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Abstract—This paper describes a viable and self-contained
imaging system able to assess and quantify the effects of microbial
corrosion on metals surface. The proposed image processing uses
Scanning Electron Microscope micrographs to analyze bacteria
attachment on sample surface and to estimate the degradation
degree of the material. After a preliminary brightness and
contrast normalization, which refines the image taken by the
operator, the software is able to identify dark spots on the
clear metal surface. These are then attributed to singly attached
bacteria or to larger clusters, which are the most dangerous ones,
as they could overlay corrosion pits. After that, the degradation of
the material is evaluated through the quantification of microbial
attachment on the surface and through dimensional distribution
of bacteria clusters.

Index Terms—Microbial Corrosion, Image Processing,
Implants, Scanning Electron Microscopy

I. INTRODUCTION

Prosthesis implantation is a surgical operation in which
the choice of material is an issue of paramount importance.
The interaction between a material (especially in case of
metal alloys) and the body fluids can lead to corrosion
phenomena that, in the most serious cases, can cause the
failure of the implant. A particularly severe degradation is
due to microbial corrosion, in which bacteria catalyze metal
oxidation, significantly increasing the corrosion rate.

Since corrosion is an electrochemical reaction,
electrochemical techniques are generally the most effective
approach in the study of material-environment interaction
and of corrosion mechanisms [1]. In the field of biomaterials,
Electrochemical Impedance Spectroscopy (EIS), monitoring
of open circuit potential, polarization curves and other
traditional electrochemical measurements are routinely
employed to assess the corrosion behavior of different metals
and alloys when in contact with electrolytic solutions that
simulate the aggressiveness of body fluids. However, most of
them cannot be considered as stand-alone techniques, as they

must be coupled to each other or to other chemico-physical
characterization techniques such as optical and electron
microscopy, in order to investigate the mechanism and the
morphology of the corrosion reactions occurring on the
metallic surface. From this considerations, the necessity to
develop easy-to-use solutions able to quantitative evaluate
the extent of the degradation phenomenon occurred on the
material surface arises.

Many approaches related to imaging analysis when
microbial corrosion (MIC) is concerned are possible. In
particular, these methods can be classified taking into account
the technique used for image collection or the main purpose
of the investigation (corrosion assessment or biofilm growth).
When surface morphology is the main concern, often stereo-
microscope, reflected light microscopy and SEM (Scanning
Electron Microscopy) are used [2]–[5]. In order to have
a more accurate 3D reconstruction of the surface, white
light interferometry or Fourier Transform Profilometry can be
employed, so as to detect pit formation (pitting is a form
of localized corrosion) [6], [7]. Main advantages of these
techniques are related to the easy way in which corrosion pits
can be detected and quantified (e.g. through parameters such
as the pit density); drawbacks are related to the detection of
biofilm and attached bacteria, as magnification is too low. On
the other hand, to have the best morphological characterization
of the biofilm, CLSM (Confocal Laser Scanning Microscope)
is generally used [8]–[13]. This technique allows to have
quantitative information about biofilm coverage and also its
3D structure, providing important information to researchers
in biology. Main limitation is that sample preparation requires
staining techniques, that are not always available in material
science laboratories.

Aim of this research work is to develop a simple and fast
imaging system able to quantitatively estimate the microbial
corrosion effects and the biofilm growth on metallic specimens



subjected to MIC laboratory tests. Imaging based systems have
been employed in several fields [14]–[16] mainly thanks to
their low cost and non invasiveness [17]–[19].

The proposed approach is based on the processing of surface
micrographs collected by means of a Scanning Electron
Microscope (SEM), which provides a sufficient resolution
at high magnification to examine bacteria attachment, even
in case of low biofilm coverage. Electron microscopy is a
traditional characterization technique routinely used in all
material science laboratories, so it does not require additional
equipment or skills. The system is based on the open-source
openCV library, which can count many applications in the
identification of specific objects present in images [20], [21].

After a preliminary processing of the image, which is
described in section II, the software is able to identify
bacteria aggregates that are present on the sample (section
III). Obtained results are finally presented and discussed in
section IV.

II. IMAGE PROCESSING

A. Image acquisition

To assess the microbial corrosion effects and the bacteria
growth onto the metal, surface images are collected by means
of a Field Emission Scanning Electron Microscope (FESEM -
Supra 40 Zeiss). Fig. 1 shows, as an example, a FESEM image
of a metallic specimen after a microbial corrosion test carried
out in an electrolytic solution containing bacteria inoculum;
after 200 h of exposure to the MIC test, a flat surface on which
some bacteria agglomerates, highlighted as dark areas, can be
observed. The image magnification is selected by the operator
and automatically computed by the microscope; magnification
can range from few nanometers per pixel to several tens of
micrometers per pixel, while the image dimension can be
2000× 1500 pixels. Since the expected microorganisms have
dimensions in the range of 2 µm to 15 µm, a resolution of
the order of 0.2 µm/pixel can be conveniently used; therefore,
the analyzed area is of the order of 400 µm× 300 µm. This
value has been used in all the images processed in this paper.

B. Image brightness and contrast normalization

In addition to magnification and pixel size, the operator
selects also the image brightness and contrast in order to obtain
the best visualization of bacteria aggregates and localized
corrosion attacks (pits). Setting these parameters is a critical
operation, which makes any automatic image processing
difficult to be applied.

In addition, the image brightness can change over the
scanned surface because of the different topography and
roughness and as a consequence of charging effects occurring
when the electron beam hits non conductive species (bacteria
aggregates). The low voltages used by the field emission
microscope and the efficiency of its detector greatly help to
reduce the charging effects making them almost negligible.
However, brightness can still significantly change due to the
different surface morphology in the different areas (i. e.
different positions) of the scanned image [19].

Fig. 1. FESEM image of a metallic surface affected by microbial corrosion.

Therefore, an image normalization has to be performed in
order to obtain FESEM images whose contrast and brightness
are reasonably independent from the operator; this processing
involves three steps:

1) Estimation of brightness changes due to the different
morphology of the surface area;

2) Correction of brightness changes in the different
positions;

3) Normalization of the image brightness to eliminate the
operator setting effect.

The first step requires identifying a brightness plane whose
value is described by the following equation:

B = B0 + αBXx+ αBY y (1)

where B is the brightness of the metallic surface area not
interested by microbial corrosion, B0 is the average brightness
value, αBX and αBY are the brightness changes with position
coefficients, and x and y are the position coordinates.

Since the samples have an average brightness which is
almost constant in the absence of corrosion, the identification
of the brightness average value could be easily performed if
one is able to find on the image the areas not affected by
corrosion, i.e. in the case of the described images, areas not
affected by bacteria growth. Such a manual selection can be
avoided in most cases since the area covered by the bacteria
is usually limited with respect to the total scanned metallic
surface, so that the image brightness as a function of the
coordinates can be easily estimated by solving in the Least
Square sense the matrix equation:

B = U · λ (2)

where B is the column vector of all pixels brightness,
U is nPix × 3 matrix in which the row is [1, x, y] and
accounts for the position of each line in the B vector and



λ = [B0, αBX , αBY ]
′ is the vector containing the sensitivities

whose estimation is referred to as λ̂.
Of course the actual estimated brightness values depend on

the way the images are acquired, i.e. on the FESEM operator;
however, tests performed on several images with average
brightness in the range of 140 to 220 out of a maximum value
of 255 led to position coefficients whose maximum value is
of the order of 9 · 10−3 on x axis and of 3 · 10−2 on the y
axis. This leads to maximum brightness changes of the order
of 40 units out of 255 units.

The second pre-processing step, once λ̂ has been estimated,
can be simply obtained by computing the corrected brightness
Bc as:

Bc =
B

1 + αBXx+ αBY y
(3)

obtaining therefore an image whose brightness is no longer
affected by brightness changes in the different surface areas.

The third step can be obtained simply by changing image
contrast by modifying the brightness values, so that they cover
all the available gray levels. In order to avoid a normalization
affected by the presence of few abnormal white and black
spots, the image brightness Bmin and Bmax can be obtained
by:

Bmin =
∑

pixelnumber

Pxy : Bp < Bmin; kPtot (4)

Bmax =
∑

pixelnumber

Pxy : Bp > Bmax; kPtot (5)

where Pxy is the generic pixel, Ptot is the number of pixels in
the image and k is the coefficient usually in the range of 5%
to 10%, which is used to define the number of pixes shown
as black and white.

Once Bmin and Bmax have been estimated, the image
brightness can be normalized as:

Bs =


0, if B ≤ Bmin

(B −Bmin)
M

Bmax−Bmin
, if Bmin < B < Bmax

MaxB , if B ≥ Bmax

(6)
where MaxB is the maximum brightness value of the

image. Fig. 2 shows four different examples of normalized
images collected on metallic specimens which have undergone
to the MIC test in different solutions. The normalized images
appear to have similar brightness and contrast even though
the bacteria proliferation and coverage appears to be quite
different.

III. BACTERIA IDENTIFICATION

On FESEM images collected on metallic samples exposed
to MIC test, bacteria appear as dark areas whose dimension
ranges from few squared micrometers for aggregate of few
bacteria to several hundreds of micrometers for large bacteria
aggregate.

Fig. 2. Example of results of the normalization process on images with
different brightness, contrast, and bacteria coverage.

The identification of the bacteria aggregates has been
performed by using the OpenCV opensource environment
[22], [23] by using the findContour function set to identify
dark spots. This function returns a list of contours which can
be easily shown on the FESEM image as it is possible to
observe in Fig. 3. The figure shows normalized and identified
images collected on four metallic specimens immersed in
different solutions. Two of the images (Artificial seawater
and Stankey solution) refer to samples immersed in solutions
containing the inoculum and therefore rich of bacteria, the
other two (Abiotic artificial seawater and Abiotic Stankey
solution) refer to samples immersed in solutions having
the same chemical composition but without the presence of
bacteria.

In the identified images, as an example, a green contour has
been used to flag aggregates with size of less than 200 µm2

while a red contour has been used to flag bigger aggregates
with size above 200 µm2.



Fig. 3. Example of results of the identification process where in green
are shown bacteria clusters with size below 200 µm2 and in red cluster of
bacteria above such value. Four examples are shown: in two cases samples
were immersed in solution containing bacteria, and in the other two without
bacteria. The corrosion difference is immediately visible.

IV. RESULTS

After a microbial corrosion test, FESEM characterization
provides morphological information about biofilm growth and
corrosion attacks onto the specimen surface.

Depending on the material and on the electrolytic
solution employed in the MIC test, a different amount of
microorganisms singly attached or agglomerated in big clusters
can be found. So important information can be gathered by
means of an imaging analysis able to quantitatively estimate
the amount of bacteria grown on the metallic surface as a
function of the aggressiveness of the MIC test; therefore
the imaging approach could be very useful to compare the
behaviors of different metals and alloys exposed to MIC and
to put in evidence also the different aggressiveness of bacteria
inocula.

In order to validate the proposed image processing, two
standard microbial corrosion tests have been carried out, by
immersing stainless steel specimens (AISI304, composition
in Table I) in two different electrolytic solutions. AISI 304
Stainless Steel is an alloy basically employed in biomedical
applications, such as orthopedic implants. The specimens have
been immersed in two electrolytic solutions, the Stankey

medium and artificial seawater (solutions composition are
reported in Table I). The former is a classic growth medium
for bacteria, containing mainly sulphates and chlorides ions;
the latter has a more complex composition simulating marine
environment (also a favorable solution for microorganisms
proliferation) and has been chosen in order to obtain a different
corrosion morphology affecting the metallic surface after the
test and compare it through the image analysis. Salt marsh
sediments have been used as inoculum for the two solutions
(it was added in the concentration of 10 vol%).

TABLE I
MATERIAL AND ELECTROLYTIC SOLUTION COMPOSITION

Material Chemical Composition [wt%]
AISI 304 Cr 18, Ni 10, Mn 2, Si 1, C 0.7

Electrolytic Solution Concentration [g/L]
Stankey Medium K2HPO4 0.50, NH4Cl 1.00,

Na2SO4 1.00, CaCl22H2O 0.100,
MgSO47H2O 2.00, NaCl 24.53,
CH3COONa 3.00

Artificial Seawater NaCl 24.53, MgCl2 5.20, Na2SO4

4.09, CaCl2 1.16, KCl 0.695,
NaHCO3 0.201, KBr 0.101,
H3BO3 0.027, SrCl2 0.025, NaF
0.003, CH3COONa 3.00

Results from dimensional distribution of microorganism are
shown in Fig. 4 and 5 as histograms for the samples immersed
in artificial seawater and Stankey medium respectively. Data
have been divided into two plots, one collecting single bacteria
or small aggregates (having area up to 20 µm2) and the
other one grouping larger ones (until 3000 µm2). Different
information can be gathered arranging data in this way, as
smaller objects provide indications about bacteria attachment,
while bigger ones can be considered the most dangerous as
far as microbial corrosion is concerned. Actually, they could
generate preferential sites for pitting formation, as they create
areas of differential aeration or where corrosive compounds
(such as chlorides ions) can accumulate or pH changes can
occur; so identifying and quantifying them is an important
point to assess the microbial corrosion behavior of the metallic
specimen. In the histograms, aggregates size is plotted as a
function of covered surface percentage, in order to keep in
the same graph the contribution arising from single bacteria
(high in number but with very small dimensions) and larger
aggregates.

As can be seen in Fig. 3, the software is able to correctly
identify almost all microorganisms present on the sample.
Main limitations are due to agglomerates which lie near the
edges of the image, as their contour can’t be determined by the
findContour algorithm. In virtually all other cases, bacteria
are identified and labeled according to their dimension. Thus,
analyzing data from the histograms, it is possible to recognize
the different morphologies of the two samples. Immersion in
artificial seawater lead to a condition in which bacteria are
singularly and randomly attached on the surface with only few
bigger agglomerates, which can be recognized in the histogram



TABLE II
RESULTS OBTAINED FOR SAMPLES IMMERSED IN ARTIFICIAL SEAWATER, IN STANKEY SOLUTION AND IN ABIOTIC STANKEY SOLUTION.

Electrolytic
Solution

Number of
Small aggl.

Total Surface
of small aggl.
(µm)2

Average
surface
(µm)2

Percentage
of covered
surface

Number of
Large aggl.

Total Surface
of large aggl.
(µm)2

Average
surface
(µm)2

Percentage
of covered
surface

Artificial
seawater

6660 11000 1.6 8.7 5 1640 380 1.3

Stankey 16400 15700 0.9 12.5 16 8000 500 6.3

Abiotic
Stankey

20300 3800 4.5 2.9 - - - -

Fig. 4. Histograms showing dimensional distribution (expressed as
agglomerate area) as a function of the covered surface percentage for the
samples immersed in artificial seawater.

ranging until 3000 µm2. On the other hand, immersion in
Stankey solution induced the formation of a higher number
of bigger aggregates (area above 20 µm2), which can also be
quantified through their density:

aggregates density =
number of aggregates

surface area
(7)

Fig. 5. Histograms showing dimensional distribution (expressed as
agglomerate area) as a function of the covered surface percentage for the
samples immersed in the Stankey solution.

This parameter has been found equal to 41.7 mm−2

for sample immersed in artificial seawater and equal to
133.3 mm−2 for the sample immersed in Stankey solution,
providing an important additional clue for the material
characterization. Such values have been calculated dividing
the total number of bigger aggregates (reported in Table II)
by the micrograph area (expressed as mm−2)



Finally, another useful parameter that can be derived from
the image processing is the biofilm coverage, defined as:

biofilm coverage =
pixel covered by bacteria

total number of pixel
· 100 (8)

Its value has been calculated for the two samples, resulting
10.0 % for the test in artificial seawater and 18.8 % for the test
in Stankey medium. Table II summarizes further data that can
be gained from the processing, such as: number of aggregates
(distinguished according to the size), their total surface, the
average surface of aggregates and the percentage of covered
surface (from which the biofilm coverage can be calculated
summing the percentage of covered surface deriving from
small and from large aggregates).

As a further analysis, analogous corrosion tests have
been carried out in sterile conditions (using the same
electrolytic solutions and material). In this case of course no
microorganisms were present, but information about pitting
corrosion could be gained through the image processing. Same
magnification was used to collect micrographs and results
from contour identification are presented in Fig. 3. In the
case of Stankey solution, the sample revealed initial hints of
degradation, properly detected and classified by the software.
On the other hand, for the artificial seawater sample no signs of
corrosion could be found, as clearly visible from the FESEM
micrograph.

V. CONCLUSIONS

A novel imaging system has been proposed for bacteria
identification after microbial corrosion test. The processing,
based on OpenCV environment, is able to quantify microbial
attachment on specimen surface, providing to researchers
important information about material degradation, such as
biofilm coverage, aggregates density and bacteria dimensional
distribution. Results obtained from the software have been
presented, showing the effectiveness in bacteria identification
and the main information that can be derived from the
processing.
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