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Visual attention is often predictive for future actions in humans. In manipulation tasks,

the eyes tend to fixate an object of interest even before the reach-to-grasp is initiated.

Some recent studies have proposed to exploit this anticipatory gaze behavior to improve

the control of dexterous upper limb prostheses. This requires a detailed understanding

of visuomotor coordination to determine in which temporal window gaze may provide

helpful information. In this paper, we verify and quantify the gaze and motor behavior of

14 transradial amputees who were asked to grasp and manipulate common household

objects with their missing limb. For comparison, we also include data from 30 able-bodied

subjects who executed the same protocol with their right arm. The dataset contains

gaze, first person video, angular velocities of the head, and electromyography and

accelerometry of the forearm. To analyze the large amount of video, we developed a

procedure based on recent deep learning methods to automatically detect and segment

all objects of interest. This allowed us to accurately determine the pixel distances between

the gaze point, the target object, and the limb in each individual frame. Our analysis

shows a clear coordination between the eyes and the limb in the reach-to-grasp phase,

confirming that both intact and amputated subjects precede the grasp with their eyes

by more than 500 ms. Furthermore, we note that the gaze behavior of amputees was

remarkably similar to that of the able-bodied control group, despite their inability to

physically manipulate the objects.

Keywords: visuomotor strategy, eye-hand coordination, upper-limb amputees, object segmentation, phantom limb

movements, object tracking

1. INTRODUCTION

Humans interact continuously with objects in activities of daily living (ADLs). Vision and
gaze play an important role during these interactions, not only to guide the activity itself
but also in the initial planning phase. Gaze is thus said to be anticipatory and can be
used to understand an individual’s intentions even before they manifest themselves in the
motor domain. Several studies have attempted to explore this proactivity to help disabled
people, such as in a robot assistant scenario (Admoni and Srinivasa, 2016; Koochaki and
Najafizadeh, 2018; Saran et al., 2018). Another compelling use-case is the control of dexterous
upper-limb prostheses (Castellini and Sandini, 2006; Markovic et al., 2014, 2015; Gigli
et al., 2018), where deciphering the grasp intent from myoelectric activations alone can be
challenging. The integration of gaze and vision as contextual information could be helpful
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especially during the initial transient phase of a movement.
Executing this fusion successfully requires however a precise
understanding of eye-hand coordination.

Gaze behavior has been studied extensively over the last
decades. Early studies typically involved constrained settings, for
instance by fixating the chin to avoid head movements or by
limiting the field of view to a monitor (see Tatler et al., 2011,
and references therein). Obviously, these findings may not be
representative for unconstrained settings where free movement
of the body is allowed to ensure natural behavior (Tatler et al.,
2011; Tatler, 2014). Such unconstrained experiments became
possible with the introduction of wearable eye-tracking devices
that allowed the user to move freely in the environment (Land,
2006). Subsequently, studies on visuomotor coordination have
confirmed that also in this setting actions are typically preceded
by a visual fixation on the involved objects. This was verified
during a block-copying task (Smeets et al., 1996; Pelz et al., 2001),
while drinking from various objects (Belardinelli et al., 2016),
during an object displacement task (Belardinelli et al., 2016;
Lavoie et al., 2018), during pick-and-place of a bar (Johansson
et al., 2001), and when grasping (Brouwer et al., 2009). Similar
goal-oriented gaze strategies were also reported during ADLs,
such as tea-making and sandwich-making (Land and Hayhoe,
2001), walking (Patla and Vickers, 2003), driving (Land and Lee,
1994), and sports (Land and McLeod, 2000; Hayhoe et al., 2012).
Although all studies confirm the anticipatory nature of gaze, they
do not always agree on the exact timing of the motor execution
after the first visual fixation, for instance when the hand reaches
the object. These discrepancies can probably be explained by
differences in experimental setting (Smeets et al., 1996; Pelz et al.,
2001), variability due to a small number of subjects, or difficulty
in accurately analyzing a large number of trials.

Only a few studies have investigated the gaze behavior of
amputees. In a small case study, Sobuh et al. (2014) observed
that the amputated participants did not use gaze to proactively
plan subsequent actions in a task. Instead, they tend to switch
their gaze more often between the object and the prosthetic
hand to visually monitor its proper functioning (Bouwsema et al.,
2012; Hebert et al., 2019). This increased visual attention is most
likely to compensate for the lack of tactile and proprioceptive
feedback from their prostheses. A similar finding was also
reported when able-bodied subjects were engaged in similar
tasks using a prosthetic simulator (Blank et al., 2010; Sobuh
et al., 2014; Parr et al., 2018, 2019). Almost all of these studies
investigated this disruption in eye-hand coordination precisely
for this reason, namely to measure the subject’s proficiency in
controlling the prosthesis. More visual attention to the hand
area during reaching and manipulation is considered indicative
of a lower level of skill and confidence in the control of the
prosthesis. Conversely, it should therefore also be expected that
gaze behavior will “normalize” with an increasing confidence in
the control response of the prosthesis. Indeed, Chadwell et al.

Abbreviations: ADL, activity of daily living; sEMG, surface electromyography;

IVT, Identification Velocity Threshold; FPN, Feature Pyramid Network; COCO,

CommonObjects in COntext; AP, average precision; IoU, Intersection over Union.

(2016) noted that one participant who used a prosthesis daily
showedmore natural gaze behavior than another less experienced
participant, while Sobuh et al. (2014) observed a shorter fixation
on the hand area with increasing practice.

In the present study, we investigate eye-hand coordination
during reaching and grasping to determine the window of
opportunity in which gaze can provide useful information for
intent recognition. We used the data of the recently acquired
dataset, in which 15 transradial amputees were asked to try to
grasp and manipulate various household objects to the best of
their ability with their missing limb. In addition, it contains data
from 30 able-bodied control subjects who performed the same
grasps and manipulation tasks with their right arm. Throughout
the exercise, gaze, and visual data were recorded via eye-tracking
glasses, while the muscular activity of the arm was recorded
via surface electromyography (sEMG) electrodes. Contrary to
prior work, asking amputees to perform “movements without
movement” (Raffin et al., 2012b) allows us to investigate to
which extent the amputees’ eye-hand coordination has changed
as a result of the amputation, rather than due to difficulties
controlling a prosthesis. Given the similarity of movements
executed with the phantom limb compared with those executed
with intact limb (Raffin et al., 2012a,b), we also expect the eye-
hand coordination of movements involving the missing limb
to be highly similar to those involving the intact limb. This
“ideal” setting does not imply that the results are not relevant
for the prosthetic setting; the disruption of gaze strategies is
actually characterized by a markedly longer reaching phase, while
still maintaining the majority of the fixations on the target
object (Sobuh et al., 2014; Hebert et al., 2019). The window of
opportunity in the prosthetic setting is therefore expected to be
considerably longer than the one we identify here.

The total size of the dataset exceeds 70 h of video, which
is far too large to be analyzed and annotated manually within
reasonable time. However, quantifying the distances between
gaze point, target object, and the forearm is of fundamental
importance for the present study. We therefore employed state-
of-the-art deep learning techniques to automatically detect and
segment all objects of interest in all videos. This procedure
consisted of an efficient method to collect representative training
data and the subsequent finetuning of a pretrained object detector
to this data. A beneficial side-effect of detecting object locations
in the video is that we can reliably determine fixations even in the
presence of head movements.

In the following, we describe the dataset and the methods
employed in the analysis in section 2. In section 3, we then
present the results of our analysis, which are discussed more
thoroughly in section 4. Finally, we conclude and summarize the
paper in section 5.

2. MATERIALS AND METHODS

To investigate the visuomotor behavior during manipulation
actions we relied on a large, recently acquired dataset. In the
following, we describe how the data were used in the context
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TABLE 1 | The characteristics of the amputated participants considered in the present study.

Amputation

ID Age Gender Handedness Side Cause Years Prosthesis Limb [%]

101 52 M Right Right Electrocution 2 Cosmetic 60–80

102 39 M Right Right Electrocution 4 Cosmetic 60–80

103 63 M Ambidextrous Right Trauma 3 Myoelectric 60–80

104 49 M Right Right Trauma 18 Myoelectric 80–100

105 73 M Right Right Trauma 6 Body-powered 40–60

106 70 M Left Left Trauma 5 Body-powered 80–100

107 36 M Right Left Trauma 7 Body-powered 20–40

108 35 M Right Right Trauma 9 Myoelectric 0–20

109 65 M Right Left Trauma 1 Cosmetic 80–100

110 38 M Right Left Trauma 14 Myoelectric 20–40

111 38 M Right Right Trauma 10 Myoelectric 40–60

112 33 F Right Left Oncological 13 Cosmetic 60–80

113 28 M Right Left Trauma 7 Myoelectric 40–60

115 36 F Right Left Burn 8 Cosmetic n/a

The table reports the ID of the subjects in the MeganePro dataset, their age, their gender, and their handedness. Among the clinical parameters we report the amputation side, its cause,

the number of years since amputation, the type of prosthesis used, and the relative length of the residual limb with respect to the contralateral limb.

FIGURE 1 | An overview of the experimental setup.

of the present study. Due to the large amount of video data
contained in this dataset, we devised a procedure to automatically
detect and segment all objects of interest via deep learning.

This procedure is outlined and we formulate how the resulting
segmentation masks were used to determine distances.

2.1. MeganePro Dataset
The MeganePro dataset was acquired with the aim of
investigating the use of gaze and visual information to improve
prosthetic control (Cognolato et al., 2019). It contains data of 15
transradial amputees [13 M, 2 F; age: (47.13 ± 14.16) years] and
a frequency matched control group of 30 able-bodied subjects
[27 M, 3 F; age: (46.63 ± 15.11) years] who performed grasps
and manipulation tasks with a variety of household items. The
gaze data for one of the amputated subjects was unreliable due
to strabismus; this subject was therefore excluded from our
analyses. The characteristics of the remaining amputated subjects
is shown in Table 1, including information on the amputation
and prosthetic use. All of them reported to experience phantom
limb sensations, but only 12 had some voluntary control over the
phantom limb.

During the experiment, the subjects wore a Tobii Pro Glasses
2 eye-tracker (Tobii AB, Sweden) to record the gaze behavior,
first person video, and angular velocities of the head. These
glasses sample gaze and gaze-related information at 100Hz, while
the video is recorded with a 1920 px × 1080 px resolution at
25 frames per second. On their forearm, they had 12 Delsys
Trigno electrodes (Delsys Inc., USA) arranged in an array of
eight equidistant electrodes at the height of the radiohumeral
joint and four more electrodes in a second array 45mm more
distally. These electrodes record sEMG at 1926Hz and contain
an integrated three axes accelerometer that is sampled at 148Hz.
A picture showing the setup is shown in Figure 1.

The experiment consisted of repeatedly grasping or
manipulating household items placed on a table in front of
the subject. The pairing of grasps and objects was specifically
chosen based (1) on the likelihood of their co-occurrence in
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ADLs and (2) to attain as much as possible a many-to-many
relationship between grasps and objects. In the first part of the
experiment, subjects just had to perform a “static” grasp on the
object without any manipulation, hold it for a few seconds and
then return to a rest posture when instructed. The amputated
subjects were asked to attempt to execute the action as naturally
as possible “as if their missing limb were still there,” rather than
just imagining it, to elicit activation of the remaining muscles in
their residual limb. Each of the grasps in Table 2 and its three
associated objects were first introduced via a video, after which
the subjects were instructed vocally to grasp each object four
times while seated and then another four times while standing.
The order in which the objects appeared in each repetition block
was randomized to avoid habituation. During the second part
of the experiment, the same ten grasps were instead executed
as part of a “functional” movement, as can be seen in Table 3.
In this case, the movements were performed either seated or
standing, depending on which position would seem more likely
in real life.

Given the scope of the present paper, we only use sEMG
from the second and seventh electrode, which were placed
approximately on the extensor and flexor digitorum superficialis.
Besides having relatively high activations, these electrodes also
indicate roughly whether the hand was opening or closing. To
aid visualization, both channels were rectified with a moving
root mean square with a window-length of 29ms (i.e., 57
samples) (Merletti, 1999). With respect to accelerometry, we note
that the accelerations of all electrodes were highly correlated
due to their positioning around the forearm. We therefore use
accelerations only from the first electrode and normalize them
with respect to the inertial frame of the initial position in each
trial (Tundo et al., 2013).

2.2. Gaze Velocity
A common method to classify gaze events in fixations and
saccades is based on the evaluation of the angular gaze
velocity (Salvucci and Goldberg, 2000). Given two consecutive
3-dimensional gaze vectors g i−1 and g i, the angular difference
between them can easily be calculated by means of their dot
product (Duchowski, 2007)

αi = arccos

(
g i · g i−1

‖g i‖‖g i−1‖

)
, ∀i ∈ {2, ...,N} . (1)

An approximation of the instantaneous gaze velocity at time ti
then follows as

vi =
αi

ti − ti−1
, ∀i ∈ {2, ...,N} . (2)

Although the Tobii glasses provide a unit gaze vector for both
eyes, we instead use the gaze point in world coordinates to
estimate the common angle of the eyes. These world coordinates
had fewer missing data and were slightly cleaner in practice due
to onboard processing. They are however relative to the position
of the scene camera rather than the eyes. Since this camera is
located on top of the frame of the glasses, this may lead to some
inaccuracy at small gaze distances. We therefore map the gaze

TABLE 2 | Overview of the static tasks.

Grasp Object

Medium wrap

Bottle Door handle Can

Lateral

Mug Key Pencilcase

Parallel

extension

Plate Book Drawer

Tripod grasp

Bottle Mug Drawer

Power sphere

Ball Bulb Key

Precision disk

Jar Bulb Ball

Prismatic pinch

Clothespin Key Can

Index finger

extension

Remote Knife Fork

Adducted thumb

Screwdriver Remote Wrench

Prismatic

four finger

Knife Fork Wrench

For each row, the grasp and the associated objects are indicated. The subjects were

asked to grasp each object with the given hand configuration while both seated and

standing.

points to a coordinate system that is centered between the left
and right pupils

ĝ i = g i − p̄i, ∀i ∈ {1, ...,N} , (3)

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 4 November 2019 | Volume 7 | Article 316

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Gregori et al. Visuomotor Behavior During Grasping

TABLE 3 | Overview of the functional tasks in the second part of the MeganePro dataset.

Grasp Vocal instruction Position Category

Medium wrap
Drink from the can

Standing
Lifting

Open and close the door handle In place

Lateral
Turn the key in the lock

Standing
In place

Open and close the pencil case In place

Parallel extension
Lift the plate

Standing
Lifting

Lift the book Lifting

Tripod grasp
Open and close the cap of the bottle

Standing
In place

Open and close the drawer In place

Power sphere
Move the ball to the right and back

Standing
Displacement

Move the keys forwards and backwards Displacement

Precision disk
Open and close the lid of jar

Seated
In place

Screw and unscrew the light bulb In place

Prismatic pinch
Squeeze the clothespin

Seated
In place

Move the keys forwards and backwards Displacement

Index finger extension
Press a button on the remote control

Seated
In place

Cut bread with the knife In place

Adducted thumb
Turn the screwdriver

Seated
In place

Move the wrench to the right and back Displacement

Prismatic four finger
Move the knife forwards and backwards

Seated
Displacement

Move the fork to the right and back Displacement

The vocal instruction in English indicates the task that had to be performed for each object-grasp pair, while the position denotes whether the subject performed the task while seated

or standing. The last column indicates the movement category as per the description in section 3.3.

where p̄i is the average of the left and right pupil locations
relative to the scene camera. To limit the impact of missing data
for the pupils, we linearly interpolated gaps shorter than 0.075 s
(Olsen and Matos, 2012).

2.3. Object Detection and Segmentation
To determine whether the subject is fixating the target object
at any given time, we need a precise segmentation of this
latter object throughout the exercise. Since the videos for each
subject totaled around 90min or 135 000 frames, this would
be very time consuming to annotate manually. We therefore
employed a deep learning algorithm to automatically segment
and classify all instances of our objects of interest (see Table 2).
Finetuning this algorithm to our data still required at least a few
dozen segmentations per object class. Rather than creating these
manually, we instead used a second deep learning algorithm to
facilitate the creation of this dataset.

2.3.1. Creation of the Training Dataset
SiamMask is a recently proposed method for object tracking and
semi-supervised video object segmentation (Wang et al., 2019).
By marking just a bounding box around an object in one frame,
this deep convolutional algorithm (1) segments the object from
the background and (2) tracks it in the following frames in a
video sequence. Although it may seem tempting to run this
algorithm on an entire video annotating each object only at its

first occurrence, in practice the object tracking does not work
reliably on such long time scales. We therefore used this method
to amplify our manual annotations; with just a single bounding
box annotation per object, we obtain 10 to 20 times as many
binary segmentation masks for our training set.

For our approach, we embedded the official implementation
of SiamMask1 with a default ResNet-50 backend in a custom
application. This software allows the user to select a frame in a
video and to annotate several objects with their bounding box
and their class identity. Based on this initialization, SiamMask
processes the initial frame and subsequent frames one by one.
At each frame, the output is presented to the user for validation,
who can either accept or refuse the proposed segmentation.
This procedure is shown schematically in Figure 2. In practice,
we accepted sequences up to about 15 frames. Applying this
procedure repeatedly, we processed in total 2,422 frames with
11,726 segmented object instances chosen from 15 subjects.
To include as much variability as possible in our dataset, we
captured the objects from different perspectives, with different
backgrounds, and while partially occluded. Furthermore, besides
the eighteen objects in Table 2, we also included segmentations
for a “person” class, which is primarily used to detect the subject’s
own limb.

1https://github.com/foolwood/SiamMask
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FIGURE 2 | The procedure to acquire the training set of segmentation masks. We first select an arbitrary frame from a video and annotate each object with its

bounding box and object identity. This information is passed to SiamMask, which produces segmentation masks for this initial frame and the subsequent frames in the

video sequence. At each frame, the user can choose whether or not to include the frame and its segmentations in the training set or to move to a new initial frame.

2.3.2. Training and Inference of Mask R-CNN
The data we acquired in this manner were used to train Mask
R-CNN on our objects of interest. This method detects and
segments all instances of the known objects in an image (He
et al., 2017). Rather than training a model “from scratch,”
we bootstrapped from a model that was supplied with the
implementation of Mask R-CNN by Massa and Girshick
(2018). This model used a relatively standard ResNet-50-FPN
backbone (Lin et al., 2017) and was pretrained on the COCO
dataset (Lin et al., 2014), a large scale generic dataset for object
detection, segmentation, and classification. As is common with
finetuning, we replaced the final classification layer of the model
with a random initialization and then performed additional
training iterations with a reduced learning rate of 0.0025 to
tailor the model to our custom dataset. The data of ten subjects
were used for training, while the validation set consisted of the
data of the remaining five subjects, which were chosen to be
as representative as possible for the entire dataset. We chose to
use the model that minimized the loss on the validation set (i.e.,
early stopping), which was obtained after just 4,000 iterations2.
The performance of this model is compared in Table 4 with
the average precision (AP) metrics of the pretrained model
on the original COCO dataset. Note that due to the limited
domain of our dataset and the smaller number of classes our
performance compares favorably to the larger COCO dataset.
After training, we employed the model in inference mode to
detect and segment objects in all videos of all subjects, as shown
graphically in Figure 3.

2.3.3. Distances
The segmentation masks for all videos were stored to disk and
then combined with the gaze data to calculate various distances.
In the following, we restrict ourselves to segmentations that were
recognized with a certainty score of at least 0.8. The distances that
are of interest for our analyses are the following.

2The model is publicly available online (Gregori and Gijsberts, 2019).

TABLE 4 | Comparison of Mask R-CNN’s detection accuracy on the COCO

dataset and the accuracy of our finetuned model on the MeganePro dataset.

Dataset AP [%] AP50 [%] AP75 [%] Source

MeganePro 77.5 92.7 87.6 This work

COCO 33.6 55.2 35.3 He et al., 2017

The AP is the average precision over Intersection over Union (IoU) from 0.5 to 0.95

evaluated at steps of 0.05. AP50 and AP75 represent the average precision when the

threshold of IoU is 0.5 or 0.75. A detailed description of these metrics can be found on

the website of the COCO dataset (http://cocodataset.org).

• The gaze-target distance, which is the distance between the
gaze point in frame coordinates and the target object for a
grasp trial, if visible in the frame. If multiple instances of the
same target class were recognized, then we chose the largest in
terms of area.

• The gaze-limb distance denotes the distance between the gaze
point and the hand or residual limb of the participant, if
visible. We only consider instances identified as “human” that
fall in the lower half of the image frame and again prefer the
largest one.

• When applicable, the limb-target distance indicates the
distance between the subject’s hand or residual limb and the
target object, as defined in the previous two distances.

Note that with the term “distance” we intend the minimum
Euclidean distance in pixels between a point and the contour of
a binary mask or between the contours of two binary masks. If
these overlap, then the distance is 0. Note that with the scene
camera of the Tobii glasses we find that 1 px ≃ 0.72mm at a
typical manipulation distance of 0.8m.

2.4. Events
The profile of these distances and the modalities described
previously were used to determine the timing of visuomotor
events with respect to the stimulus, such as the first fixation on
the target object or the onset of the arm movement. These events
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FIGURE 3 | The procedure to segment the entire dataset. By means of the previously selected training set we fine-tune the Mask R-CNN model. Later we feed the

network with new frames and it provides the segmented object instances as output.

allow us to quantitatively describe the time interval between the
activation of the eyes, head, and limb. The analysis window for
each trial ranges from 2 s before until 2.5 s after the end of the
corresponding vocal instruction with a resolution of 20ms. We
define the following events.

• The first fixation is defined as the first of at least two successive
samples where the gaze-target distance is <20 px. This
threshold was chosen to accommodate for some systematic
error in the gaze tracking and is roughly twice the average gaze
tracking accuracy (Cognolato et al., 2019). The requirement
for two successive samples that fall below the threshold is to
ignore occasional outliers.

• The saccade to the target object is assumed to initiate at the
last sample where the gaze velocity was<70 ◦/s (Komogortsev
et al., 2010), starting from 500ms prior to the target fixation.
This definition in terms of the last preceding fixation rather
than the first saccademakes it robust against missing data from
the eye tracker during saccades. Furthermore, we require this
saccade to start from a gaze-target distance of at least 100 px to
avoid occasional trials where the subject was already fixating
the target object.

• The start of the head movement is defined as the first of
two successive samples where the Euclidean norm of the
angular velocity vector of the Tobii glasses exceeds 12 ◦/s.
This threshold was chosen manually to be insensitive to
systematic errors in the measurements of the gyroscope in the
Tobii glasses.

• The movement of the arm starts at the first of two
successive samples where the Euclidean norm of the three-axis

accelerations exceeds 0.07 g. Also in this case the threshold was
tuned manually to be insensitive to the baseline level of noise
of the accelerometers.

• The activation of the forearm muscles starts when either of the
myoelectric signals exceeds 4 times its baseline level for two

successive samples. This baseline level is taken as the average
activation in the rest period from 2 s to 1 s before the vocal
instruction ended.

• Finally, the first grasp occurs when there are two successive
samples where the limb-target distance is <5 px. This
threshold was chosen to allow for a small error margin in the
detected segmentation masks.

Whenever the conditions for an event were not satisfied it was
marked as missing for the corresponding trial. Furthermore, we
invalidate all events that were found within the first 100ms of the
analysis window, as it implies that the subject was not in a rest
position or was already fixating the target object.

3. RESULTS

In the following, we analyze the eye-hand coordination of the
subjects in response to the grasp stimulus during the reach-
to-grasp and manipulation phases. In other words, we relate
movement of the eyes and head with that of the forearm. Before
moving to these analyses, we verified that subjects effectively
looked at the target object during a grasp trial. Thanks to the
deep learning approach described previously, we determined
that in 95.9% of the trials the gaze-target distance was <20 px
at least once. Manual evaluation of the remaining 4.1% of the
trials revealed that these were caused by a low accuracy of the
gaze tracking that exceeded our threshold rather than lack of
subject engagement.

3.1. Statistical Analysis
The first objective in this paper is to determine the window of
opportunity in which gaze can provide useful information about
an upcoming grasp. Table 5 shows that for intact subjects there
is a median interval of 561ms between the fixation event and
the subsequent grasp event. The same interval increases to more
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TABLE 5 | Statistical description of the intervals in seconds between various events.

Intact Amputated

Interval # Q1 Med. Q3 # Q1 Med. Q3 Significance

fixation → grasp 8,144 0.321 0.561 0.842 1,942 0.581 1.042 1.644 KS = 0.724,p = 2.602× 10−5

saccade → fixation 5,625 0.080 0.160 0.301 2,522 0.060 0.140 0.281 KS = 0.190,p = 0.811

saccade → head 5,419 −0.301 0.020 0.160 2,367 −0.461 −0.020 0.140 KS = 0.338,p = 0.173

head → arm 7,929 0.020 0.120 0.301 3,507 0.000 0.140 0.371 KS = 0.262,p = 0.447

arm → muscles 7,907 −0.020 0.080 0.401 3,576 0.200 0.581 1.042 KS = 0.829,p = 4.524× 10−7

The count refers to the number of trials where both events were recognized, out of a total of 9,703 trials for intact and 4,482 trials for amputated subjects, respectively. For the

Kolmogorov-Smirnov test the intervals were averaged per subject to guarantee independent samples.

than a second for amputated subjects, although this difference is
because they did not physically interact with the objects and the
limb-target distance therefore did not as often converge to within
the 5 px threshold. Not surprisingly, a Kolmogorov-Smirnov test
on the average interval per subject indicated that this difference
between both subject groups was statistically significant. This is in
contrast to the coordination between the initial saccade, the head,
and the arm movements, for which we fail to find a significant
difference between both groups. The saccade to the target object
leads to its fixation in approximately3 150ms. Concurrently with
the eyes, also the head starts tomove. This headmovement is then
followed by acceleration of the arm around 130ms later. In intact
subjects, the activation of the forearm muscles comes only 80ms
after the onset of the arm movement in the median case. This
interval is more than half a second longer for amputated subjects
and this difference is found to be statistically significant.

3.2. Reach-to-Grasp Phase
The coordination during the reaching phase of all “static” and
“functional” grasps is visualized in Figure 4 for both intact
and amputated participants. Whereas the previous statistical
analysis was intended to provide a quantitative assessment
of the relative timings in eye-hand coordination, this figure
instead complements those numbers by demonstrating how this
coordination evolves over time. It does so by showing the median
and quartiles of the distribution over all trials from all subjects
in either group from 1.5 s before to 2.5 s after the conclusion of
the vocal instruction. For both types of subjects, we observe an
increase in gaze velocity from −0.5 s to 1 s. This increase also
marks a sharp decrease in the distance between the gaze and
the target object, which leads to a fixation soon after. From this
moment on, the subjects retain their fixation on the object of
interest. Based on the median profiles, we see again that the onset
of the head movement starts around the same time as the eye
movement and continues for 1.5 s.

The delay of the arm movement with respect to the eyes is
slightly larger for amputated subjects, as shown by the median
profile of the forearm’s acceleration in Figure 4. Shortly after
the arm starts to move, we also observe an increase in sEMG
activity, with initially an emphasis on the extensor and later on

3This is likely a slight overestimation, considering our definition of the saccade and

missing values in the gaze data from the Tobii glasses.

the flexor. For able-bodied subjects, the profile of the limb-target
distance confirms our earlier finding that the limb arrives at
the object 500ms after its fixation. Although this result is not
directly comparable with that for amputated subjects, we observe
that the convergence between their residual limb and the target
object appears more gradual and is characterized by a much
larger variability.

A noteworthy observation is that the activation of the eyes
always preceded the end of the vocal stimulus. The reason is
that subjects could typically deduce the target object already
before the end of the instruction. This does not affect our results,
since we are interested in the relative delay between eyes, head,
and forearm rather than reaction times to the stimulus. The
differences in reaction time to the vocal instructions do increase
however the dispersion of the distributions. We also note that
the relative contribution among the three axes of the acceleration
profile differs between able-bodied and amputated subjects. The
reason is that we normalized this profile with respect to the
initial position of the forearm, which is typically different for both
types of subjects. In the present study, we use accelerometry to
determine when the arm starts to move and rely on the limb-
target distance to measure its convergence to the target object.

3.3. Manipulation Phase
In Figure 5, we focus on the behavior of intact and amputated
subjects during the functional tasks to further investigate the
similarities in gaze strategy. These figures start from 2 s before
the vocal instruction until 7 s after, which is enough to cover
the entire manipulation action. We group the MeganePro
movements into three categories based on the type of task and the
associated visual behavior, as shown in Table 3. These categories
are in place manipulation actions, lifting actions, and finally
displacement actions.

3.3.1. In Place Actions
The in place actions concern manipulation tasks that do not
require moving the object, like opening an object, cutting bread,
or pressing a button of the remote control. The aggregated
profiles of all modalities for these actions are shown in Figure 5A

for able-bodied subjects and in Figure 5B for amputees. During
this type of action, the gaze remains fixed on the target object
throughout the entire duration of the manipulation, as can also
be seen in the example in Figure 6 that overlays gaze and object
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FIGURE 4 | The trend of each modality in the reach-to-grasp phase for (A) intact and (B) amputated subjects. The zero corresponds to the end of the vocal

instruction that indicated the required manipulation action. The solid line represents the median over all trials from all subjects, whereas the shaded areas indicate the

25th and 75th percentiles. Segments with more than 90% missing data were omitted.

segmentations on representative frames of the first person video.
As expected, the hand remains on the target for the entire
duration in case of able-bodied subjects, whereas for amputees
there remains a constant subject-dependent distance between the
residual limb and the target. Head movements are limited to
the initial reach-to-grasp phase to center the object in the field
of view, after which the head remains fixed until the end of
the manipulation.

3.3.2. Lifting Actions
The second group is composed of lifting actions, in which the
subject was required to lift an object up and then place it back
in its initial position. As can be seen in Figures 5C,D, also in
this case the gaze anticipates head and forearm movement. More
interestingly, we see a clear movement in the pitch orientation
of the head. Since these actions are executed while standing,
the subjects first lower their head to locate the target object on
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FIGURE 5 | The trend of each modality for intact and amputated subjects for the (A,B) in place, (C,D) lifting, and (E,F) displacement functional tasks. The zero

corresponds to the end of the vocal instruction that indicated the required manipulation action. The solid line represents the median over all trials from all subjects,

whereas the shaded areas indicate the 25th and 75th percentiles. Segments with more than 90% missing data were omitted.
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FIGURE 6 | Example of the visuomotor behavior of an intact (first row) and an amputated (second row) participant while opening a door handle. The gaze trail is

represented by the circles from the current gaze position (red) to ten samples later (white). Both subject groups direct the gaze on the object during the reaching

phase (first column). The eyes then remain focused on the target object during the grasping and manipulation phases (second and third columns). In both cases, the

motor behavior of the arm is similar for intact and amputated subjects. During the release phase the gaze shifts away from the object (fourth column).

the table. Then, when they have located and grasped the object,
they raise their head again with a peak pitch velocity at 1.7 s for
able-bodied subjects and slightly later for amputated subjects.
This head movement coincides with a modestly increased gaze
velocity and is due to the tracking motion of the lifting action.
In some cases, this tracking strategy even caused an amputated
subject’s gaze-target distance to increase, as can also be seen in the
example in Figure 7. Finally, the subjects lower their head again
when tracking the release of the object at the end of the trial.

3.3.3. Displacement Actions
The final category are the so-called displacement actions. During
these tasks, the subjects had to grasp the objects, move them
horizontally to another position, and then place them back in the
initial position. We note that the gaze and motor behavior starts
earlier with respect to the vocal instruction. For this category of
tasks, the name of the object happens to appear at the beginning
of the instruction (see Table 3), thus allowing subjects to initiate
the task early. For intact subjects, we see in Figure 5E that 200ms
before the hand reaches the object the gaze-target distance starts
to increase again. The gaze, in this case, shifts already to the
destination position for the displacement action, as demonstrated
in the second panel in Figure 8. Although less pronounced,
the same pattern repeats itself at around 1.5 s when the subject
initiates the return movement. The profiles for the amputated
subjects in Figure 5F show different behavior, with an overall
increase in gaze-target distance throughout the entire duration
of the movement. As intact subjects did, their gaze anticipates the
path of the hand rather than the path of the object, which is not
physically displaced. This strategy is demonstrated clearly in the
bottom row of Figure 8.

4. DISCUSSION

The objective of this paper was to determine the window of
opportunity for exploiting gaze as contextual information in

decoding the grasp intent of amputees. A related question was
to which extent the natural gaze strategies of amputees and able-
bodied subjects were similar. After comparing our results with
related work, we discuss both topics. Finally, we argue for the
use of recent developments in deep learning in the analysis of
large-scale visuomotor studies.

4.1. Visuomotor Strategy and Comparison
With Related Work
In section 3.2, we presented the results of eye, head, and limb
coordination during reaching and grasping. The eyes are the
first to react to the vocal stimulus by exhibiting an increasing
saccade-related activity, leading to a fixation on the target in
about 150ms. When the eyes start moving, also the head follows
almost immediately. Such short delays between movement of the
eyes and the head have been reported in the literature, ranging
from 10 ms to 100 ms during a block-copying task (Smeets
et al., 1996) or in reaction to visual stimuli (Goldring et al.,
1996; Di Cesare et al., 2013). This behavior is however strongly
dependent on the experimental setting and even small variations
therein can change the outcome. For instance, Pelz et al. (2001)
found that depending on the exercise’s instruction the head may
both precede (by about 200ms) or follow the eyes (by about
50ms) in the same block-copying task.

After the activation of the eyes and the head we observe the
movement onset of the arm 130ms later. Similar values ranging
from 170 ms to 300 ms were also reported by Smeets et al.
(1996) and Pelz et al. (2001) in a block-copying task and by
Belardinelli et al. (2016) in a pick and place task. Land et al.
(1999) instead found a median delay of 0.56 s during a tea-
making activity. Rather than movement onset, the time the hand
takes to reach the target is more interesting for our scope. For
the intact subjects, the hand typically starts to occlude the target
object around 500ms after the first fixation. Although occlusion
does not necessarily already imply a completed grasp, especially
given the first person perspective, we do expect the grasp to follow
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FIGURE 7 | Example of the visuomotor behavior of an intact (first row) and an amputated (second row) participant lifting a plate. The gaze trail is represented by the

circles from the current gaze position (red) to ten samples later (white). The eyes focus on the manipulation point to plan the hand’s approach (first and second

columns). During the lifting phase, the eyes move away from the reaching point and the amputee’s gaze even exceeds the mask boundary of the plate (third column).

The object is fixated again during the release (fourth column).

FIGURE 8 | Example of the visuomotor behavior of an intact (first row) and an amputated (second row) participant while moving a ball. The gaze trail is represented by

the circles from the current gaze position (red) to ten samples later (white). The gaze focuses on the object until the hand’s arrival (first column), when the grasping

phase begins the eyes shift away toward the destination (second column). When the hand reaches the destination the gaze shifts back to the initial location (third

column) to release the target (fourth column).

not much later. These results confirm that visual attention on
objects anticipates manipulation. In previous studies concerning
displacements (Johansson et al., 2001; Belardinelli et al., 2016;
Lavoie et al., 2018) and grasping activities (Brouwer et al., 2009),
a variable delay ranging from 0.53 s to 1.3 s was found between
the eye and hand. Also in these cases, the exact value of the delay
depends on the characteristics of the experiment.

In section 3.3, we concentrated on the visuomotor strategy
adopted by amputated and able-bodied subjects to interact with
the objects during three groups of functional tasks. We can
characterize the strategies associated with these groups in terms
of the types of fixations defined by Land et al. (1999) and
Land and Hayhoe (2001), namely locating, directing, guiding, and
checking. A fixation to locate is typically done at the beginning
of an action, to mentally map the location of objects that is to
be used. Instead, a fixation to direct is meant to detect an object

that will be used immediately after. Fixations to guide are usually
multiple and occur when the gaze shifts among two or more
objects that are approaching each other. Finally, there are long
checking fixations to monitor the state of an action waiting for
its completion.

The visual strategy of the in place actions is relatively
straightforward. In these tasks, subjects initiate with a fixation
to direct the attention to the target object. Subsequently, their
fixation remains on the manipulated object to check the correct
execution of the task. Note that this visual attention seems
focused on the target object rather than the subject’s hand, as
can be seen comparing the gaze-target and gaze-limb distances
in Figures 5A,B. Indeed, Land et al. (1999) noted that the hands
themselves are rarely fixated.

Also the lifting actions start with a directing fixation to locate
the object of interest. However, whereas the initial fixation is

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 12 November 2019 | Volume 7 | Article 316

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Gregori et al. Visuomotor Behavior During Grasping

focused on the intended grasp location (cf. the left column
in Figure 7), the gaze shifts upwards when the hand has
grasped the object. This coincides with the transition from the
directing fixation to visually checking the lifting action. This
is in line with observations by Voudouris et al. (2018), who
noted that people may fixate higher when grasping and lifting
an object to direct their gaze to where the object will be in
the future.

Finally, displacement actions are the ones most investigated
in the literature. Previous studies on pick and place tasks
(Belardinelli et al., 2016; Lavoie et al., 2018) and on the block-
copying task (Smeets et al., 1996; Pelz et al., 2001) fall in this
category. In this case, we observe in Figure 5E that the gaze-target
and gaze-limb distances have three minima for intact subjects,
namely at the initial pick-up, the destination, and at the release
again at the initial position. All three minima indicate fixations
that are meant to direct the approach of the hand, either for
(1) grasping the object, (2) displacing it, or finally (3) releasing
it. This behavior can clearly be seen for both intact as well as
amputated subjects in the example in Figure 8. We also notice
that the eyes did not wait for the completion of the pick-up
action, moving instead toward the position of the destination
around 200ms in advance. This proactive role of the eyes was
highlighted by Land et al. (1999), who measured the gaze moving
on to the next object between 0 s to 1 s before the current object
manipulation was terminated. Also Pelz et al. (2001) observed the
eyes departing from the target object 100ms to 150ms before the
arrival of the hand.

4.2. Comparison Between Intact and
Amputated Subjects
One of the aims of this work was to understand if a transradial
amputation has introduced important changes in the visuomotor
behavior of amputees. During the reach-to-grasp phase, the
overall behavior of intact and amputated subjects is comparable.
Even if the coordination timeline between eyes, head, and limb
is similar, there are some minor discrepancies between the two
groups. The main observed difference concerns the delayed
activation of the forearm muscles during the reaching phase
for amputated subjects, which was found to be statistically
significant. Similarly, during the lifting tasks we noted slower
pitch movements of the head. It is likely that some subjects
interpreted the instruction to perform the grasp with their
missing limb by activating their phantom limb. Such movements
executed with the phantom limb are known to be slower than
those executed with the intact hand (Raffin et al., 2012b; De Graaf
et al., 2016).

Throughout the manipulation phase, we observe a striking
similarity in visuomotor strategy between the amputated subjects
and the control group. The differences that we noted in the results
are not due to an alternative gaze strategy, but rather because
the objects were not physically moved during the interaction.
For instance, in the lifting task visualized in Figure 5D we saw
an increase in gaze-target distance in the range from 2 s to 5 s.
This increase was due to an upward shift in the gaze location
to track where the object would have been if it had been lifted

for real. Similarly, during the displacement task in Figure 5F we
do not observe a minimum in gaze-target distance at around
1.5 s, as was the case for intact subjects (see Figure 5E). Instead,
around the same time we observe a peak for the amputated
subjects, solely because the target object is still at its original
position whereas their gaze has shifted to the intermediate
destination. The examples for these gaze strategies in Figures 7, 8
demonstrate how similar intact and amputated subjects behaved.

It would be interesting to understand how these results relate
to the disrupted eye-hand coordination when using a prosthetic
device. Previous studies (Bouwsema et al., 2012; Sobuh et al.,
2014; Parr et al., 2018) have underlined that prosthetic users are
more fixated on guiding the current manipulation, rather than
planning the follow-up action. This behavior is most likely caused
by the fact that amputated people rely almost exclusively on visual
feedback. However, since only a small number of subjects were
engaged in the previous studies more research will be needed to
fully understand the disruption of the visuomotor strategy. In
particular, whether or not this strategy improves when the user
develops trust in the prosthesis (Chadwell et al., 2016) merits
attention. Another equally interesting question is to which extent
the proactive gaze behavior can be restored by integrating tactile
or proprioceptive feedback in the prosthesis (Cipriani et al., 2011;
Marasco et al., 2018; Markovic et al., 2018, among others).

4.3. Integration of Vision in Prostheses to
Improve Intent Recognition
The estimated time interval from fixation to grasp in section
3.1 shows that the window of opportunity is 500ms for intact
subjects. This interval cannot be accurately determined for
amputated subjects, as they executed the movement with their
missing limb and therefore lacked physical contact with the target
object. Although Figure 4B suggests that this window will at
least be as long for amputated users, one may argue that this
result is not representative for movements performed with a
prosthesis. However, previous studies showed without exception
that prosthetic users still fixate the target object for the majority
of the reaching phase (Bouwsema et al., 2012; Sobuh et al., 2014;
Chadwell et al., 2016; Hebert et al., 2019; Parr et al., 2019), albeit
alternating it more often with fixations on the hand (i.e., the
“switching” strategy). Moreover, this reaching phase may actually
take more than twice as long as compared to the same movement
performed with the anatomical limb (Sobuh et al., 2014; Hebert
et al., 2019). These findings suggest that the target object will still
be fixated proactively by a prosthetic user and that the window of
opportunity will more likely be longer than shorter.

Exploiting this anticipatory gaze behavior is appealing because
it comes naturally and therefore does not require specific
attention from the user. The success of this approach relies
however on the ability to distinguish informative fixations from
those that are not necessarily related to any grasp intent. Gigli
et al. (2018) attempted to address this problem by including the
onset of the arm movement as an additional condition, which
we have shown here to shorten the window of opportunity. Also
the method that is used to detect fixations may shorten this
window. Thanks to the frame-by-frame segmentations in the
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present study, we could accurately and instantaneously recognize
object fixations by measuring the distance between the object’s
segmentation mask and the gaze point. In contrast, common
fixation classifiers, such as (IVT) (Salvucci and Goldberg, 2000),
define a fixation simply as the lack of eye movement. In reality,
gaze shifts more commonly involve not only eye movement, but
also head and sometimes even trunk movements (Morasso et al.,
1973; Land, 2006). When the head moves, the optokinetic and
vestibulo-ocular reflexes cause the eyes to counteract the head
movement to maintain a stable gaze point (Lappe and Hoffmann,
2000). It is exactly due to such coordinated gaze movements that
the initial object fixation in Figure 4 actually coincides with a
peak in gaze velocity. The need to detect fixations as early as
possible therefore implies a detection method that uses more
information than eye movement alone. Whether this is best done
by compensating for head movements (Kinsman et al., 2012;
Larsson et al., 2014) or by comparing the visual object at the gaze
point as in the present study is an open question.

A final consideration is regarding technical and practical
concerns of a prosthetic solution that integrates eye tracking.
Myoelectric control of prostheses has a long history and a
solution that decodes natural muscle activations via pattern
recognition is commercially available (Coapt, LLC, 2015).
Tracking a user’s gaze continuously and reliably in a variety of
conditions will pose a bigger problem, however. The Tobii glasses
used for the MeganePro dataset resulted in 10.7% of missing data
on average, caused discomfort to the subjects after wearing them
for about 2 h, and needed a battery replacement after 1.5 h to
2 h of continuous acquisition. Recent developments have seen
considerable improvements however in terms of weight, cost, and
aesthetic appeal (Pupil Labs GmbH, 2019).

4.4. Advantages of Deep Learning for the
Automatic Analysis of Visual Behavior
Without the deep learning approach described in section 2.3 it
would have been extremely labor intensive to analyze 70 h of
video and data from 44 subjects. Manufacturers of eye-tracking
devices often provide applications for semi-automatic analyses,
but these do not allow the level of automation nor precision as
the procedure described here. Although the object segmentations
produced by Mask R-CNN were occasionally mistaken, the
segmentations seen in the examples from Figures 6–8 are
illustrative for the overall performance. It may easily be
overlooked that data from research studies, such as the present,
often contain much less visual variability than the datasets
on which these algorithms are trained and evaluated. With
minimal finetuning efforts, it is therefore likely to obtain levels
of performance that considerably exceed those reported in the
literature, as was seen in Table 4.

5. CONCLUSIONS

In this study, we analyzed the coordination of eye, head, and
limb movements of amputated and able-bodied participants
engaged in manipulation tasks of household objects. Our aim
was to understand the anticipatory role of gaze in the visuomotor
strategy and to determine whether this could potentially be used

to aid in the grasp intent recognition for upper limb prostheses.
We found that a fixation on the target object typically preceded
the subsequent grasp by 500ms in intact subjects and possibly
longer for amputees. Moreover, the visuomotor strategies of
amputees were similar to those of intact subjects both during the
reach-to-grasp phase as well as during functional manipulation
tasks. In future work, we aim to use the knowledge gained in
this study to integrate vision with the (sEMG) modality to verify
whether we can realize an effective improvement in recognizing
grasp intentions during the reaching phase.
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