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Summary

Driven diffusive models are an attractive research topic for the study of nonequi-
librium steady states and for the potential applications to biological and vehicular
traffic problems. A reference model in this class is the Totally Asymmetric Simple
Exclusion Process (TASEP), for which many exact results have been obtained in
the last decades. In this PhD thesis we investigate the relaxation dynamics of two
extensions of the TASEP, namely the TASEP with Langmuir kinetics (TASEP-LK)
and a TASEP with local interactions called the Antal-Schütz (AS) model. We are
mainly interested in studying the dynamical transition, which is characterized by
a singularity in the slowest relaxation rate of the system toward the steady state,
though not accompanied by any change in the steady state properties. This tran-
sition was discovered and exactly located in the phase diagram for the TASEP, it
separates one or more slow phases, where the relaxation rate depends on a control
parameter, from a fast phase where the rate reaches a maximum and becomes con-
stant.
Our investigations are based on three different approaches, which provide consistent
pictures for both models: the first one corresponds to the mean-field like (cluster)
approximations, which reproduce the exact static phase diagram of the TASEP
and yield dynamical transition lines in good qualitative agreement with the exact
ones. The second method is the modified Domain Wall Theory (mDWT), which is a
heuristic correction of the slowest relaxation rate of the DWT in the fast phase and
is exact by construction for the TASEP. The last approach consists in computing
the exact slowest relaxation rate at finite size and then extrapolating the results to
the infinite size limit with the Bulirsch-Stoer (BST) algorithm. It was applied to
pure TASEP and gave very accurate results.
As regards the cluster approximations, we develop a mean-field theory for the
TASEP-LK with equal (balanced) attachment/detachment rates. This theory pre-
dicts the onset of a dynamical transition and allows one to derive analytical bounds
for the slowest relaxation rate, becoming tight in the infinite size limit. Then, we
extend the analysis to the unbalanced case, where a new type of dynamical transi-
tion occurs, showing similarities with first order equilibrium transitions. For the AS
model we move to a pair approximation, which reproduces the exact bulk current-
density relation and consequently the location of most static transitions. Also this
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model exhibits dynamical transitions, moreover two slow phases are observed when
the interactions are strongly attractive. We further investigate the full dynamics of
the system in the slow and fast phases, showing that the pair approximation is in
good agreement with kinetic Monte Carlo simulations. We observe that the whole
dynamics is independent of the control parameter in the fast phase.
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Introduction

Driven lattice gases are inspired by molecular transport processes and vehic-
ular traffic, but they are introduced also to study nonequilibrium steady states,
which lack a well founded theory as that developed for equilibrium ones. In this re-
search line of nonequilibrium statistical physics, the Asymmetric Simple Exclusion
Processes (ASEPs) have become paradigmatic models because of the availability
of many exact results obtained in the last decades about both the static and dy-
namical properties. In fact, a dynamical phase transition, i.e. a transition in the
relaxation dynamics to the steady state, was discovered and exactly located in the
phase diagram for some models in this class. This transition does not coincide with
any change in the steady state properties and is pointed out by a singularity in the
slowest relaxation rate of the system.
The purpose of this PhD thesis is to investigate the dynamical transitions in two
models derived from the ASEPs class, namely the Totally Asymmetric Simple Ex-
clusion Process with Langmuir kinetics (TASEP-LK) and the Antal-Schütz (AS)
model, for which a complete exact solution is not available. For this reason, we
tackle the problem with different analytical and numerical methods: cluster mean-
field approximations, the modified Domain Wall Theory (mDWT), kinetic Monte
Carlo simulations and the Bulirsch-Stoer (BST) extrapolation of exact finite size
results.
The thesis is organized as follows: in the first part, corresponding to chapters 1-4,
we provide a review of the state of the art on driven diffusive models and on the
analytical and numerical tools adopted in our research activity. The second part
(chs. 5-8) is devoted to our contribution. We briefly outline below the content of
each single chapter:

• Chapter 1 introduces the ASEPs, then it reviews the steady state properties of
the TASEP and explains what the slowest relaxation rate and the dynamical
transition are. Finally, it introduces the two generalisations of the TASEP
that have been investigated in this thesis: the TASEP-LK and the AS model.

• Chapter 2 motivates the application of cluster mean-field like approximations,
in particular the ordinary mean-field and the pair approximation, to driven
diffusive models, based on known results for the TASEP. Then, it introduces
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the mean-field theory for the TASEP-LK and the pair approximation for the
AS model, summarizing the steady state properties.

• Chapter 3 describes the Domain Wall Theory (DWT) and provides a deriva-
tion of the slowest relaxation rate within this approach. Finally, it introduces
the modified Domain Wall Theory (mDWT), which is exact by construction
for the TASEP.

• In Chapter 4 we give an overview of the numerical methods employed in
this thesis, namely the kinetic Monte Carlo, the computation of the exact
finite size slowest relaxation rate and the Bulirsch-Stoer (BST) extrapolation
method.

• Chapter 5 presents our results about the dynamical transitions in the TASEP-
LK within a mean-field approximation. It contains a formal derivation of
asymptotic bounds for the slowest relaxation rate in the infinite size limit.

• Chapter 6 contains complementary results about the dynamical transitions
in the TASEP-LK, obtained by the mDWT and the BST extrapolation of
exact finite size results. In this chapter we make two conjectures, supported
by numerical evidences, respectively about the exactness of the mDWT for
the TASEP-LK and about the scaling exponent of the slowest relaxation rate.

• Chapter 7 presents our results about the dynamical transitions in the AS
model, obtained by three methods: the pair approximation, the mDWT and
the BST extrapolation.

• Chapter 8 is a sum up of the work done in the thesis. The first part con-
tains a discussion of the approach and the techniques adopted in this thesis,
compared to previous results about the TASEP dynamical transition. The
second one restates the properties of the dynamical transition that are rel-
evant for achieving a physical understanding of this phenomenon and gives
some additional observations supported by numerical evidences.

Summary of the main results of the thesis
A general result of the thesis is the evidence of a robustness of the dynamical

transition, which does not show a strong dependence on the specific driven diffusive
model under consideration. In addition, we are going to see that new features of
this phenomenon emerge in the two models studied in this work. While for the
TASEP the slowest relaxation rate is discontinuous in the second derivative at the
dynamical transition, a new kind of transition, characterized by a discontinuity in
the first derivative of the slowest relaxation rate, occurs in a portion of the dynami-
cal phase diagram for the TASEP-LK with different attachment/detachment rates.
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Another new behaviour is observed in the AS model, where the slowest relaxation
rate undergoes two transitions under strongly attractive interactions.
Since a complete exact solution is not available for these two extensions of the
TASEP, an important aspect of this work is that we tackle the problem with dif-
ferent approaches. One method is given by cluster mean-field like approximations
(mean-field and pair), that have been applied to the TASEP in [1]: in the following
chapters we are going to see that these techniques allow to extract the significant
physical properties of driven diffusive models, concerning both the steady state and
the relaxation dynamics. Then, we adopt and extend two other methods, that are
the mDWT and the BST extrapolation of exact finite size results: the first is a
heuristic strategy based on the Domain Wall Theory [2] that is exact by construc-
tion for pure TASEP, the second is an efficient algorithm to extrapolate sequences
of finite size results to the thermodynamic limit. The latter approach was applied
in [3] to determine the slowest relaxation rate of pure TASEP and gave very ac-
curate results. The relevant point is that the results for the long time dynamical
behaviour of both models obtained by these approaches are consistent.
A last remark about the main results is that we have observed some common prop-
erties which may contribute to giving a physical interpretation of the dynamical
transition, left as an open problem in [4]. In particular, we understood that the
dynamical transition is characterized by the competition between two different re-
laxation modes, driven respectively by the boundary layer (slow phase) and by the
system bulk properties (fast phase). Then, we observed that the slow phases are
located close to coexistence regions in the phase diagram: this aspect, together
with the study of the full relaxation dynamics, allows to make a loose analogy be-
tween the slow phases and the metastability regions in equilibrium phase diagrams.
Moreover, within the cluster approximations, we observed a change in the struc-
ture of the eigenvector corresponding to the mean-field/pair approximation slowest
relaxation rate at the dynamical transition.
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Part I

State of the Art and theoretical
background

1





Chapter 1

Driven diffusive models

1.1 Asymmetric Simple Exclusion Processes
Driven diffusive models are an active research topic in nonequilibrium statistical

physics and, among them, a paradigmatic role is played by the Asymmetric Simple
Exclusion Processes (ASEPs), which are inspired by biological and vehicular traffic
phenomena. The reference model, also called Partially Asymmetric Simple Exclu-
sion Process (PASEP, see [2]), consists of a one dimensional lattice: each node can
be occupied by at most one particle and particles jump to empty nearest-neighbours
on the two sides with different rates. When the hopping is completely biased in
one direction, the model is called Totally Asymmetric Simple Exclusion Process
(TASEP): in the next section we concentrate on this particular case.
In a system with open boundaries, where particles are injected and extracted with
given rates, the behaviour of the bulk of the system at stationarity depends strongly
on these boundary rates and characterizes the phase diagram of the model. Many
steady state properties of this class of models, such as the phase diagrams and the
stationary density profiles, are known exactly (see [5, 6, 7, 8]).
Another important aspect is the study of the relaxation dynamics to the steady-
state: a dynamical transition, corresponding to a singularity in the relaxation rate
and not coinciding with any change in the steady state properties, was discovered
for the pure TASEP and exactly located in the phase diagram by de Gier and Essler
in [9]. In this work, they determined the asymptotic behaviour in the infinite size
limit of the slowest relaxation rate (called gap by the authors), which determines
the behaviour of the model at long times, close to the steady state. Then, these
results have been generalized to the partially asymmetric case in [2]. In general
terms, the dynamical transition separates a region of the phase diagram where the
relaxation rate depends only on the parameter fixing the steady state bulk density
from one or more regions where the rate depends also on another control parameter.
For the ASEPs, these parameters are the injection/extraction rate. We remark that
this transition is purely dynamical, because it does not coincide with any change
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1 – Driven diffusive models

in the steady state properties; in the next section we describe it in more detail for
the TASEP.
Given the exact results concerning both the steady state and the relaxation, the
ASEPs have become paradigmatic models in the investigation of one dimensional
transport.
Two important references on driven diffusive models are [10] and [11]. The former is
an instructive review on ASEPs in the context of nonequilibrium statistical physics,
their mathematical properties and the possible generalizations to model biological
transport. The latter is a book which starts from the same framework and focuses
on models for vehicular traffic.

1.2 Steady state and dynamical properties of the
TASEP

The TASEP was proposed in the sixties (see [12]) as a model for mRNA transla-
tion. In this case, particles can hop only in one direction from an occupied node to
the adjacent one with unit rate, if the latter is empty. We label lattice nodes from
left to right by n = 1, . . . , N and we introduce the occupation numbers νt

n ∈ {0,1},
where νt

n = 1 if node n is occupied by a particle at time t and νt
n = 0 if it is

empty. Considering k + 1 consecutive nodes, we denote by P t
n[νnνn+1 . . . νn+k] the

probability that, at time t, the occupation numbers of nodes from n to n+ k take
values νn, . . . , νn+k respectively. The occupation probability of the site n at time t
(the local density) is denoted by pn(t) = P t

n[1] = ⟨νt
n⟩, steady state local densities

are time-independent and are denoted by pn. The probability current Jn(t) from
node n to n+1 coincides with the joint probability P t

n[10] of having the former site
occupied and the latter empty, because of the unitary hopping rate.
In the system with open boundaries, particles are injected at site 1 with rate ρL,
if this is empty, and are extracted at site N with rate 1 − ρR, if the latter is oc-
cupied. One can equivalently consider a system in contact with two reservoirs of
fixed densities that inject and extract particles with rate one, thus we introduce
two auxiliary nodes n = 0, n = N + 1 and write

p0 = ρL, (1.1)
pN+1 = ρR. (1.2)

We now open a parenthesis on notation: in the literature on TASEP, the injection
rate is usually denoted by α, whereas the extraction rate by β. We choose to adopt
the notation with left and right boundary densities for conformity with the AS
model, presented in section 1.3.2. Thus, concerning the TASEP and the TASEP
with Langmuir kinetics described below, one has that ρL = α and ρR = 1 −β ≡ β′.
Here we also introduce the notation x′ ≡ 1 − x, that will be used in the following
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1.2 – Steady state and dynamical properties of the TASEP

to write more compact formulae.
The TASEP has an important property concerning the steady state distribution:
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Figure 1.1: Static (a) and dynamical (b) phase diagrams of the TASEP. The static
transitions are denoted by thick solid lines. The static phases are the high-density
(HD), characterized by bulk density q = β′ and current J = ββ′, the low-density
(LD), with q = α and J = αα′, and the maximal current (MC), where q = 1/2
and J = 1/4. The letters “s” and “f” denote respectively the slow and the fast
dynamical phases. Thick dashed lines at α = 1/2 and β = 1/2 correspond to
subphase boundaries: they separate a region (HD’/LD’) in which the approach of
the density profile to the bulk value is purely exponential, from one (LD”/HD”)
characterized by an additional power-law correction. The dynamical transition lines
are denoted by thin dotted lines.

for periodic boundary conditions and in the open boundary case with α = β′,
the stationary distribution is equivalent to the equilibrium distribution of a non-
interacting lattice gas. We give a sketch of the proof of this property at the end
of this chapter, considering a generalization of the TASEP (see section 1.3.2), for
which the equivalent equilibrium distribution is that of a one dimensional Ising
model with nearest-neighbours interactions.
The steady state of the system with open boundaries was solved exactly in the
1990s (see [5] and references therein). The static phase diagram, reported in figure
1.1a, consists of three regions (phases), characterized by the value of the uniform
current and by the bulk density, which is the limiting value of the local density
far from the boundaries: the high-density (HD), the low-density (LD) and the
maximal current (MC) phases. The high-density phase occurs for β < 1/2 and
α > β, the current is equal to J = ββ′ and the bulk density q = β′ > 1/2 extends
up to the right boundary. From the injection side, the density approaches its bulk
value with an exponential decay (HD’ region), which has additional power law

5



1 – Driven diffusive models

corrections for α ≥ 1/2 (HD” region). Since the latter transition, indicated by a
dashed line in figure 1.1a, involves a finite portion of the system, it is called subphase
transition. The TASEP is symmetric under the particle-hole transformation α ↔ β
and νn

′ ↔ νN+1−n, thus the LD phase is closely related to the HD one: for α < 1/2
and β > α, the current is J = αα′ and the bulk density q = α < 1/2 extends to
the left boundary, whereas, on the right side, the density approaches its bulk value
exponentially (LD’ region) with power-law corrections for β ≥ 1/2 (LD” region).
These two phases coexist along the line 0 < α = β < 1/2, where the densities α
and 1 − α are connected by a linear profile. The MC phase is characterized by
J = 1/4 and q = 1/2, the approach to the bulk value from both sides is power law.
These transitions can be called static, as they affect the steady state properties.
As mentioned before, the dynamical transition in the TASEP was studied exactly
by De Gier and Essler [9, 13, 2] and then observed numerically by Proeme et
al. in [4]. The slowest relaxation rate can be defined as follows. We denote by
x = {νt

1, . . . , ν
t
N} a configuration of the lattice at time t, the system can jump from

this state to a different one y with rate Wx→y. The probability P t[x] of having at
time t a given configuration x of the lattice nodes satisfies the master equation

Ṗ t[y] =
∑︂

x

Wy,xP
t[x] , (1.3)

where Wy,x are the elements of the transition matrix, defined as [14]

W =
⎧⎨⎩Wy,x = Wx→y, x /= y

Wx,x = −∑︁
z /=x Wx→z.

(1.4)

The slowest relaxation rate (or spectral gap) is the largest nonzero eigenvalue of
the transition matrix. Since the nonzero eigenvalues have negative real parts and
the largest one is real, its inverse changed of sign is the longest relaxation time. De
Gier and Essler employed the Bethe ansatz to diagonalize the transition matrix of a
PASEP with open boundary conditions, for arbitrary values of hopping and injec-
tion/extraction rates. Then, for the special case of the TASEP, they determined the
asymptotic behaviour of the slowest relaxation rate in the infinite size limit. The
functional form of this quantity characterizes the phases of the dynamical phase
diagram shown in figure 1.1b. In the regions corresponding to the LD and the HD
phases, the spectral gap remains finite in the N → ∞ limit. This implies a finite
correlation length and an exponential relaxation to the steady state. These regions
are further divided in subphases, that can be called slow (HD-s, LD-s) and fast
(HD-f, LD-f) for reasons that will be clear below, by the dynamical transition lines
(denoted by thin dotted lines in figure 1.1b), corresponding to a singularity in the
slowest relaxation rate. Considering the HD phase, for each value of β there is a
critical value of the injection rate

αc(β) =
⎡⎣1 +

(︄
β

β′

)︄1/3
⎤⎦−1

, (1.5)
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1.3 – Possible extensions of the TASEP

such that for α > αc(β) the gap is independent of α. For α < αc(β), it depends on
both α and β. The gap vanishes along the LD-HD coexistence line as a power law
of the inverse of the system size with exponent 2 and in the whole MC phase with
exponent 3/2. Despite being exactly located in the phase diagram, the dynamical
transition was not completely understood from the physical point of view, which
was left as an open question in [9].
From now on, we change of sign the transition or, in the following, the approximate
relaxation matrix and we study the smallest nonzero eigenvalue. In figure 1.2
we show the exact gap of the TASEP as a function of α for β = 0.2, this example
clarifies the choice of the adjectives slow and fast for the two regimes: for α < αc(β),
the relaxation rate depends on the injection rate and is increasing. At αc(β) the
gap reaches a maximum and becomes independent of this control parameter.
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Figure 1.2: Exact slowest relaxation rate λ1 of the TASEP as a function of α for
β = 0.2. The critical injection rate is αc(β) ≃ 0.6135.

1.3 Possible extensions of the TASEP

1.3.1 TASEP with Langmuir kinetics
The TASEP with Langmuir kinetics (TASEP-LK) is a generalization of the

TASEP in which particles can also bind to an empty node or unbind from an
occupied one at given rates. We denote the local attachment/detachment rates by
ωA and ωD respectively: in order to establish a competition between the hopping
process and the Langmuir kinetics in the large N limit, they have to scale as the

7



1 – Driven diffusive models

inverse of the size. In the following, we will use the definitions

ωA ≡ ΩA

N + 1 , ωD ≡ ΩD

N + 1 ,

where ΩA,D are the global attachment/detachment rates, which are fixed. This is a
physically interesting case, in which particles can remain on the lattice long enough
to visit a finite fraction of it and give a collective behaviour [15]. The dynamical
rules of the TASEP-LK in the bulk of the lattice (sites n = 2, . . . , N − 1) do not
conserve the number of particles, as a consequence the steady state current is no
longer uniform.
This model was first introduced in [16] as a simplified description of a specific
financial market, but it finds applications also in other very different contexts, such
as biophysics and vehicular traffic modelling (see [17, 15] and references therein). In
the original formulation, the Langmuir kinetics concerns the sites n = 2, . . . , N −1,
in our investigation we include also the sites 1 and N : this does not alter the physics
of the model, since we are adding to the injection and extraction rates a quantity
that goes to zero for N → ∞.
An exact solution is not available for the TASEP-LK, whose steady state phase
diagram has been studied at a mean-field level [17, 15], supporting the results
with Monte Carlo simulations. Such mean-field results are described in section 2.2,
discussing separately the balanced case (ωA = ωD = ω) and the unbalanced one.
Then, in chapter 5, we present our investigation of the dynamical transition.

1.3.2 Antal-Schütz model
As previously mentioned, a possible application of driven lattice gases with

open boundaries is to model the traffic flow of cars on a road segment between
two junctions. In order to build a more realistic model for this purpose, Antal
and Schütz proposed in [18] a TASEP in which the hopping rate depends on the
occupation state of the next-nearest neighbour node in the direction of motion,
yielding short-range interactions. If the site n is occupied and the site n + 1 is
empty, the possible transitions are

101 → 011 with rate η, (1.6)
100 → 010 with rate θ. (1.7)

Thus, the probability current from node n to node n + 1 at time t can be written
as

J t
n =

⟨︂
νt

nν
t
n+1

′ [︂
ηνt

n+2 + θνt
n+2

′]︂⟩︂
= ηP t

n[101] + θP t
n[100], n = 1, . . . , N − 2.

(1.8)

When η < θ the interaction is repulsive, whereas the case η > θ corresponds to
an attractive interaction. The TASEP dynamics is obtained in the special case
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1.3 – Possible extensions of the TASEP

η = θ = 1. Actually this model is a particular case of a class of driven diffusive sys-
tems previously introduced by Katz, Lebowitz and Spohn (KLS) in [19] and shares
with several of them the property of equivalence of the steady state distribution
with the equilibrium one for a 1D Ising model with nearest neighbours interactions
mentioned above (section 1.2), generalizing that of pure TASEP. In this case, the
problem with open boundaries requires a particular choice, called bulk-adapted and
explained in the following, of the injection and extraction rates, with ρL = ρR = q
as before. Under this hypothesis, the exact bulk current-density relation is given
by

J(q) = θq

⎡⎣1 +

√︂
1 − 4qq′(1 − η

θ
) − 1

2q′
(︂
1 − η

θ

)︂
⎤⎦ . (1.9)

In this case, defining the boundary conditions for an open system requires some
more care. One can consider the coupling of a semi-infinite lattice at site 1 with a
reservoir of fixed density q = ρL: in general, the interaction of the particles with
the boundary is different from the interactions that they have among themselves
in the bulk, this gives rise to a boundary layer starting at ρL and approaching an
effective boundary density q = ρ−. Such boundary layer is non-universal, because
it depends on the coupling mechanism and on the kind of particle interaction. The
same argument holds for an effective boundary density ρ+, when coupling a semi-
infinite lattice at site N with a reservoir of constant density q = ρR. Thus, the
bulk behaviour of the system in the steady state is determined by ρ− and ρ+. The
bulk-adapted rates are defined in such a way that they would satisfy ρL = ρ−
and ρR = ρ+ for a semi-infinite system, as a consequence the relations between
correlators and densities at the boundaries are the same as in the bulk. Here we
give their expression in terms of the current-density relation (1.9) (see [18]), then,
in the next chapter, we reobtain these results within the pair approximation. At
the left boundary, the injection rate depends on the occupation of node 2: α1
(respectively α2) is the injection rate when the latter node is occupied (respectively
empty). Imposing the condition of a uniform density q = ρL for a semi-infinite
system n = 1,2, . . . ,∞ in the steady state, they are defined as

α1 = η

[︄
1 − J(ρL)

θρL

]︄
, α2 = θ

[︄
1 − J(ρL)

θρL

]︄
. (1.10)

At the right boundary, the hopping from site N − 1 and the extraction from site N
need to be specified, the corresponding rates are denoted by β1 and β2 respectively.
Imposing again the condition that a uniform density q = ρR is obtained in the
steady state of a semi-infinite lattice n = −∞, . . . , N − 1, N , the boundary rates
are given by

β1 = J(ρR)
ρR

′

[︄
1 − J(ρR)

θρR

]︄−1

, β2 = J(ρR)
ρR

. (1.11)
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1 – Driven diffusive models

With this choice for the boundary conditions, the exact static phase diagram of
the model is predicted by the theory of boundary induced phase transitions (see
[20]). At fixed values of η and θ, the parameters of the phase diagram are ρL and
ρR

′; figure 1.3 (b) shows an example for the repulsive case (η = 0.1 and θ = 1),
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(a) Bulk current-density relation (1.9).
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Figure 1.3: AS model, repulsive case η = 0.1 and θ = 1.

the corresponding current-density function is reported on the left. As for pure
TASEP, the phase diagram of the AS model consists of the HD, LD and MC
phase regions. In the LD phase the steady state has a bulk density equal to ρL

extending to the left with a boundary layer on the right side, whereas in the HD
phase the bulk density ρR extends to the right with a boundary layer on the left.
The coexistence line separating the low and the high density phases is given by the
condition J(ρL) = J(ρR), the bulk density profile jumps discontinuously from ρL to
ρR. The transition between the LD and the HD phases predicted by driven diffusive
models reproduces an experimental finding in [21] from an analysis of traffic data
collected on a German highway: considering a section where the number of lanes
is reduced, the transition between the free flow and the congested traffic regimes is
signalled by a sudden decrease in the average velocity (and thus an increase in the
local density), while the flow of cars (the current) remains practically constant. The
MC phase is characterized by the bulk density q∗, corresponding to the maximum
in the current-density plot, with boundary layers at both ends. The transitions
to this phase from the LD and the HD phases are continuous in the bulk density
and are given by the conditions ρL = q∗ and ρR = q∗ respectively. In the presence
of strongly attractive interactions, i.e. for η sufficiently larger than θ, Antal and
Schütz predicted the appearance of a fourth phase in the region at large ρL and ρR

close to zero. This phenomenon was observed within a mean-field approximation
of the model and was then confirmed by Monte Carlo simulations. The stationary
density profile of this phase has a central bulk region with two boundary layers
as the maximal current one, however the bulk density is not equal to any of the

10



1.3 – Possible extensions of the TASEP

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  0.2  0.4  0.6  0.8  1

J
(q

)

q

(a) Bulk current-density relation (1.9).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

HD

MC

LD

ρ
R

’

ρL

(b) Static phase diagram.

Figure 1.4: AS model, attractive case η = 1 and θ = 0.1. The boundaries of the
HDIV phase were determined by kinetic Monte Carlo simulations (see 4.1).

boundary densities, it is independent of ρL and depends on ρR as in the HD phase
(for this reason, we will denote the fourth phase by HDIV ). The transition (called
reentrant by the authors) to this phase is discontinuous from the LD phase and
continuous from the MC one.
In the next chapter (see section 2.3) we shall see a suitable approximation for this
model, that reproduces the bulk current-density relation (1.9) and the location of
most static phase transitions. Then, in chapter 7 we shall present our research
contribution about the existence of dynamical transitions in this model.
We note that recently dynamical transitions have been observed for a 1D KLS
model in [22].
We conclude this section with a derivation [23] of the property mentioned above
about the steady state distribution of several models in the KLS class (including
the TASEP as a particular case), focusing on the AS model. The (dimensionless)
Hamiltonian of the lattice gas is given by

H(x) = V
∑︂

n

νnνn+1, (1.12)

where V is the nearest-neighbour interaction: V > 0 (respectively V < 0) for
repulsive (resp. attractive) interactions. We denote the hopping rates by Γ(νn+2):
if they satisfy the relation

Γ(1) = Γ(0)e−V , (1.13)
the steady state distribution of the system is equivalent to the equilibrium Boltz-
mann distribution for a lattice gas with the above Hamiltonian.
Recalling the master equation (1.3), for this process the transition rates can be
written as

Wx→y =
∑︂

n

νnνn+1
′δy,x(n,n+1)Γ(νn+2), (1.14)
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1 – Driven diffusive models

where the configuration x(n,n+1) has the occupations νn and νn+1 interchanged and
all the others equal. Substituting (1.14) into the master equation, in the steady
state one obtains

0 =
∑︂

n

[︂
ν ′

nνn+1P [x(n,n+1)] − νnν
′
n+1P [x]

]︂
Γ(νn+2). (1.15)

Using the hypothesis P [x] ∝ exp[−H(x)], it is possible to write

P [x(n,n+1)]
P [x] = exp [−V (νn+1 − νn) (νn−1 − νn+2)] . (1.16)

Plugging this into the master equation, one gets

0 =
∑︂

n

[︂
ν ′

nνn+1e
−V (νn+1−νn)(νn−1−νn+2) − νnν

′
n+1

]︂
Γ(νn+2). (1.17)

Now we introduce the frequencies for the possible sequences of the occupation
numbers {νn−1, νn, νn+1, νn+2}: for example, the frequency of the sequence {0,0,1,0}
is F0010 = ∑︁

n ν
′
n−1ν

′
nνn+1ν

′
n+2. The equation (1.17) becomes

0 =
[︂
F0010 − F0100

]︂
Γ(0) +

[︂
F1010e

−V − F1100
]︂
Γ(0)+

+
[︂
F0011e

V − F0101
]︂
Γ(1) +

[︂
F1011 − F1101

]︂
Γ(1). (1.18)

Using the identity ν ′
n ≡ 1 −νn, one can express the eight frequencies in terms of six

irreducible quantities: F11 = ∑︁
n νn−1νn, F1_1 = ∑︁

n νn−1νn+1, F111 = ∑︁
n νn−1νnνn+1,

F1_11 = ∑︁
n νn−1νn+1νn+2, F11_1 = ∑︁

n νn−1νnνn+2 and F1111 = ∑︁
n νn−1νnνn+1νn+2.

Rewriting the square brackets in (1.18) and collecting the terms corresponding to
each irreducible frequency, one arrives at

0 = F11
[︂
Γ(0) − eV Γ(1)

]︂
+ F1_1

[︂
Γ(1) − e−V Γ(0)

]︂
+

+
(︂
F111 + F11_1

)︂[︂
e−V Γ(0) + eV Γ(1) − Γ(0) − Γ(1)

]︂
+

+ F1111
[︂
Γ(0) − e−V Γ(0) + Γ(1) − eV Γ(1)

]︂
. (1.19)

We observe that this equation is satisfied for all configurations x if the rates obey to
eq. (1.13). This condition holds for the AS model , where e−V = η/θ = Γ(1)/Γ(0).

12



Chapter 2

Cluster mean-field approximations

2.1 Introduction and motivation
The basic idea of the cluster mean-field like approximations is to express the

probability distribution of a lattice model as a suitable product of local marginals.
We motivate this assumption with an application to the TASEP: we consider a
cluster of k + 1 consecutive nodes and use the same notation introduced in 1.2 for
the probability associated to the occupation numbers at time t. At the boundaries
we introduce two auxiliary nodes acting as reservoirs and we assume that

P t
0[1ν1 . . . νn] ≡ αP t

1[ν1 . . . νn], (2.1)
P t

n[νn . . . νN0] ≡ βP t
n[νn . . . νN ], n = 1, . . . , N. (2.2)

One can write exact time evolution equations for the probability marginals. For
single site clusters one obtains

Ṗ t
n[1] = ṗn(t) = P t

n−1[10] − P t
n[10] = Jn−1(t) − Jn(t), n = 1, . . . , N, (2.3)

where P t
n[10] ≡ J t

n as already mentioned. The evolution of the latter two-node
probabilities depends on three-node marginals (see the end of this section)

Ṗ t
n[10] = P t

n−1[100] + P t
n[110] − P t

n[10], n = 1, . . . , N − 1. (2.4)

Proceeding in this way, an infinite hierarchy of equations depending at each step
on larger cluster marginals is obtained. The cluster approximations are introduced
to close this set of equations. The simplest approximation is the mean-field one
and corresponds to completely neglecting the correlations between adjacent nodes

P t
n[νnνn+1] = P t

n[νn]P t
n+1[νn+1] . (2.5)

Apart from the subphase boundaries, the mean-field approximation of the TASEP
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Figure 2.1: Exact (dash-dotted line) and mean-field (solid line) density profiles for
the TASEP.

reproduces the exact static phase diagram [5]. In figure 2.1 we show the mean-
field profile, denoted by a solid line, together with the exact one (dashed dotted
line) in the HD (α = 0.3, β = 0.2) and in the MC phase (α = 0.6, β = 0.6):
one can see that the approximation reproduces the correct bulk value. Moreover,
recently in [1] it was shown that this approximation gives a dynamical transition
line in good qualitative agreement with the exact one. In figure 2.2 we show the
approximate dynamical transition line together with the exact one in the TASEP
phase diagram. The mean-field theory for the TASEP reveals also a qualitative
change in the spectrum of the relaxation matrix at the dynamical transition. In
the fast phase (α > αc(β)), the eigenvalues seem to tend to a continuous band in
the infinite size limit. The smallest eigenvalue λ1, which corresponds to the relevant
relaxation mode when the system approaches the steady state, is constant and joins
the band in the fast phase, whereas it detaches from the rest of the spectrum in
the slow phase. We report an example of the bottom part of the spectrum of the
mean-field relaxation matrix in figure 2.3, for a lattice of N = 100 nodes and at
β = 0.2.

A more accurate approximation can be obtained by taking into account the
correlations between adjacent nodes, assuming that, at any time t, the marginals
with three or more sites factor as

P t
n[νnνn+1 . . . νn+k−1] =

∏︁n+k−2
l=n P t

l [νlνl+1]∏︁n+k−2
l=n+1 P

t
l [νl]

. (2.6)

This approximation is exact for the 1D Ising model at equilibrium (see [24] and
references therein), thus, recalling the property explained in section 1.3.2, it repro-
duces the location of most static phase transitions for a system with bulk-adapted
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Figure 2.3: The first 10 eigenvalues of the mean-field relaxation matrix of the
TASEP as a function of α, for N = 100 and β = 0.2. The line connecting the
values of λ1 is a guide for the eye.

boundary rates.
Focusing on one-dimensional systems, the authors of the work in [25] discuss a
class of (n,m) cluster approximation methods, where n is the cluster size and m
the degree of overlap, and observe that the (n, n − 1) case is the most accurate one.
The pair approximation corresponds to the (2,1) scheme of this work.
In the second part of the thesis we present how these two approximate methods
have been used to investigate the dynamical transitions in the TASEP-LK and in
the AS model.
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2 – Cluster mean-field approximations

We conclude this section observing that an easy way to write the dynamical equa-
tions for the marginal cluster probabilities consists in writing all the possible tran-
sitions leading to the desired configuration and departing from it. As an exam-
ple, with reference to the time evolution equations for the local currents (2.4),
the transitions leading to the configuration with node n occupied and node n + 1
empty are (νn−1 = 1, νn = 0, νn+1 = 0) → (νn−1 = 0, νn = 1, νn+1 = 0) and
(νn = 1, νn+1 = 1, νn+2 = 0) → (νn = 1, νn+1 = 0, νn+2 = 1), then the system can
depart from this configuration if the particle on site n jumps to the adjacent one.
In appendix A we show in detail the derivation of the same result from the master
equation and we generalize it for the AS model.
In this chapter we describe the cluster approximations for the TASEP-LK and the
AS model. The former model has no interactions apart from hard core exclusions
(no more than one particle on each site), thus the ordinary mean-field theory is
accurate. The latter model exhibits correlations in the steady state, thus we adopt
the pair approximation, which, under the choice mentioned in section 1.3.2 for
the boundary conditions, reproduces the exact bulk current-density relation and
consequently the location of almost all static transitions.

2.2 Mean-field steady state properties of the
TASEP-LK

The static phase diagram of the TASEP-LK has been investigated at a mean-
field level in [15] by Parmeggiani, Franosch and Frey, who claim its exactness on
the basis of Monte Carlo simulations, as was proven for pure TASEP. Using the
notation introduced in 1.2, we describe the mean-field theory for the model. The
time evolution equations for the local densities are given by

ṗn(t) = Jn−1(t) − Jn(t) + ωAp
′
n(t) − ωDpn(t), n = 1, . . . , N. (2.7)

Introducing the mean-field approximation and recalling the boundary conditions
(1.1) and (1.2), one has the following current-density relation

Jn(t) ≡ pn(t)p′
n+1(t), n = 0, . . . , N. (2.8)

In the steady state, the equations (2.7) with the assumption (2.8) can be written
in the form

pn (pn+1
′ + ωD) = (pn−1 + ωA) pn

′, n = 1, . . . , N. (2.9)
In section 5.1 we shall see that the latter equations can be solved by expressing
them in a fixed-point scheme and that they admit a unique solution in which all
the local densities are strictly between zero and one (see [26] for the details of the
derivation). We give a remark on the bulk solution: in [15], this is the solution
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2.2 – Mean-field steady state properties of the TASEP-LK

of a first order differential equation in the hydrodynamic limit, but it has also an
important physical meaning, because it is related to the behaviour of the current in
the system, which is not influenced by the boundary layers. Thus, the bulk profile
intervenes both in the static and in the dynamical phase transitions.
In the following, we describe the mean-field steady state properties of the model
in the balanced (ωA = ωD) and the unbalanced (ωA /= ωD) cases separately. We
note that the particle-hole simmetry for the TASEP-LK is modified taking into
account that also the attachment of a particle can be viewed as the detachment
of a vacancy and viceversa, thus the model is simmetric under the transformation
α ↔ β, νn

′ ↔ νN+1−n (which at the mean-field level becomes pn
′ ↔ pN+1−n) and

ωA ↔ ωD. For this reason, the discussion of the unbalanced version can be restricted
to the case ωA > ωD. In this context, we introduce the density of the Langmuir
isotherm, which will appear frequently in the steady state and then in the dynamical
properties of the model: it is the value of the density reached at the equilibrium
condition between the attachment and the detachment of particles in the Langmuir
kinetics

l = ΩA

ΩA + ΩD

. (2.10)

The name comes from the equation proposed by Irving Langmuir to describe the
variation at fixed temperature in the adsorption of gaseous molecules on a surface
with active sites as a function of the pressure. In the following we will call it
Langmuir density.

2.2.1 The balanced case
In figure 2.4 we show the static phase diagram for Ω = (N + 1)ω = 0.2 (recall

that ω scales as the inverse of the size, so that Ω is of order 1). The main new
feature with respect to the phase diagram of the pure TASEP is the presence of
parameter regions where the pure phases (HD, LD, MC) coexist and in one case
(LD-HD region) they are separated by a stable and localized domain wall. This
entails a shrinking of the HD and LD pure-phase regions: the pure HD phase is
defined by the following inequalities on the model parameters

1/2 > Ω ≥ 0 , (2.11)
1/2 − Ω > β > 0 , (2.12)

α > β + Ω . (2.13)

In the large N limit, the density profile is almost completely described by a bulk
solution being a linear function of the node index n with slope ω and satisfying
the right-boundary condition (1.2). Unless one chooses α = (β + Ω)′, resulting in a
completely linear profile, the mismatch with the left-boundary condition (1.1) gives
rise to a boundary layer, such that the local density approaches exponentially the
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2 – Cluster mean-field approximations

bulk solution, with the characteristic length of the exponential remaining finite as
N grows to infinity. Even if the bulk density is no longer constant as it was for the
TASEP, the HD phase is again characterized by bulk values greater than 1/2. The
current profile has its maximum value at the left boundary and is strictly decreas-
ing. In section 5.2.1 we present a formal derivation of the mean-field solution for
the density and current profiles in the HD phase. The LD phase is delimited by
analogous inequalities obtained by exchanging α with β1, the density profile has
a linear bulk with slope ω matching the left boundary condition and a boundary
layer on the right. In the MC phase, the profile has a central bulk with density
1/2 and two boundary layers. In the balanced case, the Langmuir density coincides
with the maximal current one.
We note that pure HD and LD phases exist only if Ω < 1/2 and their displacement
with respect to the pure TASEP ones can be obtained by the mapping β → β + Ω
(for the HD) and α → α + Ω (for the LD). In chapter 5 we will see that such a map-
ping plays a central role in the change of several properties from the pure TASEP
to the symmetric TASEP-LK. The LD and the HD phases are separated from each
other and from the MC one by two-phase coexistence regions (LD-HD,LD-MC,HD-
MC), which are in turn contiguous to a three-phase coexistence area (LD-MC-HD).
In the density profile of the LD-HD coexistence region, one observes a domain wall
that connects the low and the high density bulk solutions, we show an example
in figure 2.5a. This corresponds to a kink in the current profile (figure 2.5b): the
strict monotonicity of the latter profile entails the localization of the domain wall.
The coexistences with the MC phase are characterized by the presence of a region
of density 1/2, which is connected to the bulk profile of the coexisting phase (figure
2.6a) without discontinuities. Across all the transition lines, the density profile
evolves continuously from one phase to the other.

2.2.2 The unbalanced case
In figure 2.7 we show the static phase diagram for ΩA = 0.2 and ΩD = 0.1.

As mentioned before for the particle-hole transformation, it is no more symmetric
with respect to the line β = α. Between the LD phase on the left side and the HD
and MC phases on the right side, there are two-phase coexistence regions, where
the coexisting phases are separated by a stable and localized domain wall in the
steady state: the coexistence is between the low- and the high density phases for
β < 1/2, between the low-density and the maximal current phases for β ≥ 1/2,
the transition is denoted by a dotted line. Increasing ΩA, the pure LD phase
progressively disappears.
In the HD (respectively in the LD) phase, the bulk density profile depends only

1In this case ωA = ωD, so that the model symmetry is the same as that of pure TASEP.
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Figure 2.4: Static phase diagram of the TASEP-LK in the balanced case (Ω = 0.2).
The pure phases are separated by coexistence regions (LD-HD, LD-MC, MC-HD
and LD/MC/HD).
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Figure 2.5: LD-HD coexistence region for the TASEP-LK balanced, α = 0.3, β =
0.2,Ω = 0.2.

on the extraction (respectively the injection) rate and extends to the right (resp.
left) boundary. The bulk profile of the MC phase is independent of α and β. At
odds with the pure TASEP and the balanced case of the TASEP-LK, it is no more
uniform: the density reaches the value 1/2 (and the current the maximum value
1/4) at the right boundary (see figures 2.8a, 2.8b). This profile evolves continuously
into the HD one for β < 1/2, the transition is denoted by a dashed line in figure
2.7. The right borders of the coexistence regions, indicated by a solid line, are given
by those values of α for which the domain wall reaches the left end of the system,
leaving the steady state in the HD or in the MC phase, depending on the value of
the extraction rate. If one decreases α starting from the coexistence regions, the
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Figure 2.6: Three-phases coexistence region, α = 0.45, β = 0.45,Ω = 0.2.
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Figure 2.7: Phase diagram of the TASEP-LK in the unbalanced case (ΩA = 0.2 and
ΩD = 0.1). The two-phases coexistence regions LD/HD and LD/MC are delimited
by a dotted line at β = 1/2, the borders with the LD phase are given by the α
values such that the domain wall separating the coexisting phases reaches the right
boundary: the domain wall amplitude decreases with increasing β and vanishes
while reaching the right end of the system for β ≥ 1/2, the transition is denoted by
a dashed dotted line. The dashed line at β = 1/2 denotes a continuous transition
in the density profile between the HD and MC phase regions.

domain wall moves to the right and leaves the steady state in the LD when arriving
at the boundary. Moving along this transition line, it was observed that the domain
wall ampitude decreases with increasing β and vanishes continuously at β = 1/2.
For greater values of the extraction rate, the domain wall amplitude vanishes while
reaching the right boundary, the transition is denoted by a dash-dotted line.

Focusing on the high-density phase, the stationary profile approaches the bulk
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Figure 2.8: MC phase for the TASEP-LK unbalanced, α = 0.5, β = 0.7, ΩA =
0.2, ΩD = 0.1.

exponentially and can be computed by solving numerically the mean-field equations
(2.9) with the boundary conditions (1.1) and (1.2). There exists also an analytical
expression for the bulk profile in terms of the real 0-branch of the Lambert W
function [27], which is valid in the N → ∞ limit; for this case we do not have
an analytical form for the bulk density profile at finite size. However, as one can
see from figure 2.9, this expression is accurate even for rather small N . One can
observe that for β′ > l, the bulk profile is completely above the Langmuir density
and increasing, whereas for β′ < l it is all below l and decreasing. For β′ = l this
profile is constant on the value of the Langmuir density. The details on the analytic
solution for the asymptotic bulk density profile are given in chapter 5.

2.3 Pair approximation for the AS model
To develop the pair approximation for the AS model, one can express the two-

node marginal P t
n[νnνn+1], n = 1, . . . , N−1 in terms of three parameters: we choose

the two local densities pn(t), pn+1(t) and the pair probability Cn(t) = P t
n[10], the

remaining two-node marginals are

P t
n[00] = 1 − pn+1(t) − Cn(t), (2.14)
P t

n[01] = pn+1(t) − pn(t) + Cn(t), (2.15)
P t

n[11] = pn(t) − Cn(t). (2.16)
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Figure 2.9: Steady state local density profile pn for a lattice of N = 50 nodes
and the following parameter values: ΩA = 0.3, ΩD = 0.1, α = 0.65, β = 0.1
(upper curve) and β = 0.3 (lower curve). The numerical results are denoted by the
symbols, whereas the solid and dashed lines denote respectively the full analytical
expression and the bulk term. The thin horizontal line corresponds to the Langmuir
density (2.10).

Applying the factorization (2.6) to (1.8), the current can then be expressed as a
function of pt

n and Cn(t). The currents at the boundaries are

J0(t) = α1P
t
1[01] + α2P

t
1[00], (2.17)

JN−1(t) = β1P
t
N−1[10], (2.18)

JN(t) = β2pn(t) (2.19)

We can thus write the dynamical equations for the local densities

ṗn(t) = Jn−1(t) − Jn(t), n = 1, . . . , N. (2.20)

We now write the time evolution equations for the two-node expectations, it is
understood that the k-node marginals with k ≥ 3 must factor according to (2.6).
In the interior of the lattice (n = 2, . . . , N − 3) we get (see appendix A for a
derivation)

Ċn(t) = θP t
n−1[100] + ηP t

n[1101] + θP t
n[1100] − Jn(t) (2.21)

and at the boundaries we have

Ċ1(t) = α2P
t
1[00] + ηP t

1[1101] + θP t
1[1100] − J1(t), (2.22)

ĊN−2(t) = θP t
N−3[100] + β1P

t
N−2[110] − JN−2(t), (2.23)

ĊN−1(t) = θP t
N−2[100] + β2P

t
N−1[11] − JN−1(t). (2.24)
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This approach can be viewed as an extension of the Markov chain approach to
kinetics (MCAK) introduced for a model in the KLS class (see [23] and references
therein): the latter approximation assumes that, at any time, the correlators Cn(t)
are related to the local densities in the same way as they do in the steady state.
The continuity equation (2.20) implies a uniform current in the steady state (Jn−1 =
Jn = J), therefore we look for a bulk solution (sufficiently far from the boundaries)
where the densities and the two-node correlators are position independent. Using
the condition Ċn(t) = 0 together with the expression (1.8) for the current in (2.21)
and dropping all the indices, we get

0 = ηP [1101] + θP [1100] − ηP [101]
= θP [1100] − ηP [0101].

(2.25)

Applying the factorization (2.6) and using the expressions for correlators (2.14) -
(2.16), we have

0 = θ
(q − C)C (q′ − C)

qq′ − η
C3

qq′ .

We solve with respect to C, obtaining the solutions

C± =
1 ±

√︂
1 − 4qq′(1 − η/θ)
2(1 − η/θ) . (2.26)

The solution C+ is non-negative only if η < θ, but even in this case it must be
rejected. Indeed we note that in this limit the correlators have the property

P [01] + P [00] = 1 − q,

P [10] + P [00] = 1 − q, (2.27)

that implies P [01] = P [10] < 1/2. For fixed 0 < η < θ, the solution C+ is always
greater than 1/2. For the mimimum in q = 1/2, we have

Cmin
+ − 1

2 =
1 +

√︂
η
θ

2
(︂
1 − η

θ

)︂ − 1
2 =

√︂
η
θ

2
(︂
1 −

√︂
η
θ

)︂ > 0 .

The current corresponding to the bulk solution C = C− is

J(q) = η
P [10]P [01]

q′ + θ
P [10]P [00]

q′

= η
C2

q′ + θ
C(q + C)′

q′

= θq

(︄
1 − C

q′

)︄
.

(2.28)
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Substituting the expression for C, it is easy to see that this result is equivalent to
(1.9): the bulk current-density relation in the pair approximation is exact. As was
mentioned in section 1.3.2, this property comes from the equivalence between the
steady state distribution of the AS model and the equilibrium distribution of a 1D
Ising model with nearest neighbours interactions, under a suitable choice for the
boundary conditions.
Now, we derive the expressions for the bulk-adapted rates: we consider the
conditional probability of having the node n occupied given the configuration
{νn+1 = 0, νn+2} in the steady state of a bulk system with density q, P [1|0νn+2] =
P [10νn+2]/P [0νn+2]. To write the injection rates (1.10), we weight the hopping
rates with the probabilities of having the left auxiliary node occupied given the
configuration {ν1 = 0, ν2}, in a semi-infinite lattice with density q = ρL: for ν2 = 1
we have

α1 = ηP [1|01] = η
P [101]
P [01] = η

C

1 − ρL

= η

(︄
1 − J(ρL)

θρL

)︄
, (2.29)

whereas for ν2 = 0 we get

α2 = θP [1|00] = θ
P [100]
P [00] = θ

C

1 − ρL

= θ

(︄
1 − J(ρL)

θρL

)︄
. (2.30)

As far as the hopping from node N − 1 to node N is concerned, we weight the
hopping rates η and θ with the conditional probabilities of having the auxiliary node
N+1 occupied and empty respectively, given the configuration {νN−1 = 1, νN = 0}
in a semi-infinite lattice with density q = ρR

β1 = ηP [1|01] + θP [0|01] = η
P [101]
P [01] + θ

P [100]
P [01] = J(ρR)

C
, (2.31)

where the order of the nodes in the conditional probabilities is reversed. Doing the
same reasoning for the conditional probabilities of the configuration of the auxiliary
nodes {νN+1 = 0, νN+2} given νN = 1, the extraction rate from node N is given by

β2 = ηP [10|1] + θP [00|1] = η
P [101]
ρR

+ θ
P [100]
ρR

= J(ρR)
ρR

. (2.32)

Inserting the bulk-adapted rates with ρL = ρR = q into the boundary currents
(2.19), by simple algebra we realize that J0 = JN−1 = JN = J(q) and, from the
equations (2.22)-(2.24), we obtain Ċ1(t) = ĊN−2(t) = ĊN−1(t) = 0. The pair
approximation with this choice for the boundary rates yields a steady state with the
exact bulk current-density relation at any finite size N , as a consequence it repro-
duces the exact location of most static phase transitions. As mentioned in 1.3.2, for
strongly attractive interactions, a fourth phase behaving as a high-density is found
in the corner of the phase diagram at large ρL and small ρR. This phenomenon is
reproduced by the pair approximation: the bulk density q̄IV of the HDIV phase is
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Figure 2.10: Density profile in the fourth phase (η = 1, θ = 0.1) predicted by the
pair approximation (red line) and by the kinetic Monte Carlo simulation (blue line),
ρL = 0.9, ρR = 0.0005.

slightly larger than that of the MC phase q∗ and depends only on ρR, the transition
between the HDIV and the MC phase is continuous as a function of the bulk density
and is given by the condition q̄IV = q∗, whereas the transition between the fourth
phase and the LD one is discontinuous and given by the condition J

(︂
q̄IV

)︂
= J (ρL).

Since q̄IV is neither equal to the boundary densities nor to p∗, we cannot expect
the density profile of the HDIV phase, and as a consequence the phase boundaries,
to be exact: in figure 2.10 we show a comparison between the approximate profile
obtained by evolving the dynamical equations (2.20)-(2.21) and the profile given by
the kinetic Monte Carlo (for the details of this simulation technique see section 4.1).
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Chapter 3

The Domain Wall Theory

The Domain Wall Theory (DWT) [3, 28] is a simplified approach to describe
the long time relaxational dynamics of driven diffusive models. For the TASEP,
it reproduces the static phase boundaries and the exact slowest relaxation rate in
a portion of the phase diagram. The DWT is a coarse graining approach which
reduces the collective dynamics to the motion of a single coordinate, the position
of an interface between two domains with constant densities ρL and ρR. At the
microscopic level, the wall is described as a random walker that hops to the left
with rate DL and to the right with rate DR, but cannot leave the system because
of the fixed boundary densities. The hopping rates are obtained by equating the

ρL

ρR

DL DRp
n

n

Figure 3.1: Schematic illustration of a domain wall at site n separating a homoge-
noeus region of low density ρL from a domain of high-density ρR. The wall jumps
one node to the left with rate DL and to the right with rate DR

mass fluxes into and out of the wall. Assuming that ρR > ρL as in figure 3.1, we
have

DL,R = J(ρL,R)
ρR − ρL

. (3.1)
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When the two currents are different, the random walk is biased with mean velocity

vs = DR −DL = J(ρR) − J(ρL)
ρR − ρL

; (3.2)

if this velocity is negative, the bulk of the system reaches the high-density ρR in the
steady state, otherwise it relaxes to the low-density ρL. A discontinuous transition
in the bulk density occurs when J(ρL) = J(ρR): in this case the system shows a
coexistence of the low- and high-density phases.
Considering a system of N sites, we identify the position of the domain wall with
a lattice site n: the set {n+ 1, . . . , N} has density ρR, while {1, . . . , n− 1} has
density ρL. When n = 1, the system is in the high-density phase, while n = N
corresponds to the low-density phase. One studies the domain wall dynamics in
the bulk of a large system, for ρL < 1/2 and ρR > 1/2, under the assumption that
all sites have the same values for the hopping rates. As previously mentioned, since
the boundary densities are fixed, the domain wall can never leave the system: the
site n = 1 has zero left hopping rate and right hopping rate DR, whereas the site
n = N has left hopping rate DL and zero right hopping rate. The dynamics for the
probability distribution of the position of the interface is described by the following
master equation:⎧⎪⎪⎨⎪⎪⎩

Ṗ1(t) = DLP2(t) −DRP1(t), (3.3a)
Ṗn(t) = DLPn+1(t) +DRPn−1(t) − (DL +DR)Pn(t), (3.3b)
ṖN(t) = DRPN−1(t) −DLPN(t), (3.3c)

where n = 2, . . . , N − 1. One can now consider an equivalent form by including the
sites n = 1 and n = N in (3.3b) and replacing (3.3a) and (3.3c) with the boundary
conditions

DLP1(t) = DRP0(t), (3.4)
DLPN+1(t) = DRPN(t), ∀t. (3.5)

The coefficient matrix of this system of ordinary differential equations is tridiagonal
and quasi-Toeplitz (apart from the elements corresponding to the sites n = 1 and
n = N , it has the Toeplitz property). This matrix has N real eigenvalues, because
it can be transformed into a similar symmetric one, exploiting the fact that the
off-diagonal elements never change sign; we describe the similarity transformation
at the end of the chapter. A general solution has the form

Pn(t) =
∑︂

λ∈{λ1,...,λN }
P (λ)

n e−λt (3.6)

Plugging (3.6) into (3.3b), one obtains a system of second order difference equations
for the amplitudes P (λ)

n and studies the solutions of the associated characteristic
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equation. When this equation admits two distinct solutions ξ and ψ, the amplitudes
are given by

P (λ)
n = Aξn +Bψn

and, using the boundary conditions (3.4) and (3.5), one arrives at the system⎧⎨⎩A
(︂
ξN − ψN

)︂
(DR −DLξ) = 0

B
(︂
ξN − ψN

)︂
(DR −DLψ) = 0

(3.7)

The possible solutions are A /= 0, B = 0 and ξ = DR

DL
or A = 0, B /= 0 and ψ = DR

DL
.

The stationary probability distribution, corresponding to λ = 0, has the form

Pn ∝
(︃
DR

DL

)︃n

. (3.8)

In the degenerate case with two real coincident solutions ξ = ψ = ζ, the amplitudes
are written in the form

P (λ)
n = Aζn +Bnζn,

but, from the boundary conditions, it turns out that B = 0. The characteristic
equation has solutions ζ =

√︂
DR

DL
, which do not satisfy the boundary conditions.

Then, one considers the case in which the characteristic equation has two complex
conjugate solutions ξ = reiϕ and ψ = re−iϕ(A /= 0 and B /= 0). Solving the
equation ξN = ψN , it turns out that ϕ = kπ/N with k ∈ Z, but the values ϕ = 0
and ϕ = π correspond to the cases with coincident solutions ξ = ψ = r =

√︂
DR

DL
and

ξ = ψ = −r respectively, which have been rejected. Thence, the independent valid
solutions are for k = 1, . . . , N − 1. Plugging them into the characteristic equation,
one derives the relaxation spectrum

λk = DL +DR − 2
√︂
DLDR cos

(︄
kπ

N

)︄
. (3.9)

Thus, in the infinite size limit, the slowest relaxation rate is

λDW T = DL +DR − 2
√︂
DLDR. (3.10)

This quantity is finite for a biased random walk and goes to zero along the coex-
istence line (DL = DR, critical slowing down).
The DWT rate turns out be exact for pure TASEP in the slow phases, i.e. in the
HD-s and LD-s regions of the phase diagram in figure 1.1b, and the dynamical
transition corresponds to the maximum rate, but, for α > αc(β), the rate detaches
from the exact solution. De Gier and Essler [2] proposed a Modified Domain Wall
Theory, which amounts to taking the DWT rate in the slow phase and the maxi-
mum rate in the fast one (see figure 3.2): this is a heuristic strategy and, for this
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Figure 3.2: DWT rate (red line) and mDWT solution (black dashed line) for the
TASEP at ρR = 1 − β = 0.8, as a function of ρL = α. The critical injection rate
αc(β) ≃ 0.6135 is exact.

model, it is exact by construction.
This approach is used in chapter 7, together with the pair approximation and the
Bulirsch-Stoer extrapolation of exact finite size results, to investigate the dynami-
cal transitions in the AS model. In section 6.1 we present a generalization of the
mDWT to the TASEP-LK.

3.0.1 Similarity transformation for Jacobi matrices
We illustrate the similarity transformation for the coefficient matrix of the mas-

ter equation in (3.3a)-(3.3c). We will see again this symmetrization in section 5.1,
when dealing with the mean-field relaxation matrix of the TASEP-LK. We start
from the eigenvalue equation for n = 2, . . . , N − 1

DLPn+1(t) +DRPn−1(t) − (DL +DR)Pn(t) = λPn(t) (3.11)

and we define

P̃n(t) ≡ Pn(t)
(︄√︄

DL

DR

)︄n−1

, (3.12)

Plugging this into (3.11), we get√︂
DLDRP̃n+1(t) +

√︂
DLDRP̃n−1(t) − (DL +DR) P̃n(t) = λP̃n(t). (3.13)
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3 – The Domain Wall Theory

Doing the same for nodes n = 1 and n = N , we obtain√︂
DLDRP̃2(t) −DRP̃1(t) = λP̃1(t) (3.14)√︂
DLDRP̃N−1(t) −DLP̃N(t) = λP̃N(t) (3.15)

More in general we can say that this symmetrization can be applied to Jacobi
matrices, that are tridiagonal matrices whose off-diagonal elements are all of the
same sign. In such a case, the factor

(︂√︂
DL/DR

)︂n−1
is replaced by a product of

sub-diagonal elements.
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Chapter 4

Monte Carlo and numerical
techniques

In this chapter we introduce the Monte Carlo and numerical methods employed
in our research activity: the kinetic Monte Carlo, the computation of the exact
slowest relaxation rate at finite size and the Bulirsch-Stoer extrapolation of the
results to the N → ∞ limit.

4.1 Kinetic Monte Carlo: the Gillespie algorithm
The Stochastic Simulation Algorithm developed by Gillespie [29] is an efficient

Monte Carlo technique to simulate continuous time Markov processes. The basic
idea of this algorithm is to draw at random both the time of the next transition
and which of the possible states is taken instead of trying a movement at each step
and rejecting or accepting it: for each pair of generated random numbers a new
state is selected, this is a direct generation method with 100% efficiency.
We consider the dynamics of a system which can take discrete states labeled by
integers x, y, . . .. The system can go from the state x to a different state y with
rate Wx→y, so that the total probability that the system leaves the current state
x in the next ∆t is ∆t∑︁y /=x Wx→y = ∆tWx→•. We divide the interval [0, t] into n
sub-intervals ∆t = t/n, the probability P s

x(t) that the system remains in the same
state after t units of time is equal to

P s
x(t) =

(︃
1 − t

n
Wx→•

)︃n

−−−→
∆t→0

exp (−tWx→•) .

Therefore, the probability that the system leaves the current state before time t,
that is the cumulative distribution of the time until the next transition, is given by

Fx(t) = 1 − exp (−tWx→•); (4.1)
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4 – Monte Carlo and numerical techniques

the distribution of leaving times is exponential with parameter Wx→•,

Px(t) = Wx→• exp (−tWx→•). (4.2)

We illustrate the structure of the algorithm for a generic Markovian stochastic
system:

1. initialization (t = 0): define the initial condition x (e.g. empty lattice);

2. draw two random numbers ξ1 and ξ2 from a uniform distribution in the in-
terval (0,1];

3. time of the next transition

τ = − 1
Wx→•

ln ξ1; (4.3)

4. choice of the new state y with probability Wx→y

Wx→•
: it is the integer for which

y−1∑︂
k=1

Wx→k < ξ2Wx→• ≤
y∑︂

k=1
Wx→k;

5. updating: update the state of the system (x := y) and the rates of the
corresponding transition processes, increment time by τ (t := t+ τ), then go
to step 2.

Considering the TASEP dynamics for a lattice of N sites, we recall the occupation
numbers νt

n ∈ {0,1} introduced in 1.2. We denote by x =
{︂
x1 = νt

1, . . . , xN = νt
N

}︂
and y =

{︂
y1 = νt+τ

1 , . . . , yN = νt+τ
N

}︂
the lattice configurations at two subsequent

times. We have N + 1 possible processes:

• particle entering the lattice at site 1 with rate W 0
y,x = α

(︂
1 − νt

1

)︂
;

• N − 1 hopping processes with rates W n
y,x = νt

n

(︂
1 − νt

n+1

)︂
, 1 ≤ n ≤ N − 1;

• particle leaving the lattice at site N with rate WN
y,x = βνt

N .

After choosing the new state, we have to update the lattice configuration and the
rates of the transition processes according to the selected move. Also the rates of
the processes involving the neighbouring sites change: as an example, if a hopping
process from site n to the adjacent one is chosen, then νt+τ

n = 0, νt+τ
n+1 = 1. The

updated rates are W n−1
y,x = νt+τ

n−1, W n
y,x = 0 and W n+1

y,x = 1 − νt+τ
n+2.
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4.2 – Computing the exact slowest relaxation rate for finite size systems

4.2 Computing the exact slowest relaxation rate
for finite size systems

In order to compute the exact slowest relaxation rate for finite size systems,
we introduce the reduced transition matrix: it is obtained from the matrix of the
transition rates after eliminating the zero eigenvalue, which corresponds to the
steady state. This manipulation reduces the computational cost of finding the
slowest relaxation rate, that is the smallest nonzero eigenvalue of the transition
matrix changed of sign. To compute this quantity, we adopt an iterative Arnoldi
algorithm [30] that is implemented in the Matlab routine eigs(), or alternatively
in the ARPACK package [31]: it can compute a small subset of eigenvalues of large
sparse matrices (i.e. with most of the entries equal to zero) according to a selection
criterion, such as the largest/smallest magnitude or real part.
Considering a lattice of N sites, we have 2N possible states: in a binary encoding,
x = 0 is the configuration with all the sites being empty and x = 2N −1 is the state
with all the sites being occupied. The action of the reduced transition matrix for
this system is the result of removing the first row and subtracting the first column,
which correspond respectively to the transitions to and from the completely empty
configuration. We recall the master equation (1.3) for the probability P t[x] of
having a given configuration x of the lattice nodes at time t

Ṗ t[y] =
∑︂

x

Wy,xP
t[x],

The transition matrix (1.4) introduced in section 1.2 satisfies the properties

Wy,x ≥ 0, x /= y, (4.4)∑︂
y

Wy,x = 0, ∀x. (4.5)

The second one comes from the conservation of probability and shows that the
matrix W has a left eigenvector v = (1,1, . . .) with zero eigenvalue. Henceforth,
there exists also a right eigenvector w with the same eigenvalue. Each eigenvector
with this property is a time independent solution of the master equation and all its
components are either negative or positive. Choosing the normalization in order to
have positive components, one obtains the probability distribution of the system
in the steady state, which is unique. All the other eigenvalues have negative real
parts and their corresponding eigenvectors have a sum of the components equal
to zero. Denoting eigenvector components dy δPx (since they can be regarded as
perturbations over the steady state), we can thus write∑︂

x

Wy,xδPx = λδPy, λ /= 0. (4.6)
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Then, summing over y

∑︂
x

(︄∑︂
y

Wy,x

)︄
δPx = λ

∑︂
y

δPy = 0 (4.7)

and hence ∑︂
y

δPy = 0. (4.8)

In the master equation we assume y /= 0, we separate the transitions from the
configuration with all the sites empty∑︂

x

Wy,xδPx = Wy,0δP0 +
∑︂
x /=0

Wy,xδPx;

for the property (4.8) we have

δP0 = −
∑︂
x /=0

δPx, (4.9)

we substitute into the master equation and we obtain∑︂
x

Wy,xδPx = −Wy,0
∑︂
x /=0

δPx +
∑︂
x /=0

Wy,xδPx

= −Wy,0
∑︂
x /=0

δPx +
∑︂

x /∈{0,y}
Wy,xδPx +Wy,yδPy.

Using the definition of the diagonal elements in (1.4), we obtain the following form
for the action of the reduced transition matrix∑︂

x

Wy,xδPx = −Wy,0
∑︂
x /=0

δPx +
∑︂

x /∈{0,y}
Wy,xδPx+

−
∑︂
z /=y

Wz,yδPy. (4.10)

We will employ the approach outlined here to compute the slowest relaxation rate
for different system sizes (up to N = 24), then we will extrapolate the results to
the infinite size limit using the technique explained in the next section.

4.3 The Bulirsch-Stoer extrapolation method
The Bulirsch-Stoer (BST) method is an iterative algorithm to extrapolate se-

quences of finite size data to the thermodynamic limit, it can give accurate results
even with a small number of entries. In [32], it was adopted to extrapolate the
exact finite size values of the slowest relaxation rate for the TASEP.
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4.3 – The Bulirsch-Stoer extrapolation method

To introduce the algorithm, we consider the numerical integration of a real function
over the interval [a, b]: we divide the interval into N steps of length h = (b− a)/N
and we compute the integral for different partitions, reducing at each time the step-
size. We want to extrapolate the results to the limit h = 0.
Many integration schemes rely on the trapezoidal rule because its error contains
only even powers of h, we can see that from the Euler-Maclaurin summation formula
∫︂ xN−1

x0
f(x)dx = h

[︃1
2f(x0) + f(x1) + . . .+ 1

2f(xN−1)
]︃

− B2h
2

2!
(︂
f ′(xL−1) − f ′(x0)

)︂
+

− . . .− B2kh
2k

(2k)!
(︂
f (2k−1)(xN−1) − f (2k−1)(x0)

)︂
− ...,

where xi = x0 + ih, i = 0,1, . . . , N − 1 and x0 = a. The B2k are the Bernoulli
numbers generated by the function

t

et − 1 =
∞∑︂

k=0
Bk

tk

k! .

This property allows to apply recursively the trapezoidal rule k times to remove the
error terms up to O

(︂
1/N2k

)︂
: as an example, let IN be the result of the numerical

quadrature with N steps. If we double the number of steps, the ratio between the
leading order error terms of the two evaluations is 1/4, thus the combination 4

3I2N −
1
3IN eliminates this term reducing the correction to O (1/N4). These successive
refinements are performed using the Neville’s algorithm [33]. This is an efficient
way to determine the value at a given x of the polynomial of degree N − 1 which
interpolates the N points yi = f(xi), i = 0, . . . , N − 1. We start with the constants
Pi = yi, i = 0, . . . , N − 1, then we denote by Pi,i+1 the value at x of the line passing
through the points (xi, yi) and (xi+1, yi+1) and we go on up to the final polynomial
P0,1,...,N−1. We can visualize the recursive structure with a table in which two
parents on the left lead to a single descendant on the right, we write an example
for N = 3

x0 → y0 = P0
P01

x1 → y1 = P1 P012
P12

x2 → y2 = P2

(4.11)

Parents and descendants are linked by the relation

Pi,i+1,...,i+l = (x− xi+l)Pi,i+1,...,i+l−1 + (xi − x)Pi+1,i+2,...,i+l

xi − xi+l

, (4.12)

where l = 1, . . . , N − 1.
Bulirsch and Stoer [34] worked on the extrapolation of tabulated rational functions
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with an approach of the Neville type: we denote by Rγ,δ
t (x) the rational function

passing through the n+ 1 points (xj, f(xj)), j = t, t+ 1, . . . , t+ n and n = γ + δ

Rγ,δ
t (x) = e0 + e1x+ . . .+ eγx

γ

g0 + g1x+ . . .+ gδxδ
, Rγ,δ

t (xj) = f(xj),

where γ and δ are the degrees of the polynomials in the numerator and in the
denominator respectively and δ = γ or δ = γ + 1.
We adopt the notation Ti,k := Rγ,δ

t (x) with i = t + γ + δ, k = γ + δ; in this case
the recursion is given by [35]

Ti,0 = f(xi), Ti,−1 = 0,

Ti,k = Ti,k−1 + Ti,k−1 − Ti−1,k−1
x−xi−k

x−xi

[︂
1 − Ti,k−1−Ti−1,k−1

Ti,k−1−Ti−1,k−2

]︂
− 1

, (4.13)

with i = 0,1, . . . and 1 ≤ k ≤ i.
We apply this method to our quadrature problem: let T (h) be the expansion in
terms of h of the trapezoidal sum of the integrand function

T (h) = t0 + t1h
2 + t2h

4 + ...,

where t0 is the integral that we want to compute. We define the sequence of stepsizes

h0 = b− a

n0
, h1 = b− a

n1
, . . . , hl = b− a

nl

,

with 0 < n0 < n1 < . . . < nl, T (hi) is the result of the trapezoidal rule for a given
partition. We write a rational interpolating function in h2

T̄ik(h) = e0 + e1h
2 + . . .+ eγh

2γ

g0 + g1h2 + . . .+ gδh2δ
(4.14)

with the property

T̄ik(hj) = T (hj), j = i− k, i− k + 1, . . . , i.

We define Tik := T̄ik(0), the recursion (4.13) with xi = h2
i , i = 0,1, . . . , l and x = 0

becomes

Ti,0 = T (hi), i = 0, . . . , l; Ti,−1 = 0, i = 0, . . . , l − 1;

Ti,k = Ti,k−1 + Ti,k−1 − Ti−1,k−1(︂
hi−k

hi

)︂2 (︂
1 − Ti,k−1−Ti−1,k−1

Ti,k−1−Ti−1,k−2

)︂ , 1 ≤ k ≤ i ≤ l. (4.15)

Henkel and Schütz [36] considered the extrapolation of quantities scaling as 1/Nσ

and modified the recursion as

Ti,k = Ti,k−1 + Ti,k−1 − Ti−1,k−1(︂
hi−k

hi

)︂σ (︂
1 − Ti,k−1−Ti−1,k−1

Ti,k−1−Ti−1,k−2

)︂ . (4.16)
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4.3 – The Bulirsch-Stoer extrapolation method

They studied the effect of varying the parameter σ on the result of the extrapolation.
In particular, they observed the formation of poles in the last extrapolants and
proposed the criterion of choosing σ as the value that minimizes the error

ϵl,i = 2 (Tl,i+1 − Tl,i) . (4.17)
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Chapter 5

Dynamical transitions in the
TASEP-LK: mean-field approach

In this chapter we present our investigation of the dynamical transitions in
the TASEP-LK, working in the framework of the mean-field approximation. We
discuss separately the balanced case with equal binding and unbinding rates and
the more general one with unbalanced rates: in the former model, it turns out
that the dynamical transition line can be obtained from that of the pure TASEP
through the same mapping introduced in section 2.2.1 when discussing the static
phase diagram. In the latter case, a new type of dynamical transition is observed,
that shows some analogies with equilibrium first-order transitions. As far as the
balanced case is concerned, we present a formal derivation of the properties of the
density profile in the HD phase, which is the basis for the determination of the
asymptotic behaviour of the mean-field slowest relaxation rate in the infinite size
limit: these results have been published in [26]. We then describe in some detail the
analysis of the unbalanced case, focusing the attention on the new features of the
dynamical transition. The proofs of most of the results presented in this chapter
are reported in appendix B.

5.1 Steady state and relaxation in mean-field
With reference to the mean-field theory for the model introduced in 2.2, we now

describe the solution of the dynamical equations (2.7) in the steady state and the
approach to study the relaxation process. We recall the time evolution equations
(2.7) for the local densities

ṗn(t) = Jn−1(t) − Jn(t) + ωAp
′
n(t) − ωDpn(t), n = 1, . . . , N,

and the mean-field current-density relation (2.8)

Jn(t) ≡ pn(t)p′
n+1(t), n = 0, . . . , N.

43



5 – Dynamical transitions in the TASEP-LK: mean-field approach

We observe that the equations (2.9) satisfied by the local densities in the steady
state

pn (pn+1
′ + ωD) = (pn−1 + ωA) pn

′, n = 1, . . . , N,
can be rewritten in a fixed-point form, namely

pn =
(︄

1 + p′
n+1 + ωD

pn−1 + ωA

)︄−1

n = 1, . . . , N. (5.1)

The latter recursion can be solved numerically keeping p0 and pN+1 fixed. In the
hypothesis that α and β are both strictly positive, it was proved [26] to admit a
unique solution with the property 0 < pn < 1, n = 1, . . . , N .
To study the relaxation, we linearize (2.7) and (2.8) close to the steady state: we
assume the occupation probabilities to be given by the stationary value plus a small
time dependent perturbation y(t)

pn(t) = pn + yn(t), n = 0, . . . , N + 1, (5.2)

where y0(t) = yN+1(t) = 0, ∀t. We plug this ansatz into (2.8) and (2.7), keeping at
most the linear terms in the perturbation

ẏn(t) = −anyn(t) + pnyn+1(t) + pn
′yn−1(t) n = 1, . . . , N , (5.3)

with
an ≡ pn+1

′ + pn−1 + ωA + ωD . (5.4)
We obtain a system of first-order ordinary differential equations characterized by a
tridiagonal coefficient matrix, called relaxation matrix. In the special case of pure
TASEP (ωA = ωD = 0), the density profile is constant apart from a boundary layer
close to the left end, thus the relaxation matrix is quasi-Toeplitz [1].
A relaxation mode of the system is a solution of the type

yn(t) = vne
−λt n = 0, . . . , N + 1 , (5.5)

where v0 = vN+1 = 0, according to the boundary conditions, and λ is the relax-
ation rate. Using (5.5) in (5.3), we get the eigenvalue problem associated with the
relaxation matrix

anvn − pnvn+1 − pn
′vn−1 = λvn n = 1, . . . , N . (5.6)

In section 5.2.2 we will analyse this problem concentrating on the smallest eigen-
value λmin, which corresponds to the relevant relaxation mode at long times. The
determination of the singular behaviour of the mean-field slowest relaxation rate in
the infinite size limit (i.e. the dynamical transition) is the main contribution of the
work described in this chapter.
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We observe that the relaxation matrix is of the Jacobi type, thus we can apply the
similarity transformation introduced in section 3.0.1. In this case, the eigenvector
components are multiplied by a product of sub-diagonal elements, thus we define

un ≡ vn

n−1∏︂
k=0

√︄
pk

pk+1′ , n = 0, . . . , N + 1, (5.7)

where it is understood that the product is 1 for n = 1. From equation (5.6), we
obtain

anun −
√︂
pnpn+1′ un+1 −

√︂
pn−1pn

′ un−1 = λun n = 1, . . . , N, (5.8)

with the usual boundary conditions

u0 = uN+1 = 0 . (5.9)

5.2 The balanced case
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Figure 5.1: Symmetric TASEP-LK phase diagram with the mean-field dynamical
transition lines.

In this section, the analysis is restricted to the case with equal bind-
ing/unbinding rates (ΩA = ΩD = Ω), which preserves the HD-LD duality. Thus,
we concentrate on the HD phase, all the results can be rephrased for the LD one
through the particle-hole simmetry of the pure TASEP (see sec. 1.2). In figure
5.1 we show the mean-field dynamical transition line on the phase diagram of the
model.
We denote by λmin

(N) the slowest relaxation rate for a system of size N and we
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introduce the quantity q0 = β+ Ω, whose meaning is explained in the following. In
the infinite-size limit, this eigenvalue takes the form

λmin
(∞) ≡ lim

N→∞
λmin

(N) = 1 − x∗

x◦
, (5.10)

1
x◦

≡ 2
√︂
q0q0′ . (5.11)

The value x∗ is determined by the behaviour of a real function f(x;α, q0) of the
real variable x ≥ 1 and of the model parameters α, β and Ω: in this section we
give a qualitative description of the relevant features of the dynamical transition,
the details of the derivation are postponed to the following sections and the most
technical results are proved in appendix B (sections B.1 and B.2). The function is
expressed by the series

f(x) ≡ 2x◦

∞∑︂
n=1

(sn+1 − sn−1) vn(x)ζ(x)n , (5.12)

where
ζ(x) ≡ x−

√
x2 − 1 . (5.13)

Its dependence on the model parameters is enclosed in x◦, defined by (5.11), and
in sn and vn(x), which are defined by recursion as

s0 ≡ α , sn+1 ≡ 1 − 1
4x◦2sn

n = 0,1,2, . . . (5.14)

and

v0(x) ≡ 0 , v1(x) ≡ 1 , (5.15)
vn+1(x) ≡ [2x− 2x◦ (sn+1 − sn−1)] vn(x) − vn−1(x) n = 1,2, . . . . (5.16)

Comparing the slowest relaxation rate (5.10) with that of the pure TASEP reported
in [1], we see that it can be deduced from the latter by the mapping β → β + Ω
introduced in 2.2.1. For the same reason, the dependence of f on β and Ω goes
only through their sum.
For a given value of q0, there exists an interval of α values larger than a critical
threshold αc

1 such that

f(x;α, q0) < 1 ∀x ≥ 1 . (5.17)

This interval is characterized by the fact that x∗ = 1, thus the relaxation rate (5.10)
is independent of α. When α becomes smaller than αc, condition (5.17) is no longer

1This αc is the mean-field estimate, it does not coincide with the exact one mentioned in the
introduction.
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satisfied. In particular, f(1;α, q0) > 1 and also x∗ becomes greater than one, being
determined by the equation

f(x∗;α, q0) = 1. (5.18)
The value x∗ shows no discontinuity in the α variable. It increases, and as a
consequence the relaxation rate decreases, upon decreasing the injection rate: the
critical threshold αc(q0) is found by solving numerically the equation

f(1;αc, q0) = 1. (5.19)

At fixed Ω, the latter condition defines a critical line in the α-β phase diagram,
which has been reported in figure 5.1 together with its low density counterpart. In
figure 5.2 we show the behaviour of f as a function of x, for some representative
values of the parameters. We consider the interval [1, x◦] and we will prove that
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Figure 5.2: Plots of f(x;α, q0) as a function of the variable x in the interval [1, x◦],
for q0 = 0.2 (thus x◦ = 1.25) and different α values. The case α = αc is denoted by
a dashed line. The inset displays a case with α very close to q0 (still in the HD
phase).

x∗ is bounded therein (see Lemma 6 in section 5.2.2, statement (ii)). At a given
q0, the lower-bound value x∗ = 1 (corresponding to λmin

(∞) = 1 − 1/x◦) is reached
in the whole region α ≥ αc. From the inset of figure 5.2, we can see that x∗ tends
to the upper-bound value x◦ (which corresponds to λmin

(∞) → 0) as α tends from
above to q0, that is to the boundary between the pure HD phase and the LD/HD
coexistence region. We also observe that, close to this boundary, the function f(x)
is no longer monotonic and a second solution of equation (5.18) may appear, but
we will prove (see criterion 2) it to be irrelevant. Along the coexistence line we have
an “ordinary” dynamical transition (i.e. one accompanied by a static transition)

47



5 – Dynamical transitions in the TASEP-LK: mean-field approach

and we expect to find a relaxation process which is no longer exponential.
We can give a physical interpretation of the square root argument appearing in
x◦ (5.11): even if in the TASEP-LK the steady-state current is not uniform, we
can still define a node-independent maximum current. Denoting by Jmax

(N) the
maximum current for a system of size N , in the infinite-size limit we have

Jmax
(∞) ≡ lim

N→∞
Jmax

(N) = 1
4x◦2 , (5.20)

which coincides with the argument of the square-root. This result generalizes a
property first observed in [1] and states that a steady state being more out of
equilibrium requires a longer time to be established.
We have also derived bounds for the asymptotic behavior of the relaxation rate
λmin

(N) in the infinite size limit: the dynamical transition discriminates between
two different scaling regimes, which are in turn affected by the presence of the
Langmuir kinetics, independently of the value of the attachment/detachment rate
Ω (provided that it is different from zero). In the fast phase (x∗ = 1) we have

λmin
(N) = λmin

(∞) +
⎧⎨⎩O (N−2) if Ω = 0

O
(︂
N−2/3

)︂
if Ω > 0

, (5.21)

whereas for α < αc (x∗ > 1) we have

λmin
(N) = λmin

(∞) +
⎧⎨⎩O

(︂
ζ(x∗)2N

)︂
if Ω = 0

O (N−1) if Ω > 0
, (5.22)

where ζ(x) is defined by (5.13) and satisfies ζ(x) < 1 for x > 1. We proved analiti-
cally that the distance between λmin

(N) and λmin
(∞) is asymptotically bounded from

above (up to a positive constant factor) by the scaling functions appearing in paren-
theses, but we have clear numerical evidences that this scaling is optimal. In figures
5.3 and 5.4 we show a comparison between numerical results and the proposed scal-
ing functions for the pure TASEP and the TASEP-LK respectively. We observe
that, for the values of β and Ω chosen in this example, in both cases the critical
injection rate αc is the same. In the TASEP-LK, the difference λmin

(N) − λmin
(∞)

scales with N as a power law with two different exponents, depending on whether
α > αc or α < αc. In the fast phase, the numerical results suggest that the mul-
tiplying factor might be independent of α as well. In the pure TASEP case, the
scaling changes from an exponential regime in the slow phase, with the character-
istic parameter depending on x∗ and thence on α, to a power law one in the fast
phase, where the multiplying factor is quite clearly independent of the injection
rate. The exact result [9] for the pure TASEP predicts a power-law behaviour with
a unique scaling exponent 2, being unaffected by the dynamical transition, whereas
only the prefactor displays a discontinuity at αc [13]. It is remarkable that the
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Figure 5.3: Difference between the finite-size slowest relaxation rate λmin
(N) and

its infinite-size limit value λmin
(∞) as a function of N (circles) for the pure TASEP

(Ω = 0) with β = 0.2 and different α values, both above and below the critical
threshold αc ≈ 0.54786. Solid lines represent scaling functions, i.e. ∝ N−2 in the
main figure and ∝ ζ(x∗)2N in the inset (with x∗ depending on α and β, see the
text). Dotted lines are an eyeguide.

mean field scaling exponent coincides with the exact one in the fast phase.
The maximum current has the following asymptotic behaviour, which does not
change at the dynamical transition.

Jmax
(N) = Jmax

(∞) +
⎧⎨⎩O

(︂
ζ(x◦)2N

)︂
if Ω = 0

O (N−1) if Ω > 0
, (5.23)

This result is justified by (5.43) in Corollary 1 and by the definition of ζ(x◦) in
(5.59).

5.2.1 Properties of steady state density profile
As was mentioned in 2.2.1, the bulk density profile of the HD phase is linear in

the node index n with slope ω

qn = (β + Ω)′ + ωn, n = 0, . . . , N + 1 . (5.24)

The sequence (qn)N+1
n=0 satisfies both the steady-state equations (check (2.9) with

ωA = ωD = ω) and qN+1 = β′. We introduce the detrended densities

rn ≡ pn − (qn − q0) = pn − ωn, n = 0, . . . , N + 1 , (5.25)
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Figure 5.4: Difference between the finite-size slowest relaxation rate λmin
(N) and its

infinite-size limit value λmin
(∞) as a function of N (circles) for the balanced TASEP-

LK (Ω = 0.1) with β = 0.1 and different α values, both above and below the critical
threshold αc ≈ 0.54786. Solid lines represent scaling functions, i.e. ∝ N−2/3 and
∝ N−1 respectively (see the text). Dotted lines are an eyeguide.

that are the densities after subtracting the non-uniform part of the bulk profile. In
the steady state, they satisfy the following equations

rnrn+1
′ − rn−1rn

′ = ωn (rn+1 − rn−1) n = 1, . . . , N , (5.26)

with the boundary conditions

r0 = p0 = α , (5.27)
rN+1 = q0 = (β + Ω)′ . (5.28)

We now make an intuitive argument on this density profile, then we express it in
a more formal manner. We expect the detrended profile to behave, at least in
the HD (or LD) phase, as the density profile of an “effective” pure TASEP. Under
this assumption, the difference rn+1 − rn−1 would be significantly different from
zero only up to finite n, but, in this region, the prefactor ωn vanishes because the
Langmuir kinetics rate scales as the inverse of the size for large N . Thus, the whole
right-hand side of (5.26) is almost equal to zero and consequently

rnrn+1
′ ≈ constant n = 0,1, . . . , N , (5.29)

the detrended densities satisfy the pure TASEP mean-field equations (see (2.9) with
ωA = ωD = 0) with the rescaled right boundary condition (5.28). The physical
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5.2 – The balanced case

meaning of this assumption is the following: the variations of the density of order
1 take place practically over a finite number of sites, where the effect of Langmuir
kinetics becomes negligible for large N . On this region, the system should mimic a
pure TASEP with a bulk density adjusted in order to match the local bulk density of
the TASEP-LK. In the HD phase, the density variations are concentrated on the left
side, thus the effective pure TASEP has the right boundary condition renormalized
to the left boundary value of the bulk solution, that is q0 = (β + Ω)′. With the
adjective “effective”, we mean that the uniform current of the TASEP is replaced
by the local current value q0q0

′. We show an example of this property in figure 5.5,
where we plot two different stationary density profiles, one for the pure TASEP and
one for the TASEP-LK, computed numerically by (5.1), with the same α value, but
two different β values, chosen in order to give the same q0. We see that, in the
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Figure 5.5: Steady-state local density pn as a function of the node index n for the
TASEP-LK (Ω = 0.1, β = 0.3, α = 0.9; solid line and solid circles) and for the pure
TASEP (Ω = 0, β = 0.4, α = 0.9; dashed line and empty circles). In both cases it
turns out q0 = 0.6, the system size is N = 1000.

vicinity of the boundary layer, the two profiles are almost indistinguishable, whereas
the effect of Langmuir kinetics can be clearly appreciated at a macroscopic length
scale, yielding a linear density profile. We have evidence that this property may be
exact: in figure 5.6, we do the same comparison with density profiles obtained by
KMC simulations.
Still at the mean-field level, in a more formal derivation, we study an infinite
sequence (sn)∞

n=0 being a solution of the TASEP mean-field equations with bulk
density q0, namely

snsn+1
′ = q0q0

′ n = 0,1,2, . . . . (5.30)
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Figure 5.6: The same comparison as in figure 5.5, but the density profiles are
obtained by KMC simulations.

This is a discrete Riccati equation [37]: the right-hand side takes into account that,
in the bulk, we expect sn ≈ q0 and the left-boundary condition is chosen according
to (5.27), so that

s0 = α. (5.31)
The sequence sn represents the mean-field density profile for a TASEP with current
q0q0

′, in the large N limit we expect to have

sn ≈ rn n = 0, . . . , N + 1. (5.32)

We state the analytical properties of this sequence in Lemma 1, then we present
our results on the bounds for the distance between sn and the detrended densities
rn in Theorem 1, which is proved in section B.1.1 of appendix B. We rewrite the
parameter bounds (2.12), (2.13) and the definition of x◦ (5.11) using the expression
of q0

1 − Ω > q0 > 1/2 , (5.33)
α > q0

′ , (5.34)
1
x◦

≡ 2
√︂
q0q0′ . (5.35)

The following lemma states that equation (5.30) with the initial condition (5.31)
can be written in closed form as q0 plus a correction that decays exponentially in
n and defines the properties of the sequence (sn)∞

n=0.
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5.2 – The balanced case

Lemma 1. Let (sn)∞
n=0 be the infinite sequence defined as follows

sn ≡ q0 + (q0 − q0
′)
⎡⎣(︄1 − α− q0

α− q0′ γ
n

)︄−1

− 1
⎤⎦ n = 0,1,2, . . . , (5.36)

where
γ ≡ q0

′

q0
. (5.37)

Then the following statements hold:

(i) the sequence (sn)∞
n=0 satisfies (5.30), (5.31) and

lim
n→∞

sn = q0 ; (5.38)

(ii) if α ≥ q0 (resp. α ≤ q0), then (sn)∞
n=0 is non-increasing (resp. non-

decreasing);

(iii) the sequence defined by (5.14) coincides with (sn)∞
n=0.

A crucial point to prove statements (i) and (ii) is that the bounds for the model
parameters (2.11) and (5.33) entail

0 < γ < 1 . (5.39)

Statement (iii) immediately descends from (5.35). We observe that the recursion
(5.14) is exactly the same as that reported in [5], where the mean-field approxima-
tion of the TASEP was discussed.

Theorem 1. Let (rn)N+1
n=0 be the sequence of detrended densities defined above with

boundary values r0 = α and rN+1 = q0, let (sn)∞
n=0 and γ be defined according to

Lemma 1. Then there exist suitable positive constants C2 such that:

|sn − rn| ≤

⎧⎨⎩CγN if Ω = 0
C n2γn

N
if Ω > 0

n = 0, . . . , N + 1. (5.40)

These results allow us to state that the stationary density profile of the HD
phase is

pn = rn + ωn ≈ sn + ωn n = 0, . . . , N + 1 . (5.41)

2By constant we mean a finite real number independent of the node label n and of the system
size N , but possibly dependent on the model parameters. For each occurrence of the symbol C,
it is understood that there exists a suitable positive constant verifying the relation where the
symbol appears.
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A first consequence of Theorem 1 is that the steady-state current profile in the
N → ∞ limit is very close to the current profile corresponding to the bulk solution
alone (we can call it bulk current), i.e.

Jn = pnpn+1
′ ≈ qnqn+1

′ n = 0, . . . , N . (5.42)

This in turn implies that the maximum current value is very close to its bulk value
at the left boundary. These arguments are collected in the following

Corollary 1. Let (Jn)N
n=0 and (qn)N+1

n=0 be respectively the sequences of (steady-
state) currents and bulk densities, defined above, and let γ be defined according to
Lemma 1. Then, the following statements hold:

|Jn − qnqn+1
′| ≤

⎧⎨⎩CγN if Ω = 0
C (n+1)γn

N
if Ω > 0

n = 0, . . . , N, (5.43)

⃓⃓⃓
max (Jn)N

n=0 − q0q0
′
⃓⃓⃓
≤

⎧⎨⎩CγN if Ω = 0
CN−1 if Ω > 0

. (5.44)

The proof of the corollary is reported in section B.1.2.

5.2.2 Relaxation rates
As we have seen in section 5.1, the relaxation rates coincide with the eigenvalues

of a tridiagonal symmetric matrix, that we now call A. Using the definition of
detrended densities (5.25), we can rewrite the diagonal terms an, given by eq.
(5.4), in the simpler form rn+1

′ + rn−1. The linear operator corresponding to this
matrix maps the vector u ≡ (u1, . . . , uN) to Au ≡ (Au1, . . . , AuN) and is defined
componentwise as

Aun ≡ (rn+1
′ + rn−1)un −

√︂
pnpn+1′ un+1 −

√︂
pn−1pn

′ un−1 , (5.45)

where u0 ≡ uN+1 ≡ 0. The mean-field slowest relaxation rate is the smallest eigen-
value, which here we shall simply denote by λ. In this section we present the results
of our investigation about the asymptotic value of λ in the infinite size limit and
we provide bounds for its scaling behavior at large N .
Our starting point is to estimate λ by considering the smallest eigenvalue µ of a
simplified matrix B, where we replace the detrended densities rn with their infinite
size approximation sn in the diagonal terms and the currents pnpn+1

′ with the cor-
responding bulk currents qnqn+1

′ in the off-diagonal terms. The associated linear
operator maps u ≡ (u1, . . . , uN) to Bu ≡ (Bu1, . . . , BuN) and is defined by

Bun ≡ (sn+1
′ + sn−1)un −

√︂
qnqn+1′ un+1 −

√︂
qn−1qn

′ un−1 , (5.46)

54



5.2 – The balanced case

still with u0 ≡ uN+1 ≡ 0. The eigenvalues of matrix B are still all real, because it is
symmetric as well as A. Moreover, there is a small change from the original matrix
to the simplified one and we can expect that this should also moderately affect the
spectrum. Considering the smallest eigenvalue, we can determine bounds for the
distance between λ and µ, which descend from Theorem 1 and Corollary 1.

Corollary 2. Let λ and µ be the smallest eigenvalues of matrices A and B, respec-
tively, and let γ be defined according to Lemma 1. Then

|λ− µ| ≤

⎧⎨⎩CγN if Ω = 0
CN−1 if Ω > 0

. (5.47)

On the one hand, this can be regarded as a technical result, because, consid-
ering matrix B, we are simplifying the eigenvalue problem. On the other hand,
the structure of the simplified matrix and the related results for the smallest eigen-
value reveal that the dynamical transition is driven by the competition between
the boundary layer (diagonal terms) and the bulk (off-diagonal terms). In the pure
TASEP case the bulk profile is uniform, thus the only deviation from the Toeplitz
structure arises from the diagonal terms, as observed in [1].
On the basis of Corollary 2, we focus on µ in order to investigate the leading be-
havior of λ at large N : we want to find suitable upper- and lower-bounds for this
eigenvalue, which may tend to coincide in the infinite size limit.
Using the Courant minimax principle, one can determine upper-bounds in the form
µ ≤ (u,Bu), for any vector u ∈ RN such that ∥u∥ = 1, where (u, v) ≡ ∑︁N

n=1 unvn

is the usual Euclidean scalar product and ∥u∥ ≡
√︂

(u, u) the corresponding norm.
Thus, by equation (5.46), we directly prove the following Lemma, that we call
Courant-type bound.

Lemma 2. Let µ be the smallest eigenvalue of matrix B and let u1, . . . , uN be real
numbers such that ∑︁N

n=1 un
2 = 1. Then

µ ≤ 1 −
N∑︂

n=1
(sn+1 − sn−1)un

2 − 2
N−1∑︂
n=1

√︂
qnqn+1′ unun+1 . (5.48)

Determining lower-bounds is more difficult, our way to proceed is inspired by
the Gershgorin circle theorem’s, which allows us to formulate the following Lemma,
called Gershgorin-type bound (see appendix B.2.3).

Lemma 3. Let µ be the smallest eigenvalue of matrix B and let w0, . . . , wN+1 be
real positive numbers (except w0 and wN+1, possibly being zero). Then

µ ≥ 1 − max
(︃
sn+1 − sn−1 + wn+1 + wn−1

2x◦wn

)︃N

n=1
. (5.49)
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The difficulties encountered in applying the strategy outlined above depend
strongly on the boundary conditions for the detrended densities, which we recall
to be r0 = α on the left (eq. (5.27)) and rN+1 = q0 on the right (eq. (5.28)). By
Lemma 1, we realize that the case α ≥ q0 is much simpler than the complementary
one, because for this set of α values the sequence (sn)∞

n=0 is non-increasing, so
that sn+1 − sn−1 can never be positive. Thus, applying Lemma 3 with the simple
choice wn ≡ 1 for all n (which can be shown to coincide with the usual Gershgorin
theorem), we easily obtain the following result.

Lemma 4. Let µ be the smallest eigenvalue of matrix B. If α ≥ q0, then

µ ≥ 1 − 1
x◦
. (5.50)

As far as the upper-bounds are concerned, choosing suitably u1, . . . , uN in
Lemma 2, we can prove the following (see B.2.3 for the details).

Lemma 5. Let µ be the smallest eigenvalue of matrix B. Then

µ ≤ 1 − 1
x◦

+
⎧⎨⎩CN−2 if Ω = 0
CN−2/3 if Ω > 0

. (5.51)

At odds with Lemma 4, the latter bound holds in principle for all α > q0
′, which

is required in order to stay within the HD phase region. However, when α < q0, it
may no longer be a good one.
We now concentrate on this second more difficult case α < q0: in order to obtain
good bounds, we have to choose un in Lemma 2 (Courant-type bound) and wn in
Lemma 3 (Gershgorin-type bound) as close as possible to the actual eigenvector.
Moreover, to treat analytically the eigenvalue problem for matrix B, we have to
get rid of the size dependence. We recall the bulk-density expression qn = q0 + ωn
and we observe that, if n ≪ N , we have qn ≈ q0 (and consequently qnqn+1

′ ≈ q0q0
′)

independently of n. Equivalently we can say that, if we increase the system size
but we only take the elements of matrix B up to row and column indices remaining
much smaller than N , the off-diagonal entries tend to be constant, approaching
the value −

√
q0q0′. Keeping in mind this argument, from (5.46) along with (5.35)

we expect that, for large N and n ≪ N , the eigenvector components vn satisfy the
following equation

2x◦ (sn+1 − sn−1) vn + vn+1 + vn−1 ∝ vn , (5.52)

with v0 = 0. The latter equation no longer depends on the system size. Actually,
we expect it to become more and more accurate with increasing N , even though
only as far as n ≪ N . Therefore, we study the properties of a sequence (vn)∞

n=0
satisfying (5.52), as a function of the proportionality coefficient. Such a sequence
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can be defined by recursion, with the initial conditions v0 = 0 (by hypothesis) and
an arbitrary v1 (for instance v1 = 1). Thinking of the Gershgorin-type and the
Courant-type bounds, we are interested respectively in the hypotheses under which
the sequence never changes sign and whether it goes to zero rapidly enough. Its
relevant properties are stated in the following

Lemma 6. Let (sn)∞
n=0 be the sequence defined by (5.14) (or equivalently Lemma 1),

in the hypothesis α < q0, and let (vn(x))∞
n=0 be the family of sequences defined by

(5.15) and (5.16), parameterized by x ∈ R. Then the following statements hold.

(i) The sequence (vn(x))∞
n=0 is nonoscillatory (i.e. eventually positive or eventu-

ally negative) if and only if x ≥ 1.

(ii) The set X of real numbers x such that vn(x) > 0 for all n > 0 is a closed,
infinite interval X = [x∗,∞), where x∗ ≡ inf X ∈ [1, x◦).

(iii) Let ζ : [1,∞) → (0,1] be the function defined by (5.13) and let fn : [1,∞) → R
be the functions defined as

fn(x) ≡ 2x◦

n∑︂
k=0

(sk+1 − sk−1) vk(x)ζ(x)k n = 0,1,2, . . . (5.53)

(with an arbitrary definition of s−1). Then the limit

f(x) ≡ lim
n→∞

fn(x) (5.54)

exists and is finite for all x ≥ 1. Moreover, if the sequence (vn(x))∞
n=0 is even-

tually positive (resp. eventually negative), then f(x) ≤ 1 (resp. f(x) ≥ 1).

(iv) If x∗ > 1, then f(x∗) = 1.

(v) If x∗ > 1, then vn(x∗) ≤ Cζ(x∗)n for all n.

According to statement (ii), we can choose wn = vn(x) in the Gershgorin-type
bound (Lemma 3), for all x ∈ X . Moreover, from (5.16), it follows that the most
restrictive bound is attained for the smallest x value. Thus, we obtain

Lemma 7. Let µ be the smallest eigenvalue of matrix B, and let x∗ be defined as
in Lemma 6. If α < q0, then

µ ≥ 1 − x∗

x◦
. (5.55)

The following result provides a stronger upper bound than Lemma 5 for α < q0.

Lemma 8. Let µ be the smallest eigenvalue of matrix B, and let x∗ and ζ(x) be
defined as in Lemma 6. If α < q0 and x∗ > 1, then

µ ≤ 1 − x∗

x◦
+
⎧⎨⎩Cζ(x∗)2N if Ω = 0
CN−1 if Ω > 0

. (5.56)

57



5 – Dynamical transitions in the TASEP-LK: mean-field approach

The proof is based on statement (v) of Lemma 6 and is reported in detail in
appendix B.2.5. As was mentioned above, for α < q0 the bound stated by Lemma 5
is still valid but, as soon as α drops below the critical threshold αc (so that x∗ > 1),
this is no longer a good bound, as Lemma 8 turns out to be stronger. This cor-
responds to the slow phase, where the (infinite-size) relaxation rate depends on α
and gets smaller than its plateau value.
Finally, using the results obtained so far, we can prove the following theorem for
the eigenvalue λ, which is the physical quantity of interest.

Theorem 2. Let λ be the smallest eigenvalue of matrix A, and let x∗ and ζ(x) be
defined as in Lemma 6. Either if α ≥ q0, or if α < q0 with x∗ = 1, then

⃓⃓⃓⃓
λ− 1 + 1

x◦

⃓⃓⃓⃓
≤

⎧⎨⎩CN−2 if Ω = 0
CN−2/3 if Ω > 0

. (5.57)

Otherwise, if α < q0 with x∗ > 1, then

⃓⃓⃓⃓
λ− 1 + x∗

x◦

⃓⃓⃓⃓
≤

⎧⎨⎩Cζ(x∗)2N if Ω = 0
CN−1 if Ω > 0

. (5.58)

There are two main steps to prove this theorem. First, using Lemmas 4, 5, 7
and 8, we can prove an analogous theorem for µ. Then, Corollary 2 allows one to
extend the result from µ to λ, using the property that the distance between µ and
λ is, for N → ∞, infinitesimal of a higher order (or at most of the same order)
than the distance between λ and its limit value. In the pure TASEP case, this
requirement implies the inequality ζ(x∗)2 ≥ γ, which we prove below. Using (5.37)
and (5.35), by simple algebra we obtain

γ = ζ(x◦)2 . (5.59)

Since ζ(x) > 0 for all x ≥ 1, the previous inequality becomes ζ(x∗) ≥ ζ(x◦). Then,
considering that ζ(x) is monotonically decreasing, this condition holds for x∗ ≤ x◦,
which is guaranteed by Lemma 6, statement (ii).
We note that statements (i), (iii) and (iv) in Lemma 6 are not directly involved
in the proof of Theorem 2: (i) is a basic step for proving Lemma 6 itself, whereas
(iii) and (iv) provide analytical tools for studying the behavior of x∗ as a function
of the model parameters and localizing the dynamical transition. In particular, we
can formulate two criteria about the behaviour of f(x).

Criterion 1. If equation f(x) = 1 has no solution x ∈ (1, x◦), then x∗ = 1.

Criterion 2. If there exists x ≥ 1 such that f(x) > 1, then x∗ > x and f(x∗) = 1.
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5.3 – The unbalanced case

The first criterion is a direct consequence of statement (iv) and of the fact that,
according to (ii), x∗ ∈ [1, x◦). It is applied to determine the parameter range where
x∗ = 1 (see sec. 5.2).
We sketch the proof of Criterion 2. According to statements (ii) and (iii), the con-
dition x ≥ x∗ implies x ∈ X and thence f(x) ≤ 1. Therefore, by complementarity,
f(x) > 1 implies x < x∗. Since x ≥ 1 by hypothesis, the fact that f(x∗) = 1 follows
directly from statement (iv).
In the special case x = 1, the second criterion states that f(1) > 1 implies x∗ > 1.
This fact is used to determine the parameter range where the latter condition holds
(see sec. 5.2), whereas the precise x∗ value is determined by solving numerically
f(x∗) = 1.
In figure 5.2 we observed that for certain parameter values this last equation turns
out to have two solutions. Criterion 2 allows us to rule out the spurious one, that
can be denoted by x̃∗, because in such cases we observe the occurrence of a range
of x values larger than x̃∗ verifying f(x) > 1.

5.3 The unbalanced case
We now study the case ΩA /= ΩD, which can be reduced to ΩA > ΩD for the

particle-hole simmetry of the model (see section 2.2). Even if the phase diagram is
no more symmetric with respect to the line β = α, we concentrate on the HD phase,
which is the most interesting one for the properties of the dynamical transition.
We report the result derived in the hydrodynamic limit [15] for the bulk density
profile, which can be written in terms of the real 0-th order branch of the Lambert
W function

ρ(z) = l +
(︃
l − 1

2

)︃
W0

(︄
β′ − l

l − 1
2

exp
β′ − l − 1

2(ΩA + ΩD)z′

l − 1
2

)︄
, (5.60)

where z ∈ [0,1] is a continuous variable and the extrema of the interval correspond
to the system boundaries. For fixed ΩA > ΩD, the HD phase region is defined by
the following inequalities, which involve β and the left boundary value of the bulk
density ρ(0)

1
2 > β > 0, (5.61)

α > ρ(0)′. (5.62)

Using the property W0(ξeξ) = ξ for ξ ≥ −1 and observing that (5.61) implies
(β′ − l)/(l− 1/2) > −1, one verifies that the right boundary condition ρ(1) = β′ is
satisfied. The mismatch between ρ(0) and p0 = α gives rise to a boundary layer.
For the unbalanced case we do not have an analytic bulk solution at finite N ,
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5 – Dynamical transitions in the TASEP-LK: mean-field approach

nevertheless we can define it as a sequence (qn)N+1
n=0 satisfying the steady state

equations (2.9)

qn (qn+1
′ + ωD) = (qn−1 + ωA) qn

′, n = 1, . . . , N, (5.63)

with the boundary conditions

q0 = ρ(0), (5.64)
qN+1 = ρ(1) = β′. (5.65)

Since the solution of the discrete boundary problem is unique [26], this sequence is
well-defined and, in the large N limit, we expect that

qn ≈ ρ
(︃

n

N + 1

)︃
, n = 0, . . . , N + 1. (5.66)

We proceed in analogy with the balanced case: we write the detrended densities

rn ≡ pn − (qn − q0), n = 0, . . . , N + 1, (5.67)

with the boundary conditions

r0 = p0 = α, (5.68)
rN+1 = q0. (5.69)

We express equations (5.67) with respect to the local densities and we plug them
into the steady state equations (2.9). For all n = 1, . . . , N , we have

qn(q′
n+1 + ωD) + rnr

′
n+1 − (qn − q0)rn+1 − (rn − q0)(qn+1 − ωD) =

(qn−1 + ωA)q′
n + rn−1r

′
n − (qn − q0)rn−1 − (rn − q0)(qn−1 + ωA). (5.70)

Taking into account the steady state condition for the bulk sequence (5.63), we get

rnr
′
n+1 − rn−1r

′
n = (qn − q0)(rn+1 − rn−1)+

+ (rn − q0)(qn+1 − qn−1 − ωA − ωD), (5.71)

still for n = 1, . . . , N . The argument about the behaviour of the detrended densi-
ties (see sec. 5.2.1) can be justified for this case as follows: we have clear numerical
evidences that the local density pn approaches exponentially the bulk solution, with
the characteristic length of the exponential remaining finite as N → ∞. Conse-
quently, assuming that rn tends to q0 exponentially in n implies that the difference
rn+1 − rn−1 is significantly different from zero only up to finite n. In this region,
the factor qn − q0 is of order 1/N , because qn can be viewed as the discretization
(see eq. (5.66)) of the regular function ρ(z). Also the term qn+1 − qn−1 − ωA − ωD,
which is equal to zero in the balanced case, is of order 1/N . Thus, the pure TASEP
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5.3 – The unbalanced case

mean-field equations (5.29) for the detrended densities are obtained. Here we do
not restate the formal results about the sequence (sn)∞

n=0, we recall that equation
(5.30) can be written in closed form as

sn = q0 + en, n = 0,1,2, . . . (5.72)

where

en ≡ (q0 − q0
′)
⎡⎣(︄1 − α− q0

α− q0′ γ
n

)︄−1

− 1
⎤⎦ n = 0,1,2, . . . (5.73)

The parameter bound (5.61) entails that

0 < γ ≡ q0
′

q0
< 1, (5.74)

thus the correction en vanishes as n tends to infinity. We conclude that the steady
state density profile in the HD phase can be written as

pn = qn + rn − q0 ≈ ρ
(︃

n

N + 1

)︃
+ en, n = 0, . . . , N + 1. (5.75)

We retrace the main results of Corollary 1 in the unbalanced case. In the large N
limit, the current profile of the system is very close to the current profile computed
by the bulk solution alone: the difference between them for all n = 0, . . . , N , is
given by

pnpn+1
′ − qnqn+1

′ = (rnrn+1
′ − q0q0

′) − (qn − q0) (rn+1 − q0) +
− (qn+1 − q0) (rn − q0) . (5.76)

Recalling that rn ≈ sn for the same values of n, one can see that the first term on the
right-hand side is negligible. Using the same arguments adopted for equation (5.71),
also the remaining terms can be neglected. Thus, by the approximate equality
(5.66) and the fact that the function ρ(z) is regular, we can write

Jn = pnpn+1
′ ≈ qnqn+1

′ ≈ ρ
(︃

n

N + 1

)︃
ρ′
(︃

n

N + 1

)︃
, n = 0, . . . , N. (5.77)

Keeping in mind that the current ρρ′ is decreasing for ρ > 1/2 and that the bulk
density is always greater than this value in the HD phase, one can argue that
the maximum current corresponds to the minimum bulk density. For β < l′, the
maximum current is equal to q0q0

′ and occurs at the left boundary of the system,
whereas for β > l′, Jmax = ββ′ is found at the right boundary.
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5 – Dynamical transitions in the TASEP-LK: mean-field approach

5.3.1 New features of the dynamical transition
To introduce the dynamical transitions in the unbalanced case, we describe the

results obtained by solving numerically the eigenvalue problem (5.8) at finite size.
The main new feature is that the low-lying eigenvalues exhibit two different be-
haviours for β < l′ and β > l′, in particular the second one is not observed in the
balanced case. In section 2.2.2 we observed that these two regimes in the extraction
rate (we can call them “low” and “high” beta regions) correspond respectively to
increasing and decreasing bulk density profiles (see fig. 2.9). Furthermore, in the
previous section we noted that, changing from the low to the high beta regions, the
position of the maximum current value moves from the left to the right boundary.
As one can see from figure 5.7, the case β < l′ is qualitatively similar to the bal-
anced case and the pure TASEP one (figure 2.3). Apart from the smallest one, the
low-lying eigenvalues form a nearly “flat band”, meaning that they are practically
independent of α. The slowest relaxation rate increases with α and, at a critical
value of the injection rate, it reaches a maximum and becomes almost constant. In
the N → ∞ limit, which is denoted by a thick black line, it is constant and the
transition is characterized by a discontinuity in the second derivative.
A new scenario is observed for β > l′: looking at figure 5.8, we see that the smallest
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Figure 5.7: Thin lines represent the smallest 12 eigenvalues of the relaxation matrix
computed numerically for N = 300, β = 0.1, ΩA = 0.3 and ΩD = 0.1 as a function
of α. Eigenvalues of increasing magnitude are alternately displayed by solid and
dotted lines. The thick solid line represents the infinite size limit of the slowest
relaxation rate (5.80).

eigenvalue does not saturate in a smooth way as before and a sequence of crossings
occurs through the spectrum. Actually, by examining the results on a sufficiently
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5.3 – The unbalanced case

small scale (as in figure 5.9), one realizes that the apparent degeneracies are indeed
avoided crossings. The smallest eigenvalue exhibits a very sharp slope change as
a function of the injection rate, whereas a number of higher eigenvalues have two
subsequent slope changes (of decreasing abruptness for eigenvalues of increasing or-
der). In the infinite size limit, the slowest relaxation rate becomes discontinuous in
the first derivative. In figure 5.9 we observe that also the confinement of the slowest
relaxation mode changes at the dynamical transition. We show the components of
the eigenvector corresponding to the smallest eigenvalue for two values of α in the
slow and in the fast phase respectively, very close to the dynamical transition. The
eigenvector has components significantly different from zero on both boundaries,
but we can see that in the slow phase they are mostly on the left side, whereas in
the fast phase the eigenvector tends to be confined to the right boundary.
We write the left boundary value of the bulk density according to equation (5.60)
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Figure 5.8: Thin lines represent the smallest 20 eigenvalues of the relaxation matrix
computed numerically for N = 300, β = 0.3, ΩA = 0.3 and ΩD = 0.1 as a function
of α. They are alternately displayed by solid and dotted lines. The thick solid line
represents the N → ∞ limit of the slowest relaxation rate defined by (5.82), the
thick dashed line corresponds to the definition of the slowest relaxation rate for
β < l′, i.e. eq. (5.80). As can be seen in the figure, this curve follows the series of
avoided crossings.

q0(β,ΩA,ΩD) = l +
(︃
l − 1

2

)︃
W0

(︄
β′ − l

l − 1
2

exp
β′ − l − 1

2(ΩA + ΩD)
l − 1

2

)︄
, (5.78)

it corresponds to the intercept of the dashed lines with the vertical axis n = 0 in
figure 2.9.
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Figure 5.9: Components of the eigenvector corresponding to the smallest eigenvalue
for N = 100, β = 0.3, ΩA = 0.3 and ΩD = 0.1, at two α values very close to α̃c.
Slow phase: top panel. Fast phase: bottom panel. The eigenvector has components
significantly different from zero on both boundaries, but in the slow phase they are
mostly on the left side, whereas in the fast phase the confinement moves to the
right end.

For this case, the asymptotic expression for the slowest relaxation rate is given by

λ
(∞)
min = 1 − 2 max

{︃
x∗

√︂
q0q′

0,
√︂
ββ′

}︃
. (5.79)

Looking at eqs. (5.12),(5.14),(5.15) and (5.16), we observe that the model param-
eters β, ΩA and ΩD get into the theory only through the quantities ββ′ and q0q0

′,
that are the right- and left-boundary currents in the infinite size limit. Of course
equations (5.17)-(5.19) hold also in the unbalanced case, provided the different ex-
pression for q0.
For β < l′ the bulk density profile has a positive slope, thus β′ > q0. These
two quantities are both greater that 1/2, because we are in the HD phase, thence
q0q0

′ > ββ′. Since x∗ ≥ 1, from equation (5.79) it follows that

λ
(∞)
min = 1 − 2x∗

√︂
q0q0′. (5.80)

This is equivalent to equation (5.10) and is denoted by a thick solid line in figure
5.7: in this portion of the HD phase region, the behaviour of λ(∞)

min as a function
of the injection rate is only governed by x∗, which has no discontinuity in the α
variable as in the balanced case.
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5.3 – The unbalanced case

In the second regime (β > l′), the slope of the bulk density profile becomes negative,
thus all the inequalities are reversed and q0q0

′ < ββ′. We know that x∗ decreases
upon increasing α up to αc, where it becomes equal to 1 and remains constant.
As a consequence, there must exist another threshold value α̃c < αc, such that
x∗

√
q0q0′ <

√
ββ′ for α > α̃c. This new threshold is computed by the equation

f

(︄√︄
ββ′

q0q′
0
; α̃c, q0

)︄
= 1, (5.81)

from which one can argue that α̃c(q0, β) and αc(q0) coincide when β = l′ = q′
0,

corresponding to a flat bulk profile on the value of the equilibrium Langmuir density.
The transition in λ

(∞)
min exhibits a discontinuity in the first derivative at α = α̃c, as

one can see from figure 5.8 (the infinite size limit (5.79) of the slowest relaxation
rate is denoted by a thick solid line), and has no analogue in the balanced case. In
the same figure we also observe that the expression (5.80), which is denoted by a
thick dashed line, follows the series of avoided crossings. This indicates that the
relaxation mode is carried on by the subsequent eigenvalues in the low lying part
of the spectrum.
In figure 5.10 we show the dynamical subphases of the HD phase region: the first
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Figure 5.10: Cut of the phase diagram in the α − β plane (HD phase region) for
ΩA = 0.3 and ΩD = 0.1. Thick lines denote static transitions, whereas thin lines
denote dynamical transitions. The dynamical transition at “low-betas” is denoted
by a dashed line and its continuation for β > l′ by a dotted line, the thin solid line
denotes the first-order like dynamical transition.

distinction is between the HD-s (slow) phase, where λ(∞)
min depends on the injection

rate, and the HD-f (fast) phase, where the slowest relaxation rate is independent
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5 – Dynamical transitions in the TASEP-LK: mean-field approach

of α and takes the highest possible value at a given β, that is

λ
(∞)
min = 1 − 2 max

{︃√︂
q0q′

0,
√︂
ββ′

}︃
. (5.82)

For β = l′ = q′
0 the latter expression exhibits a singularity in the first derivative

(we can call it first-order), thus we can say that there is a new type of dynamical
transition. For this reason, we further subdivide the HD-f region into HD-f’ and
HD-f”. We denote the dynamical transition lines corresponding to first- (α̃c(β)) and
second-order (αc(β)) singularities by solid and dashed lines respectively. In figure
5.10 we have also reported the continuation of the second order line for β > l′,
denoted by a dotted line. It is not correct to say that this line represents a dynamical
transition, because it is unrelated to the slowest relaxation rate. Nevertheless,
it contains some extra information about the spectrum, since it can be loosely
considered as a border line for the region of avoided crossings.
We verified numerically that the difference λ(N)

min−λ(∞)
min scales as a power law with the

same exponents (1 in the slow phase and 2/3 in the fast phase) as in the balanced
case. In figure 5.11 we show an example for β = 0.1 which is qualitatively similar
to what is observed in figure 5.4. In figure 5.12 we consider an example in the high
beta region (β = 0.3): we observe that the multiplying constant decreases with α
in the slow phase, whereas the points in the fast phase are coincident at large N .
In between we can see a crossover regime: the curves corresponding to α = 0.395
and α = 0.4 deviate from the power law scaling at small sizes.
We now try to provide a formal derivation of the asymptotic values for the slowest

relaxation rate presented above. We recall the eigenvalue problem (5.8) for the
relaxation matrix

Aun ≡ anun −
√︂
pnpn+1′un+1 −

√︂
pn−1pn

′un−1, n = 1, . . . , N

where an is defined by (5.4) and u0 ≡ uN+1 ≡ 0. In appendix B.3 we derive upper
and lower bounds for the mean-field slowest relaxation rate λ(N)

min, which become
tight in the infinite size limit. To find suitable upper bounds, we resort again to
the Courant minimax principle

λ
(N)
min ≤ (u,Au) , (5.83)

for any vector u ∈ RN with unitary norm. From (5.8) we write

(u,Au) =
N∑︂

n=1
anu

2
n − 2

N−1∑︂
n=1

√︂
Jnunun+1. (5.84)

Expressing the local density by (5.67) and plugging this into the definition of the
diagonal term, we have

an = 1 − (rn+1 − rn−1) − (qn+1 − qn−1 − ωA − ωD). (5.85)

66



5.3 – The unbalanced case

10
-6

10
-5

10
-4

10
-3

10
-2

 1000  10000  100000

α = 1

-2/3

α = 0.5

-1

λ
m

in
(N

)  -
 λ

m
in

(∞
)

N

Figure 5.11: Difference between the finite-size slowest relaxation rate λmin
(N) and

its infinite-size limit value λmin
(∞) as a function of N (circles) for the unbalanced

TASEP-LK (ΩA = 0.3, ΩD = 0.1) with β = 0.1 and different α values, both above
and below the critical threshold αc ≈ 0.57368. Solid lines represent scaling func-
tions, i.e. ∝ N−2/3 and ∝ N−1 respectively (see the text). Dotted lines are an
eyeguide.
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Figure 5.12: Difference between the finite-size slowest relaxation rate λmin
(N) and
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In the quadratic form (u,Au), there are terms vanishing for N → ∞: we can
neglect the last term in (5.85), then the detrended densities rn can be replaced by
sn. Thus, we can write

an ≈ 1 − (sn+1 − sn−1) (5.86)
and therefore

(u,Au) ≈ 1 −
N∑︂

n=1
(sn+1 − sn−1)u2

n − 2
N−1∑︂
n=1

√︂
Jnunun+1. (5.87)

In this case we do not write formal bounds at finite N as we did for the balanced
case, nevertheless all the approximate inequalities have been verified numerically.
As far as the lower bounds are concerned, we use the same approach inspired by
the Gershgorin’s circle theorem that was adopted for the balanced case. In doing
so, we distinguish three cases of increasing complexity in the parameter values, the
details are given in appendix B.3.
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Chapter 6

Complementary results for the
TASEP-LK

In this chapter we investigate the dynamical transitions in the TASEP-LK using
two complementary approaches: one method is the modified Domain Wall Theory
(mDWT) introduced in chapter 3, the other one is to compute the exact finite
size slowest relaxation rate as described in section 4.2 and then extrapolate the
results to the infinite size limit with the Bulirsch-Stoer (BST) algorithm, explained
in section 4.3. We present numerical evidences for the two dynamical transitions
and we make conjectures about the exactness of the mDWT for this model and
about the scaling exponent of the slowest relaxation rate: the results show a good
agreement between the mDWT predictions and the extrapolated points both in the
low and high beta regions. From our observations we have also evidence that the
scaling exponent 2/3 found for the mean-field slowest relaxation rate in the fast
phase may be exact and unique as for pure TASEP.

6.1 mDWT for the TASEP-LK
We reformulate the mDWT introduced in chapter 3 in order to apply it to

the TASEP-LK. In this context, the quantities ρL,R denote the densities of the
left/right domains separated by the wall: for the TASEP they coincide with the
boundary densities, but for the TASEP-LK the bulk is no longer constant and
different identifications are required. The relaxation rate λDW T given by (3.10) can
be rewritten by introducing the domain wall function

F (ρL, ρR) =

(︂√︂
J(ρL) −

√︂
J(ρR)

)︂2

ρR − ρL

. (6.1)
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6 – Complementary results for the TASEP-LK

In the mDWT we take F (ρL, ρR) in the slow phase and the maximum rate in the
fast phase (ρL ≥ ρc

L(ρR)), thus we define the function

G(ρL, ρR) =
⎧⎨⎩F (ρL, ρR), ρL < ρc

L(ρR)
F (ρc

L(ρR), ρR), ρL ≥ ρc
L(ρR)

(6.2)

Now we consider the TASEP-LK with ΩA and ΩD fixed. For β < 1 − l, the wall
is between the densities ρL = α and ρR = q0. The reason for this choice is that,
looking at the dynamics close to the steady state, the density immediately on the
right of the wall is q0 (an example is given in figure 6.1). The same holds in the
balanced case for 0 < β < 1/2 − Ω, where q0 = (β + Ω)′. For β > 1 − ℓ, previous
mean-field results suggest that an important role is played by the right boundary
and that the slowest relaxation rate should be determined by the minimum between
two quantities related to the left and right boundary currents respectively, yielding
a new critical value ρ̃c

L(ρR). The mDWT rate for the TASEP-LK can be defined
by the function

λ(ρL, ρR) =
⎧⎨⎩G(α, q0), β ≤ 1 − l

min {G(α, q0), F (ρc
L(β′), β′)} , β ≥ 1 − l

(6.3)

We report an example of the definition (6.3) in figure 6.2, for two values of beta
respectively smaller and greater than 1 − l.
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Figure 6.1: Density profile at two different times for the TASEP-LK, ΩA =
0.4, ΩD = 0.1, α = 0.3, β = 0.1; with these parameter values q0 ≈ 0.85115 (dashed
line). t/N = 4 is indistinguishable from the steady state. Solid lines: mean-field,
noisy lines: KMC simulations (average over 104 trajectories).
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6.2 BST extrapolation for the TASEP-LK
As mentioned in section 4.3, the parameter σ in the BST algorithm corresponds

to the size dependence 1/Nσ of the quantity that one wants to extrapolate. For
the case under investigation we observe that, for values of σ greater than 1 (as it
is for the slowest relaxation rate of pure TASEP), the extrapolation gives accurate
results, whereas for σ < 1 it is unstable. To get an intuitive understanding of the
cause of this instability, one can study the quantity of interest as a function of 1/N .
An illustrative picture is reported in figure 6.3: while for σ > 1 the curve reaches
a plateau in the infinite size limit, in the complementary case there is a vertical
tangent for 1/N → 0.
We now make two conjectures for the TASEP-LK: the first one is that the scaling

exponent 2/3 found for the mean-field slowest relaxation rate of the TASEP-LK
in the fast phase is exact, the second one is that the mDWT is exact also for this
model. We denote by λ(N)

e the exact slowest relaxation rate at finite size, by λ(∞)
e

its asymptotic value in the infinite size limit and by λ̂(∞) the one obtained by the
mDWT. Given this argument, it would be possible to write

λ(N)
e ≃ λ(∞)

e + CN−2/3. (6.4)

This choice is suggested by mean-field results and by observing that the plot of
λ(N)

e as a function of N−2/3 appears to be roughly linear for the largest N values
analyzed.
To verify the conjectures, we study the extrapolation of the quantity

ξN :=
(︂
λ(N)

e − λ̂(∞)
)︂a
, (6.5)
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σ > 1

σ < 1

1/N

Figure 6.3: Intuitive explanation of the stability of BST extrapolation of a finite
size sequence with scaling exponents σ greater or smaller than one. For σ > 1
the curve reaches a plateau in the infinite size limit, whereas for σ < 1 there is a
vertical tangent for 1/N → 0.

which depends on the two parameters λ̂(∞) and a. In the hypothesis λ̂(∞) = λ(∞)
e ,

this quantity would scale with the size as CN− 2
3 a, thus we adopt σ = 2

3a in the BST
algorithm. Varying λ̂(∞) until ξN extrapolates to zero, we have evidence that the
value of the mDWT slowest relaxation rate giving a null extrapolant is very close
to λ(∞)

e (see the illustration in figure 6.4). Changing the parameter a, there are
poles in the last extrapolants (see section 4.3), so there is more than one solution.
We try to reduce as much as possible the number of spurious zeros and we select
the closest solution to λ(∞)

e : for a = 1 we reobtain the unstable case of an exponent
σ < 1, whereas for a ≥ 3 there are many spurious solutions. Thus, an empirical
prescription for this parameter is 1 < a < 3 and we observed the optimal result
for values of a roughly between 2.3 and 2.8, where the extrapolated points are less
scattered. To verify the robustness of the extrapolation, we consider the result after
all the iterations and we do different trials changing at each time the range in the
system size: we fix Nmax = 21 and we take 3 ≤ Nmin ≤ 10.
In figure 6.5 we compare the mDWT with the results obtained by the BST extrap-
olation for a = 2.5, superimposing all the series in N . We take the same example
of figure 6.2: one can observe that the points are concentrated close to the mDWT
curve for both low and high beta regions. This indicates that the exact slowest re-
laxation rate may have a unique scaling exponent, as for pure TASEP. As regards
the case β > 1 − l, from the extrapolants we can distinguish an abrupt change
of slope at the dynamical transition. The same behaviour is found studying λ1 as
a function of β in the fast fase (see figure 6.6): we observe a change of slope for
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6.2 – BST extrapolation for the TASEP-LK

β = 1 − l and the extrapolated points follow the mDWT curve. As β approaches
the static transition with the MC phase, the slowest relaxation rate is very small
and thus difficult to determine accurately: the BST results are more spread and
can take negative values, but we know that the slowest relaxation rate approaches
zero as β reaches 1/2 and we can state that the points are consistent with this
behaviour.

To obtain more accurate results by the BST extrapolation of exact finite size slow-

≈ λ(∞)
e

λ̂(∞)

ξ N

Figure 6.4: Example picture to illustrate the numerical evidences explained in the
text. The value of ξN as a function of λ̂(∞) is denoted by a solid line: the value of
λ̂(∞) such that ξN extrapolates to zero is very close to λ(∞)

e . Varying the parameter
σ of the BST extrapolation, there are poles in the last extrapolants (dashed line).

est relaxation rates in the TASEP-LK, longer sequences would be needed, but we
can conclude that the series shown above provide a rather clear numerical evidence
of a dynamical transition. Using the same value for the parameter a, the points
show a reasonable agreement with the reference curve of mDWT as a function of
both α and β.
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Figure 6.5: Comparison between mDWT and BST results as a function of α for
the slowest relaxation rate of the TASEP-LK, ΩA = 0.4, ΩD = 0.1. For the BST
method, we take a = 2.5 in (6.5) and we superimpose the extrapolations with
different ranges in the system size: Nmax = 21 and 3 ≤ Nmin ≤ 10. Top curve
corresponds to β = 0.1, bottom curve to β = 0.25.
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Figure 6.6: Comparison between mDWT and BST results as a function of β, for
α = 0.9. The model parameters are the same as in figure 6.5 and the same series
in N are superimposed.
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Chapter 7

Dynamical transitions in the AS
model

In this chapter we present our results about the investigation of the dynamical
transitions in the AS model with three approaches: the pair approximation, the
mDWT and the BST extrapolation of exact finite size results. Dynamical tran-
sitions are found by all methods and the results are consistent. A novel feature
in this model is the occurrence of a second slow phase in the same LD phase for
strongly attractive interactions.
Almost all the contents of this chapter have been published in [38].

7.1 Pair approximation approach to the relax-
ation

We recall the time evolution equations (2.20) for the local densities

ṗn(t) = Jn−1(t) − Jn(t), n = 1, . . . , N

and for the two-node expectations: eq. (2.21)

Ċn(t) = θP t
n−1[100] + ηP t

n[1101] + θP t
n[1100] − Jn(t),

for n = 2, . . . , N − 3 and eqs. (2.22)-(2.24)

Ċ1(t) = α2P
t
1[00] + ηP t

1[1101] + θP t
1[1100] − J1(t),

ĊN−2(t) = θP t
N−3[100] + β1P

t
N−2[110] − JN−2(t),

ĊN−1(t) = θP t
N−2[100] + β2P

t
N−1[11] − JN−1(t),

for the boundary nodes. We apply the pair approximation (2.6) to the 3- and 4-node
marginals and we rewrite the dynamical equations in matrix form: we introduce

75



7 – Dynamical transitions in the AS model

the (2N − 1)−component vector

vt = (p1(t), C1(t), . . . , pN−1(t), CN−1(t), pN(t)) , (7.1)

so that we can write
v̇t = ϕ

(︂
vt
)︂
. (7.2)

The relaxation to the steady state v = (p1, C1, . . . , pN−1, CN−1, pN), given by the
condition ϕ(v) = 0, is described by the matrix M with elements

Mi,j = − ∂ϕi

∂vt
j

⃓⃓⃓⃓
⃓
vt=v

, i, j = 1, . . . ,2N − 1. (7.3)

The smallest eigenvalue of this matrix is the pair approximation prediction for the
slowest relaxation rate. As was observed in the mean-field theory for the TASEP
(see fig. 2.3), also the pair approximation for the AS model detects a dynamical
transition as a qualitative change in the spectrum of the relaxation matrix. We
show an example in figure (7.1), where we plot the 9 smallest eigenvalues as a
function of ρL for the case η = 1, θ = 0.5. These eigenvalues are real, while in the
whole spectrum there are pairs of complex conjugates.
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Figure 7.1: Low lying part (λ1, . . . , λ9) of the spectrum of the pair approximation
relaxation matrix as a function of ρL, for N = 100, η = 1, θ = 0.5 and ρR = 0.8.
The line connecting the points λ1 is a guide for the eye.

7.2 The repulsive case
In figure 7.2 we show the static and dynamical phase diagrams of the AS model

for θ = 1 and η = 0.1. We report the dynamical transition lines provided by the
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Figure 7.2: Phase diagram for strongly repulsive interactions, η = 0.1, θ = 1.
The static transitions are denoted by solid lines, thick (respectively thin) dashed
lines indicate the dynamical transitions predicted by the pair approximation (resp.
mDWT.)

pair approximation and by the mDWT, which are denoted by thick and thin dashed
lines respectively. Considering the HD phase, for values of ρR

′ close to zero, the
modified Domain Wall Theory predicts that the dynamical transition tends to a
value of ρL smaller than one, at odds with the pair approximation.
In figure 7.3 we plot the smallest eigenvalue of the relaxation matrix λ1 (it corre-
sponds to the red lines) as a function of ρL for ρR = 0.8, η = 0.8 and θ = 1, at
various system sizes (N = 100, 200, 400, 800). The behaviour is analogous to that
of the mean-field relaxation rate for the TASEP: one can observe a weak size depen-
dence in the fast phase, where λ1 approaches its asymptotic value as 1/N2, whereas
this quantity is practically independent of the system size in the slow phase, where
the scaling is exponential. We have verified numerically the same scaling of this
relaxation rate in the fast phase, for different values of the parameters η, θ and at
different values of ρR within the HD phase. Together with the pair-approximation
slowest relaxation rate, we also show the results obtained by the mDWT (blue line)
and by the extrapolation of the exact finite size results (black stars). As regards
the latter method, we computed the smallest nonzero eigenvalue of the reduced
transition matrix for 4 ≤ N ≤ 22 and set the parameter σ in (4.16) at 2, after
verifying numerically that this value gives near-optimal results according to the
criterion (4.17) proposed in [36]. One can observe that the pair approximation
overestimates significantly (of almost three times) the relaxation rate with respect
to the other two methods, which are instead close to each other, with the mDWT
rate slightly smaller than the extrapolation of the exact finite size results in the
fast phase. This observation is reasonable, because in the pair approximation the
system is exploring only a subset of all the possible configurations of the phase
space and thus the dynamics is faster. Furthermore, the ratio η/θ is close to one,
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Figure 7.3: The relaxation rate λ1 obtained by the three approaches as a function
of ρL for η = 0.8, θ = 1 and ρR = 0.8. From top to bottom: pair approximation
for N = 100, 200, 400 and 800 (red lines), mDWT (blue lines) and extrapolation
of exact finite-size results (black stars).
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Figure 7.4: The relaxation rate λ1 obtained by the three approaches as a function
of ρL for η = 0.5, θ = 1. The results of the pair approximation are computed for
N = 800.

i.e. to the TASEP case, for which the mDWT rate is exact.
Keeping the same value of ρR, we consider two other examples with different values
of the ratio η/θ, in the repulsive regime. For the case η/θ = 1/2 reported in figure
7.4, we observe that the mDWT rate is below the extrapolated results except for
small values of ρL. In the strongly repulsive case (η = 0.1, θ = 1, figure 7.5) we
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Figure 7.5: The same plot as in figure 7.4, for η = 0.1, θ = 1. In this case, the
mDWT overestimates the slowest relaxation rate, whereas the results from the pair
approximation and the BST extrapolation are almost coincident.

observe an unexpected behaviour: the mDWT overestimates the relaxation rate,
whereas the pair approximation result is almost coincident with that given by the
extrapolation. This case corresponds to the phase diagram in figure 7.2, where we
can see that the mDWT gives a different prediction for the dynamical transition
line, especially at small values of ρR

′. In figures 7.6 and 7.7 we plot the slowest
relaxation rate obtained by the three approaches as a function of the ratio η/θ
for ρR = 0.8 and two points in the slow (ρL = 0.35) and in the fast (ρL = 0.99)
phase respectively. One can observe that the results obtained by the pair approxi-
mation and by the extrapolation of the exact finite size results are non-monotonic
and reach a maximum at a given value of η/θ, whereas the mDWT rate is strictly
decreasing. For small values of η/θ, the pair approximation rate is practically co-
incident with the exact result, then the two relaxation rates detach and become
significantly different. The mDWT rate is greater than the other results in the
strongly repulsive regime, then it is found below them for intermediate values of
η/θ and approaches the exact result close to the pure TASEP limit (η/θ = 1). In
the slow phase we can see that the mDWT rate already reaches the extrapolated
result at about η/θ = 0.7.
Finally we look at λ1 as a function of the current J and of ρR

′ in the strongly repul-
sive case η = 0.1, θ = 1 and in the fast phase (ρL = 0.99): in figure 7.8 we plot the
pair approximation slowest relaxation rate as a function of the current (right panel
(b)), the left panel (a) shows J as a function of ρR

′. We observe that the relaxation
rate is not monotonically decreasing, as it is for pure TASEP. In figure 7.9a we
show the slowest relaxation rate obtained by the three approaches as a function
of ρR

′: for small values of this parameter, the result of the pair approximation is
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Figure 7.6: The relaxation rate λ1 obtained by the three approaches as a function
of the ratio η/θ, for ρL = 0.35 and ρR = 0.8. The pair approximation rate is
computed for N = 800. The results obtained by the pair approximation and the
extrapolation are non-monotonic and reach a maximum at a given value of η/θ,
whereas the mDWT rate is strictly decreasing. For small values of η/θ, the pair
approximation is practically coincident with the extrapolation.
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Figure 7.7: The same plot as in figure 7.6, for ρL = 0.99 and ρR = 0.8.

practically coincident with that obtained by the extrapolation of the exact finite
size relaxation rates. The pair approximation rate reaches a maximum at about
ρR

′ = 0.5, the extrapolated points are slightly increasing up to ρR
′ = 0.4, then

they decrease to zero and are in good agreement with the mDWT rate, which is
monotonically decreasing. For comparison, in figure 7.9b there is the same plot
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for η = 0.5 and θ = 1, where we can see that all the three relaxation rates are
monotonically decreasing.
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(a) J as a function of ρ′
R.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18

λ
1

J
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Figure 7.8: Pair approximation for the AS model, η = 0.1, θ = 1, ρL = 0.99 and
N = 800.
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Figure 7.9: The relaxation rate λ1 obtained by the three methods as a function of
ρ′

R for ρL = 0.99. The results of the pair approximation are computed for N = 800.

7.3 The attractive case
In figure 7.10 we show the phase diagram of the model for weakly attractive

interactions (η = 1, θ = 0.5): in this case, the dynamical transition lines provided
by the mDWT are close to the pair approximation ones. Then, in figure 7.11 we
plot the slowest relaxation rate λ1 obtained by the three approaches as a function
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of ρL. The pair approximation rate (computed for N = 800) is significantly greater
than the other two, also the mDWT slightly overestimates the exact result except
for small values of ρL.

Now we concentrate on the strongly attractive case. We recall that, for η suffi-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

HD-slow

HD-fast

MCLD-fast

LD-slow

ρ
R

’

ρL

Figure 7.10: Phase diagram of the AS model for weakly attractive interactions, η =
1, θ = 0.5. The static transitions are denoted by solid lines, thick (respectively thin)
dashed lines indicate the dynamical transitions predicted by the pair approximation
(resp. mDWT).
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Figure 7.11: The relaxation rate λ1 obtained by the three approaches as a function
of ρL for η = 1, θ = 0.5 and ρR = 0.8. From top to bottom: pair approximation
for N = 800, mDWT and extrapolation of exact finite-size results.

ciently greater than θ, an additional HD-like phase (see section 1.3.2) is observed
in the high-ρL, small-ρR corner of the phase diagram and that this phenomenon
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7.3 – The attractive case

is reproduced qualitatively by the pair approximation (see section 2.3, we observe
it for η/θ ≳ 6). In this case the model shows a remarkable novel feature: two
dynamical transitions occur in the LD phase. As a consequence, there is a LD-slow
phase at small values of ρR

′, close to the “ordinary” HD phase, and another one
at large values of the same parameter, close to the HDIV phase. In figure 7.12 we
show a portion of the phase diagram for η = 1 and θ = 0.1, where the boundaries
of the HDIV phase are determined in the pair approximation. We note that, for the
small values of θ necessary to observe the reentrant transition, it is very difficult
to determine the dynamical transition line for smaller values of ρL, since the relax-
ation matrix becomes ill-conditioned. As one can see from figure 7.13, the second
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Figure 7.12: Portion of the phase diagram for strongly attractive interactions, η =
1, θ = 0.1.

dynamical transition is found both in the pair approximation and the mDWT. We
already mentioned in 2.3 that, for small values of ρR, the density on the right of the
domain wall is a function q̄IV (ρR), which in the pair approximation is linear. Thus,
we fitted the bulk density of the HDIV phase as a function of ρR and we computed
the mDWT rate accordingly. Also the extrapolation of the exact rate at finite size
seems to exhibit this new transition, however it is more difficult to obtain accurate
results in this case. Considering 4 ≤ N ≤ 24, we report the results after five (green
bullets) and after all twenty iterations (black stars) of the BST algorithm. The
difficulty comes from the emergence, in the last extrapolants, of poles which can be
close to σ = 2 and thus yield a bias in the estimate of the rate. We give an example
of this problem for the 20-iterations point at ρR

′ = 0.9, which is above the plateau
formed by the points on its left: in figure 7.14 we plot the value of λ1 as a function
of σ. There is a pole near σ = 2.16, which yields a value of the rate greater than
0.001 at σ = 2, as one can see from the inset.

This problem was already observed in 6.2 for the TASEP-LK and in principle
it can occur also with the pure TASEP, for which however the BST extrapolation
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Figure 7.13: The relaxation rate λ1 obtained by the three approaches as a function
of ρR

′ for η = 1, θ = 0.1 and ρL = 0.52. From top to bottom: pair approximation
for N = 800, mDWT and extrapolation of exact finite-size results after 5 (green
bullets) and after all (black stars) the iterations.
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Figure 7.14: The last extrapolant of the relaxation rate λ1, obtained by the BST
algorithm, as a function of the parameter σ. The inset shows the same quantity in
a small interval centered at σ = 2.

gives very accurate results. In our analysis, we compute the rate in the fast phase
with a small step in ρL (in fig. 7.15 we take ∆ρL = 0.001) and hence we find a few
localized singular values, but in fact almost all the points are concentrated on the
exact location of the rate.
Coming back to the strongly attractive case of the AS model, we take a step of 0.01
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Figure 7.15: The last extrapolant (black bullets) of the relaxation rate λ1 obtained
by the BST algorithm for pure TASEP as a function of ρL, at ρR = 0.8. The red
line denotes the mDWT result.

in the parameter ρR
′ and we compute the extrapolated results for the relaxation

rate after all the iterations, considering different ranges in the system size. This
approach was adopted also for the TASEP-LK, in this case we consider slightly
longer sequences: we take Nmax = 24 and we vary Nmin from 4 up to 20, the results
are reported in figure 7.16. The lower curves correspond to 4 ≤ Nmin ≤ 10 and
Nmin = 12 (dark green bullets), the upper series correspond to 18 ≤ Nmin ≤ 20.
One can realize that the majority of the series in N are concentrated in the lower
part and suggest the most likely value of the relaxation rate, moreover they reveal
the two dynamical transitions. The shorter sequences overestimate λ1 and yield a
poor definition of the first transition.
The relaxation rate of the HDIV phase is very small and depends on both bound-

ary densities, as in the HD-slow phase. For this reason, we denote this phase as
HDIV − slow in figure 7.12.

7.4 Full dynamics of the model
Considering as an example the repulsive case with the same values of θ and

η as in figure 7.2, we take two points in the HD phase, corresponding to the slow
(ρL = 0.2, ρR = 0.5) and the fast (ρL = 0.5, ρR = 0.5) phases respectively. For both
cases we study the full time evolution of the density profile from an almost empty
lattice (uniform density at 0.01) with no correlations. The results are reported
in figures 7.17 and 7.18, where we compare the dynamical equations of the pair
approximation with the Kinetic Monte Carlo results (average over 104 trajectories).
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Figure 7.16: The last extrapolant of the relaxation rate λ1 as a function of ρR
′,

considering different ranges in N , where Nmax = 24. The bottom curves correspond
to 4 ≤ Nmin ≤ 10 and Nmin = 12 (dark green bullets), the upper series are given
by 18 ≤ Nmin ≤ 20. The thin black lines denote the mDWT.

We observe that the picture provided by the pair approximation shows a good
agreement with the simulations, the only relevant difference being that its domain
walls are too sharp. A similar analysis was performed in [23] for another model
in the KLS class, considering a single point in the phase diagram and with no
reference to a dynamical transition. The MCAK approximation, introduced in the
latter work and already mentioned in 2.3, exhibited the same feature in the shock.

In the HD-slow phase, we can distinguish two regimes: in a first part (which
was called penetration regime in [23]) up to t1/N = ρL/J(ρL) ∼ 1.5, particles fill
the lattice and form a LD-like plateau at ρL, which occupies almost all the system
apart from a boundary layer close to the right end. This is an interesting feature,
considering also that the slow phases are located near the LD-HD coexistence line:
even if the plateau is not a long-lived metastable state, the slow phase could be
viewed as a loose analogue of metastability regions in equilibrium phase diagrams.
In the second regime (called intermediate in [23]) from t1 to the steady state, a
domain wall separating two regions of uniform densities ρL and ρR moves to the
left with a velocity vs given by (3.2), whose magnitude increases with ρL. For the
parameter values in example, vs ≃ −0.105.
The dynamics in the HD-fast phase can again be divided into two parts. However,
in the penetration regime, the injection rate is so large that the particles do not have
time to form a plateau at density ρL, which would take a time t1/N = ρL/J(ρL) ∼ 4.
Since in the previous case |vs| was increasing with ρL, the shock moves faster than
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Figure 7.17: Density profile at different times for N = 1000, η = 0.1, θ = 1 in the
HD-slow phase (ρL = 0.2, ρR = 0.5). The number near each curve is the reduced
time t/N , t/N = 12 is indistinguishable from the steady state. The thick smooth
lines correspond to the pair approximation, the thin noisy ones denote the KMC
simulation (average over 104 trajectories).

in the slow phase. Its velocity increases with time, but it is smaller than vs (in the
limit ρL → ρ−

R), because the density immediately on the left of the shock is smaller
than ρL. Actually, we verified that in the parameter region of the HD-fast phase
the shock speed no longer increases with ρL.
Moreover, it turns out that the full dynamics is practically independent of ρL in

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  100  200  300  400  500  600  700  800  900  1000

0.1 0.5 1
1.5

2345

6

p
n

t

n

Figure 7.18: Same as fig. 7.17 in the HD-fast phase (ρL = 0.5), t/N = 6 is
indistinguishable from the steady state.
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7 – Dynamical transitions in the AS model

the fast phase: in figure 7.19 we plot the current profiles at different times for three
values of the left boundary density (ρL = 0.5 with solid line, ρL = 0.7 with dotted
line and ρL = 0.9 with dashed line) in the HD-fast phase. Except near the left
boundary, the three curves are coincident; this feature is confirmed by the KMC
simulations, denoted by noisy lines. A similar behaviour is observed if one looks
at the density or at the two-node marginals. These results support the existence
of a dynamical transition and indicate that the pair approximation is a reliable
method also for describing the dynamics of the model. The dynamical properties
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Figure 7.19: Current profile at different times for N = 100, η = 0.1, θ = 1, ρR = 0.5
and at three different values of ρL in the HD-fast phase: 0.5 (solid lines), 0.7
(dotted) and 0.9 (dashed). t/N = 6 is indistinguishable from the steady state. The
pair appoximation results are denoted by thick smooth lines, the KMC simulations
(average over 106 trajectories) by thin noisy lines.

observed in this example remain valid also for other values of η and θ. In the HDIV

phase, one does not observe the formation of a plateau at intermediate times in the
evolution of the density profile.
We now consider the dynamics of the same case (η = 0.1, θ = 1) for ρR = 0.8, in
order to try to get some insights into what was observed in section 7.2 about the
slowest relaxation rate. In particular, if the pair approximation rate is practically
coincident with the exact one, we expect that the position of the domain walls in
the pair approximation and in the KMC simulation should be the same in the long
time dynamics (very close to the steady state). In figure 7.20 we show an example
in the slow (a) and in the fast (b) phases: the penetration regime is analogous
to what is observed in figures 7.17 and 7.18, then at t/N = 2 the profile forms
a structure on the top of the domain wall which extends and becomes practically
linear in n, with a slope progressively decreasing as the dynamics goes on. This
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7.4 – Full dynamics of the model

feature, which is more marked in the fast phase, entails that the mDWT cannot
give an accurate result for the relaxation rate in this case, because the density on
the right of the wall is not equal to ρR. We can see that the density immediately on
the right of the wall in the pair approximation and in KMC simulations are already
very close to each other at intermediate times.
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(a) ρL = 0.2
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(b) ρL = 0.7

Figure 7.20: Density profile at different times for the same values of the hopping
rates as in figure 7.17, in the slow (a) and in the fast (b) phases at ρR = 0.8.
t/N = 8 is indistinguishable from the steady state. Thick smooth lines denote
the pair approximation, thin noisy lines denote KMC simulations (average over 104

trajectories). At t/N = 2 the profile forms a structure on the top of the domain
wall which extends and becomes practically linear in n, with a slope progressively
decreasing as the dynamics goes on. The density immediately on the right of the
wall in the pair approximation and in KMC simulations are already very close to
each other at intermediate times.
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Chapter 8

Reflections upon the physical
meaning of the dynamical
transition

With reference to the driven diffusive models that have been investigated in
the thesis, in this chapter we try to think back to the properties of the dynamical
transition, underlining the aspects that can help in giving a physical understanding
of this phenomenon. We start with a discussion of the methods adopted in our
research activity, compared to the techniques employed in previous works on the
PASEP/TASEP dynamical transitions.

8.1 Discussion of methods
As was mentioned in 1.2, the existence of a dynamical transition was discovered

for the TASEP by De Gier and Essler [9, 13], who employed the Bethe ansatz to
diagonalize the transition matrix of a PASEP with open boundary conditions and
arbitrary values of hopping and injection/extraction rates. They derived equations
describing the complete relaxation spectrum, then, considering the TASEP as a
special case, the authors determined the asymptotic behaviour of the spectral gap
(the slowest relaxation rate) in the infinite size limit. Thanks to this analytical
approach, it was found that the gap does not vanish in the infinite size limit in the
HD and LD phase regions and that it exhibits a singularity.
The purpose of this thesis is to investigate the existence of dynamical transitions
in two models more general than the TASEP, for which an exact solution is not
available. Therefore, we have to resort to approximations and to combine different
methods in order to ensure that our results indicate a true dynamical transition
and are not due to artifacts. Building on the fact that the cluster mean-field ap-
proximations reproduce the exact static phase diagram of the TASEP and yield
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8 – Reflections upon the physical meaning of the dynamical transition

dynamical transition lines close to the exact ones [1], we applied them also to
the TASEP with Langmuir kinetics and to the AS model. For the first case, we
managed to perform an analytical treatment within the mean-field approximation
and to determine asymptotic bounds for the slowest relaxation rate which become
tight in the infinite size limit. For the second case, the simple mean-field is not
adequate [18], thence we employed a pair approximation: with the choice of bulk-
adapted boundary rates and ρL = ρR = ρ, it reproduces the exact steady state bulk
current-density relation at any finite size. Consequently, the pair approximation
with this choice of the boundary rates yields the exact location of most static phase
transitions. We determined numerically the smallest eigenvalue of the relaxation
matrix: dynamical transitions are found also in the pair approximation for this
model, moreover the results point out a second transition in the same LD phase
when the interactions are strongly attractive.
The dynamical transitions of both models have been investigated also with other
approaches. We adopted two techniques originally adopted for the TASEP [3, 13,
2], but applicable to generic driven diffusive models: they are the modified Domain
Wall Theory and the Bulirsch-Stoer extrapolation method. The mDWT is a heuris-
tic solution which takes the DWT rate in the slow phase and its maximum value
in the fast phase. It was introduced in [13] and then in [2] to solve the problem of
the original DWT presented in [3], which erroneously predicted a relaxation rate
independent of β for α ≥ 1/2. While it is exact by construction for pure TASEP,
we cannot expect this property to be satisfied also in the presence of interactions,
because the theory does not take into account a possible internal structure of the
wall, which could be non-negligible in the presence of interactions. Actually, in
chapter 7 we verified that the mDWT approaches the exact result (given by the
extrapolation of the exact finite size relaxation rates) as the ratio η/θ reaches unity.
Nevertheless, also the mDWT rate exhibits a second dynamical transition for ρR

′

close to 1. Conversely, for the TASEP-LK we conjectured the exactness of the
mDWT predictions and we observed a good agreement with the results of the BST
extrapolation.
The latter method was also applied in [3] to the finite size slowest relaxation rates
of the TASEP and it was subsequently shown to accurately reproduce the exact
asymptotic result. We verified that this method can be applied also to the AS
model, with the same value of the parameter σ in (4.16) used for pure TASEP.
The strongly attractive case (η/θ = 10) is more difficult to treat because of the
occurrence of poles [36] near σ = 2 in the last extrapolants, however we can state
that also the BST extrapolation reveals the dynamical transitions of the AS model,
including the one close to the HDIV phase. For the TASEP-LK, the exponent σ < 1
makes the extrapolation unstable, thus we considered a quantity depending on two
parameters: the first one is the mDWT rate, that is subtracted from the finite size
slowest relaxation rate, the second one is the exponent a to which the difference
is raised. We varied the mDWT rate until the difference extrapolates to zero and
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chose the value of a in order to reduce as much as possible the number of spurious
solutions. The results provide an evidence of the two kinds of dynamical transition
and show a good agreement with the mDWT predictions.
A further approach to investigate the TASEP dynamical transition are kinetic
Monte Carlo simulations: in [4], Proeme et al. tried to compute the slowest re-
laxation rate by measuring the decay rate of different observables at long times.
They chose an initial condition far from the steady state: considering the HD phase,
each site of the lattice is independently occupied with probability α. The infinite
size limit of the relaxation rate was obtained by a polynomial fit of finite size re-
sults. The main difficulty is that the residual signal after all the higher relaxation
modes have decayed is small and affected by noise. The results showed qualitatively
a greater agreement with the exact predition by De Gier and Essler than with the
original DWT one, but were not accurate. Thus, the authors computed the slowest
relaxation rate using the Density Matrix Renormalization Group (DMRG) method.
We tried to determine the slowest relaxation rate of the AS model by simulating
systems of sizes much greater than those considered in [4] (we went up to L = 1000),
but it was not possible to observe a clear single exponential relaxation and obtain a
better estimate, probably because of the small separation among the smallest eigen-
values of the transition matrix. However, thanks to the simulations, we understood
that the full dynamics of the system is independent of the control parameter (ρL for
the HD phase) in the fast phase. Moreover, we observed a good agreement of the
pair approximation with KMC simulations, confirming the effectiveness of cluster
mean-field methods to study driven diffusive models.

8.2 Physically relevant aspects
Considering the HD phase for simplicity and looking at the behaviour of the

low-lying eigenvalues of the relaxation matrix as a function of ρL (figs. 2.3, 5.7, 5.8
and 7.1), we can grasp an important property of the dynamical transition, that is
the competition between bulk and boundary layer: in the fast phase, ρL is close
to the bulk density ρR, so that the bulk properties predominate in determining
the relaxation dynamics. In the slow phase instead, ρL is far from ρR, thus the
slowest relaxation mode is driven by the boundary. In section 5.2.2 we understood
the same point by looking at the structure of the simplified matrix B, where the
boundary layer acts in the diagonal terms, whereas the bulk currents appear in the
off-diagonal terms. Considering the TASEP, we find the deviation from the pure
Toeplitz structure in the diagonal elements.
Another aspect is the dependence of the slowest relaxation rate on the uniform
current, in the TASEP and in the AS model, or on the maximal current in the
TASEP-LK. The mean-field theory for the TASEP and the TASEP-LK indicates
that the slowest relaxation rate decreases upon increasing the maximum current,
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8 – Reflections upon the physical meaning of the dynamical transition

meaning that a steady state which is farther from equilibrium, takes a longer time
to be established. Also for the AS model we verified the same behaviour of λ1 at
different values of the ratio η/θ in the HD phase. The only exception is the extreme
(repulsive) case η = 0.1, θ = 1, for which the slowest relaxation rate predicted by
the pair approximation is increasing up to a certain value of J (see fig. 7.8b).
A common trait of the models studied here is that the slow phases are located in
the phase diagram close to the LD-HD coexistence line. Moreover, looking at the
full dynamics of the AS model in the HD phase, we observed the formation of a
LD-like plateau at intermediate times in the slow phase. Altough this plateau is not
a long-lived metastable state, the slow phase could be viewed as a loose analogue
of metastability regions in an equilibrium phase diagram. The same behaviour is
observed in the full dynamics of the TASEP and also in the relaxation dynamics of
the TASEP-LK one can see the formation of a LD-like profile: we show an example
in figure 8.1 for N = 1000, α = 0.35, β = 0.3, ΩA = 0.3 and ΩD = 0.1. The LD
bulk profile is denoted by a thick red line.

Another important point is that of a change in the structure of the eigenvector
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Figure 8.1: Density profile at different times for the TASEP-LK. N = 1000, α =
0.35, β = 0.3, ΩA = 0.3 and ΩD = 0.1. The LD bulk profile is denoted by a thick
red line. t/N = 6 is undistinguishable from the steady state.

corresponding to λ1 at the dynamical transition. Considering the mean-field theory
for the TASEP, the components of the eigenvector of the original relaxation matrix
(see eq. (5.6)) decay exponentially to zero. We can estimate the parameters of
the exponential function through a fit, then divide the eigenvector components by
the fitting function evaluated at the same n and observe the residual structure. We
show an example for β = 0.4 and N = 600. We compute the critical threshold at fi-
nite size αc(β,N = 600) ≈ 0.50045 and we consider α values close to the dynamical
transition, to exclude the possibility that the change in the shape of the eigenvector
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could be due to other causes. We plot the components of the eigenvector of the
original (non symmetrized) relaxation matrix in log-y scale and fit them with a lin-
ear function y = a+ bn, we report the fit parameters in table 8.1 We can see that

α a b

0.495 0.553 -0.216
0.498 0.549 -0.210
0.502 0.972 -0.205
0.51 1.871 -0.203
0.55 3.106 -0.203

Table 8.1: Fit parameters of the components of the eigenvectors v1 of the non-
symmetrized mean-field relaxation matrix for the TASEP at different α values in
the slow and fast phases. β = 0.4, αc(β,N = 600) ≈ 0.50054.
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Figure 8.2: Components of the same eigenvectors of table 8.1 obtained after dividing
by the exponential decay.

the slope b, which is equal to the inverse of the characteristic length of the expo-
nential, becomes constant in the fast phase. In figure 8.2 we show the components
of the eigenvectors obtained after dividing by the exponential function. In the slow
phase the eigenvector is constant in the central region (the bulk), whereas in the
fast phase it takes a sinusoidal shape, which becomes exactly equal to a function
of the type C sin

(︂
nπ
N

)︂
only for α = β′ (i.e. when the relaxation matrix is purely

Toeplitz).
After performing the similarity transformation given by eq. (5.7), the eigenvector
still has an exponential decay and we verified numerically that the behaviour in the

95



8 – Reflections upon the physical meaning of the dynamical transition

bulk is given by ζ(x∗)n (see fig. 8.3).
The same qualitative picture holds also for the AS model: making reference to the
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Figure 8.3: Components of the eigenvector corresponding to λ1 of the symmetric
relaxation matrix for α = 0.64, β = 0.1 and N = 400. The slope of the red line is
equal to log ζ(x∗).

phase diagrams 7.2 (η = 0.1, θ = 1) and 7.10 (η = 1, θ = 0.5), in figure 8.4 we plot
for both examples the density (black circles) and correlation (red circles) compo-
nents of the eigenvector corresponding to λ1 of the pair approximation relaxation
matrix. We can see again an exponential decay in the bulk. In figure 8.5 we plot
the density components after dividing by the exponential decay in the slow and in
the fast phase.

The results reported here conclude the technical part of the thesis. The final
section is devoted to an overall summary of the results and to an outline of possible
future research lines.
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(a) η = 0.1, θ = 1, ρL = 0.44, ρR = 0.7.
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(b) η = 1, θ = 0.5, ρL = 0.6, ρR = 0.8.

Figure 8.4: Components of the eigenvector corresponding to λ1 of the AS model
for N = 200. Black/red circles denote the components corresponding to densi-
ties/correlations. Left panel: strongly repulsive case (fig. 7.2). Right panel: weakly
attractive case (fig. 7.10).
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Figure 8.5: Components (densities) of the eigenvector corresponding to λ1 after
dividing by the exponential decay in the slow (black) and fast (blue) phases. The
values of η and θ are the same as in figure 8.4, N = 200.
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Conclusions and prospects

From the results obtained in this thesis, the most important evidence is that
the dynamical transition appears to be quite a robust phenomenon, which does
not depend strongly on the specific dynamical rules of the driven diffusive system
under consideration. Another relevant aspect is that new dynamical transitions
arise in the two models studied in this project. In particular, in the unbalanced
TASEP-LK we observe that the slowest relaxation rate exhibits a discontinuity in
the first derivative at the dynamical transition in the high beta region of the HD
phase: this behaviour has similarities with equilibrium first order transitions. In
the AS model, two dynamical transitions are found in the same LD phase for values
of the ratio η/θ sufficiently high to observe the HDIV phase.
As was observed for pure TASEP [1], we can state that the mean-field like clus-
ter approximations are reliable methods to analyse driven diffusive models and we
showed that they also reproduce the full dynamics with good accuracy. For the
TASEP-LK we worked within the ordinary mean-field approximation and derived
analytical results for the slowest relaxation rate predicting a dynamical transition.
The mean-field framework could be adequate to study the relaxation dynamics of
more general models. One example is the TASEP-LK with two lanes [39, 40]: the
introduction of this model is motivated by experimental observations on molecular
motors [41], which can move along parallel tracks and jump between them. Another
aspect that could be accounted for are finite reservoirs of particles. For the latter
problem there is an equivalent definition of the open TASEP [42] on a ring of L+ 1
nodes, where the additional site n = 0 acts as a reservoir and the total number of
particles Ntot is fixed. A particle of the reservoir can jump to the site n = 1 with
rate α, if the latter is empty. A particle at site n = L leaves the lattice with rate
β, independently of the number of particles in the reservoir. If Ntot ≥ L + 1, then
ρ0 ≥ 1 (unlimited occupation) and the properties of sites n = 1, . . . , L are identical
to those of the open TASEP. The case Ntot < L+1 is the so-called “parking garage
model” and was studied in [43].
For the AS model we studied the effect of local interactions on dynamical prop-
erties within a pair approximation. A possible future direction for this and for
more complex cluster methods, is to investigate the relaxation dynamics of driven
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diffusive models with interactions between extended size particles like the ones con-
sidered in [44, 45, 46]: this generalization of the AS model could be important for
biological traffic processes, characterized by molecules larger than their step size
and interacting with one another. Exact solutions for the TASEP with arbitrary
size particles without interactions were obtained for periodic boundary conditions
(see [47] and references therein). Also for this case the ordinary mean-field is not
accurate because the lengths of particles introduce correlations. Thinking about
applications to the modeling of mRNA translation - the process that inspired the
original formulation of the TASEP in [12] - another ingredient would be a set of
heterogeneous hopping rates. For this problem there are no exact solutions yet:
some results have been obtained through approximate methods for the case with
one [48] or two [49] defects, i.e. sites having hopping rate smaller than one, for
dynamic obstacles which attach and detach randomly from lattice sites [50] or for
a set of quenched hopping rates chosen from a distribution (see [51] and references
therein).
We have also experimented for both models two methods originally employed to
determine the slowest relaxation rate of pure TASEP: the mDWT and the BST
extrapolation of exact finite size results. For the AS model the mDWT is no more
exact and predicts a different location of the dynamical transition with respect to
the pair approximation for strongly repulsive interactions. Nevertheless, it reveals
the dynamical transitions found by the pair approximation and potentially it could
be applied to investigate this phenomenon in more complex models. Guided by the
insights of the mean-field analysis, we generalized the mDWT to the TASEP-LK
and we conjectured its exactness.
The BST extrapolation of the exact slowest relaxation rates at finite-size for the
AS model is more tricky in the strongly attractive case, but different trials like the
one shown in figure 7.16 could be performed to determine the most likely location
of the exact slowest relaxation rate. For the TASEP-LK we defined a criterion to
avoid an unstable behaviour of the BST algorithm and to reduce as much as pos-
sible the formation of poles in the last extrapolants. Our results reveal both kinds
of dynamical transition and agree with the conjecture.
In conclusion, in this thesis we have obtained new results on the dynamical tran-
sitions in two possible extensions of the TASEP. We believe that the theory and
the tools presented in the previous chapters could be the starting point to investi-
gate the relaxation dynamics of more complex driven diffusive models and we hope
that they will encourage further research in this intriguing topic of nonequilibrium
statistical physics.
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Appendix A

Time evolution equations of the
marginal cluster probabilities

In this appendix we derive the dynamical equations for the local densities (2.3)
and the two-node marginals (2.4) of the TASEP from the master equation of the
process, then we generalize the procedure to the AS model, deriving equations
(2.20) and (2.21).
We denote by x and y the lattice configurations respectively before and after a
transition (see section 4.1). With reference to the master equation (1.3), the ele-
ments of the transition matrix are given by the sum of the contributions of all the
possible transition processes.

Wy,x =
N∑︂

n=0
W n

y,x. (A.1)

A.1 Pure TASEP
For n = 1, . . . , N − 1 (hopping processes) we have

W n
y,x = δ (y1, x1) · . . . · δ (yn−1, xn−1)xn (1 − xn+1) (yn+1 − yn) ·

× δ (yn+2, xn+2) · . . . · δ (yN , xN) , (A.2)

whereas at the boundaries (injection and extraction)

W 0
y,x = α (1 − x1) (2y1 − 1) δ (y2, x2) · . . . · δ (yN , xN) , (A.3)

WN
y,x = βδ (y1, x1) · . . . · δ (yN−1, xN−1)xN (1 − 2yN) . (A.4)

The time evolution of single node marginals is given by

Ṗ t
n [yn] =

∑︂
y\yn

∑︂
x

Wy,xP
t[x] . (A.5)
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Fixing the occupation yn = 1, the nonzero contributions in the sum (A.1) are those
for n and n− 1∑︂

y\yn

∑︂
x

W n−1
y,x P t[x] =

∑︂
y\yn

(1 − yn−1)P t [y1 . . . yn−210 . . . yN ] = P t
n−1[10] ,

∑︂
y\yn

∑︂
x

W n
y,xP

t[x] =
∑︂
y\yn

(yn+1 − 1)P t [y1 . . . yn−110 . . . yN ] = −P t
n[10] .

Thus, we obtain
Ṗ t

n[1] = P t
n−1[10] − P t

n[10], (A.6)
which is the continuity equation (2.3).
The dynamical equations for the two-node marginals can be written as

Ṗ t
n[ynyn+1] =

∑︂
y\{yn,yn+1}

∑︂
x

Wy,xP
t[x] . (A.7)

Fixing the occupation numbers yn = 1 and yn+1 = 0, we get∑︂
y\{yn,yn+1}

∑︂
x

W n−1
y,x P t[x] =

∑︂
y\{yn,yn+1}

(1 − yn−1)P t [y1 . . . yn−2100, . . . yN ]

= P t
n−1[100] ,∑︂

y\{yn,yn+1}

∑︂
x

W n
y,xP

t[x] =
∑︂

y\{yn,yn+1}
(yn+1 − yn)P t [y1 . . . yn−110 . . . yN ]

= −P t
n[10] ,∑︂

y\{yn,yn+1}

∑︂
x

W n+1
y,x P t[x] =

∑︂
y\{yn,yn+1}

yn+2P
t [y1 . . . yn−1110 . . . yN ]

= P t
n[110] .

Thence, we obtain the equation (2.4)

Ṗ t
n[10] = P t

n−1[100] + P t
n[110] − P t

n[10]. (A.8)

A.2 AS model
For the AS model, the hopping processes at n = 1, . . . , N − 2 are defined by

W 1,n
y,x = ηδ (y1, x1) · . . . · δ (yn−1, xn−1)xn (1 − xn+1)xn+2 (yn+1 − yn) ·

× δ (yn+2, xn+2) · . . . · δ (yN , xN) , (A.9)
W 2,n

y,x = θδ (y1, x1) · . . . · δ (yn−1, xn−1)xn (1 − xn+1) (1 − xn+2) (yn+1 − yn) ·
× δ (yn+2, xn+2) · . . . · δ (yN , xN) . (A.10)
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The injection and extraction processes are defined by

W 1,0
y,x = α1 (1 − x1)x2 (2y1 − 1) δ (y2, x2) · . . . · δ (yN , xN) , (A.11)

W 2,0
y,x = α2 (1 − x1) (1 − x2) (2y1 − 1) δ (y2, x2) · . . . · δ (yN , xN) , (A.12)

WN−1
y,x = β1δ (y1, x1) · . . . · δ (yN−2, xN−2)xN−1 (1 − xN) (yN − yN−1) , (A.13)
WN

y,x = β2δ (y1, x1) · . . . · δ (yN−1, xN−1)xN (1 − 2yN) . (A.14)

We fix yn = 1 and we consider the time evolution of local densities: the nonzero
contributions in (A.1) are again those for n and n− 1∑︂

y\yn

∑︂
x

W 1,n−1
y,x P t[x] = η

∑︂
y\yn

(1 − yn−1)P t [y1 . . . yn−2101 . . . yN ] = ηP t
n−1[101] ,

∑︂
y\yn

∑︂
x

W 2,n−1
y,x P t[x] = θ

∑︂
y\yn

(1 − yn−1)P t [y1 . . . yn−2100 . . . yN ] = θP t
n−1[100] ,

∑︂
y\yn

∑︂
x

W 1,n
y,xP

t[x] = η
∑︂
y\yn

(yn+1 − 1)P t [y1 . . . yn−1101 . . . yN ] = −ηP t
n[101] ,

∑︂
y\yn

∑︂
x

W 2,n
y,xP

t[x] = θ
∑︂
y\yn

(yn+1 − 1)P t [y1 . . . yn−1100 . . . yN ] = −θP t
n[100] .

From these contributions, we obtain

Ṗ t
n[1] = ηP t

n−1[101] + θP t
n−1[100] − ηP t

n[101] − θP t
n[100], (A.15)

which is still a continuity equation with the generalized current definition (1.8).
Then, we fix the occupations yn = 1 and yn+1 = 0 to write the time evolution
equations for two-node marginals. We start with the terms in n∑︂

y\{yn,yn+1}

∑︂
x

W 1,n
y,xP

t[x] = η
∑︂

y\{yn,yn+1}
(yn+1 − yn)P t [y1 . . . yn−1101 . . . yN ]

= −ηP t
n[101] ,∑︂

y\{yn,yn+1}

∑︂
x

W 2,n
y,xP

t[x] = θ
∑︂

y\{yn,yn+1}
(yn+1 − yn)P t [y1 . . . yn−1100 . . . yN ]

= −θP t
n[100] .
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We write the passages in detail for the terms in n− 1 and n+ 1∑︂
y\{yn,yn+1}

∑︂
x

W 1,n−1
y,x P t[x] = η

∑︂
y\{yn,yn+1}

∑︂
x

δ (y1, x1) · . . . · δ (yn−2, xn−2)xn−1 (1 − xn) ·

× xn+1 (1 − yn−1) δ (yn+1, xn+1) · . . . · δ (yN , xN)P t [x1 . . . xN ]
= η

∑︂
y\{yn,yn+1}

(1 − yn−1) yn+1P
t [y1 . . . yn−210yn+1 . . . yN ] = 0,

∑︂
y\{yn,yn+1}

∑︂
x

W 2,n−1
y,x P t[x] = θ

∑︂
y\{yn,yn+1}

∑︂
x

δ (y1, x1) · . . . · δ (yn−2, xn−2)xn−1 (1 − xn) ·

× (1 − xn+1) (1 − yn−1) δ (yn+1, xn+1) · . . . · δ (yN , xN)P t [x1 . . . xN ]
= θ

∑︂
y\{yn,yn+1}

(1 − yn−1) (1 − yn+1)P t [y1 . . . yn−210yn+1 . . . yN ]

= θP t
n−1[100],∑︂

y\{yn,yn+1}

∑︂
x

W 1,n+1
y,x P t[x] = η

∑︂
y\{yn,yn+1}

∑︂
x

δ (y1, x1) · . . . · δ (yn, xn)xn+1 (1 − xn+2) ·

× xn+3yn+2δ (yn+3, xn+3) · . . . · δ (yN , xN)P t [x1 . . . xN ]
= η

∑︂
y\{yn,yn+1}

yn+2P
t [y1 . . . yn−11101 . . . yN ] = ηP t

n [1101] ,
∑︂

y\{yn,yn+1}

∑︂
x

W 2,n+1
y,x P t[x] = θ

∑︂
y\{yn,yn+1}

∑︂
x

δ (y1, x1) · . . . · δ (yn, xn)xn+1 (1 − xn+2) ·

× (1 − xn+3) yn+2δ (yn+3, xn+3) · . . . · δ (yN , xN)P t [x1 . . . xN ]
= θ

∑︂
y\{yn,yn+1}

yn+2P
t [y1, . . . yn−11100 . . . yN ] = θP t

n[1100].

Putting all these contributions together, we obtain

Ṗ t
n[10] = θP t

n−1[100] + θP t
n[1100] + ηP t

n[1101] − Jn(t),

which coincides with equation (2.21).
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Appendix B

Proofs of analytical results in
chapter 5

B.1 Bounds for the density and current profiles
In this appendix we report the complete proof of Theorem 1 and Corollary 1,

under the hypotheses (2.11), (5.33) and (5.34) on the model parameters. We start
by proving useful auxiliary results that are employed in the following

Lemma 9. Let (rn)N+1
n=0 be the sequence of detrended densities, defined as in sec-

tion 5.2.1, with boundary values r0 = α and rN+1 = q0. Then⎧⎨⎩α ≥ rn ≥ rn+1 ≥ q0 if α ≥ q0

α ≤ rn ≤ rn+1 ≤ q0 if α ≤ q0
n = 1, . . . , N − 1 , (B.1)

⎧⎨⎩rn−1rn
′ ≥ rnrn+1

′ ≥ q0q0
′ if α ≥ q0

rn−1rn
′ ≤ rnrn+1

′ ≤ q0q0
′ if α ≤ q0

n = 1, . . . , N . (B.2)

Proof From (2.9) with ωA = ωD = ω, taking into account the definition (5.25) of
detrended densities, by simple algebra one can write the equations

pn (rn − rn+1) = (rn−1 − rn) pn
′ n = 1, . . . , N . (B.3)

Now, since 0 < pn < 1, n = 1, . . . , N , we deduce that the quantities rn − rn+1,
for n = 0, . . . , N , must all have the same sign or they must be all zero, so that the
sequence (rn)N+1

n=0 must be strictly monotonic or constant, respectively. We can thus
write ⎧⎨⎩r0 ≥ rn ≥ rn+1 ≥ rN+1 if r0 ≥ rN+1

r0 ≤ rn ≤ rn+1 ≤ rN+1 if r0 ≤ rN+1
n = 1, . . . , N − 1 . (B.4)
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With the given boundary values, (B.1) follows immediately. Furthermore, from
(5.26) we see that the condition rn−1 ≥ rn+1 implies rn−1rn

′ ≥ rnrn+1
′,

for n = 1, . . . , N and the same with opposite inequalities. As a consequence we
have ⎧⎨⎩rn−1rn

′ ≥ rnrn+1
′ ≥ rNrN+1

′ if r0 ≥ rN+1

rn−1rn
′ ≤ rnrn+1

′ ≤ rNrN+1
′ if r0 ≤ rN+1

n = 1, . . . , N − 1 . (B.5)

With the given boundary value rN+1 = q0, using (B.1) and taking into account that
q0

′ > 0, we finally obtain (B.2).

Lemma 10. Let (qn)N+1
n=0 be the sequence of bulk densities, defined as in sec-

tion 5.2.1. Then, the following inequalities hold

q0q0
′ ≥ qn−1qn

′ ≥ qnqn+1
′ ≥ q0q0

′ − Cω(n+ 1) n = 1, . . . , N . (B.6)

Proof Using the bulk-density expression qn = q0 + ωn, we see that

qnqn+1
′ = q0q0

′ − ωq0 − ωn [q0 − q0
′ + ω(n+ 1)] n = 0, . . . , N , (B.7)

where we notice that q0 − q0
′ > 0, since by hypothesis q0 > 1/2. As a consequence,

qnqn+1
′ is either constant (for Ω = 0) or decreasing in n (for Ω > 0) and the upper-

bound is evident. The lower-bound easily follows observing that ω(n+ 1) ≤ Ω.

B.1.1 Proof of Theorem 1
Let us define the sequences

ϱn ≡

⎧⎨⎩rn − q0 if α ≥ q0

q0 − rn if α ≤ q0
n = 0, . . . , N + 1 , (B.8)

εn ≡

⎧⎨⎩rnrn+1
′ − q0q0

′ if α ≥ q0

q0q0
′ − rnrn+1

′ if α ≤ q0
n = 0, . . . , N , (B.9)

δn ≡

⎧⎨⎩sn − rn if α ≥ q0

rn − sn if α ≤ q0
n = 0, . . . , N + 1 . (B.10)

We observe that the above definitions are consistent also in the case α = q0, because,
according to (5.36) in Lemma 1 and (B.1) in Lemma 9, in that case we have
rn = sn = q0 for all n, thus all three sequences are constantly equal to zero. Now,
from (B.8) and (B.1) we get

ϱn ≥ 0 n = 0, . . . , N + 1 , (B.11)
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which allows us to write

ϱn = |rn − q0| n = 0, . . . , N + 1 . (B.12)

Moreover, from (B.9) and (B.2) we get

εn ≥ 0 n = 0, . . . , N , (B.13)

which also allows us to write

εn = |rnrn+1
′ − q0q0

′| n = 0, . . . , N . (B.14)

Furthermore, using (B.9), (B.10) and (5.30) (Lemma 1), we can write

εn = rnδn+1 − sn+1
′δn n = 0, . . . , N . (B.15)

Using (B.1) in Lemma 9, along with q0 > 0 and α > 0, we see that rn is positive
for all n, so that from (B.13) and (B.15) we can write

δn+1 ≥ sn+1
′

rn

δn n = 0, . . . , N , (B.16)

where Lemma 1 ensures that the term sn+1
′/rn is positive as well for all n. Again

by the Lemma 1, s0 = α, so with r0 = α we have δ0 = 0. Then, applying recursively
the above inequality, we arrive at

δn ≥ 0 n = 0, . . . , N + 1 , (B.17)

which also allows us to write

δn = |sn − rn| n = 0, . . . , N + 1 . (B.18)

So far, we have proved that ϱn, εn and δn are all non-negative quantities. We now
prove upper-bounds for the same quantities: before entering the details, we give a
sketch of the main steps needed for this proof. First, making use of Lemma 1 and
of the lower-bounds (B.11) and (B.17), we prove the upper-bounds for ϱn and εn.
Subsequently, using the upper-bound for εn together with (B.15), we also get the
upper-bound for δn, i.e. the thesis.

Upper-bound for ϱn The following bounds are easily deduced from Lemma 1⎧⎨⎩sn ≤ q0 + Cγn if α ≥ q0

sn ≥ q0 − Cγn if α ≤ q0
n = 0,1,2, . . . . (B.19)

Moreover, by (B.17) and (B.10), we can write⎧⎨⎩rn ≤ sn if α ≥ q0

rn ≥ sn if α ≤ q0
n = 0, . . . , N + 1 , (B.20)
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and therefore, with the definition (B.8),

ϱn ≤ Cγn n = 0, . . . , N + 1 . (B.21)

Taking into account (B.12), this is equivalent to

|rn − q0| ≤ Cγn n = 0, . . . , N + 1 . (B.22)

Upper-bound for εn Let us observe that one can write, in full generality,

εn =
N∑︂

k=n+1
(εk−1 − εk) + εN n = 0, . . . , N − 1 . (B.23)

Taking into account, in order, (5.26) with (B.8) and (B.9), (B.11), and finally
(B.21), we get

εn−1 − εn = ωn (ϱn−1 − ϱn+1) ≤ ωnϱn−1 ≤ Cωnγn−1 n = 1, . . . , N .

(B.24)

Moreover, using (B.8) and (B.9) with rN+1 = q0, and then (B.21) with q0
′ > 0, we

have
εN = ϱNq0

′ ≤ CγN . (B.25)
Now, we distinguish the pure TASEP from the TASEP-LK. In the former case we
have ω = 0, so that (B.24) reads εn−1 − εn = 0. Then from (B.23) and (B.25) we
get

εn ≤ CγN n = 0, . . . , N . (B.26)
Otherwise, in the TASEP-LK, we have ω = Ω/(N + 1) with Ω > 0, so that (B.24)
reads εn−1 − εn ≤ Cnγn−1/(N + 1). Then from (B.23) and (B.25) we get

εn ≤ C

N + 1

N+1∑︂
k=n+1

kγk−1 n = 0, . . . , N . (B.27)

Recalling (5.39), we can manipulate the sum as follows
N+1∑︂

k=n+1
kγk−1 <

∞∑︂
k=n+1

kγk−1 = (n+ 1)γn − nγn+1

(1 − γ)2 . (B.28)

We then have
εn ≤ C

(n+ 1)γn

N
n = 0, . . . , N , (B.29)

where we have legitimately replaced N + 1 with N in the denominator. The an-
nounced upper-bounds for εn have been obtained, (B.26) for Ω = 0 and (B.29) for
Ω > 0. Taking into account (B.14), they are equivalent to

|rnrn+1
′ − q0q0

′| ≤

⎧⎨⎩CγN if Ω = 0
C (n+1)γn

N
if Ω > 0

n = 0, . . . , N . (B.30)
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Upper-bound for δn We replace εn with the expression given by (B.15). Using
the fact that, by virtue of Lemma 9 with q0 > 0 and α > 0, the quantities rn are
bounded from below by a positive constant, we can write, for Ω = 0,

δn+1 ≤ sn+1
′

rn

δn + CγN n = 0, . . . , N , (B.31)

and, for Ω > 0,

δn+1 ≤ sn+1
′

rn

δn + C
(n+ 1)γn

N
n = 0, . . . , N , (B.32)

where, by Lemmas 1 and 9, the term sn+1
′/rn is known to be always positive and

bounded by a constant. First we consider the case Ω = 0. Recalling that δ0 = 0
and applying recursively (B.31), the following bound is obtained

δn ≤ CγN n = 0, . . . , N + 1 . (B.33)

Taking into account (B.18), this is equivalent to the thesis of Theorem 1, for the
case Ω = 0. The case Ω > 0 is slightly more complicated. We apply recursively
(B.32) to get

δn ≤ C

N

n∑︂
k=0

kγk−1
n−1∏︂
l=k

sl+1
′

rl

n = 0, . . . , N + 1 . (B.34)

Now, we discuss the cases α ≥ q0 and α < q0 separately. In the former case, from
(B.20) and (B.1), along with γ = q0

′/q0, we easily get

sn+1
′

rn

≤ γ n = 0, . . . , N , (B.35)

and therefore

δn ≤ C

N

(︄
n∑︂

k=0
k

)︄
γn−1 ≤ C

n2γn

N
n = 0, . . . , N + 1 . (B.36)

Taking into account (B.18), this is equivalent to the thesis of Theorem 1, for the
case Ω > 0. The last step to complete the proof is to show that (B.36) holds even
in the complementary hypothesis α < q0. In such a case, (B.20) and (B.1) imply
the opposite of (B.35), so that we cannot apply the above argument. Nevertheless,
we can observe that, because of (B.19) and (B.20), both sn and rn approach q0
exponentially upon increasing n. As a consequence, the term sn+1

′/rn approaches
γ exponentially as well, which entails that in (B.34) it should be possible to write

n−1∏︂
l=k

sl+1
′

rl

≤ Cγn−k , (B.37)

so that (B.36) can still be obtained.
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B.1.2 Proof of Corollary 1
Let us recall the current-density relationship Jn = pnpn+1

′, the definition of
detrended densities (5.25), i.e. pn = rn + ωn, and the bulk solution (5.24), i.e.
qn = q0 + ωn. By simple algebra we get for n = 0, . . . , N

Jn − qnqn+1
′ = (rnrn+1

′ − q0q0
′) − ωn(rn+1 − q0) − ω(n+ 1)(rn − q0) , (B.38)

and thence, using the triangular inequality,

|Jn − qnqn+1
′| ≤ |rnrn+1

′ − q0q0
′| + ωn|rn+1 − q0| + ω(n+ 1)|rn − q0| , (B.39)

for the same values of n. Equation (5.43) can be easily proved using (B.22) and
(B.30) from inside the proof of Theorem 1. In order to prove also (5.44), we first
note that, using again the triangular inequality, we can write⃓⃓⃓

max (Jn)N
n=0 − q0q0

′
⃓⃓⃓
≤
⃓⃓⃓
max (Jn)N

n=0 − max (qnqn+1
′)N

n=0

⃓⃓⃓
+

+
⃓⃓⃓
max (qnqn+1

′)N
n=0 − q0q0

′
⃓⃓⃓
. (B.40)

Now, given two generic sequences (xn)N
n=0 and (yn)N

n=0, the following inequality
holds ⃓⃓⃓

max (xn)N
n=0 − max (yn)N

n=0

⃓⃓⃓
≤ max (|xn − yn|)N

n=0 , (B.41)
whereas Lemma 10 obviously entails

max (qnqn+1
′)N

n=0 = q0q1
′ . (B.42)

As a consequence we can write⃓⃓⃓
max (Jn)N

n=0 − q0q0
′
⃓⃓⃓
≤ max (|Jn − qnqn+1

′|)N
n=0 + ωq0 . (B.43)

Using (5.43), we can easily prove (5.44).

B.2 Asymptotic bounds for the slowest relax-
ation rate (balanced case)

B.2.1 Proof of Corollary 2
The proof is based on the Courant minimax principle, by which we can state

both λ = min {(u,Au)}u∈RN :∥u∥=1 and µ = min {(u,Bu)}u∈RN :∥u∥=1, therefore

|λ− µ| ≤ max {|(u,Au) − (u,Bu)|}u∈RN :∥u∥=1 . (B.44)
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To derive Corollary 2, we need to prove the bound for |(u,Au) − (u,Bu)|, where

(u,Au) − (u,Bu) =
N∑︂

n=1
(sn+1 − rn+1 − sn−1 + rn−1)un

2+

− 2
N−1∑︂
n=1

(︃√︂
pnpn+1′ −

√︂
qnqn+1′

)︃
unun+1 . (B.45)

First, using the triangular inequality, we can write

|(u,Au) − (u,Bu)| ≤
N∑︂

n=1
(|sn+1 − rn+1| + |sn−1 − rn−1|)un

2+

+ 2
N−1∑︂
n=1

⃓⃓⃓⃓√︂
pnpn+1′ −

√︂
qnqn+1′

⃓⃓⃓⃓
|un| |un+1| , (B.46)

Then, from Theorem 1 we have, ∀n,

|sn+1 − rn+1| + |sn−1 − rn−1| ≤

⎧⎨⎩CγN if Ω = 0
CN−1 if Ω > 0

. (B.47)

Moreover, from Corollary 1 we obtain, for all n,

|pnpn+1
′ − qnqn+1

′| ≤

⎧⎨⎩CγN if Ω = 0
CN−1 if Ω > 0

, (B.48)

from which we derive an analogous bound for |
√
pnpn+1′ −

√
qnqn+1′|. At this point,

given a vector u such that ∑︁N−1
n=1 u

2
n = 1, we have in particular that∑︁N−1

n=1 |un| |un+1| ≤ 1, thanks to the Cauchy-Schwarz inequality. Plugging the
bounds (B.47) and (B.48) into (B.46), we conclude the proof.

B.2.2 Proof of Lemma 3
We denote by v an eigenvector of B corresponding to the smallest eigenvalue

µ, so that Bv = µv. This vector can be chosen in such a way that vn = wn for
some n ∈ {1, . . . , N} and |vk| ≤ wk for the other k /= n (even k = 0 and k = N + 1,
by setting v0 ≡ vN+1 ≡ 0). In practice, one can take n as an index corresponding
to the maximum of {|v1|/w1, . . . , |vN |/wN} and then normalize v by vn/wn. This
argument entails that vn /= 0, thus we can write µ = Bvn/vn, that is

µ = 1 − (sn+1 − sn−1) −
√︂
qnqn+1′ vn+1

vn

−
√︂
qn−1qn

′ vn−1

vn

. (B.49)

Then, using vn = wn > 0 and vn±1 ≤ wn±1, we obtain the following bound

µ ≥ 1 − (sn+1 − sn−1) −
√︂
qnqn+1′ wn+1

wn

−
√︂
qn−1qn

′ wn−1

wn

. (B.50)
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By Lemma 10 we have that qnqn+1
′ ≤ qn−1qn

′ ≤ q0q0
′, thus the bound becomes

µ ≥ 1 −
(︃
sn+1 − sn−1 +

√︂
q0q0′ wn+1 + wn−1

wn

)︃
. (B.51)

Now, we observe that in general one cannot foresee the proper index n, so that we
are forced to choose the worst case. Using the definition of x◦ (5.35), we conclude
the proof.

B.2.3 Proof of Lemma 5
In order to use the Courant-type bound (Lemma 2), we define a trial vector.

For a given integer M > 1, we consider the sequence

yn ≡
√︄

2
M

sin πn
M
, (B.52)

then we take the vector u with components

un ≡
{︄
yn if n ≤ M

0 if n ≥ M
, (B.53)

where n = 1, . . . , N and M ≥ 2. We assume M ≤ N + 1, so that the above def-
inition verifies ∑︁N

n=1 un
2 = 1, as required by Lemma 2. Moreover, it satisfies the

property
M−2∑︂
n=1

unun+1 = cos π
N
. (B.54)

We rewrite equation (5.48) according to this choice for un

µ ≤ 1 +
M−1∑︂
n=1

(sn−1 − sn+1)un
2 − 2

M−2∑︂
n=1

√︂
qnqn+1′ unun+1 . (B.55)

From Lemma 1 we can easily deduce the bound sn−1 − sn+1 ≤ Cγn. Taking also
into account that sin x ≤ x for all real non-negative x, we can write

M−1∑︂
n=1

(sn−1 − sn+1)un
2 ≤ C

M3 . (B.56)

As regards the second sum in (B.55), by Lemma 10 we have that
qnqn+1

′ ≥ qM−2qM−1
′ for all n = 1, . . . ,M − 2. Using also (B.54), we obtain

M−2∑︂
n=1

√︂
qnqn+1′ unun+1 ≥

√︂
qM−2qM−1′ cos π

M
. (B.57)
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Using the results (B.56) and (B.57) in (B.55), we reach the inequality

µ ≤ 1 + C

M3 − 2
√︂
qM−2qM−1′ cos π

M
. (B.58)

Now, we use the property cos (π/M) ≥ 1 − 1
2(π/M)2 and, applying again

Lemma 10, we show that
√
qM−2qM−1′ ≥

√
q0q0′ − CΩM/N . Hence, we get

µ ≤ 1 − 2
√︂
q0q0′ + π2

√︂
q0q0′ M−2 + CΩMN−1 + CM−3 . (B.59)

In the pure TASEP case we have Ω = 0 and the term in MN−1 disappears: the most
restrictive bound can be attained choosing M as large as possible, i.e. M = N + 1,
which allows us to write

µ ≤ 1 − 2
√︂
q0q0′ + π2

√︂
q0q0′ N−2 + CN−3 . (B.60)

The term in N−3 may be dropped, provided the prefactor of N−2 is replaced by a
suitable constant C.
In the TASEP-LK case, the terms in M−2 and MN−1 are both present: one can
realize that the most restrictive bound is attained when they have the same asymp-
totic order, that is choosing M of the order of N1/3. We then obtain

µ ≤ 1 − 2
√︂
q0q0′ + CN−2/3 + CN−1 , (B.61)

where the term in N−1 may obviously be dropped. Using the definition of x◦ (5.35),
we conclude the proof.

B.2.4 Proof of Lemma 6
Statement (i) We need to use some results from the theory of difference equa-
tions, for which we refer to [37].
A generic sequence (wn)∞

n=0 is said to be nonoscillatory if the sequence (wnwn+1)∞
n=0

is eventually positive (there exists n > 0 such that wk is either positive or nega-
tive ∀k > n), and oscillatory otherwise. We can easily show that our sequence
(vn(x))∞

n=0 is nonoscillatory for x > 1 (see [37], Theorem 6.5.5) and oscillatory for
x < 1 (see [37], Theorem 6.5.3). To study the case x = 1, we consider the sequence
(sn)∞

n=0 and we define

ξn ≡ 2x◦ (sn+1 − sn−1) n = 1,2, . . . . (B.62)

Since we are in the hypothesis α < q0, by Lemma 1 we have that ξn > 0 for all
n and ξn → 0 for n → ∞, with an exponential decay. Then, there must exist an
integer m > 0 such that (2∑︁∞

i=n ξi)2 ≤ ξn for all n ≥ m. We define the sequence
(wn)∞

n=0 as

wn ≡

⎧⎨⎩0 if n < m∏︁n
k=m(1 + 2∑︁∞

i=k ξi) if n ≥ m
. (B.63)
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For n ≥ m, we have both wn > 0 and

wn+1 − (2 − ξn)wn + wn−1 ≤
[︄

(2∑︁∞
i=n ξi)2

1 + 2∑︁∞
i=n ξi

− ξn

]︄
wn ≤ 0 . (B.64)

Finally, invoking Corollary 6.8.3 in [37], we can directly prove that the sequence
(vn(1))∞

n=0 is nonoscillatory.

Statement (ii) We start with the following result in [37] (Theorem 6.8.1).
If (wn)∞

n=0 and (wn)∞
n=0 are two sequences satisfying, for all n > 0, the relationships

wn+1 + wn−1 = κnwn and wn+1 + wn−1 = κnwn with w0 = w0 and w1 = w1, and if
wn > 0 and κn ≥ κn for all n > 0, then wn ≥ wn for all n.
We assume in particular w0 ≡ w0 ≡ 0 and w1 ≡ w1 ≡ 1. Setting κn ≡ 2x− ξn and
κn ≡ 2 entails wn = vn(x) and wn = n, so that, if x is such that 2x− ξn ≥ 2 for all
n > 0, from the theorem above we get vn(x) ≥ n > 0 for all n > 0. The required x
exists, because, by (B.62) and Lemma 1, the sequence (ξn)∞

n=1 is bounded. Further-
more, setting κn ≡ 2y − ξn and κn ≡ 2x− ξn entails wn = vn(y) and wn = vn(x),
so that, if y ≥ x, we get vn(y) ≥ vn(x) ∀n. By this argument we realize that the set
X of all real numbers x with the property that vn(x) > 0 for all n > 0 is an infinite
interval. Using statement (i), we see that this set is contained in [1,∞) because the
sequence (vn(x))∞

n=0 is oscillatory when x < 1. Moreover, the set X is closed, be-
cause we can prove that, if a sequence (xk)∞

k=1 ⊆ X converges to x∞, then x∞ ∈ X .
Keeping in mind that the functions vn(x) of the variable x are continuous (they are
polynomials), by hypothesis we have vn(xk) > 0 for all k > 0 and n > 0, which im-
plies vn(x∞) ≥ 0 for each n > 0, once k is sent to infinity. The number x∞ belongs to
X if the stronger condition vn(x∞) > 0 is satisfied for all n > 0, which can be proved
by contradiction as follows. If there were an integer m > 1 such that vm(x∞) = 0,
then, according to (5.16), we would find vm+1(x∞) + vm−1(x∞) = 0. This would
imply both vm+1(x∞) and vm−1(x∞) being equal to zero, because vn(x∞) ≥ 0 for
all n, and therefore vn(x∞) = 0 for all n, contradicting the fact that v1(x∞) = 1.
So far we have proved that X = [x∗,∞) with x∗ ≥ 1. The remaining point to be
proved to complete statement (ii) is x∗ < x◦. First of all, we note that x◦ > 1,
because q0 = (β + Ω)′ > 1/2 according to the hypothesis (5.33). The proof of
this last point consists of two parts: in a preliminary step, we study the sequence
(vn(x◦))∞

n=0, showing that it satisfies the condition vn(x◦) > 0 for all n > 0, which
entails x◦ ∈ X and thence the weak inequality x∗ ≤ x◦. Then we move to the strict
inequality x∗ < x◦ by proving that there exists x < x◦ such that vn(x) > 0 for all
n > 0.
We define the sequence

σn ≡ 2x◦sn n = 0,1,2, . . . (B.65)
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and we observe that, using (5.30) and (5.35), it is possible to write, for all n > 0

2x◦ − 2x◦ (sn+1 − sn−1) = 1
σn

+ σn−1 . (B.66)

By (5.16), we obtain[︄
vn+1(x◦) − vn(x◦)

σn

]︄
= σn−1

[︄
vn(x◦) − vn−1(x◦)

σn−1

]︄
(B.67)

for all n > 0, with v0(x◦) = 0 and v1(x◦) = 1. We observe that the terms in square
brackets are the same with shifted indices and, by Lemma 1, we have σn > 0 for all
n. Thence, we can prove by induction that the condition vn+1(x◦) > vn(x◦)/σn > 0,
which is obviously verified for n = 1, holds for all n > 0.
Now we start the second step. First of all we observe that, using in order (B.65),
(5.35), Lemma 1 and (5.39), we can write

lim
n→∞

σn = lim
n→∞

sn√
q0q0′ =

√︄
q0

q0′ = 1
√
γ
> 1 . (B.68)

As a consequence, there must exist an integer m > 0 such that σm > 1. We define
the function

c(x) ≡ 1 + 2 (x− x◦)
(︃
σm − 1

σm

)︃−1
. (B.69)

We have previously proved that the condition vn+1(x◦) > vn(x◦)/σn > 0 holds for
all n > 0 and we note that c(x◦) = 1. Thence, by continuity, there must exist x < x◦
(x being close enough to x◦) such that the condition

vn+1(x) > vn(x)
σnc(x) > 0 (B.70)

can be satisfied up to a finite n, specifically for n = 1, . . . ,m. We can choose x in
such a way that

x ≥ x◦ − 1
2

(︃
1 − σm

σm+1

)︃(︃
σm − 1

σm

)︃
, (B.71)

because by Lemma 1 in the hypothesis α < q0, the sequence (σn)∞
n=0 is strictly

increasing, so that σm+1 > σm > 1. Therefore, the right-hand side of (B.71) is
strictly smaller than x◦. We see that (B.71) entails c(x) ≥ σm/σm+1 and, since σn

increases with n, we can write for all n > m

σm − 1
σm

≤ σn−1 − 1
σnc(x) . (B.72)

Observing that c(x) < 1, we plug the above inequality into (B.69) to obtain

2x− 2x◦ ≥ [c(x) − 1]
[︄
σn−1 − 1

σnc(x)

]︄
(B.73)
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still for all n > m. Furthermore, from (B.66) we get

2x− 2x◦ (sn+1 − sn−1) ≥ 1
σnc(x) + σn−1c(x) (B.74)

for all n > m. We can show that this last inequality is a sufficient condition for
(B.70) to hold even for all n > m. Indeed, combining (5.16) and (B.74) we see that,
if for a given n > m we have vn(x) > 0, then[︄

vn+1(x) − vn(x)
σnc(x)

]︄
≥ σn−1c(x)

[︄
vn(x) − vn−1(x)

σn−1c(x)

]︄
. (B.75)

Starting from the case n = m+ 1, for which we have proved that the condition
vn(x) > vn−1(x)/[σn−1c(x)] > 0 is verified, we can proceed by induction to prove
(B.70) for all n > m.

Statement (iii) We note that ζ(x) corresponds to the smaller root of the charac-
teristic equation associated with the difference equation (5.16), without the terms
in sn

ζ + ζ−1 = 2x,
the other root being ζ−1. Observing that ζ(x) > 0 for all x ≥ 1, we multiply both
sides of (5.16) by ζ(x)n to obtain for all n > 0[︂

vn+1(x)ζ(x)n − vn(x)ζ(x)n+1
]︂

−
[︂
vn(x)ζ(x)n−1 − vn−1(x)ζ(x)n

]︂
= −2x◦ (sn+1 − sn−1) vn(x)ζ(x)n (B.76)

We now sum over n with v0(x) = 0 and v1(x) = 1, divide by ζ(x)2n and use defini-
tion (5.53). We get

vn+1(x)
ζ(x)n − vn(x)

ζ(x)n−1 = 1 − fn(x)
ζ(x)2n (B.77)

for all n ≥ 0. For n = 0, (B.77) gives the initial condition v1(x) = 1, because
v0(x) = 0 implies f0(x) = 0. Summing (B.77) over n, starting from any given k, we
obtain for all n > k

vn(x)
ζ(x)n−1 = vk(x)

ζ(x)k−1 +
n−1∑︂
l=k

1 − fl(x)
ζ(x)2l . (B.78)

We recall that for any given x ≥ 1, the sequence (vn(x))∞
n=0 is non-oscillatory, i.e.

it is eventually positive or negative. We consider the positive case first. Since
sn+1 − sn−1 is always positive, we have that fn(x) > fn−1(x) for all n > m, the
sequence (fn(x))∞

n=0 is eventually increasing. Consequently, using (B.78) we can
write

0 < vn(x)
ζ(x)n−1 ≤ vk(x)

ζ(x)k−1 + [1 − fk(x)]
n−1∑︂
l=k

1
ζ(x)2l (B.79)
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for all k ≥ m and for all n > k. Multiplying both sides of the latter inequality by
ζ(x)2k, we obtain

fk(x) < 1 + vk(x)ζ(x)k+1∑︁n−k−1
l=0 ζ(x)−2l (B.80)

still for all k ≥ m and for all n > k. Finally, observing that the denominator di-
verges with n, we send the latter to infinity and we get

fk(x) ≤ 1 (B.81)

for all k ≥ m. The limit (5.54) exists because the sequence (fn(x))∞
n=0 is eventually

increasing, whereas the result f(x) ≤ 1 follows easily from (B.81).
In the case with vn(x) < 0 for all n > m, from (5.53) it follows that fn(x) < fn−1(x)
for all n > m. By (B.78) we obtain a fully analogous argument with opposite
inequalities and thence the result f(x) ≥ 1.

Statement (iv) A consequence of statements (ii) and (iii) is that f(x∗) ≤ 1, since
x∗ ∈ X and thence vn(x∗) > 0 for all n > 0. In order to show that f(x∗) = 1 if
x∗ > 1, it is enough to prove that f(x∗) ≥ 1 within this case. Keeping in mind that
the vn(x) are continuous functions of x, we observe that, for each integer k > 0,
there exists xk ∈ (1, x∗) such that vn(x) > 0 for all x ≥ xk and all n = 1, . . . , k,
because x∗ > 1 and vn(x∗) > 0. We can choose xk in such a way that xk+1 ≥ xk

for all k > 0, so that we have a non-decreasing sequence, being upper-bounded by
x∗: this implies that the limit x∞ ≡ limk→∞ xk exists and x∞ ≤ x∗. We prove by
contradiction that x∞ = x∗: if it was x∞ < x∗, this would imply x∗ > inf X , in
contradiction with statement (ii).
Since xk /∈ X by construction, for any k > 0 there must exist some integer l ≥ k
satisfying vl+1(xk) ≤ 0. We denote by ℓk the smallest of these integers, thus ℓk ≥ k,
while vn(xk) > 0 for all n = 1, . . . , ℓk and vℓk+1(xk) ≤ 0. Using (B.77) for x = xk

and ℓ = ℓk, we can write for any k > 0

vℓk+1(xk)
ζ(xk)ℓk

− vℓk
(xk)

ζ(xk)ℓk−1 = 1 − fℓk
(xk)

ζ(xk)2ℓk
. (B.82)

From what was said about vℓk+1(xk) and vℓk
(xk), it follows that

fℓk
(xk) > 1, ∀k > 0. (B.83)

We now pick any integer m > 0 and consider k > m. We have that ℓk > m because
ℓk ≥ k, then, by (B.83) and (5.53), we obtain

fm(xk) > 1 − 2x◦

ℓk∑︂
n=m+1

(sn+1 − sn−1) vn(xk)ζ(xk)n . (B.84)
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We find an upper bound for the term vn(xk)ζ(xk)n as follows. We rewrite (B.78)
for k = 0,

vn(x)
ζ(x)n−1 =

n−1∑︂
l=0

1 − fl(x)
ζ(x)2l , ∀n > 0. (B.85)

We choose x = xk keeping in mind that, for all n = 1, . . . , ℓk, we have vn(xk) > 0
and consequently fl(xk) ≥ 0 for all l = 0, . . . , ℓk. We deduce that

0 < vn(xk)
ζ(xk)n−1 ≤

n−1∑︂
l=0

1
ζ(xk)2l (B.86)

for all k > 0 and for all n = 1, . . . , ℓk. Furthermore, we recall that xk > 1 (and
thence ζ(xk) < 1) and we multiply by ζ(xk)2n−1 to obtain

0 < vn(xk)ζ(xk)n <
1

ζ(xk)−1 − ζ(xk)
≤ C (B.87)

for all k > 0 and for all n = 1, . . . , ℓk. The last inequality is obtained by observing
that xk ≥ x1 > 1 implies ζ(xk) ≤ ζ(x1) < 1 (ζ(x) is monotonically decreasing). At
this point, using this bound in (B.84), we get

fm(xk) > 1 − C
ℓk∑︂

n=m+1
(sn+1 − sn−1) (B.88)

for all m > 0 and k > m. We can now send k to infinity: since ℓk ≥ k, we have
that limk→∞ ℓk = ∞. Then, recalling that limk→∞ xk = x∗ and that fm(x) is a
continuous function of x, we arrive at

fm(x∗) ≥ 1 − C
∞∑︂

n=m+1
(sn+1 − sn−1) (B.89)

for all m > 0. Sending m to infinity, we finally obtain the result f(x∗) ≥ 1.

Statement (v) Using the result of the previous statement, namely that
x∗ > 1 =⇒ f(x∗) = 1, we rewrite (B.85) for x = x∗

vn(x∗)
ζ(x∗)n−1 =

n−1∑︂
l=0

2x◦
∑︁∞

k=l+1(sk+1 − sk−1) vk(x∗)ζ(x∗)k

ζ(x∗)2l (B.90)

for all n > 0. Using the same scheme leading to (B.87), for x∗ > 1 we can see
that vk(x∗)ζ(x∗)k ≤ C for all k > 0. Then, from Lemma 1 it can be argued that
sk+1 − sk−1 ≤ Cγk. Using this bound together with (5.59) in (B.90), we get for all
n > 0

vn(x∗)
ζ(x∗)n−1 ≤ C

n−1∑︂
l=0

[︄
ζ(x◦)
ζ(x∗)

]︄2l

. (B.91)

Since ζ(x) is monotonically decreasing, the condition x∗ < x◦, which is always sat-
isfied by virtue of statement (ii), entails that ζ(x∗) > ζ(x◦). This is enough to prove
the bound vn(x∗) ≤ Cζ(x∗)n.
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B.2.5 Proof of Lemma 8
With reference to the Courant-type bound (5.48) (Lemma 2), we define

un ≡ vn(x∗)√︂∑︁N
k=1 vk(x∗)2

n = 0, . . . , N + 1 , (B.92)

where vn(x∗) is defined according to Lemma 6. We note that (B.92) satisfies the
normalization requirement of Lemma 2 (∑︁N

n=1 un
2 = 1) and un > 0 for all n > 0,

while u0 = 0. Moreover, from Lemma 10, we easily obtain the bound√︂
qnqn+1′ ≥

√︂
q0q0′ − Cω(n+ 1) n = 0, . . . , N . (B.93)

Using the latter result in (5.48) and recalling (5.35), we can write

µ ≤ 1 −
N∑︂

n=1
(sn+1 − sn−1)un

2 − 1
x◦

N−1∑︂
n=1

unun+1 + Cω
N−1∑︂
n=1

nunun+1 . (B.94)

Now, using (B.92) together with (5.16), we get

2x◦ (sn+1 − sn−1)un + un+1 + un−1 = 2x∗un n = 1, . . . , N . (B.95)

Multiplying both sides of this last equation by un and summing over n = 1, . . . , N ,
we arrive at

2x◦

N∑︂
n=1

(sn+1 − sn−1)un
2 + 2

N−1∑︂
n=1

unun+1 = 2x∗ − uNuN+1 . (B.96)

We plug this result into (B.94) to obtain

µ ≤ 1 − x∗

x◦
+ CuNuN+1 + Cω

N−1∑︂
n=1

nunun+1 . (B.97)

At this point, we observe that ∑︁N
k=1 vk(x∗)2 ≥ v1(x∗)2 = 1. Thus, by statement (v)

in Lemma 6, we have that un ≤ Cζ(x∗)n for all n and we can write

µ ≤ 1 − x∗

x◦
+ Cζ(x∗)2N + Cω

N−1∑︂
n=1

n ζ(x∗)2n . (B.98)

To conclude the proof, we note that the hypothesis x∗ > 1 implies ζ(x∗) < 1, which
ensures that the sum in (B.98) remains finite for N → ∞.
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B.3 Asymptotic bounds for the slowest relax-
ation rate (unbalanced case)

B.3.1 Upper bounds
Upper bound (i)
We adopt the same trial vector defined in (B.53) for the proof of Lemma 5. We
choose M in such a way that, in the infinite size limit, one has M → ∞, but
M/N → 0. In this way, the vector u has a large number, but a vanishing fraction,
of nonzero components and is concentrated at the left boundary of the system. We
rewrite the quadratic form (5.87) for the relaxation matrix in the large N limit

(u,Au) ≈ 1 −
N∑︂

n=1
(sn+1 − sn−1)u2

n − 2
N−1∑︂
n=1

√︂
Jnunun+1.

Since the difference sn+1 − sn−1 goes to zero exponentially upon increasing n, we
can neglect the second term in the right hand side. Considering the other sum, we
recall that, by equation (5.77), the current can be regarded as a regular function
of the variable z ≡ n/(N + 1). The definition of the trial vector together with the
fact that M/N → 0 entail that z vanishes for all n values included in the sum and
the current is well approximated by its left boundary value, thus we can write

N−1∑︂
n=1

√︂
Jnunun+1 =

M−2∑︂
n=1

√︂
Jnunun+1 ≈

√︂
q0q0′

M−2∑︂
n=1

unun+1. (B.99)

Using (B.54) and taking the limit for M → ∞, we obtain

(u,Au) ≈ 1 − 2
√︂
q0q0′ (B.100)

and the following upper bound

λ
(∞)
min ≤ 1 − 2

√︂
q0q0′. (B.101)

Upper bound (ii)
In this case we have to choose a trial vector being concentrated at the right bound-
ary: using again (B.52) for yn, we define

un ≡
{︄

0 if n ≤ N + 1 −M

yN+1−n if n ≥ N + 1 −M
, (B.102)

where n = 1, . . . , N . Now the local current is well approximated by its right
boundary value, for all the n in the sum, thus we can write

N−1∑︂
n=1

√︂
Jnunun+1 =

M−2∑︂
n=1

√︂
JN+1−nynyn+1 ≈

√︂
ββ′

M−2∑︂
n=1

ynyn+1. (B.103)
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We can again neglect the second term in the right hand side of (5.87). Using (B.54)
and taking the limit for M → ∞, we have

(u,Au) ≈ 1 − 2
√︂
ββ′ (B.104)

and the upper bound for the slowest relaxation rate

λ∞
min ≤ 1 − 2

√︂
ββ′. (B.105)

These two bounds do not depend on α and hold in principle with no restriction
on this parameter, provided that α > q0

′ in order to stay within the HD phase.
However, they cannot be good bounds in the slow phase, where the slowest
relaxation rate becomes smaller than its plateau value and depends on α.

Upper bound (iii)
Proceeding in analogy with the balanced case, we use the definition (B.92) for the
vector u in the Courant-type bound (5.83). Using this in (5.16), we get

sn+1 − sn−1√
q0q0′ = 2x∗un − un+1 − un−1, n = 1,2, . . . . (B.106)

Then, we multiply both sides by un and we sum over n = 1, . . . , N , taking into
account that u0 = 0

N∑︂
n=1

sn+1 − sn−1√
q0q0′ u2

n = 2x∗ − 2
N−1∑︂
n=1

unun+1 − uNuN+1. (B.107)

We now recall the result of statement (v) in Lemma 6: if x∗ > 1, the sequence
vn(x∗) is upper bounded by ζ(x∗)n up to a positive constant factor and ζ(x∗) < 1.
Using the fact that ∑︁N

k=1 vk(x∗)2 ≥ v1(x∗)2 = 1, it follows that the same bound
holds for un. As a consequence, the last term in the right hand side of (B.107) can
be neglected. From (5.87), we get

(u,Au) ≈ 1 − 2x∗

√︂
q0q0′ − 2

N−1∑︂
n=1

(︃√︂
Jn −

√︂
q0q0′

)︃
unun+1 (B.108)

We observe that the difference
√
Jn−

√
q0q0′ is of order n/N . In the same hypothesis

x∗ > 1, the whole sum has asymptotic order 1/N in the infinite size limit. Thus
we obtain

(u,Au) ≈ 1 − 2x∗

√︂
q0q0′ (B.109)

and the upper bound
λ∞

min ≤ 1 − 2x∗

√︂
q0q0′ (B.110)

Overall upper bound
We now put the three bounds together: upper bound (iii) holds only for x∗ > 1,
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but upper bound (i) is its analogue for x∗ = 1. Consequently, (B.110) is valid for all
the possible values of x∗. Considering this last result along with the upper bound
(ii), we obtain the overall bound

λ
(∞)
min ≤ 1 − 2 max

{︃
x∗

√︂
q0q0′,

√︂
ββ′

}︃
. (B.111)

B.3.2 Lower bounds
We follow the strategy developed in the proof of Lemma 3 (Gershgorin type

bound). We take m as an index where the maximum of {|u1| /w1, . . . , |uN | /wN} is
reached and then normalize the vector u by um/wm. We can write

λ
(N)
min = (Au)m

um

= am −
√︂
Jm

um+1

um

−
√︂
Jm−1

um−1

um

. (B.112)

Using the property um = wm > 0 and um±1 ≤ wm±1, we obtain the bound

λ
(N)
min ≥ am −

√︂
Jm

wm+1

wm

−
√︂
Jm−1

wm−1

wm

. (B.113)

Now, since it is not possible to guess the proper index m, we have to choose the
worst case

λ
(N)
min ≥

N
min
n=1

{︃
an −

√︂
Jn
wn+1

wn

−
√︂
Jn−1

wn−1

wn

}︃
(B.114)

We are interested in the infinite size limit, thus we can make some simplifications:
we can use the approximate form (5.86) for the diagonal term an

an ≈ 1 − (sn+1 − sn−1),

then we can replace Jn−1 with Jn, using the argument that the local current is
approximately a regular function of n/N . Defining

∆n ≡ sn+1 − sn−1 +
√︂
Jn
wn+1 + wn−1

wn

n = 1, . . . , N, (B.115)

we have
λ

(N)
min ⪆ 1 −

Nmax
n=1

∆n . (B.116)

We have used the symbol ⪆, because the left hand side can be smaller than the
right hand side, but at most by an amount vanishing in the N → ∞ limit.
To apply this bound in the HD phase, we can delineate three different cases of
increasing complexity.

Case α > q0
By (5.72) and (5.73), we see that the sequence sn is non-increasing, thus
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sn+1 − sn−1 ≤ 0. Choosing wn equal to a constant (which leads to the Gershgorin
theorem), we get

∆n ≤ 2
√︂
Jn n = 1, . . . , N. (B.117)

We send N to infinity, using the approximation (5.77) for the local current, which
imples that its maximum value can be either q0q0

′ or ββ′. We get

λ
(∞)
min ≥ 1 − 2 max

{︃√︂
q0q0′,

√︂
ββ′

}︃
. (B.118)

We compare this result with the upper bound (B.111): taking into account that
x∗ = 1 in this range of α values, we can conclude that the bound is tight and can
be written as an equality.

Case αc ≤ α < q0
For this case we make the choice

wn = vn(x∗) n = 0,1,2, . . . , (B.119)

which is legitimate, because vn(x) > 0, ∀n > 0 for x ≥ x∗. From now on we use vn

as a shorthand for vn(x∗), from (B.115) we get

∆n = sn+1 − sn−1 +
√︂
Jn
vn+1 + vn−1

vn

n = 1, . . . , N. (B.120)

We express the difference sn+1 − sn−1 by (5.16)

sn+1 − sn−1 =
√︂
q0q0′

[︃
2x∗ − vn+1 − vn−1

vn

]︃
n = 1,2, . . . . (B.121)

Plugging this result into (B.120), we obtain

∆n = 2x∗

√︂
q0q0′ +

(︃√︂
Jn −

√︂
q0q0′

)︃
vn+1 + vn−1

vn

n = 1, . . . , N. (B.122)

For α < q0, we have that sn+1 − sn−1 > 0. Thus, from (B.121) it must be that
vn+1 + vn−1

vn

< 2x∗ n = 1,2, . . . (B.123)

If
√
Jn ≥

√
q0q0′, then ∆n ≤ 2x∗

√
Jn. Otherwise, if

√
Jn <

√
q0q0′, by (B.122) it

follows that 2x∗
√
q0q0′ + 2x∗

(︂√
Jn −

√
q0q0′

)︂
< 2x∗

√
q0q0′. Thence, we obtain

∆n ≤ 2x∗ max
{︃√︂

q0q0′,
√︂
Jn

}︃
n = 1, . . . , N. (B.124)

Using the same argument made above for Jn in the infinite size limit, we obtain

λ
(∞)
min ≥ 1 − 2x∗ max

{︃√︂
q0q0′,

√︂
ββ′

}︃
(B.125)
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We compare the latter bound with (B.111) and observe that it is again tight,
because we still have x∗ = 1 for α ≥ αc.
In particular we note that, for β ≤ l′, these bounds are tight for all q0

′ < α < q0.
Within the low beta region, the current profile is non-increasing, thus q0q0

′ ≥ ββ′.
Consequently, we can discard the second term in the max and obtain equality (5.80).

Case α < αc

We recall that, by definition, x∗ > 1 for α < αc. For this case, it is possible to
prove this useful preliminary result:

lim
n→∞

vn+1 (x∗)
vn (x∗)

= ζ (x∗) < 1, (B.126)

where the last inequality is directly obtained from (5.13). We postpone the proof
of this statement to section B.3.3. We choose the sequence wn as follows

wn ≡

⎧⎪⎪⎨⎪⎪⎩
vn(x∗) if n ≤ L

vL(x∗) if n ≥ M

ϕnvL(x∗) + ϕn
′vn(x∗) if L ≤ n ≤ M

n = 0,1,2, . . . , (B.127)

with L and M positive integers such that L < M < N and

ϕn ≡ n − L

M − L
. (B.128)

One can observe that this definition is a convex linear combination of the previous
trial vectors, which are either constant or equal to vn(x∗). We require that L and
M depend on the system size N in such a way that, for N → ∞, they both tend to
infinity, but L/M → 0 and M/N → 0. According to (B.115) and (B.116), we see
that (B.127) suggests to split the maximum operation over three subsets, namely

Nmax
n=1

∆n = max
{︄

Lmax
n=1

∆n,
Nmax

n=M
∆n,

M−1max
n=L+1

∆n

}︄
. (B.129)

We now discuss each subset separately.
(i) For n = 1, . . . , N , we can make the approximation Jn ≈ q0q0

′, due to the fact
that L/N → 0. Thus, from (B.115) we can write

∆n ≈ sn+1 − sn−1 +
√︂
ϑϑ′ wn+1 + wn−1

wn

n = 1, . . . , L . (B.130)

By the definition (B.127), we have
wn+1 + wn−1

wn

= vn+1 + vn−1

vn

n = 1, . . . , L− 1 , (B.131)

wL+1 + wL−1

wL

= vL+1 + vL−1

vL

+ 1 − vL+1/vL

M − L
. (B.132)
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We send L to infinity using the result (B.126): since vL+1/vL tends to a finite
quantity, whereas M − L → ∞, the second term on the right hand side of
(B.132) can be neglected and (B.131) can be used also for n = L. Thence, by
(B.130) and (B.121), we obtain

∆n ≈ 2x∗

√︂
ϑϑ′ n = 1, . . . , L . (B.133)

(ii) For n = M, . . . , N , the exponentially decaying term sn+1 − sn−1 can be ne-
glected using the fact that M → ∞. From (B.115) we can write

∆n ≈
√︂
Jn

wn+1 + wn−1

wn

n = M, . . . , N . (B.134)

Then, according to (B.127), we have

wn+1 + wn−1

wn

= 2 n = M + 1, . . . , N , (B.135)

wM+1 + wM−1

wM

= 2 − 1 − vM−1/vL

M − L
. (B.136)

In our assumption we have L,M → ∞ and L/M → 0, thus, using the result
(B.126), we realize that vM−1/vL → 0. The denominator M − L diverges, so
that we can neglect the last term in (B.136) and the previous equation (B.135)
can be adopted for n = M as well. Consequently, from (B.134) we get

∆n ≈ 2
√︂
Jn n = M, . . . , N . (B.137)

We express Jn by (5.77), keeping in mind that M/N → 0, to get

Nmax
n=M

∆n ≈ 2 max
{︃√︂

ϑϑ′,
√︂
ββ′

}︃
. (B.138)

(iii) For n = L+ 1, . . . ,M − 1, we can make the approximation Jn ≈ ϑϑ′ (left-
boundary current), thanks to the fact that M/N → 0. At the same time,
taking the limit L → ∞, we can neglect the term sn+1 − sn−1, which decays
exponentially. Thus, from (B.115) we get

∆n ≈
√︂
ϑϑ′ wn+1 + wn−1

wn

n = L+ 1, . . . ,M − 1 . (B.139)

Using (B.127), we have for all n in the range of interest

wn+1 + wn−1

wn

=
2ϕnvL + ϕn

′(vn+1 + vn−1) + vn−1 − vn+1

M − L
ϕnvL + ϕn

′vn

. (B.140)
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First of all we note that all the variables in the latter equation are positive,
then we consider the three terms in the numerator on the right hand side. For
the first one, we use the property x∗ > 1 to write 2ϕnvL < 2x∗ϕnvL. As regards
the second term, the inequality (B.123) implies ϕn

′(vn+1 + vn−1) < 2x∗ϕn
′vn.

For the third term, we use (B.123) along with vn+1 > 0 and we easily obtain
that vn−1 − vn+1 < 2x∗vn. Then, the property (B.126), i.e. the fact that vn

is eventually decreasing, allows us to write vn = ϕnvn + ϕn
′vn < ϕnvL + ϕn

′vn

for all n > L. Using these bounds together, we obtain
wn+1 + wn−1

wn

< 2x∗ + 2x∗

M − L
n = L+ 1, . . . ,M − 1 . (B.141)

We plug this inequality into (B.139) and we finally get

∆n ⪅ 2x∗

√︂
ϑϑ′ n = L+ 1, . . . ,M − 1 . (B.142)

At this point we put together (B.133), (B.138), (B.142) into (B.129), and thence
into (B.116). In the infinite size limit we obtain

λmin
(∞) ≥ 1 − 2 max

{︃
x∗

√︂
ϑϑ′,

√︂
ββ′

}︃
. (B.143)

Comparing this last inequality with (B.111), we conclude that the bound is tight.

B.3.3 Proof of statement (B.126)
We define the sequence

dn ≡ vn+1(x∗)
vn(x∗)

n = 1,2, . . . . (B.144)

The definition is valid because we know that vn(x∗) is strictly positive for all n > 0
and this property entails that dn is itself strictly positive for all n. From (5.16) we
have

d1 = 2x∗ − s2 − s0√
ϑϑ′

, (B.145)

dn+1 = 2x∗ − sn+2 − sn√
ϑϑ′

− 1
dn

n = 1,2, . . . . (B.146)

We can reduce the problem to showing that, given two arbitrarily small positive
real numbers ε and δ, the inequalities

ζ(x∗) − ε < dn < ζ(x∗ − δ) (B.147)

hold at least for n large enough. After that, the proof is easily concluded by sending
n to infinity and taking into account the continuity of ζ(x). In the following we
prove separately the lower and upper inequalities.
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Lower-bound Let us consider any positive real number ε such that

ε < ζ(x∗) . (B.148)

This condition can be satisfied because ζ(x∗) > 0 by construction. In the current
hypotheses, we know that sn is a monotonically increasing sequence, thus

sn+2 − sn√
ϑϑ′

> 0 (B.149)

for all n (≥ 0). From (B.146) we then have

dn+1 < 2x∗ − 1
dn

, (B.150)

still for all n (≥ 1). It is also possible to verify that the following inequality,

2x∗ − 1
d

≤ ζ(x∗) + d− ζ(x∗)
ζ(x∗)2 . (B.151)

holds for any positive real number d. Then, since dn is positive by construction,
from (B.150) and (B.151) we get

dn+1 < ζ(x∗) + dn − ζ(x∗)
ζ(x∗)2 . (B.152)

Reasoning by contradiction, let us now assume that there exists some n (≥ 1)
such that dn ≤ ζ(x∗) − ε, where dn is positive because of (B.148). Then, by a
repeated use of (B.152) we could argue that

dn+k < ζ(x∗) − ε

ζ(x∗)2k
(B.153)

for any positive integer k. Therefore dn+k < 0 for some k, which is a contradiction.
We can thus conclude that for any positive ε satisfying (B.148) (and hence in
particular for ε arbitrarily close to 0), the inequality

dn > ζ(x∗) − ε (B.154)

must hold for all n (≥ 1).

Upper-bound We first prove the weaker bound that dn must be eventually
smaller than 1. We know that the term sn+2 − sn decays exponentially for n → ∞.
Consequently, there exists some integer m such that

sn+2 − sn√
ϑϑ′

< 2(x∗ − 1) (B.155)
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for all n ≥ m. Now, if by contradiction we had dn ≥ 1 for some n ≥ m, then (B.146)
with (B.155) would imply dn+1 > 1, and therefore by induction dn eventually larger
than 1. This is clearly in contradiction with the bound vn(x∗) ≤ Cζ(x∗)n.

Let us now consider any positive real number δ such that

δ < x∗ − 1 , (B.156)

where the latter condition can be satisfied because x∗ > 1 by hypothesis. Using
again the fact that sn+2 − sn decays exponentially for n → ∞, we can argue that
there exists some integer m (depending on δ) such that

sn+2 − sn√
ϑϑ′

< δ (B.157)

for all n ≥ m. From (B.146) we then have

dn+1 > 2x∗ − 1
dn

− δ , (B.158)

still for all n ≥ m. It is also possible to verify that, given that d is a positive real
number, the inequality

2x∗ − 1
d

≥ d+ 2δ (B.159)

holds if and only if
ζ(x∗ − δ) ≤ d ≤ 1

ζ(x∗ − δ) , (B.160)

where (B.156) ensures that ζ(x∗ − δ) is real (positive and less than 1). Then, since
dn is positive by construction, from (B.158) and the equivalence between (B.159)
and (B.160) we have that, given any n ≥ m, the inequality

dn+1 > dn + δ (B.161)

is verified if and only if dn ≥ ζ(x∗ − δ). We stress the fact that the other condition
dn ≤ 1/ζ(x∗ − δ) required by (B.160) is inherently satisfied because dn < 1 for all
n ≥ m: indeed the definition (B.157) together with (B.156) satisfy (B.155).

Reasoning again by contradiction, let us now assume that there exists some
n ≥ m such that dn ≥ ζ(x∗ − δ). As previously argued, this would be sufficient for
dn to verify (B.161), and therefore by induction dn+k > 1 for some positive integer
k, which is clearly a contradiction. We can thus conclude that for any positive δ
satisfying (B.156) (and hence in particular for δ arbitrarily close to 0), the inequality

dn < ζ(x∗ − δ) (B.162)

is verified for large enough n.
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