figure 4.34d and Figure 4.34e
respectively, no significant variations have been observed at different values of Pr

and δ. The clustering algorithm results in RI of 0.945 and above for experiments.
While, the ARI, obtained in these experiments varies between 0.28 to 0.49. The
higher values of ARI are recorded for Pr = 192K.

Along with the evaluation of the quality of resulting clusters, it is also important
to analyze how fast clustering is performed. The clustering process will be fast if
fewer computations are performed. The parameter we are using, i.e., the complexity
reduction Cr that depends on the number of NCC computed among the reduced
fingerprints, full fingerprints and the total number of fingerprints. The results
shown in Figure 4.34f, Figure 4.34g and Figure 4.34h, show that the number of
NCC computed among the reduced fingerprints NCC_R in initial clustering and
NCC computed among the full fingerprints NCC_F at fine clustering, decreases
as the size of reduced camera fingerprints Pr decreases and as a result the Cr also
increases. Similarly, the NCC_R and NCC_F decreases with an increase in δ up
to δ = 0.5 and then starts increasing and hence, the Cr behaves in reverse. The
results shows that high complexity reduction is achieved for Pr = 192,000.

As our priority is to have good quality clusters, we give more importance to
Precision, recall, and F −measure when selecting the best combination of Pr and
δ. By observing all the results in Figure 4.34, we reach to the conclusion that
Pr = 90,000 and δ = 0.3 is the best combination for estimating reduced camera
fingerprints. The proposed algorithm results in highest values of 0.9967, 0.8387
and 0.91087 for Precision, recall and F-measure, respectively and a Cr of 24.78 is
achieved at these values of Pr and δ.

Reduced Fingerprints with decimation and quantization.

Now, we check the performance of the proposed algorithm, using the reduced
fingerprints obtained by decimating the estimated full camera fingerprint and dead-
zone quantization. The full camera fingerprints F , each of the size 1023 × 1023,
are decimated by different decimated factors. The decimation factors of df = 1,
df = 2 and df = 3 are used to reduce the size of fingerprints and result in decimated
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camera fingerprints of size |F |
df2 . Here is important to mention that df = 1 means no

decimation. Then, the decimated fingerprints Fd are quantized at different levels
of sigma δ i.e., 0, 0.1, 0.2, 0.3, 0.35, 0.4, 0.5, 0.6, 0.7, 0.8 and 1, using dead-zone
quantization, to get final reduced camera fingerprints. The proposed algorithm
is used to cluster the fingerprints. The reduced camera fingerprints and average
full camera fingerprints are used at initial clustering and fine clustering stages,
respectively. The performance of the clustering algorithm is analyzed based on the
measured evaluation metrics.

The evaluation metrics obtained for the cluster using reduced fingerprints esti-
mated at different decimation factors, i.e., df and quantization factor δ. The results
are shown in Figure 4.35.
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Figure 4.35: Performance of CFIC algorithm using reduced fingerprint with differ-
ent decimation factor d at different values of δ.
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The experimental results obtained shows that the P , R and F −measure de-
crease with increase in decimation factor, as shown in Figure 4.35a, 4.35b and 4.35c.
The RI and ARI also slightly decrease with increase in decimation factor. The re-
sultant RI and ARI are shown in Figure 4.35d and 4.35e, respectively. The results
show that the proposed algorithm result in high RI and ARI at df = 1, means in
case of no decimation.

The resulting Cr, NCC_R and NCC_F are shown in Figure 4.35f, 4.35g and
4.35h, respectively. The results show that the complexity reduction Cr initially
increases as the δ increases from 0 to 0.4 and then a decrease in Cr for df = 1 and
df = 2. Similarly, the NCC_R and NCC_F are lesser at the mid values of δ and
larger at lower and higher values of δ. However, it has been observed that at df = 3
the clustering algorithm behaves differently and irregularities are observed in the
values of Cr, NCC_R and NCC_F for different values of δ.

Therefore, the results in Figure 4.35 clearly shows that the reduced fingerprint
obtained from full fingerprints with decimation factor df = 1 is a better choice to
use instead of df = 2, df = 3 and higher values of decimation factor.

The Selection of Appropriate Reduced Fingerprint.

In the previous discussion, we have two ways to estimate reduced fingerprint.
One way is to perform decimation, computing random projection and then apply
dead-zone quantization. The direct decimation of the full fingerprint and dead-
zone quantization can be used as a second method. To differentiate between the
two types of reduced fingerprints, the reduced fingerprints estimated using the
first method are represented by F r

Pr
and that computed with the second method

is represented by F r
df . It has been observed that using the reduced fingerprints

F r
Pr

, the proposed algorithm results in high values of evaluation metrics at Pr =
90,000. While in terms of complexity reduction of Cr, the algorithm has the best
performance at Pr = 192,000. Similarly, using the reduced fingerprints F r

df , the
proposed algorithm results in high values of evaluation metrics and complexity
reduction Cr at df = 1.

Now the best candidates of the two types of reduced fingerprints, i.e., F r
Pr

and
F r

df are compared, to decide which types and size of reduced fingerprints result in a
better quality of clusters and least computational complexity, i.e., high complexity
reduction Cr.
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Table 4.3: Precision P .

sig F r
Pr=90k F r

Pr=96k FrPr=192k F r
df=1 F r

df=2
0 0.972 0.992 0.985 0.995 0.995

0.1 0.972 0.993 0.995 0.995 0.993
0.2 0.973 0.995 0.978 0.997 0.988
0.3 0.997 0.993 0.838 0.998 0.995
0.35 0.997 0.993 0.888 0.998 0.992
0.4 0.9967 0.987 0.818 0.998 0.995
0.5 0.983 0.992 0.912 0.997 0.995
0.6 0.993 0.992 0.937 0.998 0.993
0.7 0.993 0.993 0.872 0.995 0.995
0.8 0.978 0.982 0.847 0.995 0.968
1 0.997 0.997 0.897 0.988 0.993

Table 4.4: Recall R.

sig F r
Pr=90k F r

Pr=96k F r
Pr=192k F r

df=1 F r
df=2

0 0.82 0.792 0.803 0.838 0.828
0.1 0.828 0.803 0.838 0.85 0.83
0.2 0.823 0.798 0.825 0.848 0.8283
0.3 0.827 0.815 0.783 0.855 0.838
0.35 0.827 0.818 0.807 0.85 0.803
0.4 0.83 0.807 0.795 0.85 0.842
0.5 0.817 0.813 0.813 0.845 0.825
0.6 0.828 0.827 0.82 0.845 0.835
0.7 0.827 0.827 0.792 0.847 0.822
0.8 0.807 0.83 0.805 0.843 0.823
1 0.827 0.837 0.805 0.835 0.815
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Table 4.5: F −measure.

sig F r
Pr=90k F r

Pr=96k F r
Pr=192k F r

df=1 F r
df=2

0 0.889 0.880 0.8851 0.910 0.904
0.1 0.894 0.888 0.910 0.917 0.904
0.2 0.892 0.886 0.895 0.916 0.901
0.3 0.911 0.895 0.810 0.921 0.910
0.35 0.904 0.897 0.846 0.918 0.888
0.4 0.906 0.888 0.806 0.918 0.912
0.5 0.892 0.894 0.860 0.914 0.902
0.6 0.903 0.902 0.874 0.915 0.907
0.7 0.902 0.902 0.830 0.915 0.900
0.8 0.884 0.899 0.825 0.913 0.890
1 0.904 0.910 0.848 0.905 0.895

The results obtained for reduced fingerprint F r
Pr

at Pr = 90,000, Pr = 96,000
and Pr = 192,000 and reduced fingerprint Frdf at df = 1 and df = 2 compared
with each other. The results listed in Table 4.3 shows that the F r

df at df = 1 results
in cluster with highest precision of 0.998 for δ equal to 0.3, 0.35, 0.4 and 0.6.

Table 4.6: Rand Index RI.

sig F r
Pr=90k F r

Pr=96k F r
Pr=192k F r

df=1 F r
df=2

0 0.9448 0.9495 0.9522 0.9838 0.953
0.1 0.945 0.9494 0.9531 0.9832 0.9528
0.2 0.9447 0.9496 0.9511 0.9837 0.9532
0.3 0.946 0.9494 0.9426 0.9844 0.9532
0.35 0.9458 0.9493 0.9487 0.9842 0.953
0.4 0.9454 0.9488 0.9443 0.984 0.9528
0.5 0.9441 0.9486 0.95 0.9837 0.9517
0.6 0.945 0.9487 0.9524 0.9836 0.9512
0.7 0.945 0.9482 0.9465 0.9838 0.9515
0.8 0.9439 0.9481 0.9438 0.9838 0.9495
1 0.9456 0.95 0.9486 0.9825 0.9521
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Table 4.7: Adjusted rand index ARI.

sig F r
Pr=90k F r

Pr=96k F r
Pr=192k F r

df=1 F r
df=2

0 0.3113 0.3815 0.4323 0.8498 0.4552
0.1 0.3154 0.3813 0.4508 0.8442 0.4607
0.2 0.3192 0.3912 0.4265 0.8489 0.4681
0.3 0.327 0.3907 0.3742 0.8565 0.4681
0.35 0.3278 0.3904 0.4405 0.8534 0.4675
0.4 0.3226 0.3841 0.4195 0.8517 0.4673
0.5 0.3024 0.3864 0.4434 0.8494 0.4515
0.6 0.3151 0.3898 0.4707 0.8475 0.4513
0.7 0.3164 0.3852 0.4248 0.8504 0.4498
0.8 0.3012 0.3819 0.4116 0.85 0.4379
1 0.3192 0.3985 0.4337 0.8383 0.4498

Along with the precision a highest value 0.855 of recall and highest value 0.921
of F −measure are achieved by F r

df at df = 1 all for δ equal to 0.3, as shown in
Table 4.4 and Table 4.5, respectively. Similarly, if we compare the different methods
in terms of RI and ARI, the proposed algorithm using reduced fingerprint F r

df at
df = 1 and δ = 0.3, results in highest value of RI equal to 0.9844, as listed in Table
4.6. While, in terms of ARI, a highest values of 0.8565 is obtained using F r

df=1 at
δ = 0.3 as given in Table 4.7.

Table 4.8: Number of NCC on reduced fingerprints NCC_Reduced.

sig F r
Pr=90k F r

Pr=96k F r
Pr=192k F r

df=1 F r
df=2

0 98477 97100 71323 52244 65506
0.1 91742 93358 60883 45186 55063
0.2 84489 87551 58117 39954 48796
0.3 81805 83428 52867 33072 43606
0.35 81585 82667 51434 33952 42803
0.4 80963 78810 48744 34216 39387
0.5 78386 77256 49348 33587 39781
0.6 79705 76489 51014 33813 39178
0.7 79120 76492 48212 34448 41735
0.8 79628 79058 50364 37583 41821
1 84584 85718 54174 42305 46592
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Table 4.9: No. of NCC on full fingerprints NCC_Full.

sig F r
Pr=90k F r

Pr=96k F r
Pr=192k F r

df=1 F r
df=2

0 7801 7581 6226 4914 6420
0.1 7142 7028 5750 3949 5131
0.2 7278 7203 5359 3799 4817
0.3 7207 7012 4893 3331 4236
0.35 7336 6840 4453 3453 4378
0.4 7215 6881 4414 3326 4365
0.5 6969 6892 3919 3544 4359
0.6 6942 6388 4661 3519 4568
0.7 6852 6514 4523 3626 4790
0.8 6823 6484 4517 3899 4867
1 7189 6951 5019 4582 5412

Table 4.10: Complexity reduction Cr.

sig F r
Pr=90k F r

Pr=96k F r
Pr=192k F r

df=1 F r
df=2

0 22.28 22.86 27.084 27.45 25.92
0.1 24.32 24.63 29.46 33.52 32.31
0.2 23.94 24.11 31.57 35.60 34.56
0.3 24.20 24.78 34.58 41.17 39.26
0.35 23.78 25.39 37.85 39.81 38.13
0.4 24.18 25.28 38.29 40.88 38.45
0.5 25.03 25.26 42.77 39.12 38.48
0.6 25.11 27.20 36.28 39.27 36.86
0.7 25.44 26.69 37.44 38.21 35.12
0.8 25.543 26.78 37.39 35.42 34.60
1 24.23 24.97 33.72 30.44 31.11

When comparing the performance of the proposed algorithm in terms of com-
plexity reduction Cr, NCC_R and NCC_F , using the different reduced finger-
prints, it has been observed that the proposed algorithm achieves the least number
of NCC_R and NCC_F of 33072 and 3331 at df = 1 and δ = 0.3 respectively;
therefore, it performs clustering with the least computational cost and result in
highest Cr at dfD = 1 and δ = 0.3. The results of Cr for different reduced
fingerprints at different values of δ are listed in Table 4.10.

In short, the proposed algorithm generates high-quality clusters with the least
computational cost while using reduced fingerprints, estimated directly from full
fingerprints by applying dead-zone quantization, without any decimation i.e., df =
1. This is obvious because the reduced fingerprints have decimation and random
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projection noises and have only quantization noise. Therefore, these fingerprint
with df = 1 is a better approximation of the actual full fingerprints and results
in high quality of clustering. From, the results it has also been observed that the
reduced fingerprints estimated with quantization factor δ = 0.3, is the most suitable
choice for clustering images using the proposed algorithm.

From now on, with reduced fingerprints, we denote only the fingerprints esti-
mated from full fingerprints without any decimation and using dead-zone quanti-
zation at δ = 0.3. The reduced fingerprints are represented by Fr, hereafter in the
text.

4.6.2 Small Scale Clustering
In this section, we are investigating the performance of the proposed algorithm

on D1, D2, D3, and D4 datasets, varying the number of images per cluster SC
while keeping the number of cameras fixed. The number of cameras in D1 and
D2 datasets is 25, while in the other two datasets the number of contributing
cameras NC is 50. Full camera fingerprints F and reduced camera fingerprints
F r is estimated for each image of each dataset. A number of 200, 400, 600, 800
and 1000 images are selected at SC equal to 8, 16, 24, 32 and 40 while NC = 25
for D1 and D2. The proposed algorithm is applied to cluster the selected images.
Similarly, a number of 200, 400, 600, 800 and 1000 images are selected at SC equal
to 4, 8, 12, 16 and 20 while NC = 50 for D3 and D4. The fingerprints are clustered
using the proposed algorithm.
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Figure 4.36: Performance of CFIC algorithm small datasets i.e., D1, D2, D3 and
D4.

The experimental results show that the proposed algorithm when is applied
to symmetric easy D1, asymmetric easy D2, symmetric hard D3 and asymmetric
hard D4 with the different average number of images per camera SC, generate
good quality clusters. The evaluation metrics measured are shown in Figure 4.36.
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The results in Figure 4.36a show that the CFIC algorithm results in a higher P
for different experiments. A small reduction is P has been observed at 400 and
600 number of images for D2 and D4 datasets, respectively. The reduction in P
can be due to the false attraction of fingerprints during the fine clustering. The
results obtained for R, F −measure, RI and ARI shown in Figure 4.36b-e, show
that the CFIC results in higher values of these parameters. While in terms of
complexity reduction, the proposed algorithm gives good results on D1 and D2,
as compared to that of D3 and D4. The results in Figure 4.36(f) show that the
proposed algorithm cluster the easy datasets faster than the hard datasets. The
results also reveal that as the size of the dataset and the average number of images
per camera SC, increase the complexity reduction also increases.

4.6.3 Medium and Large Scale Clustering
After evaluating the proposed algorithm on small datasets, it is also important

to know the behavior of the algorithm on medium and large datasets. Therefore, for
large scale analysis the proposed algorithm is applied to different subsets of images
selected from Dresden [33, 34] using the same number of cameras, i.e., NC = 53,
and varying the average number of images from each camera SC. Figure 4.37
shows the performance evaluation metrics, i.e., precision P , recall R, F −measure,
RI and ARI obtained in the different cases. The results show that the proposed
technique performs well for different sizes of datasets and the different number of
images per camera SC. The experimental results shown in Figure. 4.37a show that
the proposed algorithm results in good values of P , R and F-measure. However,
the values of P , R and F-measure decrease when SC increases. This reduction in
P , R, and F-measure can be due to the construction of more singleton clusters in
the clustering stage and no attraction of some singleton clusters in fine clustering.
Figure 4.37b shows that the values of RI are higher and remain stable while the
values of ARI are also good and decrease with an increase in the number of images.
The results also show that the clustering algorithm does not suffer from NC ≫ SC
problem and results in a higher quality cluster when SC gets smaller with respect
to NC.

The results shown in Figure 4.37c and 4.37d show that the complexity reduction
of the proposed algorithm increases as the SC increases. It can be observed that
NCC_R and NCC_F increase with an increase of SC. This increase is since the
number of cameras NC is fixed and the average number of images per camera SC
increase, which increases the total number of images NC × SC and overall size
of the dataset. Therefore, the clustering of a large number of images will perform
a large number of NCC, both NCC_R and NCC_F . However, the NCC_R
and NCC_F grow slower than the n(n − 1)/2 as n increases. Hence, the overall
complexity reduction of Cr, which compares the total computational cost with
the reference complexity n(n − 1)/2, decreases. As shown in Figure 4.37c, the
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complexity reduction of Cr increases with an increase in the size of the dataset.
Therefore, the clustering algorithm can be much suitable for clustering large scale
datasets.
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Figure 4.37: Large scale clustering analysis of CFIC algorithm and NC ≫ SC
problem.

4.6.4 NC ≫ SC analysis
In this section, we are evaluating the proposed algorithm for the NC ≫ SC

problem. The NC ≫ SC problem is somehow discussed in Section 4.6.3. To have
a detailed analysis of the NC ≫ SC problem in a more challenging scenario, we
use D5 dataset.

Full and reduced camera fingerprints are estimated from each image of each
camera in the dataset. The CFIC algorithm is applied to cluster the images based
on the fingerprints. The experiments are performed for fixed SC = 20 and varying
the number of cameras NC. The experimental results obtained for NC equal to
50, 75, 100, 125, 150, 175, 200, 250 and 295 with fixed SC = 20, are shown in
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Figure 4.38. The results show that as the NC gets larger and larger than SC, the
evaluation metrics of P , R and F −measure get better and better. The resulting
RI is high for different experiments with different NC. While, the values of ARI
vary a little with the change in the number of images under test. The results
obtained in terms of P , R, F −measure and RI prove that the CFIC algorithm
does not suffer from NC ≫ SC.
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Figure 4.38: The robustness of CFIC algorithm to NC ≫ SC problem, for various
values of NC and fixed SC = 20.

The results also show that as the NC varies the Cr fluctuates. The increase
in the size of datasets tries to increase Cr but at the same time, the increase in
hardness of dataset with increasing NC, attempts to reduce the Cr. Therefore,
both the increasing size and increasing hardness balance each other effect. The
addition of bad quality images results in a reduction of Cr. So, the fluctuations in
Cr occur because of images of different qualities.
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Figure 4.39: The robustness of CFIC algorithm to NC ≫ SC problem, for various
values of SC and fixed NC = 295.

Further experiments are performed for fixed NC = 295 and varying the SC.
The experimental results obtained for SC equal to 2, 3, 5, 10, 15 and SC = 20,
are shown in Figure 4.39. The results in Figure 4.39a, show that the evaluation
metrics of P , R and F −measure slightly decrease with increase in SC with fixed
NC = 295. The results in Figure 4.39b, show that the CFIC algorithm results
in high and stable RI for different SC. However, the ARI varies a bit with the
change in SC. The higher values of P , R, F −measure and RI at lower SC prove
the robustness of the CFIC algorithm against NC ≫ SC problem.

While observing the resulting Cr for different SC, Figure 4.39c shows that as
the SC increases the Cr increases. This increase in Cr is due to the increase in the
number of images with an increase of SC. This also confirms the suitability of the
algorithm for large scale clustering.

The performance of the CFIC algorithm on small, medium and large datasets
shows that the CFIC is a very powerful and efficient clustering algorithm. The
CFIC performs very well in different scenarios of NC ≫ SC. The algorithm has a
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higher Cr and the lowest computational cost among all our proposed algorithms,
i.e., RCIC, RCIC-A, FICFO, FICFO-A and RCIC algorithm. Along with the lower
computational complexity, the quality of clusters is also comparable with the other
proposed algorithms. The performance of the proposed algorithms is compared
with each other and with the state-of-the-art algorithm in the following section.

4.7 Comparison of Image Clustering Algorithms
In this section, we present the comparison of the proposed image clustering

algorithm among themselves and with state-of-the-art algorithms. The main aim
of this work is to reduce the computational cost of image clustering. That’s why
the proposed algorithms, i.e., RICIC, RCIC-A [70], FICFO, FICFO-A [69], CIC,
and CFIC are focused on the reduction of computational complexity per image
while preserving the quality of the constructed clusters. The proposed algorithms
are compared among themselves as well as with state-of-the-art algorithms. The
evaluation metrics of P , R, F −measure, RI and ARI along with the complexity
reduction Cr are used for comparison.

The proposed algorithms are compared with state-of-the-art algorithms, namely
blind camera fingerprinting image clustering (BCFIC) [8] and large scale image
clustering (LSIC) [81]. As discussed in Section 3.4, we don’t include [101, 102] in
the comparison since this method is not directly comparable to our methods. All
comparison are made using the four different small datasets i.e., D1, D2, D3 and
D4 [81]. Which are presented in detail in Section. 4.1.

The evaluation metrics i.e., P , R, F −measure, RI and ARI and the Cr are
computed for each algorithm using each dataset. The results obtained in terms
of P , R and F −measure are shown in Figure 4.40. The results in Figure 4.40a,
using the D1 dataset, show that RCIC, FICFO, CIC, and CFIC algorithm have
a comparable P as that of BCFIC and LSIC algorithms. While the RCIC-A and
FICFO-A have a slightly reduced P , with respect to state-of-the-art algorithms.
The reduction in P of RCIC-A and FICFO-A is due to the false attraction of
some bad fingerprints at the attraction stage. The attraction process results in an
increase of R for the RCIC-A and FICFO-A algorithms. The results show that
using D1, the RCIC-A, FICFO-A, and CFIC result in R comparable to BCFIC
and higher than LSIC, RCIC, FICFO, and CIC algorithms. The results obtained
in terms of F −measure, which show the combined effect of P and R, show that
all the proposed algorithms result in F −measure higher than the LSIC algorithm.
The CFIC algorithm performs better than all the algorithms except BCFIC, which
has a bit higher value of F − measure than the CFIC algorithm. It can also be
observed that the RCIC-A and FICFO-A also have significantly good values of
F −measure.
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Figure 4.40: Comparison of the proposed algorithms with other techniques on the
basis of P , R and F −measure.

The results in Figure 4.40b, using the D2 dataset, show that all the algorithms
result in quality clusters with significantly high values of P . However, looking to
results obtained in terms of R and F −measure show that using the D2 dataset,
the RCIC-A, FICFO-A and CFIC algorithms perform equivalently to the BCFIC
algorithm and better than the rest of the presented algorithms. The results also
show that R and F − measure of RCIC, FICFO, and CIC algorithms are better
than the state-of-the-art LSIC algorithm.

The results in Figure 4.40c, using the D3 dataset, show that all the algorithms,
except RCIC-A, results in quality clusters with significantly high values of P . How-
ever, CFIC and LSIC perform better than all the presented techniques. The results
show that using D3, the CFIC and FICFO-A have higher R and F −measure as
compared to the rest of the clustering algorithm. Therefore it can be observed that
all the proposed algorithms result in a higher F −measure than LSIC algorithm.

The results in Figure 4.40d, using the D4 dataset, show that FICFO, CIC, and
CFIC algorithms have comparable P as that of state-of-the-art LSIC and BCFIC
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algorithms. While looking at the results of R, it can be observed that RCIC-A,
FICFO-A, and CFIC perform better than the state-of-the-art and other proposed
techniques. The computed F −measure for each algorithm using the D4 dataset
shows that the CFIC algorithm performs better than all the algorithms. While,
the performance of RCIC-A and FICFO-A, in terms pf F −measure is better than
LSIC, RCIC, FICFO, and CIC algorithm and comparable with BCFIC algorithm.

From the results shown in Figure 4.40, it can be concluded that the CFIC
algorithm performs better than all the presented algorithms on all the datasets,
i.e., D1, D2, D3 and D4.

After making a comparison using P , R and F − measure, now the proposed
algorithms are compared among themselves and with the state-of-the-art algorithm
using the RI and ARI parameters. The results obtained on the different datasets
are presented in Figure 4.41.

The results show that the proposed algorithms perform better than the LSIC
algorithm on all the datasets. While the performance is equivalent to that of the
BCFIC algorithm. The lower values of RI and ARI of the LSIC algorithm are due
to the un-clustered fingerprints. The LSIC algorithm, while clustering images using
camera fingerprints, declares all the fingerprints that belong to clusters having a
size smaller than a predefined dimension, as unclustered. The results show that the
proposed RCIC, RCIC-A, FICFO, FICFO-A, and CIC algorithms perform slightly
lower than the BCFIC and CFIC algorithms, in case of easy datasets, i.e., D1 and
D2. But, their performance on hard datasets, i.e., D3 and D4 is comparable with
the performance of the BCFIC and CFIC algorithms. The analysis of RI and ARI
show that the CFIC algorithm performs better than all the algorithms presented
in Figure 4.41.

The overall comparative analysis on the basis of evaluation metrics i.e., P ,
R, F − measure, RI and ARI, show that the all proposed algorithms provide
reasonably high quality clusters while CFIC performs comparable or even better
than the rest of the proposed algorithms as well as the state-of-the-art algorithms,
i.e., BCFIC and LSIC.
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Figure 4.41: Comparison of the proposed algorithms with other techniques on the
basis of RI and ARI.

To compare the algorithms among themselves and with the state-of-the-art al-
gorithms of BCFIC and LSIC using the computational complexity the complexity
reduction obtained by all algorithms is calculated. The results are presented in
Figure 4.42. The total complexity tc of BCFIC, LSIC, RCIC, RCIC-A, FICFO,
FICFO-A, CIC and CFIC algorithms are computed in different manners. Because
the BCFIC, RCIC, RCIC-A, FICFO, FICFO-A and CIC algorithms use only the
full camera fingerprints while the LSIC and CFIC algorithms use the reduced and
full fingerprints for clustering. The calculation of tc and Cr is explained in Section
4.2 with detail.
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Figure 4.42: Comparison of the proposed algorithms with other techniques on the
basis of Cr.

The results show that all the proposed algorithms have higher Cr and lower
computational complexity than the state-of-the-art algorithms. The Cr computed
for RCIC and FICFO shows that the sorting of fingerprints helps to reduce the
computational complexity and increases Cr. While the attraction stage decreases
the Cr, that’s why RCIC-A and FICFO-A have lesser Cr than RCIC and FICFO,
respectively. The CIC algorithm also has a higher Cr and reduced complexity
in comparison with the BCFIC and LSIC algorithms. However, its complexity is
higher than the rest of the proposed techniques on all the datasets except D2, on
which the CIC shows better performance than RCIC-A and FIFO-A algorithms.
The Cr of the CFIC algorithm is significantly higher than all the presented algo-
rithms, and hence it has the least computational cost per camera fingerprints. The
reduction in the computational cost is due to the use of sorted reduced fingerprints
for clustering.

BCFIC algorithm has a high computation cost because it performs three rounds
to construct a single cluster. These rounds are repeated for each cluster. Conversely,
the proposed algorithms select a fingerprint either at random or the best fingerprint
among all un-clustered, as a reference, to construct a cluster. While the CFIC picks
the best reduced fingerprint to build a cluster and performs very little number
correlation on full fingerprints in the fine clustering. The LSIC complexity is quite
evident due to coarse clustering, fine clustering, and attraction.

From the analysis of the clustering algorithms, it can be concluded that the
CFIC is so far the best image clustering algorithm. The CFIC constructs high
quality clusters with higher values of P , R, F −measure, RI and ARI on different
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types of small datasets at a significantly lower computational cost, which is apparent
from the high Cr in Figure 4.42.
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Chapter 5

ACO based Data Hiding in the
Complex Region Pixels

This chapter presents a data hiding technique that hides secret information in
the least significant bits (LSB) of the pixels of a complex region in a cover image.
Ant colony optimization (ACO) is used to identify edges of the cover image, and the
LSB substitution technique is used to embed the secret information in the pixels
that belong to the complex region. The ACO-based data hiding in a complex
area develops a pheromone matrix that identifies the complex region. The local
variations in the pixels’ values are detected using the ant’s movement. The local
variations are used to construct a pheromone matrix. The LSBs of the pixels of
edges are substituted with secret message bits in order to hide a secret message in
these pixels.

5.1 Introduction
Data hiding refers to methodologies used to transmit information using existing

media as a cover. It can be used for different purposes: steganography uses data
hiding to transmit a message secretly. Differently from cryptography, this does not
protect the confidentiality of messages, but hides the fact that a message is trans-
mitted; watermarking is used to place a mark on the media [57, 112]. Data hiding,
in general, uses digital audio, video, and text as a cover. However, images are pre-
ferred and got more attention due to their level of redundancy. A very simple data
hiding technique is based on LSBs substitution and embeds secret information bits
in the LSBs of cover image pixels. However, even if this simple embedding tech-
nique may be undetectable by human visual system (HVS), it fails under a simple
statistical test like histogram inspection. In order to be used for steganography,
more advanced LSB replacement techniques should be used [93]. LSB substitution
is not a robust watermarking technique, since even a slight modification of the cover
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destroys the hidden message. However, LSB substitution can be used for fragile
watermarking, e.g., a sort of mark that should not be visible in order not to degrade
the image and that can be used to check image integrity since any modification,
e.g., compression, will likely erase it.

Several researchers explored the field of data hiding, and some of them proposed
many useful data hiding techniques to improve security and ensure the existence
of hidden information protected from unintended parties. A couple of initial and
famous data hiding techniques were presented by Honsinger et al. and Fridrich
et al., exploiting the digital image pixel directly and hiding secret information
in the pixels [28, 46]. The technique uses a fixed number of LSB of pixels to
embed information. The information hidden, using the fixed LSB approach, can be
recovered easily if its presence is suspected. Therefore, it is better not to use a fixed
number of LSB for data hiding. The key-based approach can be a good solution
for hiding information at random positions of the cover media using a specific key,
and the key is shared with the intended party only. However, in the case of hiding
information in edges, the position of information hiding is decided based on edges
not on key. The other approach is to hide a different number of LBS in different
pixels of cover images, which make the retrieval of hidden information difficult for
an unauthorized party.

Using this idea, Sahib et al. devised a variable least significant bits (VLSB) data
hiding technique. He implemented the VLSB data hiding using modular distance
technique (MDT) [71], decreasing distance decreasing bits algorithm (DDDBA)
[50], varying index varying bits substitution (VIVBS) algorithm [68]. To enhance
the security of hidden information, Sahib et al. presented a block chaining based
data hiding approach. He got the inspiration from chipper block chaining (CBC)
encryption and proposed stego block chaining (SBC) and enhanced stego block
chaining (ESBC) technique for improved and more secure hiding of information
[73].

Data hiding aims to hide information in a cover medium in such a manner
that the existence of the hidden information remains undetectable to the HVS
and no noticeable variation is created. It has been reported in the literature that
LSB substitution has some HVS limitations. The HVS can detect any changes
introduced in the smooth area of the cover image. While the changes created in
complex regions are relatively difficult to identify with the naked eye. This makes
the complex region of the cover image more suitable for data hiding, and therefore,
secret information is embedded in the LSB of the pixels of edges [122, 39]. Data
hiding techniques using edges for hiding information keep the smooth region of
the cover medium unaffected or least affected. In other hiding techniques, larger
information hiding is done in the pixels of the complex region than that of smooth
region pixels, and give good quality stego images. The Data hiding techniques
using the edges for information hiding include LSB methods [38], PVD methods,
and side-match methods [38, 44], and much detail are available in [47, 111]. The
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hiding capacity of such techniques is minimal and small [44, 45, 114]. Jung et al.
[58] improved the hiding capacity by presenting a method that used both smooth
and complex region pixels for data hiding. The resulting stego images are more
distorted. Therefore, due to low hiding capacity and changes introduced in the
smooth region, these techniques do not satisfy the rules of data hiding in edges, in
the real sense.

The ACO based data hiding in edges technique is one such technique that
hides secret information in complex region pixels of the cover image. The hidden
information does not create significant distortion to attract human consideration,
and the information remains imperceptible to HVS. Our technique uses the ACO
algorithm [18, 19] for edges detection [121], and secret information are embedded
in LSB of the complex region pixels [36, 88]. But as discussed earlier, the hiding of
information in the LSBs may not be robust to simple statistical steganalysis, e.g.,
histogram inspection. However, the ACO based data hiding technique can be used
as a fragile watermarking scheme. The detailed implementation of the technique
is presented in Section 5.2, with experimental results in Section 5.3 and discussion
ends up with comparison in Section 5.4.

5.2 Proposed Technique
The initial step, to hide secret information in edges, is to detect the pixels that

belong to the complex region of a cover image. The complex region pixels are used
for information hiding while the smooth region pixels are left unaffected. Numerous
ways, e.g., canny edge detection, Deriche, differential, Sobel, Prewitt, Roberts cross,
and other, exist in the literature that can be used for this purpose. These methods
are used to detect complex region in digital images, but, the performance of some of
these techniques do not meet the needs completely. These techniques detect weak
and disconnected edges, and the corresponding pixels are considered as part of the
real complex region. The edges based information hiding using these techniques
also subject some of those pixels that do not belong to edges to the information
hiding process. This makes such an information hiding technique more sensitive to
noise. The ACO based method is used to detect edges in the cover image [119, 72],
and using a 4LSB substitution mechanism, the information bits are hidden in the
pixels of the detected edges.

The edges are detected in two phases; initially, edges are detected directly using
the cover image, using ACO based edge detection technique. Then secret message
bits are hidden in the LSBs of pixels that belong to edges. The hiding process may
possibly affect the edges in the stego images. Therefore, the resulting stego image
is then subjected to edge detection. The edges detected in the original cover image
and stego image are compared and the pixels that are common in the complex
region of both detected edges are considered as final edges. This process helps in
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avoiding weak edges.
Although the final edges are relatively strong with respect to primary edges,

however, embedding the message bit in the cover images based on the final edges,
we will obtain a different image with respect to the first embedding. Likely, ACO
will mark as edges some pixels that do not belong to strong edges when running on
this image. Therefore, a way is needed to transmit the side information regarding
the position of edges used for hiding information. The 1st LSB of the cover image
is used for this purpose. The 1st LSB is set to 0 when the pixel belongs to the
complex region and message bits are hidden it otherwise, 1st LSB is set to 1. The
value of 1st LSB is used for the retrieval of hidden information.

The detection based on ACO, buildups a pheromone matrix, utilizing several
ants and moving the ants across the pixels of a 2-D image. The local variation in
the pixel values plays the role of guiding factor for the movement of the ants. The
values of the matrix contain the edge information at the position of each pixel of the
cover image. The ACO based technique is repeated N times to build a pheromone
matrix. The process performs both construction and update steps iteratively. After
the successful buildup of the matrix, the decision process is used to assign the pixels
either to the complex region or smooth region. The steps involved to accomplish the
goal and implement our technique are presented and explained in the subsequent
sections.

5.2.1 ACO based Edge Detection
The cover image is initially subjected to ACO based edge detection to dis-

tinguish pixels of the complex region from the smooth region’s pixels. The edge
detection process involves the following steps.

Initialization

As we know that a digital image is a 2-D array of pixels with a specific intensity
level; let say I. Let consider a gray-scale image of size M1 ×M2, as cover to hide
secret information. A total of ants K are randomly deployed on the cover image Ć.
Each pixel of the cover image is treated as a node. The process of edge detection
is initiated, and the initial value of each pheromone matrix’s component τ (0) is set
to a constant τinitial.

Construction

The construction mechanism is composed of several steps and is done iteratively.
At the nth construction-step, one ant, from a total of K ant, is randomly chosen.
The chosen ant can move across the pixels of the cover image for Nmov movement
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steps. The movement of the ant from initial node (x, y) to its neighbor node (i, j)
is done according to the transition probability P (n)

(x,y)(i,j) as given by Eq. 5.1.

P
(n)
(x,y)(i,j) =

(︂
τ

(n−1)
i,j

)︂α
(ηi,j)β

∑︁
(i,j)∈Ω(i,j)

(︂
τ

(n−1)
i,j

)︂α
(ηi,j)β

(5.1)

Where, τ (n−1)
i,j is the pheromone value at node (i, j), Ω(i,j) is the neighbourhood (4

or 8-connected) node of the node (x, y), ηi,j, is the heuristic information at node
(i, j), α is the influence of the pheromone matrix and β is the influence of heuristic
matrix.

The heuristic information at any node (i, j) is calculated using Eq. 5.2.

ηi,j =
Vc

(︂
Ći,j

)︂
Ź

(5.2)

Where Ź is the normalization factor and given by Eq. 5.3.

Ź =
∑︂

i=1:M1

∑︂
j=1:M2

Vc

(︂
Ći,j

)︂
(5.3)

Where, Ći,j is the intensity level of pixel (i, j) of image Ć.
The Vc(Ći,j) depends on the variations in the gray level intensities of pixels in

the clique c and is represented as given in Eq. 5.4.

Vc

(︂
Ći,j

)︂
= f

(︃
|Ći−2,j−1 − Ći+2,j+1|+ |Ći−2,j+1 − Ći+2,j−1|+ |Ći−1,j−2 − Ći+1,j+2|

+ |Ći−1,j−1 − Ći+1,j+1|+ |Ći−1,j − Ći+1,j|+ |Ći−1,j+1 − Ći−1,j−1|

+ |Ći−1,j+2 − Ći−1,j−2|+ |Ći,j−1 − Ći,j+1|
)︃

(5.4)

The f(.) has four different options. The function can be Flat, Gaussian, Sine
and Wave and all of these four functions are considered to implement the hiding
technique. The Flat, Gaussian, Sine and Wave fictions expressed in Eq. 5.5, Eq.
5.6, Eq. 5.7 and Eq. 5.8, respectively.

f(x) = λx ∀x ≥ 0 (5.5)

f(x) = λx2 ∀x ≥ 0 (5.6)

f(x) =
⎧⎨⎩sin

(︂
πx
2λ

)︂
0 ≤ x ≤ λ

0 else
(5.7)

117



5 – ACO based Data Hiding in the Complex Region Pixels

f(x) =
⎧⎨⎩πx

sin(πx
λ )

λ
0 ≤ x ≤ λ

0 else
(5.8)

Where λ is the shape control parameter of the functions.

Updating Stage

The updating of the pheromone matrix is a two steps process. The first updating
is done at each individual construction step, with the movement of each individual
ant, as expressed in Eq. 5.9.

τ
(n−1)
i,j =

⎧⎨⎩(1− ρ) τ (n−1)
i,j + ρ∆(K)

i,j if (i, j) is visited by K ant
τ

(n−1)
i,j otherwise

(5.9)

Where, ρ is the evaporation rates and ∆(K)
i,j is equal ηi,j and decided by heuristic

matrix.
The next updating is done on the movement completion of the ant, in the

construction step. The updating is mathematically expressed in Eq. 5.10.

τ (n) = (1− ψ) τ (n) + ψτ (0) (5.10)
Where ψ is the pheromone decay coefficient.

Decision Stage

The decision process is the step to decide whether a pixel is part of a complex
region or a smooth region. This is the final process and results in a binary image.
A threshold value is computed and is applied to the values pheromone matrix τN .
The threshold is decided based on the criterion described in [121].

The average value of the pheromone matrix is chosen as the initial threshold of
T (0). Then the elements of pheromone are classified into two groups. One group
includes the values smaller than the T (0), while the second has the value higher
than the threshold T (0). After that, the average value of each of the two groups
is calculated. The average of both means is considered as a new threshold. The
threshold computation process continues until the threshold approaches a steady
value in terms of tolerance ϵ.

The decision for each pixel at (i, j) is done on the basis of the pheromone value
τ

(N)
i,j at position (i, j) and the value is compared with the final threshold value T (l)

as expressed in Eq. 5.11.

Epi,j =
⎧⎨⎩0 if τ (N)

i,j ≥ T (l)

1 otherwise
(5.11)
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Where Ep is the initial binary image.
The pixel at position (i, j) is declared as part of the complex region if the

pheromone value at (i, j) is higher than the threshold. Otherwise, the pixels are
considered as part of the smooth region.

5.2.2 Primary Data Hiding
The LSB of the pixels that belong to the complex region is used for information

hiding. The cover image Ć and the binary image obtained after edges detection
are considered, and the cover images are processed pixel by pixel. Each pixel Ći,j

is checked, whether it is part of a complex region or a smooth region. If the pixel
is found a part of the smooth region, it is not subjected to data hiding and is left
unaffected. If the pixel is found a part of the complex region, then the pixel is
subjected to LSB bits substitution, and the LSB is substituted with the bits of
the secret information. The process stops when all pixels of the cover images are
processed.

A pixel Ći,j is declared as a pixel of the complex region if its respective pixel
of the binary image Epi,j = 0 and is processed as a pixel of the smooth region if
Epi,j = 1. Let’s consider a secret message m to be hidden in the complex region
and Sp is the primary stego image obtained at the end of information hiding. The
stego image Sp is given by Eq. 5.12.

Spi,j =
⎧⎨⎩Ći,j ∗mn if Epi,j = 0

Ći,j if Epi,j = 1
(5.12)

Where, ∗ is LSB substitution operator and mn represent the n bits of message. The
n may have different values from 1 to 4.

5.2.3 Final Edge Detection
The stego image is processed to detect the pixels belonging to the complex

region. For this purpose, the ACO based edge detection technique, as given in
Section 5.2.1, is applied to the primary stego image Sp. The edges detection results
in secondary binary image Es, representing the edges of the stego images. The
final binary image is obtained by considering the common pixels that belong to the
complex region in both binary images, i.e., Ep and Es.

Ei,j =
⎧⎨⎩0 if Epi,j = 0 and Esi,j = 0

1 otherwise
(5.13)

The E is the final binary image representing the final edges. This used for final
data hiding in the complex region of the cover image.
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5.2.4 Final Data Hiding
The final binary image E is used to check the pixel of cover image Ći,j, whether

it is part of a complex region or smooth region. If the pixel belongs to complex
region the 1st LSB of the pixel is set to 0 and n bits of secret message m are hidden
in the n LSBs, excluding the 1st LSB, of the pixel; otherwise the 1st LSB of the
pixel is set to 1. The process stops when all pixels of the cover image are processed.
A pixel Ći,j is declared as a pixel of the complex region if its respective pixel of the
binary image Ei,j = 0, and is processed as a pixel of the smooth region if Ei,j = 1.
At the end of the hiding process final stego image S is obtained. The stego image
S is given by Eq. 5.14.

Si,j =
⎧⎨⎩Ći,j ∗mn if Ei,j = 0

Ći,j if Ei,j = 1
(5.14)

Ensuring the recovery of hidden information without errors is essential for a
data hiding technique. For this purpose, the 1st LSB of each pixel of the stego
image is used. The 1st LSB of the all the pixels has the information about the
pixels belonging to the complex region with hidden information. Retrieving the
secret information, the 1st LSB of each pixel of the stego image is checked if the 1st

LSB is equal to 0 the hidden message bits are retrieved from the other LSBs of the
pixel and if 1st LSB is equal to 1 then the pixel is ignored. The hidden message
bits are retrieved by processing the whole stego image pixel by pixel, in the same
way.

5.3 Results and Analysis
The secret information bits are hidden in the complex region of the cover image

pixels using ACO based data hiding technique. The quantitative and qualitative
results are obtained using different images as cover. The images used as cover
include the images of Cameraman, Lena, House, Pepper, Mandrill, and Tree. The
images are shown in Figure 5.1a-f. The cover images are of different sizes and are
converted to grayscale images. The cover images are processed for edges detection
using ACO based complex region detection technique, and further are subjected
to information hiding. The complex region can be detected using ACO using four
distinct functions, i.e., Flat, Gaussian, Sine, and Wave, as given by Eq. 5.5 to Eq.
5.8. After the pixels classification of complex and smooth regions, LSB substitution
methodology is adopted to hide information in the LSBs of the pixels of a complex
region and the 1st LSB of each pixel is modified as discussed in the previous section.
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(a) Cameraman (b) Lena (c) House

(d) Pepper (e) Mandrill (f) Tree

Figure 5.1: Cover Images.

The cover images are processed for edge detection using ACO based technique.
To detect edges the parameters of λ, α, β, ρ and ψ are set to 10, 1, 0.1, 0.1 and
0.05, respectively, for ACO to operate. The determination of the above parameters
is critical to the performance of the proposed approach. Therefore, we have used
the values reported in [114] for the ACO to operate. Then message bits are hidden
in the LSBs of pixels that belong to the complex region. Here it is important to
mention that 1-bit, i.e., 1st LSB, is used as a key deciding whether the pixel belongs
to complex region and contains the secret message bits or not and the other 3-bits,
i.e., LSBs, per pixel are used to hide secret message bits in the complex region.
After the hiding process, we get primary stego images. The primary stego images
are again processed for secondary edge detection using ACO based technique. The
primary and secondary detected edges are processed to find the complex region
common in both detected edges. The common complex region is considered the
final complex region. This has less number of pixels than that of primary and
secondary complex regions.

The final stego image is obtained by setting the 1st LSB of each pixel belonging
to the complex region and containing hidden information, to 0 and other 3-bits are
used for information hiding and the 1st LSB of all other pixels is set to 1.
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The hiding technique is quantitatively analyzed using the hiding capacity HC,
and peak signal to noise ratio PSNR and structural similarity SSIM . The HC
and PSNR are expressed as given in Eq. 5.15 and Eq. 5.16 respectively [121].

HC = No.ofbitshidden

TotalbitsofCoverimage
× 100 = m

r × c× 8 × 100 (5.15)

PSNR = 10 log10
2552

MSE
(5.16)

Where MSE is the mean square error and is given as

MSE =
∑︁r

i=1
∑︁c

j=1 (C (i, j)− S (i, j))2

r × c
(5.17)

The SSIM [120], a perceptual metric that quantifies image quality degradation,
is expressed as

SSIM(x, y) = (2µxµy + C1) (2σxy + C2)(︂
µ2

x + µ2
y + C1

)︂ (︂
σ2

x + σ2
y + C2

)︂ (5.18)

Where µx is the mean of x, µy is the mean of y, σ2
x is the variance of x, σ2

y is
the variance of y, σxy is the covariance of x and y, C1 and C2 are the factors used
to stabilize the division with weak denominator.

We have four different functions to detect edges and hide secret information
using the ACO technique. In the first experiment, Flat function, as explained in
Eq. 5.5 is used to identify the pixels of the primary and secondary complex regions
of cover images shown in Figure 5.1a-f, based on the ACO technique. The primary
and secondary edges are further processed to get the final complex region. The
final complex regions are shown in Figure 5.2.
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(a) Cameraman (b) Lena (c) House

(d) Pepper (e) Mandrill (f) Tree

Figure 5.2: Final complex region detected using Flat function.

Each of the cover images presented in Figure 5.1a-f is subjected to the hiding
process, and the secret information is hidden in the pixels of the final complex
region, 3-bits per pixels, of cover images. While, the 1st LSB of each pixel of the
cover images is set to either 0 or 1 based on the criteria of information hiding and
no hiding, respectively. The 1st LSB of all the pixels of stego images contain the
information helpful for information retrieval. The resulting stego images are shown
in Figure 5.3a-f. The qualitative analysis shows that the presented hiding tech-
nique results in good quality stego images. The images do not have any significant
distortion, and hence the existence of hidden secret information is undetectable to
HVS.
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(a) Cameraman (b) Lena (c) House

(d) Pepper (e) Mandrill (f) Tree

Figure 5.3: Stego Images of ACO based data hiding in edges using Flat function
ref to Eq. 5.5.

Quantitatively analyzing the hiding technique, the hiding capacity HC, PSNR
and SSIM are calculated in the experiment using each of the cover images. The
resulting values are shown in Table 5.1. The results show that for all previously
mentioned cover images, the resulting stego images have a PSNR of 37.6371dB
and greater, which is higher than 30dB, the minimum acceptable values for a stego
image. The SSIM obtained for different stego images is significantly high and
results in value equal to 0.9912 and above for different cover images under test.
While the HC remains greater than or equal to 0.2632%. The highest HC of
0.9109% is obtained using Tree as a cover image.
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Table 5.1: SSIM , PSNR and HC with Flat function.

Cover Image SSIM PSNR(dB) HC(%)
Cameraman 0.9974 44.1994 0.8021

Lena 0.9976 42.9513 0.3872
House 0.9976 42.4384 0.8011
Pepper 0.9976 42.7215 0.4118

Mandrill 0.9912 37.6371 0.2632
Tree 0.9985 39.186 0.9109

After the Flat function in Eq. 5.5, the Gaussian function in Eq. 5.6 is used to
detect the final complex region based on the ACO technique. Each of the cover
images presented in Figure 5.1 is processed to cover secret information in the 4-
LSBs of the complex region’s pixels of cover images. Out of the 4-bits, the 1st

LSB is set to 0 and is used as side information representing the pixels with hidden
information and other 3-bits contain the hidden secret message bits. While the 1st

LSB of each pixel belonging to the smooth region is set to 1 and play its role in
information retrieval.

The binary images showing the final complex region using the Gaussian function,
are given in Figure 5.4. While the final stego images are shown in Figure 5.5.
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(a) Cameraman (b) Lena (c) House

(d) Pepper (e) Mandrill (f) Tree

Figure 5.4: Final complex region detected using Gaussian function.

126



5.3 – Results and Analysis

(a) Cameraman (b) Lena (c) House

(d) Pepper (e) Mandrill (f) Tree

Figure 5.5: Stego Images of ACO based data hiding in edges using Gaussian func-
tion ref to Eq. 5.6.

The resulting stego images are shown in Figure 5.5a-f. The qualitative analysis
shows that the presented hiding technique gives high quality stego images as out-
put. The stego images do not attract the attention of eavesdroppers. The hidden
information does not add high distortion in stego images, and hence the existence
of hidden secret data is undetectable to HVS.

Quantitatively examining the performance of the hiding technique, the HC,
PSNR and SSIM are computed for individual images exposed to data hiding.
The resulting statistics of HC, PSNR and SSIM are shown in Table 5.2. The
results show that for all previously mentioned cover images, the resulting stego
images have a PSNR of 37.7077dB and greater, which is higher than 30dB, the
minimum acceptable values for a stego image. The SSIM obtained for different
stego images is significantly high and remains greater than or equal to 0.9915. The
maximum HC, i.e., 0.8451%, is obtained for the image Tree. The results show that
PSNR and SSIM obtained for stego images with Gaussian function is better than
the Flat function. However, HC with Gaussian function is less than that of Flat
function.
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Table 5.2: SSIM , PSNR and HC with Gaussian function.

Cover Image SSIM PSNR(dB) HC(%)
Cameraman 0.9975 44.393 0.6842

Lena 0.9978 43.1443 0.2332
House 0.9978 42.716 0.6071
Pepper 0.9977 42.946 0.2812

Mandrill 0.9915 37.7077 0.2011
Tree 0.9986 39.1908 0.8451

Similarly, all cover images used in the previous experiments, are exposed to
edge detection using the Sine function in Eq. 5.7. After the detection of primary
and secondary edges, final edges are obtained, as discussed in Section 5.2.3. The
binary images obtained for each cover image, with Sine function using ACO based
edge detection, are shown in Figure 5.6. Then the LSB replacement process is
applied to cover the secure data in the 3-LSBs, excluding 1st LSB, of the pixels
of the final complex region of the cover image. Edges’ information is embedded in
the 1st LSB of each pixel of the cover image. The 1st LSB is set to 0 in the case
of complex region’s pixel and data hiding; otherwise, the 1st LSB is set to 1. The
final stego images are displayed in Figure 5.7a-f. The obtained stego images are of
good quality and have no visibly significant distortion.
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(a) Cameraman (b) Lena (c) House

(d) Pepper (e) Mandrill (f) Tree

Figure 5.6: Final complex region detected using Sine function.
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(a) Cameraman (b) Lena (c) House

(d) Pepper (e) Mandrill (f) Tree

Figure 5.7: Stego Images of ACO based data hiding in edges using Sine function
ref to Eq. 5.7.

The quantitative results of HC, PSNR, and SSIM are computed in each
experiment using each of the cover images and are reported in Table 5.3. The
results show that for all previously mentioned cover images, the resulting stego
images have a PSNR of 37.6478dB and greater, which is much higher than 30dB,
the minimum acceptable values for a stego image. The SSIM obtained for different
stego images is significantly high and remains greater than or equal to 0.9913. The
minimum HC, i.e., 0.2439%, is obtained for the image of Mandrill. While the
maximum HC of 0.9665% is obtained for Tree image.

130



5.3 – Results and Analysis

Table 5.3: SSIM , PSNR and HC with Sine function.

Cover Image SSIM PSNR(dB) HC(%)
Cameraman 0.9974 44.2723 0.6862

Lena 0.9976 42.9346 0.3847
House 0.9976 42.5307 0.7742
Pepper 0.9976 42.7762 0.4319

Mandrill 0.9913 37.6478 0.2439
Tree 0.9985 39.1 0.9665

Like the Flat, Gaussian, and Sin functions, the Wave function as expressed in
Eq. 5.8 is used in ACO for final edge detection, and the detected pixels of the
complex region is subjected to the hiding process. The final complex regions are
shown in Figure 5.8. The cover images displayed in Figure 5.3 are used one by one
for hiding the secret information in the final edges. The secret message bits are
hidden, 3-bits per pixel, in the pixels belonging to the complex region 1st LSB of
each of these pixels is set to 0. The 1st LSB all the pixels that do not belong to the
complex region is set to 1. The obtained stego images are shown in Figure 5.9a-f.
The quality of the stego image is quite high, and no visible distortion is added by the
hiding process. The stego images do not attract the attention of the unauthorized
person. Hence the existence of hidden secret information is imperceptible to HVS.
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(a) Cameraman (b) Lena (c) House

(d) Pepper (e) Mandrill (f) Tree

Figure 5.8: Final complex region detected using Wave function.
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(a) Cameraman (b) Lena (c) House

(d) Pepper (e) Mandrill (f) Tree

Figure 5.9: Stego Images of ACO based data hiding in edges using Wave function
ref to Eq. 5.8.

To quantitatively analyze the technique using the Wave function, the HC,
PSNR, and SSIM are calculated in each experiment using each of the cover
images one by one. The resulting values of HC, SSIM and PSNR are shown in
Table 5.4.

Table 5.4: SSIM , PSNR and HC with Wave function.

Cover Image SSIM PSNR(dB) HC(%)
Cameraman 0.9975 44.5692 0.6279

Lena 0.9977 43.147 0.2396
House 0.9978 42.7577 0.5556
Pepper 0.9977 42.9357 0.2955

Mandrill 0.9915 37.6869 0.2472
Tree 0.9985 39.0712 0.8657

The results show that for all previously mentioned cover images, the resulting
stego images have a PSNR of 37.6869dB and higher, which is much higher than
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30dB, the minimum acceptable values for a stego image. The SSIM obtained
for different stego images is significant and results in value 0.9915 and greater for
different cover images. The maximum HC, i.e., 0.8657%, is obtained for the image
Tree.

The results show that all the ACO based data hiding in the complex region
results in significantly higher quality stego images. However, Flat function in Eq.
5.5 and Sine function in Eq. 5.7, are very efficient both in terms of hiding capacity
and stego image quality.

5.4 Comparison
The experimental results presented in Section 5.3, show the ACO based data

hiding in complex region pixels results in significantly high quality stego images
with PSNR higher than 30dB. The hiding technique uses the four functions to
detect complex region in the cover image, hide information in the edges. The
proposed technique hides information efficiently. The hidden information does not
create any detectable or perceivable distortion in the stego images. Along with high
quality results, it is important to compare the technique with other data hiding
techniques, here, this section is dedicated for this purpose. The ACO based data
hiding in complex region technique is compared with the techniques of Honsinger et
al. [46], Macq and Dewey [88], Fridrich et al. [28], Goljan et al. [36], Vleeschouwer
et al. [119], and Khan et al. [72]. All the techniques are used to hide the same
message in cover images of Lena and Mandrill. The quality measuring parameter
PSNR and hiding capacity HC are computed for each the algorithms are listed
in Table 5.5. Here, it is important to mention that the results of ACO based data
hiding in the complex region are obtained by using the Flat function as expressed
in Eq. 5.5.

Table 5.5: The Comparison of proposed technique with other data hiding tech-
niques.

Technique
Lena Mandrill
HC(bpp) PSNR SSIM HC(bpp) PSNR SSIM

Honsinger et al. <0.0156 - - <0.0156 - -
Macq and Dewey 0.0325 48.75 0.9754 0.12 48.34 0.9963
Fridrich et al. 0.0156 - - 0.0156 - -
Goljan et al. 0.36 39.00 0.9915 0.44 39.00 0.9871
Vleeschouwer et al. 0.0156 30.00 0.8662 0.0156 29.00 0.8469
Khan et al. 0.33 46.23 0.8771 0.669 44.12 0.9508
Proposed Work 0.0310 42.95 0.9976 0.0211 37.64 0.9912

The results obtained show that the PSNR of the technique presented in this
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chapter is higher than the PSNR of other data hiding algorithms, except the
methods of Goljan et al. and Khan et al. The Goljan et al. has lower PSNR
than the proposed technique in case of Lena image, while for Mandrill image the
PSNR of the proposed algorithm is lower than the Goljan et al. method. Khan
et al. has higher PSNR than the proposed algorithm fro both Lena and Mandrill
cover images. The comparison made based on SSIM shows that the proposed
technique performs better than the rest of the techniques on Lena’s image. While
using Mandrill image as cover, the proposed algorithm results in higher SSIM than
all the techniques except Macq and Dewey’s technique, which has higher SSIM
than the proposed algorithm. The HC of the presented method on both images is
higher than the methods of Hosinger et al., Fridrich et al. and Vleeschouwer et al.
While, using Lena as cover image, the proposed technique has a HC comparable to
the Macq and Dewey method and less than Goljan et al. and Khan et al. methods.
Similarly, using Mandrill’s image as cover, the HC of the proposed technique is less
than the HC of the Macq and Dewey, Goljan et al. and Khan et al. methods.
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Chapter 6

Conclusions and Future Work

In this thesis we have proposed a collection of algorithms to perform image
clustering using the camera fingerprints trying to address the problem of high com-
putational cost and addressing the scenario in which the number of cameras is much
larger than the number of images available for a single camera.

The first algorithm i.e., RCIC, we proposed, is a simple but efficient way of
clustering images according to randomly selected reference fingerprints. The clus-
tering process is further improved in FICFO, with the help of fingerprints ordering.
The sorting of camera fingerprint made the clustering process faster and reduced
the computational complexity. The RCIC and FICFO are implemented with the
additional but optional step of attraction, which helps to improve the quality of
clustering with a little additional computational cost. The clustering process is fur-
ther modified in the CIC algorithm, and clustering is performed in two stages of raw
clustering and fine clustering. The two stage process helped to reduce the compu-
tational cost even further. The final attempt to reduce the computational is made
in the CFIC algorithm. The CFIC uses reduced and full fingerprints for clustering.
The use of reduced fingerprints helped in the significant reduction of computational
cost. The results obtained on the Dresden image database illustrate that the al-
gorithms have a computational cost quite lower than state-of-the-art algorithms,
with a comparable or even better performance, in some cases. The computational
cost decreases gradually from the RCIC to the CFIC algorithm. The computa-
tional complexity per image, of the RCIC, RCIC-A, FICFO, FICFO-A, CIC and
CFIC algorithms, decreases as the size of the image dataset increases, which proves
the effectiveness of these algorithms for large scale clustering, especially the CFIC
which has a significantly lower computational cost the state-of-the-art algorithms
as well as the other algorithms proposed in this thesis. The presented clustering
algorithms are also robust to the NC ≫ SC problem.

Hence, it can be concluded that the presented image clustering algorithms are
very efficient to cluster small and large datasets, easy and hard datasets, symmetric
and asymmetric datasets and datasets with NC ≫ SC.
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We tried to reduce the computational cost as lower as possible and also to solve
the NC ≫ SC problem. But, nothing is full and final, there is always an open win-
dow for improvement. The computational cost can be improved further by using
different fingerprints compression techniques without affecting the quality of cam-
era fingerprints. New efficient ways can be devised to arrange fingerprints, which
will help to reduce computational complexity. A step ahead, the techniques can
be devised to increase the efficiency of camera fingerprints based video clustering
and reducing the computation complexity of video clustering. A technique can be
developed to detect the group of pictures (GOP) of images, detect I-frames, and
ranked the I-frames based on goodness. The use of good I-frames for estimating
camera fingerprint may possibly contribute significantly to improve the quality of
clusters and reduce the computational complexity.

138



Nomenclature

Acronyms / Abbreviations

ACO Ant Colony Optimization

ARI Adjusted Rand Index

BCFIC Blind Camera Fingerprinting and Image Clustering

CCD Charge-Coupled Device

CFA Color Filter Array

CFIC Compressed Fingerprints based Image Clustering

CIC Canopy based Image Clustering

CLT Central Limit Theorem

CMOS Complementary Metal-Oxide Semiconductor

CRLB Cramer-Rao Lower Bound

FICFO Fast Image Clustering based on Fingerprints Ordering

FICFO − A Fast Image Clustering based on Fingerprints Ordering with Attrac-
tion

FPN Fixed Pattern Noise

GAC Greedy Agglomerative Clustering

JPEG Joint Photographic Experts Group

LSB Least Significant Bits

LSIC Large Scale Image Clustering

MRF Markov Random Field
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Nomenclature

MSE Mean Square Error

NCC Normalized Cross Correlation

NUA Non-Unique Artifacts

PFA Probability of False Alarm

PNN Pairwise Nearest Neighbour

PRNU Photo Response non Uniformity

PSD Power Spectral Sensity

PSNR Peak Signal to Noise Ratio

RCIC Reduced Complexity Image Clustering

RCIC − A Reduced Complexity Image Clustering with Attraction

RI Rand Index

RLE Run Length Ecoding

SPN Sensor Pattern Noise

SSC Sparse Subspace Clustering

SSIM Structural Similarity

V LSB Variable Least Significant Bits

WGN White Gaussian Noise

GOP Group Of Pictures
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