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3 Department of Control and Computer Engineering, Politecnico di Torino, Italy

Abstract. The use of big data in transportation research is increas-
ing and this leads to new approaches in modeling the traffic flow, es-
pecially for what concerns metropolitan areas. An open and interesting
research issue is city-wide traffic representation, correlating both spatial
and time patterns and using them to predict the traffic flow through
the whole urban network. In this paper we present a machine learning
based methodology to model traffic flow in metropolitan areas with the
final aim to address short-term traffic forecasting at various time hori-
zons. Specifically, we introduce an ad-hoc neural network model (GBNN,
Graph Based Neural Network) that mirrors the topology of the urban
graph: neurons corresponds to intersections, connections to roads, and
signals to traffic flow. Furthermore, we enrich each neuron with a mem-
ory buffer and a recurrent self loop, to model congestion and allow each
neuron to base its prediction on previous local data. We created a GBNN
model for a major Italian city and fed it one year worth of fine-grained
real data. Experimental results demonstrate the effectiveness of the pro-
posed methodology in performing accurate lookahead predictions, ob-
taining 3% and 16% MAAPE error for 5 minutes and 1 hour forecasting
respectively.

Keywords: Traffic · Neural Networks · Transportation.

1 Introduction

Around 50% of the global population lives in metropolitan areas, and this is
likely to grow to 75% by 2050 [13]. Mobility within a wide metropolitan area
is a complex system that needs to be modeled properly in order to predict the
traffic flow and the consequent impact of congestions. Nowadays lots of data are
available from detectors such as city cameras or induction loops: these devices
can generally register the number of vehicles transitioned in an interval of time
and their speeds. Furthermore these data can be integrated with information
sourced from crowds, e.g. using mobile phone applications or sensors embedded
into vehicles such as GPS. Data-driven approaches can be exploited to extract
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useful knowledge from those data and to effectively support short-term traffic
forecasting. Traffic management systems can be trained on topological data and
traffic measurements in order to estimate and predict the traffic flow. In this
paper we use Neural Networks (NN) to model the traffic flow and to make
short-term traffic forecasting. We present an original NN model based on the
topology of the city (Graph Based Neural Network - GBNN), and we integrate
topological and traffic data for a major Italian city (Turin) and we feed them to
our GBNN model to perform traffic flow prediction.
The paper is outlined as follows. In section 2 we present the state-of-the-art in
traffic modeling. In section 3 we discuss the GBNN model, including the general
vision and the mathematical model, then we present experimental evaluation
and results in section 4. In section 5, we end the paper with final remarks and
directions for future work.

2 Related Work

In the last few years urban traffic data have received a great attention in differ-
ent research areas such as transportation and machine learning. Transportation
Research interest has been mainly focused on developing methodologies that
can be used to model traffic characteristics such as volume, density and speed of
traffic flows [7]. According to [15], most short-term traffic forecasting algorithms
were built to function at a motorway, freeway, arterial or corridor level, not con-
sidering roads intersections at urban level. Predictions at a network level using
data driven approaches remains a challenging task; the difficulty in covering a
sufficient part of the road network by sensors, as well as the complex interactions
in densely populated urban road networks, are among the most important obsta-
cles faced in short-term traffic forecasting. In particular, NN have been widely
applied to various transportation problems, due to their ability to work with
massive amounts of multi-dimensional data, their modeling flexibility, and their
learning and generalization ability: in [2] there is an early idea of application of
NN to Transportation Engineering problems. A more structured idea of a possi-
ble application of NN in order to simulate and predict traffic flow can be found
in [12], where a NN-based system identification approach is used to establish
an auto-adaptive model for the dispersion of traffic flow on road segments or
in [16], where a space-time delay NN is constructed to model autocorrelation of
road traffic networks. Considering a section of freeway, a similar NN is built by
[14] to model traffic flow and to obtain short-term prediction using real data; in
particular, their work is focused on dealing with missing or corrupted data. Ma
et al. [6] use traffic sensor data as input for a NN that predicts travel speeds,
they consider a long period of time with high frequency data on an expressway
in Beijing. Zhu et al. [17] study traffic volumes of three adjacent intersections,
observing that traffic flows of single intersections are significantly affected by the
traffic flows at the adjacent intersections. Polson et al. [11] focus on the use of
road sensor data on a corridor in Chicago during a special event in order to study
data representing a congestion; they develop a deep learning architecture that
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combines a linear model with a NN for the purpose of identify spatio-temporal
relations among predictors and model nonlinear relations as well.

2.1 Neural Networks (NN)

Artificial neural networks [9] are computational paradigms composed by a series
of interconnected processing elements that operate in parallel. The most used
learning algorithm is the backpropagation algorithm, proposed and popularized
by Hinton et. al in 1986 [3]. A recurrent neural network (RNN) allows for con-
nections from the output layer to the input layer (compared with traditional
feed-forward networks, where connects feed only to subsequent layers). Because
RNNs include loops, they can store information while processing new inputs.
This memory makes them ideal for processing tasks where prior inputs must be
considered (such as time-series data). In particular, in Nonlinear Auto Regres-
sive with eXogenous inputs (NARX) networks [8] each recurrent link includes
a delay unit, so that the activation value of an output neuron O at time t is
applied to an input neuron I at time t + 1.

3 Graph-based Neural Network Model

In order to study the urban network, we model the city as a graph in which each
junction corresponds to a node and each road to an edge. Turin’s topological
structure allows for this kind of model with small information loss due to the
general straightness of roads. For the few curved roads, we choose to simplify
the graph by representing them as straight edges. The resulting urban graph is
strongly connected and, as we do not represent overpasses and underpasses, also
planar. Ideally the graph should be direct with some multiple edges and loops;
however, we decided to consider only the main roads and use an undirected
graph.
We first create a neural network that matches the city graph, so that each
graph node, representing a road intersection, corresponds to a neuron and each
edge, representing a road, corresponds to a connection between neurons. The
traffic flow is then modeled as signal propagation within the network - on ingo-
ing/outgoing connections between neurons. We consider the possibility that not
all the cars approaching a junction are able to leave it in a single time frame - we
enable local congestion by means of a recurrent connection on each neuron. Note
that the system we are considering is not a closed system: flow mass can be lost
or generated, according to detected data. This can happen because of vehicles
entering/leaving the city, or simply being parked or put back into circulation
during the day. Starting from the gathering of real data from traffic detectors,
we build the city graph with associated times series of traffic flow and we design
a NN based on these information. Then we feed the traffic data to the NN and
we analyze the results. In particular, we can divide the data processing in four
steps, as follows:
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1. Data gathering and preprocessing → collection of data referred to the topol-
ogy of the city, collection of data referred to city detectors position and
registered traffic flow, handling of missing data, propagation of data from
city detectors to city nodes.

2. Data exploration and visualization → analysis of frequent patterns in the
behavior of traffic flow in a day-interval and a week-interval.

3. Neural Network model design → creation of the GBNN model, definition of
neuron-level and network-level parameters, learning procedure design.

4. Model evaluation assessment → performance analysis of the GBNN model.

3.1 Data gathering and preprocessing

Two different kinds of data are used in order to create the model. In the first
phase we use topological data to shape the city graph; in the second phase we
use data collected by road detectors to model traffic flow. We focus on the city

Fig. 1: Turin city map, road network, and detectors distribution.

of Turin, Italy, (Fig. 1 - left). We create the graph associated with the city using
latitude-longitude data; we consider the main intersections and roads of the city
center, thus obtaining a graph with 1074 nodes and 1874 edges (Fig. 1 - middle).
The 201 considered detectors are positioned in the city as shown in Fig. 1 - right.
Detectors data are given in time series with a granularity of five minutes in a
period of one year (from June, 27th 2016 to June, 27th 2017) and the available
data are the number of vehicles in a time interval and their average speed. We
aggregate these data in a unique indicator, the flow. In order to use these data in
the NN, the flow must be propagated from detectors to graph nodes (i.e. neurons
of the NN), and we do it as follows:

fi =

N∑
j=1

f̂j
dist2(i, j)

, (1)

where fi is the flow on vertex/neuron i, f̂j is the flow on detector j, N is
the number of detectors, and dist is the euclidean distance between the node i
and detector j. Turin city center area has 463 detectors, but we consider only
detectors with almost complete data (> 75%) with respect to time that are 201,
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in order to avoid as much as possible the artificial generation of data to fill the
dataset. We filled each data gap with the average value of the last preceding and
first following data-points.

3.2 Data exploration and visualization

Fig. 2: Daily and weekly traffic patterns.

According to the previously presented set-up, we studied the distribution of
the flow during the day. We found three different emerging patterns: one for the
week days, one for Saturdays and one for Sundays, as it is shown in Fig. 2, where
the average of all data for each week day and for each time slice is represented.
Week days present a peak in morning hours that completely disappear during
the weekend. Sundays present a big flow decrease during lunch time. Note that
data present a behavior out of the path in late-evening hours. This is probably
due to a technical constraint of the considered detectors.
Some interesting patterns emerge from the distributions of Sundays and Mon-
days. In particular, the flow distribution of the Sundays presents some excep-
tions, that are days out of the general pattern as shown in Fig. 2 - top left: the
green line represents January 1st and we can see an inverted behavior in early
morning hours, while during the day the total amount of flow is smaller than
other Sundays in the year; the red lines represent March 5th and April 2nd,
ecological Sundays, in which the cars were not allowed to circulate from 10am
to 6pm, thus the line perfectly follows the pattern until 10am, then drops until
6pm and then resumes matching the general pattern. For what concerns Mon-
days, Fig. 2 - bottom left shows some days with patterns similar to Sundays,
with a smaller amount of traffic and with no morning peak, this lines represent
holidays.

3.3 Neural network model design

We create a recurring neural network able to perform short-term traffic pre-
diction from available data. We associate each node of the urban graph, corre-
sponding to a junction, to a neuron and each edge, corresponding to a road, to a
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neurons connection. Traffic flow is then modeled as propagating signal through
the neural network. Since each neuron corresponds to a node of the urban graph,
it is natural that neurons have multiple outgoing connections representing the
outgoing roads of the junction. Each neuron has numerous ingoing connections,
which are controlled by a delay layer representing the time window manage-
ment; inputs are combined and an output is produced and then partitioned on
the outgoing connections until the connections are saturated; the exceeding flow
is inserted again in the neuron through the self-loop. The flow on this loop
represents the traffic congestion on a junction. The starting urban graph is com-
posed by nodes and edges, such that for each graph node i, i = 1, 2, . . . , N ,
there exists a stack of previsions fi(t), t ∈ [0, T ], with flow data for each time
interval. We build a NN with a neuron for each graph node and a connection
for each graph edge. Furthermore, for each neuron i we create an artificial self
loop (i, i), and for each connection (i, j) we set a maximum capacity Ci,j . In
this work, we set this capacity to a flow value of 100, which is the third quar-
tile of the flow distribution. Consider a time window of length τ + 1 and let
Fi(t) = [fi(t), fi(t−1), . . . , fi(t− τ)]T be the vector of the time series associated
with node i. Let M be the number of in-going edges of node i and K be the
number of out-going edges from node i. For each node i a weight matrix W i(t)
is defined, with K rows and τ columns. We initialized each weight matrix with
exponential decay and Gaussian noise (∼ N(0, 1)) as follows:

W k(0) = {wkij(0)}ij =

{
1

2j
+ noise

}
ij

, k = 1, 2, . . . , N (2)

so that each node initially routes the traffic equally to adjacent nodes (since wi,j
does not depend on i), and weighing recent history more than previous one (as
wi,j halves for every previous timestamp). We use the matrix W i(t) to estimate
the K out-going flows from node i at time t+ 1.

W i(t) · Fi(t) =


wi11 wi12 . . . w

i
1τ

wi21 wi22 . . . w
i
2τ

. . . . . . . . . . . .
wiK1 w

i
K2 . . . w

i
Kτ

 ·


fi(t)
fi(t− 1)
. . .

fi(t− τ − 1)

 =


f̃i1(t+ 1)

f̃i2(t+ 1)
. . .

f̃iK(t+ 1)

 = F̃i(t+ 1),

(3)
where f̃ij(t+ 1) is the estimated flow at time t+ 1 on edge (i, j) and F̃i(t+ 1)
is the vector of the estimated out-going flows from node i.


f̃i(t) =

M∑
j=1

f̃ji(t) + f̃ii(t),

f̃ii(t) = max

{
K∑
j=1

(
f̃ij(t)− Cij

)
, 0

}
.

(4)

Formally, the estimated flow on node i at time (t+1) is the sum of the estimated
flows coming from its M in-going edges plus the already existing flow on its self-
loop. The flow on the self-loop is the sum of the flows that cannot exit on edge



Modeling Urban Traffic Data through Graph-Based Neural Networks 7

(i, j) because the maximum capacity Cij has already been reached.
For each node i we define an error Ei(t) as follows

Ei(t) = fi(t)− f̃i(t). (5)

Then we partition this error on the in-going edges on node i proportionally to
the in-going flows as follows

Eji(t) =
f̃ji(t− 1) · Ei(t)∑M

j=1 f̃ji(t− 1)
. (6)

We define the error Ei(t) as the vector of the outgoing error from node i at time
t.

Ei(t) = [Ei1(t), . . . , EiK(t)]. (7)

Using the error vector Ei(t), we can update backwards the matrix W i(t+ 1) for
each node i as follows. Moreover, we add a parameter η, the learning rate.

W k(t+ 1) = {wKij (t+ 1)}ij =

{
wKij (t) + η · EK(t) · fk(t)∑

i,j w
K
ij (t+ 1)

}
ij

. (8)

3.4 Model evaluation assessment

In order to evaluate the predictive ability of the GBNN model, we adopted
MAAPE, Mean Arctangent Absolute Percentage Error as proposed by [5]. MAPE
(Mean Average Percentage Error) is the most widely used measure of forecast ac-
curacy, but it is asymmetric and afflicted by the problem of the division by zero.
To avoid this problem but to preserve the philosophy of MAPE, the MAAPE is
introduced. It is defined as follows:

MAAPE =
1

N

N∑
t=1

arctan

(
| predicted− expected |

expected

)
. (9)

The error belongs to [0, π2 ]. In order to get a percentage value, we rescale the
MAAPE by multiplying by 2

π , such that now the error belongs to [0, 1].

4 Experimental Results

We implemented our GBNN model in Java. We set the hyperparameters as
follows: the dimension of the considered time windows (memory size) is 4, the
maximum capacity of the edges is 100.00 for all links in the graph, the learning
rate is 10−4, the maximum time horizon for predictions is 12 (that is prediction
1 hour ahead), the number of train iterations is 40. We proceeded to test the
GBNN on each week day separately, using all days except one as training set
and considering the remaining day as validation. We use the trained network to
predict the traffic flow at different time horizons: that is, using the validation data
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Time horizons
Day 5m (%) 10m (%) 30m (%) 1h (%)

Monday 2.89 4.05 9.43 15.85
Tuesday 2.95 3.99 9.24 15.62

Wednesday 2.82 3.90 9.09 15.33
Thursday 2.77 3.91 9.48 16.10
Friday 2.60 3.63 8.91 15.56

Saturday 2.39 2.96 6.78 12.13
Sunday 2.71 3.17 7.18 13.23
Average 2.73 3.66 8.59 14.83

Table 1: Table of MAAPE errors at different horizons

Fig. 3: Flow predictions analysis at different time horizons.

at time t to predict the traffic flow at time t+k minutes, with k ∈ {5, 10, 30, 60}.

We obtain very small errors for predictions 5 minutes ahead and the error is
still under 10% for predictions 30 minutes ahead. GBNN is able to predict traffic
flow 1 hour ahead with an error around 15%. The results are almost constant
for each day-based GBNN and for each time horizon, as shown in Table 1. We
select a random neuron to analyze predicted flow values at different time hori-
zons qualitatively. Fig. 3 shows the actual flow and the predicted flows for the
validation day on Mondays set. GBNN performs excellent prediction for the first
and the last part of the day, while it is subjected to a bigger error during the
middle hours. For our experiments, we used a Dell Precision M3800 (Intel Core
i7-4712HQ, 16GB RAM). Roughly, each training iteration requires 0.05 seconds
for each day in the training set (288 time slices per day). We performed random
search and grid search in order to find the optimal values for learning rate and
memory size, that are the most incisive hyperparameters (see Fig. 4). In the first
case, the lowest MAAPE was associated with a learning rate of 10−4: concern-
ing memory size, the value 4 (that is, to base the prediction upon the previous
20 minutes of data) was correlated with the lowest cross-horizon MAAPE. The
shaded area in Fig. 4 represents the interval of values which minimise the average
error. We decide to consider the trivial model, in which predictions are made
by repeating the value of the known flow, to compare the results because clas-



Modeling Urban Traffic Data through Graph-Based Neural Networks 9

sical statistical methods do not fit our urban traffic representation: incomplete
data and instable distribution undermine the stability of statistical methods. We
decide not to compare our model to an agent-based one because the approach
completely differs: we consider the traffic mass as a whole, not as a set of indi-
vidual agents. Moreover, there is no existing neural network model in literature
which consider the entire urban network or the bidirectional traffic flow. The
comparison of the GBNN model and the trivial one is shown in Fig. 5 for 5
minutes ahead predictions (left) and for 1 hour ahead predictions (right), on the
validation day for a randomly selected node. The top panels show the comparison
of real flow, flow predicted by the trivial model (red line) and flow predicted by
GBNN (blue line) for a time horizon of 5 minutes (left) and 1 hour (right). The
bottom panels display the error comparison for the models: red line for trivial
model, black line for GBNN.

Fig. 4: MAAPE error analysis w.r.t. memory size (left) and learning rate (right).

Fig. 5: Flows and errors comparison

5 Conclusions and Future Work

In this paper we have proposed an innovative neural network model, whose topol-
ogy mirrors an urban graph and where each node is enriched with a recurrent
connection in order to capture the temporal behavior. The resulting system is
able to model the whole urban traffic flow, to take into account both space and
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time patterns in the data, and consequently to make network-wide traffic flow
predictions. The prediction error is as low as 3% and 16% for 5 minutes and 1
hour traffic forecasting respectively.
Future directions of work will focus on implementing peculiarities of urban road
network that we omitted for the initial model, such as one-way street and round-
abouts.
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