
19 November 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Control of MIMO nonlinear systems: A data-driven model inversion approach / Novara, C.; Milanese, M.. - In:
AUTOMATICA. - ISSN 0005-1098. - 101:(2019), pp. 417-430. [10.1016/j.automatica.2018.12.026]

Original

Control of MIMO nonlinear systems: A data-driven model inversion approach

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.automatica.2018.12.026

Terms of use:

Publisher copyright

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.automatica.2018.12.026

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2800692 since: 2020-03-13T16:50:57Z

Elsevier Ltd

Control ofMIMOnonlinear systems:
a data-drivenmodel inversion approach

Carlo Novaraa and Mario Milaneseb

aDept. of Electronics and Telecommunications, Politecnico di Torino, Italy. Email: carlo.novara@polito.it

bModelway srl, Torino, Italy. Email: mario.milanese@modelway.it

Abstract

A data-driven control design approach for Multiple Input Multiple Output nonlinear systems is presented in this paper. The
approach, called Nonlinear Inversion Control (NIC), is based on the identification of a polynomial prediction model of the
system to control and the on-line inversion of this model. The main features of the NIC approach can be summarized as
follows: it does not require a physical model of the plant to control which, in many real-world situations, may be difficult to
derive; it can guarantee a priori properties such as closed-loop stability and tracking error accuracy; it is general, systematic,
numerically efficient and relatively simple. Extensive simulations are carried out to test the numerical efficiency of the NIC
approach. A simulated example of industrial interest is also presented, concerned with control of a robotic manipulator.

1 Introduction
1.1 Overview
Consider a MIMO (Multiple Input Multiple Output)
nonlinear discrete-time system of the form

yt = h
(
u−t , y

−
t , ξ

−
t

)
u−t

.
= (ut−1, . . . , ut−n)

y−t
.
= (yt−1, . . . , yt−n)

ξ−t
.
= (ξt−1, . . . , ξt−n)

(1)

where ut ∈ U ⊂ Rnu is the input, yt ∈ Rny is the
output, ξt ∈ Ξ ⊂ Rnξ is an unmeasured noise, n is the
system order and t ∈ Z is the time. U is a compact set
with non-empty interior, accounting for possible input
constraints/saturations. The noise set Ξ is defined as
Ξ

.
=
{
ξ ∈ Rnξ : ‖ξ‖ ≤ ξ̄

}
(in other words, the noise ξt

is assumed unknown but bounded).
Suppose the system (1) is unknown but a set of input-
output measurements, collected from (1), is available:

D .
= {ỹt, ũt}0t=1−L (2)

where ũt ∈ U , ỹt ∈ Y , the set Y ⊂ Rny is compact with
non-empty interior, and the tilde is used to indicate the
collected data.
Let Y0 ⊆ Rn be a set of initial conditions of interest,
R ⊂ Rny a compact set with non-empty interior, R .

=
{r = (r1, r2, . . .) : rt ∈ R,∀t} a set of reference signals
of interest and Ξ

.
= {ξ = (ξ1, ξ2, . . .) : ξt ∈ Ξ,∀t} the

set of all possible noise sequences.

The problem is to control the system (1) such that, for
any ξ = (ξ1, ξ2, . . .) ∈ Ξ, and for any initial condition

y−0 ∈ Y0, the system output sequence y = (y1, y2, . . .)
tracks any reference sequence r = (r1, r2, . . .) ∈ R.
The standard approaches to this problem (or similar
control problems) are based on first-principle models:
they assume that an accurate physical model describing
the system dynamics is available. Typical examples are
feedback linearization [30,22], Lyapunov function based
control [5,44] and NMPC (Nonlinear Model Predictive
Control) [17,36,23]. However, in many real-world ap-
plications, deriving an accurate model is a hard task,
since the system dynamics is not well known and/or
too complex. Another relevant problem is that, even
when a reliable model is available, designing an effective
(nonlinear) controller may be difficult. Robust methods
might be used to deal with the problem of model uncer-
tainty, [21,59,65]. However, deriving the necessary un-
certainty models is not an easy task even for LTI (Lin-
ear Time Invariant) systems (see e.g. [12] and the refer-
ences therein), and it is an open problem in the case of
nonlinear systems.
Data-driven methods have been introduced to cope
with these problems. Such methods fall into three
main categories: indirect techniques, which employ the
data to identify a black-box model to use for control
design, [43,11,3,34,58,8]; direct techniques, which ob-
tain the controller (often in the form of an inverse
model) directly from the available input-output data,
[66,1,10,2,50,18,16]; internal model control techniques,
where a model is identified from data and the controller
(obtained by some inversion approach) is either iden-
tified from data or designed from the model, [29,7,49].
There is a fourth category, represented by reinforcement
learning/adaptive techniques, where the controller (or
the model or both of them) is tuned using the data
measured during online operations, [58,26,25,35,67].

Preprint submitted to Automatica November 15, 2018

Since adaptive techniques can be employed within any
more general approach, this latter category can be
seen as a sub-category of the previous three, depend-
ing on which part of the control system is updated
online (the model, the controller or both of them). Sev-
eral data-driven approaches are described in [45], with
useful discussions on their practical advantages and
drawbacks. Relevant overviews can be found in [27,24].
However, especially when the system is nonlinear and
affected by external disturbances, guaranteeing general
a-priori stability and accuracy properties is not easy for
many data-driven methods. Typically, the controller is
first designed using some heuristic or more systematic
technique, then it is tested/tuned in simulation, and
finally it is implemented (and possibly tuned) on the
real plant to control.
In this paper, we propose a novel data-driven control
method for MIMO nonlinear systems, called Nonlinear
Inversion Control (NIC), allowing us to overcome sev-
eral problems of the existing methodologies. The main
features of the NIC method are the following: it is suit-
able for general MIMO nonlinear systems affected by
external disturbances; it does not require a physical
model of the plant to control; it can guarantee a priori
properties such as closed-loop stability and tracking er-
ror accuracy; it is relatively simple; it is systematic, in
the sense that the design parameters can be chosen by
means of a clear procedure; it is numerically efficient, al-
lowing a “fast” implementation on real-time processors.
The NIC method is based on the identification from the
data (2) of a polynomial prediction model for the sys-
tem (1), and the online inversion of this model through
an efficient optimization. A key feature is that closed-
loop stability is directly enforced by the identification
algorithm used to derive the model, thus avoiding the
need of additional on-line operations finalized at stabi-
lization.
1.2 Paper technical contributions and organization
The main contribution of the paper consists in propos-
ing a novel control approach for MIMO nonlinear sys-
tems, showing interesting advantages with respect to
(wrt) the state of the art methods. While these gen-
eral advantages have already been discussed in Section
1.1, here we focus on the technical contributions of the
paper, which are the following: The first one is an al-
gorithm for the identification of polynomial multi-step
prediction models for nonlinear MIMO systems; an im-
portant aspect of this algorithm is that the identified
models can guarantee closed-loop stability when used
to compute the NIC control law. The second contribu-
tion is represented by efficient optimization algorithms
allowing, on the basis of the identified model, the com-
putation of the NIC control law for MIMO systems. The
third contribution consists in a theoretical closed-loop
stability analysis, providing sufficient conditions for a
NIC controller to stabilize aMIMOnonlinear plant (this
condition is used by the identification algorithm). The
fourth contribution is given by extensive simulations,
finalized at evaluating the numerical efficiency of the
NIC approach, in view of its implementation on real-
time processors. The fifth contribution is a numerical
example of industrial interest, concerned with control
of a robot manipulator.

The paper is organized as follows. Section 2 introduces
the notation used in the paper. Section 3 proposes the
prediction model identification algorithm. Section 4,
after giving a general overview of the NIC approach,
presents the optimization algorithms for the NIC con-
trol law computation. In Section 5, the closed-loop
stability analysis is developed. In Section 6, the over-
all NIC design procedure is described. In Section 7,
the numerical simulations for testing the efficiency of
NIC control are carried out. The numerical example
regarding control of a robot manipulator is presented
in Section 8. Section 9 is dedicated to a comparison
with other control approaches related to NIC. Section
10 concludes the main body of the paper. The proof of
the main theoretical result of the paper is reported in
the Appendix.

2 Notation
A column vector x ∈ Rnx×1 is denoted by x =
(x1, . . . , xnx). A row vector x ∈ R1×nx is denoted by
x = [x1, . . . , xnx] = (x1, . . . , xnx)

>, where > indicates
the transpose.
A discrete-time signal (i.e., a sequence of vectors) is
denoted with the bold style: x = (x1, x2, . . .), where
xt ∈ Rnx×1 and t = 1, 2, . . . indicates the discrete time;
xi,t is the ith component of the signal x at time t.
The `p norm of a vector x = (x1, . . . , xnx) is defined as

‖x‖p
.
=

{
(
∑nx
i=1 |xi|

p
)

1
p , p <∞,

maxi |xi| , p =∞.

The `p norm of a signal x = (x1, x2, . . .) is defined as

‖x‖p
.
=

{
(
∑∞
t=1

∑nx
i=1 |xi,t|

p
)

1
p , p <∞,

maxi,t |xi,t| , p =∞,

where xi,t is the ith component of the signal x at time t.
The Lp norm of a function with domain X ⊆ Rnx and
codomain in R, is defined as

‖f‖p
.
=


[∫
X
‖f (x)‖pp dx

] 1
p

, p ∈ (1,∞),

ess supx∈X ‖f (x)‖∞ , p =∞.

These norms give rise to the well-known `p and Lp Ba-
nach spaces. For simplicity, the norms without the sub-
script are defined as ‖·‖ .

= ‖·‖∞ for both the `∞ and
L∞ cases.

3 Polynomial prediction model
In this section, an identification algorithm is presented,
allowing us to derive a prediction model for the system
(1). The online inversion of this model will be the key
operation of the control approach proposed in Section 4.
Consider that the system (1) can be represented in the

2

τ -step ahead prediction form

yt+τ = g
(
u+
t , q
−
t , ξ

v
t

)
u+
t
.
= (ut+τ−1, . . . , ut)

q−t
.
=
(
u−t , y

−
t

)
ξvt

.
= (ξt+τ−1, . . . , ξt−n)

g (·) .
= hτ+1 (·)

(3)

where hi is obtained iterating i times equation (1) and
τ is the prediction horizon.
The prediction model that we introduce is an approxi-
mation of the system (3), of the form

ŷt+τ = f
(
ut, q

−
t

)
. (4)

For simplicity, this model is supposed of the same or-
der as the system (3) but all the results presented in
the paper hold also when the order is different. A sys-
tematic procedure for the choice of the order n and the
prediction horizon τ will be presented in Section 6.
A parametric structure is taken for the vector-valued
function f . In particular, each component fj ∈ R of
f ∈ Rny is parametrized as

fj (·) =

N∑
i=1

αijφi (·) (5)

where φi ∈ R are polynomial basis functions, αij ∈
R are parameters to be identified and j = 1, . . . , ny.
The parameters αij are collected in the matrix α =
[α1, . . . , αny] ∈ RN×ny , with αj ∈ RN×1.
In general, the basis function choice is a crucial step,
[60,28,55]. Here, themainmotivations for choosing poly-
nomial functions are two: 1) polynomials have proven
to be effective approximators in a huge number of prob-
lems; 2) as we will see later, they allow a very effi-
cient controller evaluation. Systematic indications for
the choice of the polynomial functions will be given in
Section 6.
The model parameters αij are identified from the data
(2) by means of convex optimization: We first define

zj
.
=


(ỹj,n−L+τ)

>

...

(ỹj,0)
>



Φ
.
=


φ1

(
ũn−L, q̃

−
n−L

)
· · · φN

(
ũn−L, q̃

−
n−L

)
...

. . .
...

φ1

(
ũ−τ , q̃

−
−τ
)
· · · φN

(
ũ−τ , q̃

−
−τ
)


where ỹj,i ∈ R is the jth component of ỹi ∈ Rny and the
tilde denotes the samples obtained from the data set (2).
We then introduce the set SC (stability constraints),

defined as

SC(l, γ, σ)
.
= {β ∈ RN :

‖ỹl,i+τ − ỹl,j+τ + (Φj −Φi)β‖
≤ γ

∥∥ỹ−i − ỹ−j ∥∥+ 2σ, j ∈ T , i ∈ Υj}

where Φk is the kth row of Φ, T .
= {n−L, . . . ,−τ}, Υk

is the index set

Υk
.
=
{
i :
∥∥(ũk, ũ−k)− (ũi, ũ−i)∥∥ ≤ ζ} ,

ζ is the minimum value for which every set Υk contains
at least two elements, and l, γ and σ are the (generic)
arguments of the set function SC(·). Note that the set
SC is defined by a set of linear inequalities in β and σ,
and is thus convex in β and σ. The set SC is suitably
constructed to reduce below γ the Lipschitz constant
of the function ∆

.
= g − f , when N is sufficiently large

[50]. As we will see in in Section 5, this is a fundamental
requirement to enforce closed-loop stability when the
identified model is used in the NIC control algorithm.
The matrix α ∈ RN×ny , whose entries αij are the pa-
rameters of the model (4)-(5), is identified by means
of the following convex algorithm. Note that the al-
gorithm is “self-tuning”, in the sense that most of
the required parameters are automatically chosen,
without involving extensive heuristic procedures (see
also Section (6)). In the whole paper, any algorithm
will be denoted by a recapitulatory formula such as
out = algorithm_name(par), where “out” is the out-
put of the algorithm (e.g., an estimate or an optimal
solution of a problem) and “par” indicates the set of
parameters/quantities needed to run the algorithm.

Identification algorithm 1 α̂ = id_poly_1 (D, γ̂∆).
For j = 1, . . . , ny, compute the jth column αj of α as
follows:
(1) Solve the following

(a) preliminary optimization problem 1:

σ0 = min
α0∈RN

‖zj −Φα0‖

(b) preliminary optimization problem 2:

α̂0 = arg min
α0∈RN

‖α0‖1

s.t. ‖zj −Φα0‖ ≤ σ0 + ρ ‖zj‖

where ρ ∼= 0, ρ > 0.
(2) Solve the optimization problem

(α̂j , σ̂∆) = arg min(αj ,σ) σ

s.t. (i) αj ∈ SC(j, γ̂∆, σ)

(ii) ‖zj − Φαj‖p ≤ σΛ

(iii) ‖αj‖1 ≤ η0

where η0
.
= ‖α̂0‖1 and Λ

.
=
‖zj−Φα̂0‖p
‖zj−Φα̂0‖ .

3

The identified model is defined by (4)-(5), with α = α̂ =
[α̂1, . . . , α̂ny].

After the preliminary operations carried out in step 1,
an optimization problem is solved in step 2, providing
the model parameters. This optimization problem, rep-
resenting the core of the algorithm, can be explained as
follows:
The constraint (i) forces the function ∆

.
= g − f to

have a Lipschitz constant non larger than γ̂∆: a result
in [50] shows that this condition can be theoretically
guaranteed for a sufficiently large number of data L.
On the other hand, it will be shown in Section 5 that
choosing this constant smaller than 1 guarantees closed-
loop stability.
In Section 5 it will be also shown that reducing the pre-
diction error ‖zj − Φαj‖p allows reducing the tracking
error. Clearly, there is a trade-off between stability and
tracking performance: to satisfy the constraint (i) with
γ̂∆ < 1, a sufficiently large value of σ̂ is required, and
this may decrease the tracking error accuracy. Note that
any vector norm p in (ii) can be used to reduce the pre-
diction error. Typical choices are p = 2 or p =∞.
Bounding the `1 norm leads to sparse vectors αj , i.e.
vectors with a certain number of zero components,
[63,62,47]. Sparsity of the model coefficient vectors is
important to ensure a low complexity of the model,
limiting a well known issue such as the curse of dimen-
sionality and allowing us to avoid over-fitting problems.
Sparsity leads also to an efficient implementation of
the model/controller on real-time processors, which
may have limited memory and computation capacities.
The parameter ρ in step 1 determines the trade-off be-
tween model accuracy and sparsity: larger values lead
to sparser (but possibly less accurate) models.
Remark 1 If the plant to control is characterized by
unbounded trajectories, a preliminary stabilizing con-
troller may be required to collect the data needed for
model identification. Clearly, this holds for any design
method, when an accurate model is not available and has
to be identified from data or just validated. The prelim-
inary controller can also be a human operator, who is
able to drive the system within a bounded domain, see
[16]. In any case, the preliminary controller should be
tuned to obtain an “erratic” motion of the plant to con-
trol, in order to guarantee a certain level of richness of
the collected data. Note that several nonlinear systems
are characterized by trajectories that are unstable (in the
sense of Lyapunov) but bounded (see, e.g., the Duffing
oscillator in [48] and the robot manipulator in Section
8). For these kinds of system, no preliminary controllers
are required. �

4 NIC control
In this section, a novel control approach for MIMO non-
linear systems is proposed, called Nonlinear Inversion
Control (NIC), relying on the efficient online inversion
of the model (4).
The basic idea of this approach is the following: at each
time t > 0, given a reference rt+τ and the current re-
gressor q−t , a command u∗t is looked for, such that the

model output ŷt+τ is close to rt+τ :

ŷt+τ = f
(
u∗t , q

−
t

) ∼= rt+τ . (6)

Note that the latter equality may be not exact for two
reasons: 1) rt+τ may not be reachable; that is, no u∗t ∈ U
may exist for which ŷt+τ is exactly equal to rt+τ ; 2)
values of u∗t with a limited `2 norm may be of interest
in order to have a not too high command activity. This
kind of inversion is an approximate right-inversion and
can be operated also when f is not injective wrt u∗t (e.g.,
for some rt+τ and q−t , more than one u∗t may exist such
that (6) holds).
The command input yielding (6) is found solving the
optimization problem

u∗t = arg min
u∈U

J
(
u, rt+τ , q

−
t

)
(7)

J
(
u, rt+τ , q

−
t

) .
=
∥∥rt+τ − f (u, q−t)∥∥2

2
+ µ ‖u‖22 (8)

where µ ≥ 0 is a design parameter, determining the
trade-off between tracking precision and command ac-
tivity (see Section 6 for more indications on the choice
of µ). The NIC control law is fully defined by (7).
Note that the objective function (8) is in general non-
convex. Moreover, the optimization problem (7) has to
be solved on-line, and this may take a long time com-
pared to the sampling time used in the application of
interest. To overcome these problems, three algorithms
are proposed in the next subsections, allowing an ef-
ficient computation of the optimal command input u∗t
for the following cases: 1) SIMO (Single Input Multi-
ple Output) system; 2) MIMO system with prediction
model affine in ut; 3) general MIMO system.

Remark 2 If the components of yt and/or ut have range
of variations with different scales, weighted norms can
be used in (8). The weights on the outputs can be chosen
as ‖(ỹj,1−L, . . . , ỹj,0)‖−1

2 , j = 1, . . . , ny. The weights on
the inputs can be chosen as ‖(ũj,1−L, . . . , ũj,0)‖−1

2 , j =
1, . . . , nu. �

Remark 3 The NIC approach can be easily applied
also in the case where the plant to control is af-
fected by a measured disturbance vt ∈ Rnv , i.e. when
the plant is described by an equation of the form
yt = h

(
u−t , y

−
t , v

−
t , ξ

−
t

)
, where v−t

.
= (vt−1, . . . , vt−n).

The only modification required in this case is to include
v−t in the vector q−t . All the algorithms, discussions
and results presented in the paper will hold without
significant changes. �

Remark 4 Any of the NIC algorithms presented in the
next subsections can be implemented in combination with
a linear controller, using a parallel architecture. The NIC
algorithm is used to stabilize the system around the tra-
jectories of interest, reducing at the same time the track-
ing error. The linear controller may allow a further re-
duction of the tracking error in steady-state conditions
(e.g., using an integral action), [19,52]. �

4.1 SIMO system
The system to control is here supposed to have a sin-
gle input: ut ∈ U ⊂ R. In this situation, for given rt+τ

4

and q−t , the objective function (8) is a polynomial in the
scalar variable u. Its minima can thus be found comput-
ing the roots of its derivative, as done in the following
algorithm.

Optimization algorithm 1 u∗ = K(1)
(
J, rt+τ , q

−
t

)
.

Compute the optimal input as

u∗ = arg min
u∈Us

J
(
u, rt+τ , q

−
t

)
Us

.
=
(
Rroots

(
J ′
(
u, rt+τ , q

−
t

))
∩ U

)
∪ {u, u}

where J ′ is the derivative of J wrt u, Rroots (J ′) denotes
the set of all real roots of J ′, and u and u are the bound-
aries of U .

Remark 5 The derivative J ′ can be computed analyt-
ically. Moreover, Us is composed by a finite number of
elements, of the order of the polynomial degree of J :

card (Us) < deg
(
J
(
u, rt+τ , q

−
t

))
+ 2

where card is the set cardinality and deg indicates the
polynomial degree. The evaluation of u∗ through Algo-
rithm 1 is thus extremely efficient, since it just requires
to find the real roots of a univariate polynomial whose
analytical expression is known and to compute the ob-
jective function for a small number of values. See Sec-
tion 7. These nice features hold thanks to the fact that
polynomial functions are used. For other types of ba-
sis functions (sigmoids, Gaussians, harmonic functions,
etc.), the optimization problem (7), even in the univari-
ate case, may be non-trivial to solve. �

4.2 MIMO system with prediction model affine in ut
Suppose that an accurate prediction model (4) affine in
ut is found (this model can be of any degree in the other
variables). Then, the objective function (8) is convex in
u, being the sum of two terms given by the square norms
of functions affine in u. The problem of minimizing such
a convex function is standard. However, minimization
has to be performed on-line and widely used algorithms
such as those based on interior-point techniques may
not be fast enough, [9].
Here, a novel algorithm is proposed, based on a coordi-
nate minimization scheme where, at each iteration, the
cost function (8) is minimized wrt a single component
of the command input.

Optimization algorithm 2 u∗ = K(2)
(
J, u0, rt+τ , q

−
t

)
.

(1) Set j = 1, u(0) = u0 ∈ U (a simple choice is taking
u0 as the center of U).

(2) For i = 1, · · · , nu, compute

u
(j)
i = K(1)

(
J

(j)
i , rt+τ , q

−
t

)
where K(1)

(
J

(j)
i , rt+τ , q

−
t

)
is Algorithm 1, mini-

mizing wrt ui the cost function

J
(j)
i

.
= J(u

(j)
1 , . . . , u

(j)
i−1, ui, u

(j−1)
i+1 , . . . , u

(j−1)
nu , rt+τ , q

−
t).

(3) If
∣∣∣J (j)
nu − J

(j−1)
nu

∣∣∣ < εJ , where εJ is a user-defined
precision parameter, stop and return the optimal
input

u∗ = u(j) =
(
u

(j)
1 , . . . , u(j)

nu

)
;

else set j := j + 1 and goto 2.

Remark 6 Convergence of the coordinate minimiza-
tion scheme in Algorithm 2 to a global minimum is guar-
anteed, [64]. �

Remark 7 From Remark 5 and the convergence prop-
erties of the coordinate minimization scheme, [64], it
follows that the evaluation of u∗ through Algorithm 2 is
extremely fast. See Section 7. �

4.3 General MIMO system
In several real-world applications, the command input
acts on the plant to control in a nonlinear way, resulting
in a function g highly nonlinear in the input. In these
situations, controlling the system can be significantly
more difficult, since this function may be non-invertible
(more precisely, non-injective) wrt ut. The present ap-
proach allows us to efficiently deal with these cases. The
following algorithm is proposed, based on the applica-
tion of Optimization algorithm 2 for several different
starting points.

Optimization algorithm 3 u∗ = K(3)
(
J, rt+τ , q

−
t

)
.

(1) Set j = 1, u0 = ut−1.
(2) Compute

u(j) = K(2)
(
J, u0, rt+τ , q

−
t

)
where K(2)

(
J, u0, rt+τ , q

−
t

)
is Algorithm 2.

(3) If j = Niter, where Niter is the user-defined maxi-
mum number of iterations, stop and return the lo-
cally optimal input

u∗ = u(j);

else set j := j+ 1 and goto 2, changing the starting
point u0.

The choice of u0 for j > 1 can be made using a space-
filling curve, such as the (multi-dimensional) Peano
Curve, Hilbert curve, H-tree fractal, or a suitably
randomized curve/set of points, [4]. These kinds of
curves/sets of points allow for a systematic exploration
of a given domain of interest. Of course, they cannot
represent a solution to the fundamental problem of the
curse of dimensionality, [6], but they may lead to better
solutions wrt less systematic methods.
The maximum number of iterations Niter in step 3 can
be chosen on the basis of the sampling time used in
the application of interest: Niter should be chosen not

5

larger (with a certain margin) than the sampling time
divided by the time taken to compute u(j). This time can
be estimated through simulations and/or hardware-in-
the-loop experiments (these latter typically give quite
precise indications).
To reduce the computation time, a stopping criterion
that can be used in addition to the previous one (based
on Niter) is the following: stop when

J
(
u(j), rt+τ , q

−
t

)
< max (ε1, ε2R

c
t)

Rct
.
= 1

τ+1 ‖rt+τ − yt−1‖22
(9)

where ε1 and ε2 are user-defined precision parameters
(absolute the former, relative the latter). The quantity
Rct , called the reachability indicator, measures how far
is the reference from the current output. The stopping
criterion thus works as follows: If the reference is reach-
able, then the algorithm stops when a value close to zero
of the objective function is found (i.e., a value smaller
than ε1 or ε2R

c
t). If the reference is not reachable, then

the algorithm is allowed to stop also when the objective
function is not close to zero.

Remark 8 As already observed, the objective function
(8) is in general non-convex. While in the scalar and
affine cases we are able to find a global solution, here
we find a solution that is not guaranteed to be global.
However, we will show in Section 7 by means of extensive
simulations that Algorithm 3 is able to find solutions
close to a global one, in quite short times. �

Remark 9 To solve polynomial optimization prob-
lems, eigenvalue techniques, [15,14], sum of squares,
[57,13,33,20,37], or Gröbner bases, [56], could be used.
However, these approaches appear at present not suit-
able for fast on-line applications, since they may re-
quire large computation times and/or large memory
occupations. �

Remark 10 In Algorithms 2 and 3, all inputs are
used together in an optimal way to control all outputs.
This is analogous to what happens in standard MIMO
NMPC. �

Remark 11 Several control methods (either first-
principle-based or data-driven) require assumptions like
invertibility wrt the input, input decoupling or weak in-
put decoupling. Feedback linearization is a typical exam-
ple, since it assumes that the system to control is affine
in the input and, in the MIMO case, that the function
multiplying the input is invertible (allowing full input
decoupling). Another example is given by the method
proposed in [25], where a weak decoupling condition is
required. However, this is not the case of NMPC-like
methods (including NIC), where the idea of optimizing
on-line a suitable objective function allows one to avoid
assumptions such as invertibility, decoupling or weak
decoupling. The on-line optimization is able to find, at
each time instant, an optimal combination of all the
command inputs, in order to attain the desired control
goal. �

5 Closed-loop stability analysis
In this section, we study the behavior of the closed-loop
system formed by the feedback connection of the plant
(1) and the controller (7). This system is defined by:

yt = h
(
u−t , y

−
t , ξ

−
t

)
u−t =

(
u∗t−1, . . . , u

∗
t−n
) (10)

where t = 1 − τ, 2 − τ, . . ., and, for t ≤ 0, rt = ỹt and
u∗t = ũt. The plant initial condition y−0 ∈ Y0 ⊆ Rn is
assumed, where R ⊂ Rny is a compact set with non-
empty interior. In our formulation, the set R is the “set
of interest”, that is, the set where the trajectories of the
closed-loop system (10) are required to occur.
The block diagram of the closed-loop system is shown
in Figure 1, where “plant” is the system (1) (or the sys-
tem defined by the first equation in (10)) and K∗ rep-
resents the controller (7), implemented through any of
the optimization algorithms of Section 4, providing the
command input u∗t .

Figure 1. Closed-loop system.

A basic assumption for our closed-loop analysis is that
the function h is Lipschitz continuous on the compact
set Un×Y n×Ξn. This assumption is reasonable: a large
number of real-world systems are described by functions
that are Lipschitz continuous on a compact set.Without
loss of generality, we also assume that Un × Y n × Ξn

contains the origin.
To study the behavior of this closed-loop system, the
following stability notion is introduced.

Definition 1 A nonlinear system (possibly time-
varying) with input rt, output yt, and noise ξt is finite-
gain `∞ stable on

(
Y0,R, Ξ

)
if finite non-negative

constants γyr, γyξ and λy exist such that

‖y‖ ≤ γyr ‖r‖+ γyξ ‖ξ‖+ λy

for any (y−0 , r, ξ) ∈ Y0×R×Ξ, where r = (r1, r2, . . .),
ξ = (ξ1, ξ2, . . .) and y = (y1, y2, . . .). �

Note that, for R = `∞ and Ξ = `∞, this stability def-
inition coincides with the standard finite-gain stability
definition given, e.g., in [31].
In the following, some key quantities for our study are
introduced; a stability/accuracy result is then presented
and discussed. Let us define the functions

go
(
uvt , y

−
t

) .
= g

(
uvt , y

−
t , 0

)
∆
(
uvt , y

−
t

) .
= go

(
uvt , y

−
t

)
− f

(
upt , y

−
t

)
F
(
rt+τ , u

p
t , y
−
t

) .
= rt+τ − f

(
upt , y

−
t

) (11)

6

where uvt
.
= (u+

t , u
−
t), upt

.
= (ut, u

−
t), g is the function

of the system in the prediction form (3) and f is the
function of the prediction model (4).
From Lipschitz continuity of h (by assumption) and f
(by definition), it follows that ∆ and F are Lipschitz
continuous on Ω∆

.
= Un+τ × Y n and ΩF

.
= Un+1 ×

Y n+1, respectively. Thus, constants γ∆ and γF exist
such that

γ∆ <∞ : ‖∆ (u, y)−∆ (u, y′)‖ ≤ γ∆ ‖y − y′‖
∀y, y′ ∈ Y n, ∀u ∈ Un+τ ,

γF <∞ : ‖F (r, u, y)− F (r, u, y′)‖ ≤ γF ‖y − y′‖
∀y, y′ ∈ Y n, ∀u ∈ Un+1,∀r ∈ Y.

Lipschitz continuity of ∆ and F in turn implies that
constants σ∆ and σF exist, such that

∥∥∆
(
uvt , r

−
t

)∥∥ ≤ σ∆ <∞∥∥F (rt+τ , upt , r−t)∥∥ ≤ σF <∞ (12)

for any u = (u1, u2, . . .) ∈ U∞ and any r =
(r1, r2, . . .) ∈ R.
The following result provides sufficient conditions for
finite-gain stability of the closed-loop system (10) and
a guaranteed bound on the tracking error.

Theorem 1 Assume that

γc
.
= γ∆ + γF < 1 (13)

Y ⊇ R⊕ E (14)
where ⊕ indicates the set sum,

E
.
= {η ∈ Rny : ‖η‖ ≤ ē}

ē
.
= 1

1−γc

(
σ∆ + σF + γξ ξ̄

)
and γξ is the Lipschitz constant of g wrt ξvt . Then:
(i) The closed-loop system (10) is finite-gain `∞ stable
on
(
Y0,R, Ξ

)
.

(ii) The tracking error signal e = (e1, e2, . . .), with et
.
=

rt − yt, is bounded as

‖e‖ ≤ ē (15)

for any
(
y−0 , r, ξ

)
∈ Y0 ×R×Ξ.

Proof. See the appendix. �
This theorem shows that two key conditions are suffi-
cient to guarantee closed-loop stability. The first one,
i.e., inequality (13), is satisfied if:
(i) γ∆ < 1. This requires the model f to be an accu-

rate approximation of the true function go. In partic-
ular, f must be accurate in describing the dependence
of go wrt y−t (being γ∆ the Lipschitz constants wrt
y−t of ∆). An important point is that the proposed
identification algorithm 1 provides models satisfying
this condition when the number of data is sufficiently
large, see the discussion below the algorithm.

(ii) γF < 1− γ∆. This is not particularly restrictive in
general: It is certainly satisfied if µ = 0 and rt+τ is
reachable (i.e., in the range of f

(
·, q−t

)
) for all t. In-

deed, in this case, solving problem (7) makes an ex-
act model inversion. That is, ŷt+τ = rt+τ for all t,
and thus γF = 0. If µ is chosen sufficiently small and
rt+τ is sufficiently close to a reachable value, suppos-
ing that γF satisfies the assumption is reasonable. On
the contrary, if these requirements are not met, con-
dition (13) may be not satisfied, leading to an unsta-
ble behavior and possibly to a diverging tracking er-
ror. Clearly, if non-reachable trajectories have to be
tracked, the only solution is to physically change ut
and/or U , in order to increase the control authority.
This means that the actuators of the plant to con-
trol have to be changed. The constant γF can be esti-
mated from the available data by means of the valida-
tion procedure in [39], thus allowing the verification
of (13).

The second stability condition, i.e., the set inclusion
(14), essentially requires the set explored by the data
(i.e., Y) to be sufficiently large to contain the set where
the trajectories of interest are defined (i.e., R), plus a
border region bounded by ē.
The theorem also provides a tight bound (in a worst-case
sense) on the tracking error, and this bound is exactly ē.
The control goal is clearly to reduce ē, and this happens
if:
(i) The model f is an accurate approximation of go.
Note that the identification algorithm 1, besides en-
forcing the inequality γ∆ < 1 to hold, aims also at
minimizing σ∆ (σ̂∆ is an estimate of σ∆), which is
bound on the error go − f .

(ii) The reference signals are properly chosen, so that
σF is sufficiently small. Obviously, the reference sig-
nals should be consistent with the physical properties
of the plant. For instance, in a mechanical system,
the states are typically the positions and the veloci-
ties. The position references can be generated as se-
quences of values ranging in the position physical do-
mains with reasonable variations. The velocity refer-
ences can be generated as the derivatives of the posi-
tion references. More in general, under stability con-
ditions, if the reference signals are not characterized
by abrupt variations, then rt+τ can be reached from
y−t , yielding values of F (rt+τ , u

p
t , rt) and σF close to

zero. A reference generator will be proposed below,
allowing us to make σF as small as desired.

(iii) The bound γξ ξ̄, accounting for the effect of the
noise on the system output, is sufficiently small. This
term is a worst-case upper bound and typically is tight
for high frequency noises (this happens in general,
for both linear and nonlinear control systems). As a
matter of fact, it has been observed in several numer-
ical experiments that the proposed control scheme is
able to significantly reduce the effect of low frequency
noises (see, e.g., the example in Section 8).

The constants γF , σF , σ∆ and γξ ξ̄ can be estimated from
the data (using, e.g., the algorithms in [39] and [41]),
allowing us to obtain an estimate of ē. It is then possible
to (approximately) verify assumption (13) and, when
Y and R are simple sets (e.g., rectangles or ellipsoids),
also assumption (14). If the estimate of ē indicates that

7

(14) is not satisfied, it is necessary to collect more data
to enlarge the set Y . Clearly, we can only estimate these
constants, and thus we cannot be totally sure that the
assumptions are satisfied. Note however that this is a
problem common to any approach (data-driven or first-
principle-based): in most real applications, we have only
an approximate knowledge of the plant to control and
thus we can only be confident - but never sure - that a
controller will work when applied to the real plant.

In summary, the model f should be accurate in describ-
ing the variability wrt y−t (to guarantee stability) and,
at the same time, in predicting the system output (to
reduce σ∆). The identification algorithm 1 has been de-
veloped in this view, allowing us to derive models ful-
filling such requirements.

On the basis of these considerations, we can conclude
that assumptions (13) and (14) are reasonable, since
they require that a sufficiently accurate model has been
identified and that the reference values are reachable (or
approximately reachable). These kinds of requirements
are common to most control approaches for nonlinear
systems.
In ideal conditions (i.e., no disturbance, no modeling
error and perfect inversion for all t) the constants γξ ξ̄,
σ∆ and σF are null, implying that the tracking error
is null. If only the disturbance is null, the bound ē is
smaller wrt the general case, since the term γξ ξ̄ is null.
If the inversion is not exact (this happens, e.g., when
rt+τ is not reachable) but assumptions (13) and (14)
hold, our algorithms in any case guarantee a bounded
tracking error. If the the plant to control has an unsta-
ble zero dynamics and U is a bounded set, the condition
of perfect inversion in general cannot be met, resulting
in a non-zero constant σF in Theorem 1. In this case,
the tracking error cannot be made arbitrarily small for
arbitrary reference signals. In general, in the presence
of unstable zero dynamics, it is not possible to have at
the same time a bounded input and an arbitrarily small
tracking error for arbitrary reference inputs, whatever is
the control method used, [8]. This is a structural limita-
tion of the plant, independent of the control method (of
course, our method is also affected by this limitation).
Note that we are not interested in an asymptotic con-
vergence result. We derive a bound on the tracking er-
ror that holds at each time t. In ideal conditions (no
disturbances, no model errors, perfect inversion), this
bound is null, demonstrating that, in such ideal condi-
tions, our approach is able to provide the best possible
performance.
Another important aspect is reference generation: a sim-
ple and effective indication is to use reference signals
with reasonable variations (e.g., using a pass-band fil-
ter). A more systematic reference generation algorithm
is now proposed, allowing us to reduce the constant σF ,
making it possibly null. The reference generator is the
following:

ǔt = K∗
(
J, řt+τ , (ǔ

−
t , ř

−
t)
)

rt+τ = f
(
ǔpt , ř

−
t

) (16)

where f is the model (4), K∗ is one of the control al-

gorithms presented in Section 4, ǔpt = (ǔt, ǔ
−
t), řt is a

“parent” reference and ř−t
.
= (řt−1, . . . , řt−n). If µ = 0

and řt+τ is reachable (that is, a ǔt ∈ U exists such that
řt+τ = f (ǔpt , řt)), then rt+τ = řt+τ , see (7) and (8). If
it is not reachable, rt+τ is the best reachable approxi-
mation of řt+τ . Generating the reference according to
(16) with µ = 0, we have F (rt+τ , u

p
t , rt) = 0, implying

that σF = 0. When µ > 0, F (rt+τ , u
p
t , rt) ' 0, imply-

ing that σF ' 0. In practice, the reference generator
(16) allows us to verify when a reference value is reach-
able and, when it is not, to choose a suitable reachable
approximation of it.

Remark 12 The stability analysis of this section has
been developed within a nonlinear Set Membership (SM)
framework, [39,42,40]. In [42], a unified SM theory for
identification, prediction and filtering of nonlinear sys-
tems is shown. The present work can be seen as a natural
extension of this theory to control. �

6 NIC design procedure
In this section, the overall NIC design procedure is sum-
marized, consisting of two main steps: model identifica-
tion and controller design.
6.1 Prediction model identification
Model identification can be performed as follows:
1. Choose a γ̂∆ < 1. As discussed above, taking γ̂∆ < 1
is a proxy for closed-loop stability. On the other hand,
too small values of γ̂∆ may lead to large tracking
errors. Note that the choice of the parameter ρ in
the Identification Algorithm 1 is not critical and can
be carried out by means of a simple trial and error
procedure.

2. Choose a maximum order nmax and a maximum pre-
diction horizon τmax.

3. For n = 1, . . . , nmax and for τ = 1, . . . , τmax:
3a. Apply the identification algorithm 1 to the data
set (2):

α̂(n, τ) = id_poly_1 (D, γ̂∆) .

3b. Compute the following normalized prediction er-
ror:

NPE(n, τ)
.
=

1

τny

ny∑
j=1

‖zj −Φα̂j(n, τ)‖2 . (17)

4. Choose the order and prediction horizon according
to

(n∗, τ∗) = arg min
(n,τ)

(NPE(n, τ) + ςn) (18)

where ς is used to penalize models with high order. An
effective choice can be ς = 0.01 max(n,τ)NPE(n, τ).

5. The selected model is the one defined by the param-
eter matrix α̂(n∗, τ∗). �

Remark 13 If the columns of z have range of variations
with different scales, a weightedmean can be used in (17).
The weights can be chosen as ‖(ỹj,1−L, . . . , ỹj,0)‖−1

2 , j =
1, . . . , ny. �

8

In this procedure, the model order and prediction hori-
zon are chosen to reduce the normalized prediction er-
ror NPE(n, τ). This index was conceived to obtain an
optimal trade-off between two contrasting criteria: on
one hand, reducing the prediction error allows reducing
the tracking error (see Theorem 1); on the other hand,
increasing the prediction horizons in general yields an
increase of the robustness and stability properties of
the closed-loop system (this typically happens also in
NMPC, see, e.g., Chapter 1 in [17]). The term ςn was
included to penalize high order models. An example of
application of this procedure is shown in Figure 4.

The above model identification procedure can be re-
peated for different polynomial degrees, starting from
low ones (e.g., 1) and moving to higher ones, until no
significant reductions of NPE(n, τ) are observed.

An effective choice for the basis function set to use in
the model parametrization (5) is the following:

{φi (x) , i = 1, . . . , N} = {xj1i1x
j2
i2

;

i1 = 1, . . . , nx, i2 = i1, . . . , nx;

j1, j2 = 0, . . . , jp}
.
= BF

(19)

where x = (x1, . . . , xnx) ∈ Rnx , nx = nu + n(nu +
ny), 2jp = dp is the polynomial degree and N = (1 +
jpnx)(2 + jpnx)/2. To identify a model affine in ut, the
basis function set can be chosen as follows:

{φi (x) , i = 1, . . . , N} = {xj1i1x
j2
i2
∈ BF :

j1 ≤ 1 for i1 ≤ nu, j2 ≤ 1 for i2 ≤ nu
j1 + j2 ≤ 1 for i1, i2 ≤ nu}

.
= BFA

(20)

where N = n2(1 + 2n1 − n2)/2, n1 = 1 + nx + (jp −
1)(nx − nu), n2 = 1 + jp(nx − nu).
In both cases, the independent variables xi can be scaled
to range in the interval [−1, 1], in order to avoid bad
numerical conditioning. This is a simple and effective
basis function generation technique, not affected by a
combinatorial explosion of the terms in the series (5),
yielding at the same time a sufficiently large and flexible
set of functions allowing an accurate approximation.
6.2 Controller design
Once the prediction model has been identified, control
design just consists in choosing the parameter µ ≥ 0 in
(8). This parameter determines the trade-off between
tracking precision and command activity, and its choice
is not critical: If u is not subject to relevant limitations,
we can just set µ = 0. Otherwise, the value of µ should
be progressively increased (starting from 0), until the
desired trade-off between control performance and com-
mand activity is obtained. Given all the chosen param-
eters, the controller is fully defined by (7), and imple-
mented through one of the optimization algorithms of
Section 4.

7 Optimization performance evaluation
This section describes some extensive simulation studies
that were carried out to test the numerical efficiency of
the optimization algorithms proposed in Section 4.

The following optimization problem was considered:

u∗ = arg minu∈U J (u, r, q)

J (u, r, q)
.
= ‖r − f (u, q)‖22 + µ ‖u‖22

(21)

where f (·) is a polynomial function of degree dp and
u ∈ U ⊂ Rm, r, q ∈ Rm. This problem is analogous
to (7) but the dependence on time is not relevant. The
value µ = 0 was taken since, with this value, if r is in
the range of f (·, q), we know the global minimum of
J (u, r, q) to be 0.
Values ofm in the set {1, 2, 4, 6, 8} and values of dp in the
set {1, 2, 4, 6} were considered, corresponding to MIMO
systems with up to 8 command inputs and models with
polynomial degree up to 6. Note that in all the appli-
cations tackled up to now with the present approach,
degrees from 2 to 4 led to a satisfactory prediction and
control performance (see [19,52,38,48] and the numeri-
cal example presented in Section 8).

7.1 Monte Carlo simulation 1
For each combination ofm and dp in these sets, a Monte
Carlo simulation was carried out, consisting of 50 main
trials, each consisting of 100 subtrials (total number of
trials: 5× 4× 50× 100 = 100 000).
In each main trial, f (·) was defined as a polynomial
function of degree dp of the form (4)-(5), with sparse
vectors αj . In particular, a number ns of nonzero co-
efficients was assumed, with ns ranging in the interval
[0, 500] in function ofm and dp (the nonzero coefficients
were chosen according to a Gaussian distribution with
zero mean and unitary variance). The maximum num-
ber of non-zero coefficients (500) was chosen on the basis
of our experience: in the numerous simulated and real
applications that we dealt with in the past, the number
of non-zero coefficients was always of the order of some
hundreds.
In each subtrial, a sequence ri = f (utruei , qi) was gen-
erated, where qi and utruei are vectors with random en-
tries (chosen according to a uniform distribution with
support [−1, 1]), and i = 1, . . . , 100. In this way, ri is
guaranteed to be in the range of f(·). Then, for each
i, the optimization problem (21) was solved. Note that
the decision variable u can be in general different from
the “true” input utruei .
For m = 1, the optimization algorithm 1 was used to
solve the problem. Form > 1 and dp = 1, the optimiza-
tion algorithm (2) was used, with εJ = 1e− 6. Other-
wise, the optimization algorithm (3) was used, with u0
chosen randomly, assuming Niter = 100 and adopting
the stopping criterion (9), with ε1 = 0.05 and ε2 = 0.
Since the values of J (u, r, q) are in average around 1,
this choice of ε1 corresponds to accepting a worst-case
degradation of 5% wrt a global minimum.
For each combination of the dimensionm and the poly-
nomial degree dp, the following indexes were used to
evaluate the algorithm performance:
• E2

.
= 1

5000

∑5000
i=1 (J (u∗i , ri, qi)− J (utruei , ri, qi)),

where u∗i is the solution of the optimization problem
(21), computed for each random sample, and 5000 is
obtained as the number of main trials (50) times the

9

number of subtrials (100). Note that, in the present
case, we know that J (utruei , ri, qi) = 0.
• E∞

.
= max
i=1,...,5000

(J (u∗i , ri, qi)− J (utruei , ri, qi)).

• Tsc
.
= average time taken by a Matlab .m function to

solve a single optimization problem on a laptop with
an i7 3Ghz processor and 16 MB RAM. The average
was computed over the 5000 samples of the Monte
Carlo simulation.
• Tm

.
= average time taken by a compiled Simulink mex

function to solve a single optimization problem on
the same laptop. This function was generated in 10
of the 50 main trials, since this operation is relatively
complex. The average was thus computed over 10 ×
100 = 1000 samples of the Monte Carlo simulation.

The obtained results, shown in Table 1, can be com-
mented as follows.
• All the three proposed optimization algorithms are

able to find precise solutions (i.e., giving values of the
objective function close to zero) in short times for
all the considered input dimensions and polynomial
degrees.
• The values of E2 and E∞ obtained by the optimiza-

tion algorithms 1 and 2 confirm the above theoretical
argumentations, by which these algorithms are guar-
anteed to find always a global minimum of the ob-
jective function. Note that algorithm 2 is suited for
models that are affine in u but can be of any degree
in the other variables.
• Using compiled mex functions allows a significant re-

duction of the computation times only for problems
involving polynomials with a not too high degree in u.
A possible interpretation is that the Simulink auto-
matic compiler looses efficiency for large degree poly-
nomials.

For a fair comparison, we made a second evaluation of
Tsc, considering only the 10 main trials used to evaluate
Tm. The obtained values of Tsc (averaged over 10×100 =
1000 samples of the Monte Carlo simulation) are very
similar to those reported in the 7th column of Table 1
(averaged over all the 5000 samples). In particular, no
differences wrt the values appearing in this column were
observed, larger than 12%. For this reason, the values
of Tsc averaged in the 10 main trials are not reported in
the Table.
7.2 Monte Carlo simulation 2
The results obtained by the optimization algorithm 3
show that, accepting a small degradation of the mini-
mization performance wrt the global minimum (≤ 5%
in the above Monte Carlo simulations) the optimization
problems are solved in quite short times.
In order to better investigate this aspect, other Monte
Carlo simulations were carried out: The input dimension
m = 4 and the polynomial degree dp = 4 were assumed.
The values Niter = 100, ε1 = 0.01, 0.02, . . . , 0.1, and
ε2 = 0 were considered for the optimization algorithm
3. For each value of ε1, a Monte Carlo simulation was
performed, consisting of 50 main trials, each consisting
of 100 subtrials (total number of trials: 10× 50× 100 =
50 000). The main and sub trials were analogous to the
ones described above. The values of Tsc, E2 and E∞
obtained in these simulations are plotted in Figure 2 in
function of ε1. It can be observed that E2 and E∞ in-

m dp ns alg. E2 E∞ Tsc [s] Tm [s]

1

1 3 1 1.2e-14 3.2e-14 2.7e-4 <1.0e-4

2 6 1 1.9e-13 1.9e-12 3.0e-4 <1.0e-4

4 15 1 2.1e-13 1.4e-12 3.4e-4 <1.0e-4

6 28 1 1.1e-13 6.5e-13 3.7e-4 <1.0e-4

2

1 5 2 4.3e-12 1.6e-11 8.7e-4 <1.0e-4

2 15 3 5.0e-3 0.048 1.6e-3 1.4e-4

4 45 3 4.1e-3 0.022 2.2e-3 5.6e-4

6 81 3 5.2e-3 0.034 5.4e-3 >Tsc

4

1 9 2 7.5e-5 4.2e-4 7.8e-4 <1.0e-4

2 45 3 8.2e-3 0.039 3.1e-3 4.5e-4

4 116 3 0.013 0.047 0.038 >Tsc

6 197 3 0.014 0.046 0.17 >Tsc

6

1 13 2 4.3e-4 9.7e-4 1.9e-3 <1.0e-4

2 81 3 0.013 0.048 0.011 1.2e-3

4 197 3 0.016 0.048 0.21 >Tsc

6 339 3 0.021 0.049 0.76 >Tsc

8

1 17 2 5.0e-4 8.6e-4 2.4e-3 <1.0e-4

2 116 3 0.019 0.048 0.10 3.1e-3

4 289 3 0.027 0.049 1.6 >Tsc

6 500 3 0.032 0.049 8.3 >Tsc

Table 1
Monte Carlo simulation 1 results.

crease linearly with ε1, while Tsc steeply decreases for
small values of ε1 and then remains almost constant. It
can be concluded that the “optimal” value of ε1 is 0.02,
providing the best trade-off between speed and accu-
racy. Note that these considerations are not restricted
to this numerical example but are general: ε1 (together
with ε2, if necessary) is a parameter allowing us to ef-
ficiently determine the trade-off between speed and ac-
curacy of our algorithms, whatever is the application of
interest.
We believe that the simulation study of this Section is
important since it shows that, according to the results
in Table 1, the NIC algorithms can actually be imple-
mented on real-time processors in industrial applica-
tions.

8 Numerical example: Control of a 2-DOF
robot manipulator

8.1 2-DOF robot manipulator
The 2-DOF (2-degrees of freedom) robot manipulator
depicted in Figure 3 has been considered, where z1 and
z2 are the angular positions of the two segments of the
robot arm, u1 and u2 are the control torques acting on
these segments, l1 and l2 are the segment lengths, and
M1 and M2 are the segment masses. The parameter
values l1 = 0.8 m, l2 = 0.7 m,M1 = 2.5 Kg,M2 = 2 Kg
have been assumed.
This robot manipulator is a MIMO system (with 2
inputs and 2 outputs), described by the following

10

"1

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
sc

0.01

0.02

0.03

0.04

"1

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

E
2

0

0.01

0.02

"1

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

E
1

0

0.05

0.1

Figure 2. Trade-off between computation time and optimiza-
tion accuracy.

continuous-time state-space nonlinear equations:

ż(τ) = Ac(z(τ))z(τ) +Bc(z(τ))u(τ)

y(τ) =

[
z1(τ)

z2(τ)

]
(22)

where τ is the continuous time, z(τ) = [z1(τ) z2(τ) ż1(τ)
ż2]> is the state and u(τ) = [u1(τ) u2(τ)]> is the input.
The expressions of Ac(z(τ)) ∈ R4×4 and Bc(z(τ)) ∈
R4×2 can be found in [32].

Figure 3. Robot Manipulator.

8.2 Data generation
A set of L = 5000 data was generated by simulation of
(22):

D .
= {ỹt, ũt, }0k=−4999 .

The data were collected with a sampling time Ts = 0.02
s, using the following input signals:

uj(τ) =


−20zj(τ), if |zj(τ)| ≥ 1.75 rad

0, if l < τ ≤ l + 500, l = 500, 1500, 2500, 3500,

and |zj(τ)| < 1.75

Au sin(ωj1τ) +Au sin(ωj2τ), otherwise,
(23)

where j = 1, 2, Au = rand[50, 150] Nm, ω11 =
rand[0.05, 0.09] rad/s, ω12 = rand[0.5, 0.11] rad/s
ω21 = rand[0.04, 0.1] rad/s ω11 = rand[0.7, 1.2] rad/s.
The notation Au = rand[50, 150] means that Au is a
number, randomly chosen according to a uniform dis-
tribution in the interval [50, 150]. The feedback input
on the first line of (23) was applied in order to limit
the working range of z1 and z2 to the interval [−π, π]
rad (the gain −20 and the threshold 1.75 rad were
chosen thorough preliminary simulations). Measure-
ment noises were added to yj , j = 1, 2, simulated as
uniform noises with amplitude 0.02 rad, corresponding
to a signal-to-noise amplitude ratio SNR ∼= 100. Note
that this noise level is reasonable for advanced indus-
trial applications, where very accurate angular position
sensors are available.
8.3 Controller design
From the data described above, two NIC controllers
were designed following the procedure of Section 6: The
first one, called NIC1, is based on a general nonlinear
model. The second one, called NIC2, is based on amodel
affine in u (note however that the fact that the system
to control is affine in u does not imply that the corre-
sponding prediction form is affine; in this example the
prediction form is not affine). These controllers are de-
scribed in Table 2. For both controllers, the model basis
functions were generated according to (19) (or (20) in
the affine case), where the independent variables were
scaled to range in the interval [−1, 1]. The data with
index t = 1− L, . . . ,−20,−10, 0 were used to form the
constraints (i) in the identification algorithm 1 (we did
not use all the data in order to reduce the memory occu-
pation). The level curves of the functionNPE(n, τ)+ςn
used in (18) to optimally select the model order and
prediction horizon for the controller NIC1 are shown
in Figure 4. For the NIC1 controller, Niter was chosen
equal to 50 since we observed that the algorithm con-
verges after about 30, maximum 40, iterations. We did
not use the stopping criterion (9) and thus ε1, ε2 were
not required.
Looking at Table 2, the following observations can be
made:
• The sparsification properties of the algorithm do not
give significant reductions of the number of basis func-
tions. The reason is that the total number of ba-
sis functions is already relatively low. Sparsification
is more relevant when the regressor is of higher di-
mension and the polynomial degree is larger, leading
to problems with many hundreds or thousands basis
functions. In any case, bounding the `1 norm of the
model coefficient vectors is useful for regularization
reasons.
• Algorithm (1) forces the model to (approximately)

11

n

1 1.5 2 2.5 3 3.5 4

τ

1

2

3

4

5

6

7

8

9

10

0.05

0.1

0.15

0.2

Figure 4. Level curves of the function NPE(n, τ)+ ςn. The
optimal point is denoted by *.

satisfy the condition γ̂∆ < 1. Supposing that γ∆
∼=

γ̂∆, the stability condition γF + γ∆ < 1 required by
Theorem 1 is satisfied for both the NIC1 and NIC2
controllers.
• The computational times for the control design phase

(referred to a laptop with 3 Ghz core i7 processor, 16
GB RAM and the CVX tool [50]) resulted quite low,
considering that the set used for design consists of
5000 data. The control algorithm on-line evaluation
times resulted also quite low, confirming the results of
Section 7, and showing that the proposed algorithms
can be effectively implemented on real-time proces-
sors.

For comparison, the controller in [46] has been consid-
ered, designed by means of a two-step method, consist-
ing in LPV model identification and Gain Scheduling
(GS) design.
8.4 Controller tests
A first simulation was performed to test all the con-
trollers in the task of reference tracking. Zero initial
conditions were assumed. A reference signal of length
5000 samples (corresponding to 100 s) was used, defined
as a random sequence of step signals with amplitudes
in the interval [−π, π], filtered by a second-order filter
with a cutoff frequency of 10 rad/s. This filter was in-
serted in order to ensure not too high variations. The
outputs were corrupted by random uniform noises with
amplitude 0.02 rad (SNR ∼= 100). In Figure 5, the an-
gular positions of the system controlled by the NIC1 al-
gorithm are compared with the references for the first
20 s of this simulation. Note that the two position refer-
ences were chosen quite similar to each other (but not
equal) in order to allow the manipulator to reach in a
simple way any position in its range.
A second simulation was performed to test the con-
trollers in the task of disturbance attenuation. Null ini-
tial conditions and reference were assumed. An output
disturbance signal of length 1000 samples (correspond-
ing to 20 s) was considered, defined as a sequence of two
steps (one for each output channel) of amplitude 1 rad,
filtered by a second-order filter with a cutoff frequency
of 10 rad/s. The outputs were also corrupted by random
uniform noises with amplitude 0.02 rad (SNR ∼= 100).
In Figure 6, the angular positions of the system con-

NIC1 NIC2

maximum
polynomial degree
dmax

8
8

(degree
1 in ut)

selected polynomial
degree 4

4
(degree
1 in ut)

maximum model
order nmax

4 4

selected model order 2 2

maximum prediction
horizon τmax

10 10

selected prediction
horizon 5 5

total number of basis
functions 231 187

number of selected
basis functions for
the two outputs

185
198

156
163

µ 0.01 0.01

γ̂∆ 0.85 0.85

estimated γF 0.06 0.09

identification
algorithm run time
[s] (average)

185 167

control algorithm K(3) K(2)

control algorithm
sampling time [s] 0.02 0.02

control algorithm
on-line evaluation
time [s] (average)

2.1e-3 8.1e-4

Table 2
Description of the NIC controllers.

trolled by the NIC1 algorithm are shown, together with
the disturbance signals.

8.5 Monte Carlo simulations
A Monte Carlo (MC) simulation was carried out, where
the procedure data generation - control design - tracking
test was repeated 200 times. For each trial, the tracking
performance was evaluated by means of the Root Mean
Square tracking errors, defined as

RMSi
.
=

√
1

5000

∑5000

t=1
(ri,t − yi,t)2

, i = 1, 2

where ri,t is the ith component of the reference signal
and yi,t is the ith component of the controlled system
output. The average errors RMSi resulting from the
MC simulation are reported in Table 3.
A secondMC simulation was then carried out, similar to
the previous one, except that a smaller SNR level was
assumed, in both the data generation and tracking test
phases. In particular, the noises corrupting the outputs
were characterized by a signal-to-noise ratio SNR ∼= 10.
This SNR level is too low for a modern robotic applica-
tion but here it is useful to test the NIC approach in the

12

NIC1 NIC2 GS

RMS1[rad] 0.159 0.160 0.167

RMS2[rad] 0.114 0.115 0.152

Table 3
Robot Manipulator. Average RMS tracking errors.

presence of significant noises. In this second MC study,
only NIC controllers based on purely nonlinear predic-
tion models were designed. The average errors RMSi
resulting from the MC simulation for these controllers
are RMS1 = 0.192 rad and RMS2 = 0.169 rad.

8.6 Comments
From the obtained results, it can be concluded that the
NIC control systems are quite effective, showing a pre-
cise tracking, a significant disturbance attenuation ca-
pability, and robustness versus measurement noises. In
comparison with the GS method of [46], the NIC ap-
proach is simpler, since a polynomial model of the form
(4) has in general a significantly simpler structure wrt
an LPV model (and, in particular, wrt a state-space
LPV model). Moreover, the tracking results obtained
by the NIC controllers are similar to (or even slightly
better than) those obtained by the GS controller, de-
spite the fact that this latter uses a stronger information
on the system (22) (i.e., the information that (22) is a
quasi-LPV system). Note that we applied NIC control
in several simulated examples where Gaussian noises
were used, including braking control [19], control of the
Duffing oscillator [52], control of air and charging sys-
tems of diesel engines [38]. No significant differences wrt
the case of uniform noise considered here were noted, in
terms of control design and performance.

0 5 10 15 20
−4

−2

0

2

4

z 1 [
ra

d]

0 5 10 15 20
−4

−2

0

2

4

z 2 [
ra

d]

Time [s]

Figure 5. Robot Manipulator. Continuous (black) line: ref-
erence. Dashed (red) line: closed-loop system output.

9 Comparison with related methods
The NIC approach has a clear analogy with NMPC
(see, e.g., [17,36,23]): in both the approaches, the com-
mand input is chosen on the basis of some prediction
and on-line optimization. However, NIC has two ad-
vantages wrt standard NMPC: 1) NIC does not need a
physical model; 2) NIC is in general numerically more
efficient than standard NMPC. Non-standard NMPC

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5

z 1 [
ra

d]

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5

z 2 [
ra

d]

Time [s]

Figure 6. Robot Manipulator. Continuous (blue) line: dis-
turbance. Dashed (red) line: closed-loop system output.

approaches that are more similar to NIC are those pre-
sented in [61,56]. They use polynomial models that can
be identified from data, and thus can avoid the need
of a physical model. However, these approaches do not
give a priori stability/accuracy guarantees and also do
not appear to be suitable for fast on-line applications
in the MIMO case. In summary, NIC can be seen as a
data-driven efficient NMPC.
The NIC approach has a similarity with the DFK (Di-
rect FeedbacK design) method of [50]: both the ap-
proaches use an inverse model to control the system of
interest. In DFK, the inverse model is directly identified
from data. In NIC, inversion is performed using a di-
rect model. The main advantage of NIC is that it allows
the control of systems described by a function h non-
invertible with respect to ut. DFK is in general simpler
and does not require any kind of model but may not be
applicable when h is not invertible. Moreover, DFK is
based on a full-state feedback scheme and its applica-
tion to MIMO systems needs still to be developed.
A simplified version of the NIC approach is presented in
[19,52,51]. However, these works only consider the case
where the system to control is SISO (Single Input Sin-
gle Output) and the model prediction horizon is 1. Be-
sides these general aspects, the innovative contributions
provided in the present paper with respect to [19,52,51]
can be summarized as follows: The identification algo-
rithm proposed here is novel, since it is able to deal with
MIMO systems and prediction horizons larger than 1; it
is also more systematic and, wrt the ones in [19,52,51],
less time consuming. The optimization algorithms for
MIMO system control presented in this paper are novel.
No closed-loop stability analysis is made in [19,52]. The
stability analysis is carried out in [51] only for SISO sys-
tems. The NIC design procedure developed in Section
6 is original. The numerical analysis about efficiency of
the MIMO control algorithms is novel.

10 Conclusion
A novel data-driven control approach for MIMO non-
linear systems has been proposed in the paper. This ap-
proach, called NIC (Nonlinear Inversion Control) shows
interesting advantages wrt the state of the art methods:
On one hand, the approach is characterized by a theo-

13

retical foundation, possibly allowing us to guarantee a
priori important properties such as closed-loop stability
and tracking error accuracy. On the other hand, the ap-
proach presents important features by which it can be
very effective in real-world applications: it is systematic
and relatively simple; it can be applied to a wide class
of nonlinear systems; it is numerically efficient.
The approach has been tested with success in several
numerical examples, including control of braking sys-
tems [19], control of the Duffing oscillator [52], cancer
immunotherapy control [53], control of a robot manip-
ulator (this paper), and in two real-data applications,
concerned with control of the air and charging systems
for diesel engines [38] and glucose regulation in type 1
diabetic patients [54].
Future research activities will be devoted to the utiliza-
tion of basis functions alternative to polynomials and
to the systematic comparison of our minimization tech-
niques with other techniques, based on sum of squares,
eigenvalue methods or Gröbner bases.

11 Appendix
Proof of Theorem 1. From (3) and (11), it is imme-
diate to verify that the closed-loop system (10) is de-
scribed by the following equation:

yt+τ = g(uvt , y
−
t , ξ

v
t)

= rt+τ − F
(
rt+τ , u

p
t , y
−
t

)
+ ∆

(
uvt , y

−
t

)
+ gξt ξ

v
t

(24)

where uvt
.
=
(
u∗t+τ−1, . . . , u

∗
t−n
)
and gξt is a row vector

such that

g(uvt , y
−
t , ξ

v
t) = go(uvt , y

−
t) + gξt ξ

c
t∥∥∥gξt ∥∥∥ ≤ γξ, ∀t.

Existence of this vector is guaranteed as g is Lipschitz
continuous on Un+τ ×Y n×Ξn+τ . From (24), we obtain
the following error equation:

et+τ = F
(
rt+τ , u

p
t , y
−
t

)
−∆

(
uvt , y

−
t

)
− gξt ξvt

= F
(
rt+τ , u

p
t , r
−
t − e−t

)
−∆

(
uvt , r

−
t − e−t

)
− gξt ξvt

where et
.
= rt − yt, r−t

.
= (rt−1, . . . , rt−n) and e−t

.
=

(et−1, . . . , et−n). Since ∆ and F are Lipschitz continu-
ous on Ω∆ and ΩF , respectively, the following represen-
tations can be introduced:

F
(
rt+τ , u

p
t , rt − e−t

)
= aFt e

−
t + F

(
rt+τ , u

p
t , r
−
t

)
∆
(
uvt , r

−
t − e−t

)
= −a∆

t e
−
t + ∆

(
uvt , r

−
t

)
where aFt and a∆

t are bounded as∥∥aFt ∥∥ ≤ γF , ∥∥a∆
t

∥∥ ≤ γ∆ (25)

and F
(
rt+τ , u

p
t , r
−
t

)
and ∆τ−i

(
uvt , r

−
t

)
are bounded ac-

cording to (12). The closed-loop error dynamics is thus

described by

et+τ =
(
aFt + a∆

t

)
e−t

+F
(
rt+τ , u

p
t , r
−
t

)
−∆

(
uvt , r

−
t

)
− gξt ξvt .

From (12), (13) and (25), it follows that

‖et+τ‖ ≤ γc
∥∥e−t ∥∥+ σF + σ∆ + γξ ξ̄,

for any y−t ∈ Y n, rt+τ ∈ R, r−t ∈ Rn, ut ∈ U and
ξvt ∈ Ξ. This inequality implies that

‖et+τ‖ ≤ γc max (‖e‖ , ‖e−‖) + σF + σ∆ + γξ ξ̄

= γc ‖e‖+ σF + σ∆ + γξ ξ̄
(26)

where e = (e1, e2, . . .) and e− .
= (e0, . . . , e1−τ−n) = 0.

Note that e− is zero as the reference is chosen as rt = ỹt,
for t ≤ 0. Since (26) holds for t = 1 − τ, 2 − τ, . . ., we
obtain the following inequality:

‖e‖ ≤ γc ‖e‖+ σF + σ∆ + γξ ξ̄.

Being γc < 1 by assumption, we can write

‖e‖ ≤ 1

1− γc
(
σ∆ + σF + γξ ξ̄

)
(27)

which holds if
(
y−0 , r, ξ

)
∈ Y0 × R × Ξ and y−t ∈

Y n, ∀t > 0. The first condition, i.e.,
(
y−0 , r, ξ

)
∈ Y0 ×

R×Ξ is true by construction. The second condition, i.e.

y−t ∈ Y n, ∀t > 0 (28)

can be proven considering that

‖y‖ = ‖r − e‖ ≤ ‖r‖+ ‖e‖ .

Thus, from (27),

‖y‖ ≤ ‖r‖+ 1
1−γc

(
σ∆ + σF + γξ ξ̄

)
= ‖r‖+ ē

which can be written as

‖yt+1‖ ≤ ‖r‖+ ē, t = 1, 2, . . . (29)

This inequality holds if y−k ∈ Y n, ∀k ≤ t. Condition
(28) is now proved by induction.
First, consider that y−0 ∈ Y n by choice. From (29), if
y−0 ∈ Y n, then ‖y1‖ ≤ ‖r‖+ ē and thus, from assump-
tion (14), y1 ∈ Y , implying that y−1 ∈ Y n. Repeating
this reasoning for all t ≥ 0 we conclude that y−t ∈ Y n
for all t ≥ 0. This fact and inequalities (27) and (29)
imply that claims (i) and (ii) hold true. �

References
[1] G. C. M. De Abreu, R. L. Teixeira, and J. F. Ribeiro. A

neural network-based direct inverse control for active control
of vibrations of mechanical systems. In Proceedings of the
sixth Brazilian Symposium on Neural Networks, pages 107–
112, 2000.

14

[2] D. B. Anuradha, G. Prabhaker Reddy, and J. S .N. Murthy.
Direct inverse neural network control of a continuous stirred
tank reactor (cstr). In Proceedings of the International
MultiConference of Engineers and Computer Scientists,
Hong Kong, 2009.

[3] K. J. Astrom and B. Wittenmark. Adaptive Control.
Addison-Wesley, Reading, MA, 1995.

[4] Michael Bader. How to Construct Space-Filling Curves,
pages 15–30. Springer Berlin Heidelberg, Berlin, Heidelberg,
2013.

[5] S. Battilotti. Robust stabilization of nonlinear systems with
pointwise norm-bounded uncertainties: a control Lyapunov
function approach. IEEE Transactions on Automatic
Control, 44(1):3 – 17, 1999.

[6] R. Bellman. Dynamic Programming. P (Rand Corporation).
Princeton University Press, 1957.

[7] M.D. Brown, G. Lightbody, and G.W. Irwin. Nonlinear
internal model control using local model networks. IEE
Proceedings - Control Theory and Applications, 144(6):505–
514, 1997.

[8] J.B.D. Cabrera and K. S. Narendra. Issues in the application
of neural networks for tracking based on inverse control.
IEEE Transactions on Automatic Control, 44(11):2007–
2027, 1999.

[9] G.C. Calafiore and L. El Ghaoui. Optimization Models.
Cambridge University Press, 2014.

[10] M.C. Campi and S.M. Savaresi. Direct nonlinear control
design: The virtual reference feedback tuning (VRFT)
approach. IEEE Transactions on Automatic Control,
51(1):14–27, 2006.

[11] Fu-Chuang Chen and H.K. Khalil. Adaptive control of a class
of nonlinear discrete-time systems using neural networks.
IEEE Transactions on Automatic Control, 40(5):791–801,
1995.

[12] J. Chen and G. Gu. Control-Oriented System Identification:
An H∞ Approach. John Wiley & Sons, New York, 2000.

[13] G. Chesi, A. Garulli, A. Tesi, and A. Vicino. Homogeneous
Polynomial Forms for Robustness Analysis of Uncertain
Systems. Springer, 2009.

[14] P. Dreesen, K. Batselier, and B. De Moor. Back to the roots:
Polynomial system solving, linear algebra, systems theory.
In 16th IFAC Symposium on System Identification, Brussels,
Belgium, 2012.

[15] P. Dreesen and B. De Moor. Polynomial optimization
problems are eigenvalue problems. In Model-Based Control,
pages 49–68. Springer, 2009.

[16] L. Fagiano and C. Novara. Learning a nonlinear controller
from data: theory, computation and experimental results.
IEEE Transactions on Automatic Control, 61(7):1854–1868,
2016.

[17] R. Findeisen, F. Allgower, and L.T. Biegel. Assessment
and future directions of nonlinear model predictive control.
In Lecture Notes in Control and Information Sciences.
Springer, 2007.

[18] S. Formentin, P. De Filippi, M. Corno, M. Tanelli, and
S.M. Savaresi. Data-driven design of braking control
systems. IEEE Transactions on Control Systems Technology,
21(1):186–193, 2013.

[19] S. Formentin, C. Novara, S.M. Savaresi, and M. Milanese.
Active braking control system design: the D2-IBC approach.
IEEE/ASME Transactions on Mechatronics, 20(4):1573–
1584, 2015.

[20] G. Franzè. A nonlinear sum-of-squares model predictive
control approach. IEEE Transactions on Automatic Control,
55(6):1466–1471, 2010.

[21] A. Freeman and V. Kokotovic. Robust Nonlinear Control
Design. Birkhï¿œuser, Boston, 1996.

[22] L.B. Freidovich and H.K. Khalil. Performance recovery of
feedback-linearization-based designs. IEEE Transactions on
Automatic Control, 53(10):2324 – 2334, 2008.

[23] L. Grune and J. Pannek. Nonlinear model predictive control
- theory and algorithms. In Communications and Control
Engineering. Springer, 2011.

[24] Z. Hou, H. Gao, and F. L. Lewis. Data-driven control
and learning systems. IEEE Transactions on Industrial
Electronics, 64(5):4070–4075, May 2017.

[25] Z. Hou and S. Jin. Data-driven model-free adaptive control
for a class of mimo nonlinear discrete-time systems. IEEE
Transactions on Neural Networks, 22(12):2173–2188, Dec
2011.

[26] Z. Hou and S. Jin. A novel data-driven control approach for a
class of discrete-time nonlinear systems. IEEE Transactions
on Control Systems Technology, 19(6):1549–1558, 2011.

[27] Z. Hou and Z. Wang. From model-based control to
data-driven control: Survey, classification and perspective.
Information Sciences, 235:3 – 35, 2013. Data-based Control,
Decision, Scheduling and Fault Diagnostics.

[28] K. Hsu, C. Novara, T. Vincent, M. Milanese, and K. Poolla.
Parametric and nonparametric curve fitting. Automatica,
42/11:1869–1873, 2006.

[29] K. J. Hunt and D. Sbarbaro. Neural networks for nonlinear
internal model control. Control Theory and Applications,
IEE Proceedings D, 138(5):431–438, 1991.

[30] A. Isidori. Nonlinear Control Systems. Springer, 1995.

[31] H.K. Khalil. Nonlinear Systems. Prentice Hall, 1996.

[32] A. Kwiatkowski and H. Werner. LPV control of a 2-DOF
robot using parameter reduction. In Proceedings of the IEEE
Conference on Decision and Control and European Control
Conference, Seville, Spain, 2005.

[33] J.B. Lasserre. Moments, Positive Polynomials and Their
Applications. Imperial College Press, 2009.

[34] A.U. Levin and K.S. Narendra. Control of nonlinear
dynamical systems using neural networks. II. observability,
identification, and control. IEEE Transactions on Neural
Networks, 7(1):30–42, 1996.

[35] F.L. Lewis, D. Vrabie, and K.G.
Vamvoudakis. Reinforcement learning and feedback control:
Using natural decision methods to design optimal adaptive
controllers. Control Systems, IEEE, 32(6):76–105, 2012.

[36] L. Magni, D.M. Raimondo, and F. Allgower. Nonlinear
model predictive control - towards new challenging
applications. In Lecture Notes in Control and Information
Sciences. Springer, 2009.

[37] C. Maier, C. Bohm, F. Deroo, and F. Allgower. Predictive
control for polynomial systems subject to constraints using
sum of squares. In 49th IEEE Conference on Decision and
Control, Atlanta, GA, USA, 2010.

[38] M. Milanese, I. Gerlero, C. Novara, G. Conte, M. Cisternino,
C. Pedicini, V. Alfieri, and S. Mosca. Nonlinear mimo
data-driven control design for the air and charging systems
of diesel engines. In SAE - ICE2015 - 12th International
Conference on Engines and Vehicles, 2015.

[39] M. Milanese and C. Novara. Set membership identification
of nonlinear systems. Automatica, 40/6:957–975, 2004.

[40] M. Milanese and C. Novara. Model quality in identification
of nonlinear systems. IEEE Transactions on Automatic
Control, 50(10):1606–1611, 2005.

[41] M. Milanese and C. Novara. Computation of local radius of
information in SM-IBC identification of nonlinear systems.
Journal of Complexity, 23:937–951, 2007.

[42] M. Milanese and C. Novara. Unified set membership
theory for identification, prediction and filtering of nonlinear
systems. Automatica, 47(10):2141–2151, 2011.

15

[43] K. S. Narendra and K. Parthasarathy. Identification and
control of dynamical systems using neural networks. IEEE
Transactions on Neural Networks, 1(1):4–27, 1990.

[44] S.G. Nersesov and M.M. Haddad. On the stability and
control of nonlinear dynamical systems via vector Lyapunov
functions. IEEE Transactions on Automatic Control,
51(2):203 – 215, 2006.

[45] M. Norgaard, O. Ravn, N. Poulsen, and L. K. Hansen. Neural
Networks for Modeling and Control of Dynamic Systems.
Springer, 2000.

[46] C. Novara. Set membership identification of state-space
LPV systems. In P. Lopes dos Santos, T.P. Azevedo
Perdicoúlis, C. Novara, J.A. Ramos, and D.E. Rivera,
editors, Linear Parameter-Varying System Identification –
New Developments and Trends, Advanced Series in Electrical
and Computer Engineering Vol. 14, pages 65–93. World
Scientific, 2011.

[47] C. Novara. Sparse identification of nonlinear functions
and parametric set membership optimality analysis. IEEE
Transactions on Automatic Control, 57(12):3236–3241, 2012.

[48] C. Novara. Polynomial model inversion control: numerical
tests and applications. arXiv, (1509.01421), 2015.

[49] C. Novara, M. Canale, M. Milanese, and M.C. Signorile.
Set Membership inversion and robust control from data of
nonlinear systems. International Journal of Robust and
Nonlinear Control, 24(18):3170–3195, 2014.

[50] C. Novara, L. Fagiano, and M. Milanese. Direct feedback
control design for nonlinear systems. Automatica, 49(4):849–
860, 2013.

[51] C. Novara and S. Formentin. Data-Driven Inversion-Based
Control of Nonlinear Systems with Guaranteed Closed-
Loop Stability. IEEE Transactions on Automatic Control,
63(4):1147–1154, 2018.

[52] C. Novara, S. Formentin, S.M. Savaresi, and M. Milanese.
Data-driven design of two degree-of-freedom nonlinear
controllers: the D2-IBC approach. Automatica, 72:19–27,
2016.

[53] C. Novara and M. Karimshoushtari. A data-driven model
inversion approach to cancer immunotherapy control. In
55th IEEE Conference on Decision and Control, Las Vegas
(Nevada), USA, 2016.

[54] C. Novara, I. Rabbone, and D. Tinti. Data-driven
polynomial mpc and application to blood glucose regulation
in a diabetic patient. In Proc. of the European Control
Conference, pages 1722–1727, Limassol, Cyprus, 2018.

[55] C. Novara, T. Vincent, K. Hsu, M. Milanese, and K. Poolla.
Parametric identification of structured nonlinear systems.
Automatica, 47(4):711 – 721, 2011.

[56] R.S. Parker. Nonlinear model predictive control of
a continuous bioreactor using approximate data-driven
models. In American Control Conference, Anchorage, AK,
USA, 2002.

[57] P.A. Parrilo. Structured Semidefinite Programs and Semi-
algebraic Geometry Methods in Robustness and Opti-
mization. PhD thesis, California Institute of Technology,
2000.

[58] M.M. Polycarpou. Stable adaptive neural control scheme
for nonlinear systems. IEEE Transactions on Automatic
Control, 41(3):447–451, 1996.

[59] Z. Qu. Robust Control of Nonlinear Uncertain Systems.
Wiley series in nonlinear science, 1998.

[60] J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B.Delyon,
P. Glorennec, H. Hjalmarsson, and A. Juditsky. Nonlinear
black-box modeling in system identification: a unified
overview. Automatica, 31:1691–1723, 1995.

[61] G. Ravi Sriniwas and Y. Arkun. A global solution
to the nonlinear model predictive control algorithms
using polynomial arx models. Computers and Chemical
Engineering, 21(4):431–439, 1997.

[62] R Tibshirani. Regression shrinkage and selection via the
Lasso. Royal. Statist. Soc B., 58(1):267–288, 1996.

[63] J.A. Tropp. Just relax: convex programming methods for
identifying sparse signals in noise. IEEE Transactions on
Information Theory, 52(3):1030 –1051, mar. 2006.

[64] P. Tseng. Convergence of a block coordinate descent method
for nondifferentiable minimization. J. of Optimization
Theory and Applications, 109(3):475–494, 2001.

[65] B. Yao and M. Tomizuka. Adaptive robust control of MIMO
nonlinear systems in semi-strict feedback forms. Automatica,
37, 2001.

[66] A. Yesildirek and L. Lewis. Feedback linearization using
neural networks. Automatica, 31(11):1659–1664, 1995.

[67] Shen Yin, Hao Luo, and S.X. Ding. Real-time
implementation of fault-tolerant control systems with
performance optimization. IEEE Transactions on Industrial
Electronics, 61(5):2402–2411, 2014.

16

