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Abstract

Motivation: High-Throughput Next-Generation-Sequencing can generate huge sequence files, whose
analysis requires alignment algorithms that are typically very demanding in terms of memory and
computational resources. This is a significant issue, especially for machines with limited hardware
capabilities. As the redundancy of the sequences typically increases with coverage, collapsing such files
into compact sets of non-redundant reads has the two-fold advantage of reducing file size and speeding-up
the alignment, avoiding to map the same sequence multiple times.
Method: BioSeqZip generates compact and sorted lists of alignment-ready non-redundant sequences,
keeping track of their occurrences in the raw files as well as of their quality score information. By exploiting
a memory-constrained external sorting algorithm, it can be executed on either single or multi-sample data-
sets even on computers with medium computational capabilities. On request, it can even re-expand the
compacted files to their original state.
Results: Our extensive experiments on RNA-seq data show that BioSeqZip considerably brings down the
computational costs of a standard sequence analysis pipeline, with particular benefits for the alignment
procedures that typically have the highest requirements in terms of memory and execution time. In our
tests, BioSeqZip was able to compact 2.7 billions of reads into 963 millions of unique tags reducing the
size of sequence files up to 70% and speeding-up the alignment by 50% at least.
Availability: BioSeqZip is available at https://github.com/bioinformatics-polito/BioSeqZip
Contact: gianvito.urgese@polito.it
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
In ultra-high-throughput sequencing, as many as 500k sequencing-by-
synthesis operations may be run in parallel, allowing the deep sequencing
of DNA and RNA molecules in short time and producing a massive
amount of data to be analysed. With the ever-increasing production of new
sequence data, and the continuous necessity of re-elaborating old data to
extract hidden knowledge, new paradigms for data storage and analysis
are becoming more and more critical (Muir et al., 2016).

DNA and RNA reads are collected in the form of formatted files whose
size can exceed a terabyte, typically storing two main types of information,
both encoded by ASCII strings: i) sequences, representing the bases of the
biological molecules (RNA/DNA) and ii) quality scores, representing the
reliability level of each sequenced nucleotide.

The analysis of such RNA/DNA sequences starts with preliminary
steps that consist of filtering the reads based on quality thresholds. Then,
the high-quality reads are trimmed from the adapters and either aligned
on a known reference database or assembled to construct new unknown
genomes.

To have a more in-depth overview of the analysis flow, we can consider
the example of RNA-Seq experiments. RNA-Seq reads, either in single-
end or paired-end form, are first filtered based on their quality scores and
trimmed from the adapters. Then, the most reliable reads (i.e. the ones
with highest quality scores) are analysed by applying one of three main
strategies, as described by Conesa et al. (2016): i) if a reference genome
is available, reads are aligned to the genome with a gaped aligner. This
approach allows the identification and quantification of known transcripts
as well as the discovery of novel ones. ii) if no novel transcript discovery
is needed, reads can be mapped to the reference transcriptome by using an
ungapped aligner. iii) when no genome is available, reads are usually first
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2 G. Urgese et al.

assembled into transcripts. Then, reads are mapped back to the assembled
reference transcriptome for quantification and annotation.

As far as the alignment problem is concerned, several tools are available
(Mazzoni and Kadarmideen, 2016), mostly making use of suffix arrays to
provide faster alignment compared to traditional Dynamic Programming
methods (Smith and Waterman, 1981; Urgese et al., 2014). Among the
most representative: BWA (Li and Durbin, 2009), Bowtie2 (Langmead
and Salzberg, 2012), STAR (Dobin et al., 2013), Rail-RNA (Nellore et al.,
2016) and Yara (Siragusa, 2015). Even though the computational time of
the alignment is greatly reduced compared to classic algorithms, it still
remains prohibitive for most of the medium-low computational systems,
like the work-stations that are commonly used in most bio-labs.

A possible solution to this problem is collapsing all the repeated reads
into a single one, reducing the number of reads that need to be analysed,
and hence the size of the read file. The advantage of this solution is two-
fold: i) the memory required for the storage can be reduced and ii) more
efficiently, the alignment algorithms can map each unique read to the
reference only once, instead of multiple times.

To the best of our knowledge, there exist in the literature a few
tools that already provide a collapsing option, but with several significant
limitations. First of all, none of the tools to date allows controlling
memory consumption. This is a critical lack, as it may make impossible
to execute the collapsing programs on mid-low end platforms. Most of
the tools are also limited in the type of data that can be processed.
SeqCluster (SC) (Pantano et al., 2011) can only collapse single-end reads
from small RNA-Seq datasets, while FastUniq (FU) (Xu et al., 2012) can
only deal with paired-end reads. On the other hand, the popular FASTX-
toolkit (FXT) (Gordon and Hannon, 2010) provides a simple function to
collapse identical reads but does not keep any trace of the quality scores
provided in the input files. On top of that, it cannot deal with paired-end
samples. SuperDeduper (SD) (Petersen et al., 2015) is an interesting tool
for PCR duplicate removal, as it examines only a small portion of each
reads (called key) and automatically discards data containing unknown
nucleotides (Ns). However, it is not able to solve the exact read collapsing
problem. ParDRe (PDR) (González-Domínguez and Schmidt, 2016) has
a reasonable run-time, but a significant memory consumption.

The full list of the literature tools, with collapsing functionality, is
reported in Table 1, together with a summary of their respective features. In
the order: the possibility to deal with single-end and paired-end sequences,
the way the quality score of the input sequences is processed (i.e. AV G: by
averaging the quality scores of the redundant reads per nucleotide,HIGH:
by retaining the best score per nucleotide, SUM : by summing up base
qualities scores), the possibility to set a user-defined memory bound to the
alignment, the supported file formats. As it can be easily gathered from
the table, none of the tools provides a fully functional collapsing option,
as they all lack some essential features.

Collapsing procedures are widely adopted as a preliminary step for
the alignment of sRNA-Seq on miRNA and other small non-coding RNA

Table 1. Features of the available collapsing tools, with our proposed
tool BioSeqZip (BSZ) in the last row

Tool Single
End

Paired
End

Quality Memory
Bound

File
Formats

FU No Yes High No .fa .fq
FXT Yes No No No .fa
PDR Yes Yes High-AVG No .fa .fq
SC Yes No AVG No .fa .fq
SD Yes Yes High-Sum NO .fa .fq

BSZ Yes Yes AVG Yes
.fa .fq .sam
.bam .tag .tagq

databases such as miRBase (Griffiths-Jones et al., 2006), miRGeneDB
(Fromm et al., 2015, 2018) and piRBase (Zhang et al., 2014). Tools
designed to quantify miRNA expression levels such as isomiR-SEA
(Urgese et al., 2016), SeqBuster (Pantano et al., 2009), sRNAbench
(Barturen et al., 2014) miRDeep2 (Friedländer et al., 2011), and others
(Desvignes et al., 2019) take a simple file1 as input, with the unique
sequence in the first column and its number of occurrences in the second
column, to minimise the number of calls to a computationally expensive
alignment procedure. In our work, we leverage this concept and take it to
a higher level.

In this paper, we propose BioSeqZip; a new approach to collapse
redundant reads generated by NGS machines. The functionality of our
proposed solution is three-fold: i) A read collapsing technique based on the
external sorting algorithm2 allows limiting memory usage (Knuth, 1998).
Thus, making the tool suitable not-only to cluster computers, but even
to medium systems with limited hardware capabilities. ii) A multilevel
collapsing procedure can be applied to compress even further the read
files. Recurrent reads from different samples will be collapsed into a single
file, where unique reads will occur only once. iii) An integrated expansion
procedure enables an easy restore of the read aligned files produced by
mapping tools.

As it can be gathered from Table 1, our proposed solution addresses
the lack of functionalities of the collapsing tools available to date (see
the last row of the table). BioSeqZip generates compact files of unique
reads storing the number of collapsed sequences, so that the number of
detected molecules can be considered in the alignment algorithms, as well
as their quality score information. On top of that, it supports seven different
file formats, allowing easy integration to several classes of alignment,
mapping, and assembly algorithms.

To demonstrate the quality of our solutions, we tested the
BioSeqZip compression module on 32 RNA-Seq samples from the Human
BodyMap 2.0 dataset, collecting 2.34 billions of single and paired-end
reads. We assessed BioSeqZip performance in terms of run-time, memory
consumption, reduction of reads number as well as of collapsed files
size and compared our tool against five alternative tools in terms of both
performance and usability. On top of that, we compared the performance
of four different alignment algorithms on collapsed and raw/uncollapsed
input files, respectively, with either single-end and paired-end data-sets.

2 Methods
We propose BioSeqZip as a solution to the extensive computational time
and memory requirements of NGS data analysis flows involving sequences,
such as transcriptome/genome mapping and small RNA-Seq analysis. A
common trait of these tasks is that they need to process all the reads of
the sequenced samples multiple times before moving to the next steps of
the analysis. Hence, these tasks are majorly benefited by the removal of
redundant reads.

BioSeqZip is a read collapser that groups and counts the occurrence of
the identical reads in the input sequence file, producing a minimal sorted
list of unique reads (and the corresponding occurrence counts) ready for
the alignment to a reference. The read collapsing can be obtained at two
different levels: i) at single-sample level (SS), BioSeqZip collapses the

1 Defined as Tag file
2 External sorting is required when the data being sorted do not fit into the
RAM of a computing device and instead they must reside in the slower
external memory (HDD or SSD). In our implementation, we use a hybrid
sort-merge strategy. In the sorting phase, chunks of data small enough to
fit in main memory are read, sorted, and written out to a temporary file. In
the merge phase, the sorted sub-files are combined into a single larger file.
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BioSeqZip 3

redundant reads stored in a single file, producing a compacted output file
with unique reads. ii) At multi-sample level (MS), BioSeqZip aggregates
redundant reads from a data-set containing multiple sample files, allowing
a supplementary level of aggregation.

In both cases, if the input files provide quality information about the
reads, BioSeqZip returns the collapsed sequences with a quality score,
that is computed as the average consensus quality of the corresponding
collapsed reads. On top of that, BioSeqZip allows to choose the format of
the collapsed file (either Fastq, Fasta, Tagq, and Tag)3. By doing so, the
user can choose whether to maintain the quality information (and hence,
bear the corresponding computational costs) or not, with a pay-for-what-
you-use philosophy.

Besides the read collapsing functionality, BioSeqZip implements also a
re-expanding functionality, that is able to recover the original occurrences
of each sequence to update, with the number of read occurrences, the
alignment files generated by mapping algorithms.

The functionalities of BioSeqZip are implemented into two main
modules: a Collapser for compacting the redundant reads and an Expander
for restoring aligned and compacted files. The modules were developed
in C++ leveraging several packages of the SeqAn C++ bioinformatics
library (Doring et al., 2008; Reinert et al., 2017). Most of our design
choices were explicitly made to optimise the memory consumption
and the computational performance on systems equipped with medium
hardware resources. In the following, we describe the main design aspects,
functionality and supported file formats of the Collapser and the Expander
modules.

2.1 BioSeqZip_Collapser module

Collapsing the reads is a powerful strategy to reduce the computational
time and complexity of the alignment steps of an RNA-Seq or DNA-Seq
analysis pipeline. Indeed, in files with billions of reads, the same sequence
will likely be analysed multiple times. The collapser module collapses
and counts the occurrence of redundant reads, that are detected based on
their identical sequence. This new reduced collection of non-redundant
sequences can be stored in a much smaller file and used for optimised
alignment analysis. BioSeqZip_Collapser accepts as input Fasta, Fastq, or
SAM file formats and generates compact output with four different file
formats: Fasta, Fastq, Tag, and Tagq (Text S1.1). All the input/output file
formats can be optionally provided in compressed form (gzip).

The most straightforward approach to collapsing reads is the one
implemented by the fastx_collapser routine offered in FASTX-Toolkit
(Giardine et al., 2005). This solution requires to first load all the reads
into the main memory, then to sort them, and finally to collapse them into
unique tags, while counting and storing occurrence of the redundant reads.
However, this approach is hugely memory-intensive, as it requires to load
in memory the entire file that is typically in the order of tens of GBs.

Indeed, memory issues are always a critical aspect of NGS data
analyses that typically exploit big data. As the dimension of the NGS
files is generally huge, the amount of memory necessary to load a whole
data-set will be overwhelming for medium-small memory systems such as
standard workstations and laptops, leading to the necessity of leveraging
powerful machines such as clusters of compute nodes and servers. Thus,
increasing the costs of the analysis.

BioSeqZip_Collapser overcomes such limitation by implementing a
memory-constrained collapsing functionality. For this purpose, the user is
asked to set the maximum amount of the memory that can be exploited by
the program, based on the capabilities of the available hardware.

The main steps of BioSeqZip_Collapser are shown in Fig. 1.

3 See Text S1 for the file format description

Fig. 1. BioSeqZip_Collapser flow-chart, with external-sorting and collapsing steps
highlighted in dashed boxes.

In the first phase, we pass and check the input parameters: –input and
–max-ram respectively for the input file storing the reads to be collapsed
(either FASTA, FASTQ, SAM, or BAM) and the maximum amount of
RAM allowed. A set of reads (Tsize) are read from the input file to evaluate
their memory occupancy (TRAM ). Then, we estimate the maximum
number of reads (Csize) that can be loaded at the same time into memory
without exceeding the memory constraint, set by the user (CRAM ), by
computing the Eq. 1 where α is an empirical correction factor.

Csize = α ·
CRAM · Tsize

TRAM
(1)

The module implements a custom parallel external sorting procedure
(Knuth, 1998) that sorts the reads in chunks and generates M temporary
files of sorted records. For clarity, in Fig. 2 we show a schematic example of
the External-Sort-Collapsing procedure. Each chunk of reads (of size 3, in
the example of Fig. 2) is loaded into RAM, where it is alphabetically sorted
by a multi-threaded function. Then, the sorted set of reads are collapsed
and written on a temporary file on the disk (in dark-grey background).
In the merge-collapsing phase, the first Csize/M sequences from all the
temporary files are loaded in M buffers. Then, an iterative selection-sort
process is started, for identifying the overall occurrences count of each
read. At each iteration, the tool appends a collapsed sequence to the output
file, together with the corresponding occurrences count. Empty chunks are
refilled with a portion of the temporary file from which the collapsed reads

Fig. 2. Example of read collapsing based on external sorting.
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come. At the end of the merge-collapse procedure, the output file will
contain all the collapsed reads and their corresponding occurrence count.
If requested by the user, in case the input file provided a quality score per
read, the procedure computes the average quality score of each block of
collapsed reads, base-by-base.

Besides the aforementioned, BioSeqZip_Collapser supports two
additional cases: i) files with paired-end reads stored with the interleaved
format, where mate 1 is in the even reads and mate 2 in the odd reads.
ii) files with joined mates and fixed break-point, where the two mates are
already in the same read.

As far as file formats are concerned, six different input/output
combinations are available, all optimised to minimise the number of
required operations. More specifically, with Fastq input, the user can select
any of the four output formats. With a Fasta format, on the other hand,
the output can either be Tag or Fasta. Optionally, BioSeqZip_Collapser
can be even forced to generate a collection of output files with constant
size set by the user. In this case, the module generates multiple files of
the set dimension, each storing a portion of the collapsed reads sorted in
alphabetical order. This feature is particularly useful in cases where the
read files must be distributed to an HPC cluster. For Fasta and Fastq output
formats, the read count is appended to the identifier on the header line.
By doing so, the output file can be easily handled by alignment programs
without losing track of the original number of redundant reads before
collapsing.

If the input is not a single file, but a folder containing multiple files, the
BioSeqZip_Collapser will implement a multi-sample collapsing strategy.
Even in this case, the procedure can generate any of the four possible output
files, with a supplementary table reporting the ID of collapsed sequence
in the first column, the sequence in the second column, and its per-sample
occurrence counts in the following columns. The information reported in
this table can be eventually leveraged by the Expander module to recover
the original occurrence of redundant reads in each sample.

2.2 BioSeqZip_Expander module

The files storing the collapsed reads can be given as input to the most
common RNA-Seq and DNA-Seq analysis pipelines, thereby considerably
reducing demands in terms of storage space and computational time. As
already discussed, this is a significant advantage in case of systems with
limited hardware resources that might not be powerful enough to host the
analysis of redundant data.

Especially for mapping and alignment procedures, the best practice
would be to consider the complete available information at the same
time (i.e. sequence, sequence occurrence count and average quality
score). However, standard alignment tools are generally unable to leverage
the occurrence count field of Fasta/Fastq files. Hence, the analyst is
left with two options: i) customising the mapping procedure in order
to consider the read counts during the alignment algorithm4. ii) align
the not-redundant reads and then re-expand the compact aligned files,
exploiting the occurrence counts to replicate the original entries. The latter
functionality is implemented by BioSeqZip_Expander. This module re-
expands the output files of alignment/mapping tools by replicating each
Tag by the occurrence count of each sample. By doing so, it restores an
expanded collection of redundant sequences and corresponding mapping
locations.

Multi-mapped reads can either be handled with a random assignation
strategy, as done by BWA (Li and Durbin, 2009), or with a first position

4 We have adapted BWA and Yara aligners to consider the occurrences
stored in the header of each read of the collapsed Fastq files, and the
modified code is provided in two additional GitHub repositories (links
provided in the Supplementary Availability section)

policy, like Yara (Siragusa, 2015), where the additional locus are listed in
a custom field of the SAM file.

BioSeqZip_Expander is meant for re-expanding the output of any
alignment tool, to obtain the same output that would have been generated
by aligning the raw non-collapsed sample. As long as each SAM record
stores the original name of the aligned read, BioSeqZip_Expander is able
to parse it and extract the number of times the sequence was found by the
BioSeqZip_Collapser in the raw sample. Then, the target SAM record is
written that number of time to the final output file, which represents the
expanded alignment file. BioSeqZip_Expander can deal with the two most
common file formats for alignment files: SAM and BAM.

In the case of multi-sample collapsing, BioSeqZip_Expander will
exploit the supplementary table generated by the multi-sample collapsing
strategy to restore the correct number of read sequence and originally
detected in each corresponding sample.

3 Results and Discussion
We tested BioSeqZip on a set of 32 transcriptomic samples of 16 different
human tissues from the Human Body Map 2.0 Project (ERP000546). This
set, characterised by the presence of both single-end (SE) and paired-end
(PE) reads, was generated with the HiSeq 2000 sequencing technology
(Ogasawara et al., 2006).

To assess our methodology, we evaluated four popular alignment
tools on both collapsed and not collapsed reads. We decided to evaluate
the quality and computational costs of the alignment, because it is the
fundamental step of any sequencing data analysis.

The experiments were performed on a Linux machine with 2x8 Intel
cores clocked at 2.4 GHz (Xeon E5-2630), 128 GB RAM, 16 TB HDD
SAS in RAID 6.

In the following, we will show the performance of our read collapsing
algorithm and the benefits of using tags representing collapsed sequences
for mapping procedures. We collapsed Fastq files, hence retaining the
average quality of the original files. A quality-agnostic compression would
be twice as faster and produce collapsed files of half the size of the case
reported here. Thus, the time and memory reported in our results should
be considered as a worst-case scenario.

3.1 Single and multi-sample collapsing performance

In this experiment, we collapsed 16 SE and 16 PE samples (see full list
and details in Table S1), containing 1.26 billion 75 bp single-end and 1.28
billion of 50*2 bp paired-end Illumina reads of human individuals with a
20x coverage at a genome size of 3.1 GB. Each sample contains 80 millions
of reads on average and occupies 17 GB on the disk for the SE and 26 GB
for the PE.

In our test, the raw files were collapsed using BioSeqZip_Collapser,
first with a single-sample (SS) and then with a multi-sample (MS) strategy.
Table 2 shows the results of the collapsing procedure, in terms of the
number of reads, the total size of samples, and run-time. The first column of
the table makes explicit whether the considered samples are uncompressed
(i.e. RAW), collapsed single-sample (SS) or collapsed multi-sample (MS).
The second column indicates whether the samples are single-end or paired-
end reads. The following two columns report the number of reads and file
size. Concerning RAW and SS samples, the sum of the corresponding
sizes for each sample is reported. While for MS samples, the results
were produced by the multi-sample collapse procedure. Finally, the last
three columns of the table report the overall collapsing time and the gain
(computed with Eq. 2) of the collapsing, in terms of number of reads to be
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Table 2. Single-sample and multi-sample collapsing
performance

SAMPLE # Reads
(G)

Size
(GB)

Collapse
Time (s)

GAIN
Status Type # Reads Size

RAW
PE 1.28 390 0 0 0
SE 1.26 252 0 0 0

SS
PE 0.59 141 9633 53.7% 63.8%
SE 0.39 64 6106 69.4% 74.6%

MS
PE 0.54 134 12708 57.7% 65.6%
SE 0.28 47 7763 78.0% 81.4%

aligned and size of the file on the disk.

Gain% =

(
1−

Collapsed

Raw

)
· 100 (2)

Some interesting observations can be gathered from Table 2. First
of all, single-end samples achieved higher collapsing rate than paired-
end samples. This is due to the exact collapsing algorithm leveraged by
BioSeqZip, that has better performance for shorter sequences, assuming
similar data-sets sizes. More specifically, collapsing all the single-end
samples with a single-sample strategy leads to a reduction in the number
of reads to be analysed of approximately 70%, whereas the storage
requirements are reduced to a quarter5 . Multi-Sample collapsing leads
to an even better gain in terms of the number of reads and files size, but it
comes at the cost of higher run-time (30% higher in the worst case).

Different values of the memory constraints translate into a different
number of intermediate files that are generated during the collapsing (the
lower the memory limit, the higher the number of disk operations). To
clarify the relation between memory limit and performance, we run an
additional experiment by collapsing three random files, at 4, 8, 16 and 32
GB limits by using 4 threads. The run-time in seconds was respectively
1062, 1098, 1172 and 840. This analysis highlights that the run-time
required for collapsing a sample increases as the size of the buffer used
for storing the sequences increases, up to the amount of memory that can
contain the full file to be collapsed (more details in the Section S4.3).

3.2 Alignment performance on collapsed samples

To assess the impact on alignment performance of both single-sample and
multi-sample collapsing, we proceeded as follows: i) We performed single-
sample collapsing of all the samples. Then, each collapsed file was aligned
to the Human transcriptome (Cunningham et al., 2014) using four popular
read mappers: respectively, BWA, Bowtie2, Yara, and STAR. Alongside,
the raw uncollapsed files were also aligned using the same tools, to measure
the alignment time on the original number of reads. ii) We performed
multi-sample collapsing of the whole data-set, measuring both execution
time and RAM requirements (always within the input constraint). Thus, we
obtained a single collapsed Fastq output file and a table of read occurrences
for the whole data-set. Then, we run the mappers on the Fastq file, assessing
the execution time of the alignment as well as the storage size of the mapped
reads. In both experiments, we did not run the Expander module, which is
conceived as an optional feature in regular downstream analysis.

The obtained results are plotted in Fig. 3, where we show the gain
of aligning collapsed files (either single-sample SS or multi-sample MS)
instead of raw ones, using alignment time as the figure of merit in Eq. 2. For
the SS files, the collective gains of the individual samples of the data-set are

5 In Section S4.2, we propose a collapsing experiment on a WGS DNA-
Seq sample from Scherer et al. (2019), showing the benefit of the collapsing
strategy on this type of data.

reported in the form of a box-plot, while an asterisk represents the gain of
MS. As can be gathered from the plots of Fig. 3, the benefits of collapsing

Fig. 3. Gain of aligning collapsed files, using alignment time as the figure of merit.

were consistently high for all the mapping tools. More specifically, the
average alignment time speed-up attested between 50% and 70% in case of
single-sample collapsing (SS) and between 36% and 73% for multi-sample
collapsing (MS).

If we take into account the storage requirements, the impact of
collapsing was even more significant, as the mapping file size was reduced
by 71% with single-sample and up-to 80% with multi-sample collapsing,
respectively. On top of that, we registered a significant reduction in the size
of the collapsed alignment files. Indeed, for the overall alignment files the
total disk occupancy of raw files aligned was 4.7 TB while SS aligned files
occupy 1.9 TB with a reduction of 60%. However, the best size reduction
was achieved when aligning MS collapsed files, obtaining a disk space
reduction of 66%.

To estimate the run-time benefits of using collapsed files, in Fig. 4 we
show the results obtained by aligning the raw SE and PE files alongside the
SS collapsed. In this plot, to have a complete view, we took into account
even the additional computational time needed by BioSeqZip to collapse
the sequence files (blue portion of the bars). As it can be gathered from

Fig. 4. Alignment performance on raw and collapsed files.

Fig. 4, applying BioSeqZip had a significant impact on the computational
time required by alignment and mapping procedures. The highest impact
was for the tool STAR, for which time reduced from 19 to 7 hours for
SE and from 27 to 10 hours for PE, with reductions attesting between
55% and 63%, respectively. Collapsing was very advantageous also for
BWA and Bowtie2. The weakest impact was for Yara mapper, for which
the alignment time of samples of the size considered in our tests is
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6 G. Urgese et al.

already minimal. Nonetheless, as it is visible from the blue portion of
the stacked bars, the additional computational time required for collapsing
the sequence file is always a small fraction of the overall time needed to
execute the alignment on the raw reads (red bars). Hence, the collapsing
is advantageous even in the worst-case scenario.

To avoid possible inconsistencies, in our tests we verified the coherence
of the raw and collapsed alignment files, by checking that the same number
of reads where mapped by the tools to the same genome location of the
alignments produced using the raw Fastq files.

In the last mapping experiment, we analysed single-end samples of
BodyMap with either BioSeqZip_Collapser+STAR+BioSeqZip_Expander
(BSZ_C+STAR+BSZ_E) and Rail-RNA alone and compared the two runs
in terms of both execution time and memory consumption (full analysis in
Section S4.4). From this experiment, we obtained that the combination
of BSZ_C+STAR+BSZ_E outperformed Rail-RNA by 68% (15.29 vs
47.37 hours). Note that the comparison is limited to time and memory
performance of the two pipelines, without in-depth evaluation of the
accuracy and consistency of the provided output.

3.3 Comparison with alternative collapsers

For this test, we randomly selected three SE and three PE samples6

and used them to compare the compression performance achieved by
BioSeqZip with other tools available in the literature. The SE samples
(labelled E890, E894, and E902) contain respectively 64, 77 and 82
millions of 75 bp reads, with a disk space occupancy of approximately
19, 22 and 24 GB. The PE samples (labelled E873, E882, and E886) are
characterised by 82, 74 and 83 millions of 50*2 base-pairs reads, with a
disk space occupancy of 25, 22 and 25 GB.

In our test, the raw files were collapsed using BioSeqZip_Collapser
(BSZ), Fast Unique (FU), FASTX Toolkit (FXT), ParDRe (PD), SeqClaster
(SC) and Super Deduper (SD), respectively. In case a tool did not support
either PE (e.g. FXT and SC) or SE (e.g. FU), we implemented a specific
adapter to convert SE into PE and vice-versa. Indeed, some of the tools
considered in our test match the collapser requirements only partially,
because they were not specifically designed for this task (see Table 1).
All the tools were executed with default parameters, killing the process if
running for more than 5000 seconds.

Fig. 5 reports six groups of bars, one per tool, showing the performance
in terms of total computational time spent for collapsing the three SE and
the three PE samples, respectively. As it can be observed from Fig. 5,

Fig. 5. Collapsing performance of different collapsing tools. Total computational time for
collapsing SE and PE samples, respectively.

BioSeqZip was faster than all the other tools except for Super Deduper.
On the other hand, Super Deduper collapses the reads by only looking at
the first bases of the sequence. Thus, it generates over-collapsed files where
reads with a different sequence are often grouped together (more details

6 Listed with blue background in Table S3.

in Fig. S1, where the collapsing efficiency of each tool is duly reported).
FASTX was close to our tool when dealing with SE samples, but on the
other hand it completely overlooks quality information and generates only
Fasta files as output format. Similarly, ParDRe obtained a performance
comparable to BioSeqZip on PE samples, but even in this case not all the
identical reads were detected and collapsed (details in Fig. S1).

As already pointed out, a major distinguishing point of our
implementation is the possibility to impose a maximum limit of memory
that can never be exceeded. In Fig. 6, we report the memory consumption
of BioSeqZip with an imposed memory limit of 8 GB7 and show the
memory consumption of all the other tools for comparison. As can be

Fig. 6. Memory usage of collapser tools.

gathered from Fig. 6, three tools out of six reached peeks of 78 GB when
dealing with PE samples. Only FXT and SD were close to the 8 GB
limit, even though, unlike our solution, there is no specific guarantee
that this constraint is always respected. In our tests, FXT tool reached a
peak of RAM consumption close to 13 GB, but without keeping tracks of
quality information. As already discussed, Super Deduper obtained the
best performance only in theory, as it over-collapsed non-identical reads.

In summary, BioSeqZip provides the best advantages in terms of run-
time and memory usage. Moreover, it generates alphabetically sorted files,
which is very useful to reduce the complexity of down-stream analysis.

3.4 Overall impact of BioSeqZip on alignment

In this last section, we aggregate the outcome of the previous tests to
estimate the overall advantages of BioSeqZip in terms of reduction of the
file size on disk and of computational time spent for the mapping.

As far as disk usage is concerned, the overall size of the collapsed files,
plus mapped files obtained using collapsed files as input, was 2.1 TB for
SS and 1.8 TB for MS, against 5.4 TB of the RAW files. More specifically,
BioSeqZip was able to reduce 2.54 billions of reads into 980 millions of
unique tags, in less than 4.4 hours of computations.

7 The amount of RAM used impacts on the speed of BioSeqZip. The more
RAM we use, the lesser reading/writing operations we perform on the disk.
Since the disk operations are the bottleneck of our algorithm, reducing the
number of these operations has a positive impact on the overall run-time
of the BioSeqZip collapsing procedure.
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In Table 3 we show details about alignment time of BWA, Bowtie2,
Yara, and STAR on raw and SS collapsed reads, respectively. The last
column of the table reports the gain, using the execution time of the
alignment procedures on raw and SS collapsed files as the figure of merit in
Eq. (2). As it can be gathered from the table, when using Yara on collapsed
files we observed a gain of 48%. The alignment time reduction was even
more significant for the other mapping tools: 57% for BWA, 55% for
Bowtie2, and 68% for STAR.

Based on the values of Table 3, we can estimate a total saved time equal
to 57.3 hours, which provides the overall figure of merit of the impact of
BioSeqZip on alignment time.

4 Conclusion
In this paper, we presented BioSeqZip, a read collapsing tool that
can reduce the huge sequence files generated by high-throughput NGS
machines to compact sets of non-redundant reads.

As we extensively demonstrated in our experiments, BioSeqZip brings
down the computational requirements of sequence analysis pipelines, with
particular benefits for the alignment techniques, that are typically the ones
with the highest computational costs.

In summary, the virtues of our approach are manifold:

• it is hardware-adaptive, as it is able to constrain RAM utilisation based
on a user-defined threshold depending on the hardware capabilities of
the system.

• it is flexible, as it supports all the main sequencing file formats, and
operates either at a single-sample or a multi-sample level.

• it is exhaustive, as it maintains track of read quality information and
read occurrence counts while collapsing the redundant sequences,
allowing easy restoration of the original data.

Besides alignment, we firmly believe that the complete analysis
pipeline will significantly benefit from the application of our collapsing
strategy. With minor modifications, mapping and alignment tools may
even directly leverage the occurrence counts information provided by
the compressed files to skip the re-expansion phase and speed-up the
mapping process (BWA and Yara are already available). Exploiting sorting
and merging operations, performed by BioSeqZip during the collapsing
phase, the mapped files (in SAM/BAM formats) will be ready for further
analysis as-is, without needing any supplementary manipulations. Thus, in
perspective, the computational costs of the overall analysis can be reduced
even further. Sure indeed, the collapsing provided by BioSeqZip comes at
a possible cost of losing the read-specific quality. However, in case of need
the original quality value can be easily recovered from the full uncollapsed
Fastq.

Table 3. Overall impact of BioSeqZip on the
alignment time

Alignment Time (hours)
Mapper

Tool
Raw Read

File
Collapsed
Tag File

Gain

Yara 9.1 4.7 48%
BWA 16.3 7.05 57%

Bowtie2 21.2 9.5 55%
STAR 47.2 15.2 68%
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