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DIRECTIONS SETS: A GENERALIZATION OF RATIO SETS

PAOLO LEONETTI and CARLO SANNA )

Abstract
For every integer k ≥ 2 and every A ⊆ N, we define the k-directions sets of A as Dk(A) := {a/‖a‖ : a ∈ Ak}

and Dk(A) := {a/‖a‖ : a ∈ Ak}, where ‖ · ‖ is the Euclidean norm and Ak := {a ∈ Ak : ai , a j for all i , j}.
Via an appropriate homeomorphism, Dk(A) is a generalization of the ratio set R(A) := {a/b : a, b ∈ A},
which has been studied by many authors. We study Dk(A) and Dk(A) as subspaces of S k−1 := {x ∈
[0, 1]k : ‖x‖ = 1}. In particular, generalizing a result of Bukor and Tóth, we provide a characterization
of the sets X ⊆ S k−1 such that there exists A ⊆ N satisfying Dk(A)′ = X, where Y ′ denotes the set of
accumulation points of Y . Moreover, we provide a simple sufficient condition for Dk(A) to be dense in
S k−1. We conclude leaving some questions for further research.

2010 Mathematics subject classification: primary 11B05; secondary 11A99.
Keywords and phrases: Accumulation points, closure, ratio sets.

1. Introduction
Given A ⊆ N, its ratio set is defined as R(A) := {a/b : a, b ∈ A}. The study of
the topological properties of R(A) as a subspace of [0,+∞], especially the question of
when R(A) is dense in [0,+∞], is a classical topic and has been considered by many
researchers [1–4, 10, 12, 13, 19–23]. More recently, some authors have also studied
R(A) as a subspace of the p-adic numbers Qp [6, 8, 9, 14, 15, 17].

We consider a further variation on this theme, which stems from the following easy
observation: We have that [0,+∞] is homeomorphic to S 1 := {x ∈ [0, 1]2 : ‖x‖ = 1}
via the map x 7→ (1, x)/‖(1, x)‖, if x ∈ [0,+∞), and +∞ 7→ (0, 1). This sends R(A) onto
D2(A) := {ρ(a) : a ∈ A2}, where ρ(a) := a/‖a‖ for each a , 0. Hence, topological
questions about R(A) as a subspace of [0,+∞] are equivalent to questions about D2(A)
as a subspace of S 1. The novelty of this approach is that it can be generalized to higher
dimensions. For every integer k ≥ 2, define the k-directions sets of A as

Dk(A) := {ρ(a) : a ∈ Ak} and Dk(A) := {ρ(a) : a ∈ Ak},

where for every set B we let Bk := {b ∈ Bk : bi , b j for all i , j} denote the set of
k-tuples with pairwise distinct entries in B. Put also S k−1 := {x ∈ [0, 1]k : ‖x‖ = 1}.
We shall study Dk(A) and Dk(A) as subspaces of S k−1.
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Bukor and Tóth [3] characterized the subsets of [0,+∞] that are equal to R(A)′ for
some A ⊆ N, where Y ′ denotes the set of accumulation points of Y . In terms of D2(A),
via the homeomorphism [0,+∞]→ S 1 mentioned above, their result is the following:

Theorem 1.1. Let X ⊆ S 1. Then there exists A ⊆ N such that X = D2(A)′ if and only if
the following conditions are satisfied:

(i) X is closed;

(ii) (x1, x2) ∈ X implies (x2, x1) ∈ X;

(iii) if X is nonempty, then (1, 0) ∈ X.

Note that Theorem 1.1 holds also if D2(A) is replaced by D2(A). Indeed, D2(A) ⊆
D2(A) ⊆ D2(A) ∪ {ρ(1, 1)} and consequently D2(A)′ = D2(A)′.

Our first result generalizes Theorem 1.1. Before stating it, we need to introduce
some notation. Let x = (x1, . . . , xk) ∈ S k−1. For every permutation π of {1, . . . , k},
we put π(x) := (xπ(1), . . . , xπ(k)). Also, for every I ⊆ {1, . . . , k}, we say that I meets x
if there exists j ∈ I such that x j , 0. In such a case, we put ρI(x) := ρ(y), where
y = (y1, . . . , yk) is defined by yi := xi if i ∈ I, and yi := 0 for i < I. (This is well defined
since y , 0.)

Our first result is the following:

Theorem 1.2. Let X ⊆ S k−1 for some integer k ≥ 2. Then there exists A ⊆ N such that
X = Dk(A)′ if and only if the following conditions are satisfied:

(i) X is closed;

(ii) x ∈ X implies π(x) ∈ X, for every permutation π of {1, . . . , k};

(iii) x ∈ X implies ρI(x) ∈ X, for every I ⊆ {1, . . . , k} that meets x.

Note that Theorem 1.2 is indeed a generalization of Theorem 1.1, since ρI(x) ∈
{x, (1, 0), (0, 1)} for every I ⊆ {1, 2} that meets x ∈ S 1. Furthermore, for k ≥ 3,
Theorem 1.2 is false if Dk(A) is replaced by Dk(A) (see Remark 2.1 below).

Now we turn our attention to the question of when Dk(A) is dense in S k−1. First,
we have the following easy proposition.

Proposition 1.3. Let k ≥ 2 be an integer and fix A ⊆ N. We have that Dk(A) is dense
in S k−1 if and only if Dk(A) is dense in S k−1.

Proof. On the one hand, since Dk(A) ⊆ Dk(A), if Dk(A) is dense in S k−1 then Dk(A)
is dense in S k−1. On the other hand, suppose that Dk(A) is dense in S k−1. Then, for
every x ∈ S k−1 ∩Rk, there exists a(n) ∈ Ak such that ρ(a(n))→ x. Consequently, for all
sufficiently large n we have a(n) ∈ Ak. This implies that Dk(A) is dense in S k−1 ∩ Rk.
Since S k−1 ∩ Rk is dense in S k−1, we get that Dk(A) is dense in S k−1, as desired. �

The next result shows that if Dk(A) is dense in S k−1, for some integer k ≥ 3 and
A ⊆ N, then Dk−1(A) is dense in S k−2, but the opposite implication is false.
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Theorem 1.4. Let k ≥ 3 be an integer. On the one hand, if Dk(A) is dense in S k−1, for
some A ⊆ N, then Dk−1(A) is dense in S k−2. On the other hand, there exists A ⊆ N
such that Dk(A) is not dense in S k−1 but Dk−1(A) is dense in S k−2.

We also provide a simple sufficient condition for Dk(A) to be dense in S k−1.

Theorem 1.5. Let A ⊆ N. If there exists an increasing sequence an ∈ A such that
an−1/an → 1, then Dk(A) is dense in S k−1 for every integer k ≥ 2.

The case k = 2 of Theorem 1.5 was proved by Starni [19] (hereafter, we tacitly
express all the results about R(A) in terms of D2(A)), who also showed that the
condition is sufficient but not necessary.

Let P be the set of prime numbers. It is known that D2(P) is dense in S 1 [13, 19]
(see also [5, 7, 16, 18] for similar results in number fields). Let pn be the nth
prime number. As a consequence of the Prime Number Theorem, we have that
pn ∼ n log n [11, Theorem 8]. Hence, pn−1/pn → 1 and thus Theorem 1.5 yields
the following:

Corollary 1.6. Dk(P) is dense in S k−1, for every integer k ≥ 2.

We leave the following questions to the interested readers:

Question 1.7. What is a simple characterization of the sets X ⊆ S k−1, k ≥ 2, such that
there exists A ⊆ N satisfying X = Dk(A)′ ?

Question 1.8. Strauch and Tóth [20] proved that if A ⊆ N has lower asymptotic
density at least 1/2, then D2(A) is dense in S 1. Moreover, they showed that for every
δ ∈ [0, 1/2) there exists some A ⊆ N with lower asymptotic density equal to δ and
such that D2(A) is not dense in S 1. How can these results be generalized to Dk(A) with
k ≥ 3 ?

Question 1.9. Bukor, Šalát, and Tóth [4] proved that N can be partitioned into three
sets A, B, C, such that none of D2(A), D2(B), D2(C) is dense in S 1. Moreover, they
showed that such a partition is impossible using only two sets. How can these results
be generalized to Dk(A) with k ≥ 3 ?

Notation We use N to denote the set of positive integers. We write vectors in bold
and we use subscripts to denote their components, so that x = (x1, . . . , xk). Also,

we put ‖x‖ :=
√

x2
1 + · · · + x2

k for the Euclidean norm of x. If X is a subset of a
topological space T , then X′ denotes the set of accumulation points of X. Given a
sequence x(n) ∈ T , we write x(n) →• x to mean that x(n) → x as n → +∞ and x(n) , x
for infinitely many n.

2. Proof of Theorem 1.2

Only If Part. Suppose that X = Dk(A)′ for some A ⊆ N. We shall prove that
X satisfies (i)–(iii). Clearly, X is closed, since it is a set of accumulation points.
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Hence, (i) holds. Pick x ∈ X. Then there exists a sequence a(n) ∈ Ak such that
ρ(a(n)) →• x. In particular, this implies that ‖a(n)‖ → +∞ and that A is infinite. Let π
be a permutation of {1, . . . , k}. Setting b(n) := π(a(n)), it follows easily that b(n)

∈ Ak

and ρ(b(n)) →• π(x). Consequently, π(x) ∈ X and (ii) holds. Finally, assume that
I ⊆ {1, . . . , k} meets x. Up to passing to a subsequence of a(n), we can assume that
each sequence a(n)

i , with i ∈ {1, . . . , k}, is nondecreasing. Recalling that A is infinite,
this implies that we can fix k − #I distinct ci ∈ A, with i ∈ {1, . . . , k} \ I, such that
d(n)
∈ Ak for every sufficiently large n ∈ N, where d(n)

∈ Nk is defined by d(n)
i := a(n)

i

if i ∈ I, and d(n)
i := ci if i < I. Since I meets x, there exists j ∈ I such that x j , 0,

which in turn implies that a(n)
j → +∞ and consequently ‖d(n)

‖ → +∞. At this point, it
follows easily that ρ(d(n))→• ρI(x). Hence, ρI(x) ∈ X and (iii) holds too.

If Part. Suppose that X ⊆ S k−1 satisfies (i)–(iii). We shall prove that there exists
A ⊆ N such that X = Dk(A)′. Since X is a closed subset of S k−1, we have that X has a
countable dense subset, say Y := {y(m) : m ∈ N}.

Claim 1. There exists a sequence c(m) such that:

(c1) c(m) ∈ Nk for every m ∈ N;

(c2) m 7→ ρ(c(m)) is an injection;

(c3)
∣∣∣ 1
m! c

(m)
i − y(m)

i

∣∣∣→ 0, for every i ∈ {1, . . . , k};

(c4)
∥∥∥ρ(c(m)) − y(m)

∥∥∥→ 0.

Proof. For every m ∈ N and i ∈ {1, . . . , k}, we define c(m)
i := bm! y(m)

i c + s(m)
i + t(m),

where s(m) ∈ Nk and t(m) ∈ N will be chosen later. For each m ∈ N, it is easy to see that
we can choose s(m) ∈ {1, . . . , k}k such that c(m) ∈ Nk. (Note that this property does not
depend on t(m).) We make this choice so that (c1) holds. Now note that for every fixed
u, v ∈ R+, with u , v, the function R+ → R : t 7→ u+t

v+t is injective. Therefore, for each
m ∈ N we can choose t(m) ∈ {1, . . . ,m} such that c(m)

1 /c(m)
2 , c(`)

1 /c(`)
2 for every positive

integer ` < m. In turn, this choice implies that (c2) holds. At this point, both (c3) and
(c4) follow easily. �

Define A :=
⋃k

i=1 Ai, where Ai := {c(m)
i : m ∈ N} for every i ∈ {1, . . . , k}. We claim

that X = Dk(A)′.

First, let us prove that X ⊆ Dk(A)′. Pick some x ∈ X. Since Y is a dense subset of
X, there exists an increasing sequence of positive integers (mn)n∈N such that y(mn) → x.
By the definition of A and by (c1), we have that c(mn) ∈ Ak. Moreover, (c2) and (c4)
imply that ρ(c(mn))→• x. Hence, we have x ∈ Dk(A)′, as desired.

Now let us prove that Dk(A)′ ⊆ X. Pick x ∈ Dk(A)′. Then there exists a sequence
a(n) ∈ Ak such that ρ(a(n)) →• x. Up to passing to a subsequence, we can assume
that there exist some j1, . . . , jk ∈ {1, . . . , k} such that a(n) ∈ A j1 × · · · × A jk for every
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n ∈ N. In turn, this implies that there exists a sequence m(n) ∈ Nk such that a(n)
i = c(m(n)

i )
ji

for every n ∈ N and i ∈ {1, . . . , k}. Thanks to (ii), without loss of generality, we can
reorder the entries of a(n). Hence, up to reordering and up to passing to a subsequence,

we can assume that there exists h ∈ {1, . . . , k} such that y
(m(n)

1 )
j1

, . . . , y
(m(n)

h )
jh

, 0 and

y
(m(n)

h+1)
jh+1

= · · · = y
(m(n)

k )
jk

= 0 for every n ∈ N. Similarly, again up to reordering and up
to passing to a subsequence, we can assume that there exists ` ∈ {1, . . . , h} such that
m(n)

1 = · · · = m(n)
`
> m(n)

`+1 ≥ · · · ≥ m(n)
h for every n ∈ N. In particular, since a(n) ∈ Ak for

every n ∈ N, we get that j1, . . . , j` are pairwise distinct. Let π be any permutation of
{1, . . . , k} such that π(i) = ji for all i ∈ I := {1, . . . , `}. Note that I meets π(y(m(n)

1 )) for
every n ∈ N. Put z(n) := ρI(π(y(m(n)

1 ))) for every n ∈ N. Hence, by (ii) and (iii) we have

that z(n) ∈ X for every n ∈ N. Thanks to (c3), we have that
∣∣∣ 1
m(n)

1 !
a(n)

i − y
(m(n)

1 )
ji

∣∣∣ → 0 for

each i ∈ I, and 1
m(n)

1 !
a(n)

i → 0 for each i ∈ {1, . . . , k} \ I, as n→ +∞. As a consequence,∥∥∥ρ(a(n)) − z(n)
∥∥∥ → 0, which in turn implies that z(n) → x. Finally, since X is closed by

(i), we obtain that x ∈ X, as desired.
The proof is complete.

Remark 2.1. We note that for k ≥ 3 the statement of Theorem 1.2 is false if Dk(A)
is replaced by Dk(A). In fact, fix an integer k ≥ 3 and let X be the subset of
S k−1 containing all the permutations of η := ρ(1,

√
2, 0, . . . , 0) and ρ(1, 0, . . . , 0)

(and nothing else). It follows by Theorem 1.2 that there exists A ⊆ N such that
X = Dk(A)′. For the sake of contradiction, let us suppose that there exists B ⊆ N such
that X = Dk(B)′. Since η ∈ X, there exists a sequence b(n)

∈ Bk such that ρ(b(n)) →• η.
Let c(n) ∈ Nk be the sequence defined by c(n)

i = b(n)
1 if i , 2, and c(n)

i := b(n)
2 if i = 2. We

obtain that c(n) ∈ Bk and ρ(c(n)) →• θ, where θ := ρ(1,
√

2, 1, . . . , 1). (Here we have
used that η1/η2 is irrational and consequently ρ(c(n)) , θ.) Therefore, θ ∈ Dk(B)′ = X,
which is a contradiction.

3. Proof of Theorem 1.4
Let k ≥ 3 be an integer and let A ⊆ N. Suppose that Dk(A) is dense in S k−1.

We shall prove that Dk−1(A) is dense in S k−2. For every x ∈ S k−2, let fk(x) ∈ S k−1

be defined by fk(x) := ρ(x1, . . . , xk−1, 0). Since Dk(A) is dense in S k−1, we have that
there exists a sequence a(n) ∈ Ak such that ρ(a(n)) → fk(x). In turn, this implies that
ρ(b(n)) → x, where b(n)

∈ Ak−1 is defined by b(n)
i := a(n)

i for i ∈ {1, . . . , k − 1}. Hence,
Dk−1(A) is dense in S k−2, as desired.

Now given an integer k ≥ 3, we shall prove that there exists A ⊆ N such that
Dk−1(A) is dense in S k−2, but Dk(A) is not dense in S k−1. Let X := {x ∈ S k−1 : xi =

0 for some i}. Clearly, X satisfies conditions (i)–(iii) of Theorem 1.2, and consequently
there exists A ⊆ N such that Dk(A)′ = X. Therefore, Dk(A) is not dense in S k−1 and, in
light of Proposition 1.3, Dk(A) is not dense in S k−1 as well. Finally, for every x ∈ S k−2

we have fk(x) ∈ X, and the same reasonings of the previous paragraph show that
Dk−1(A) is dense in S k−2.
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4. Proof of Theorem 1.5

Suppose that there exists an increasing sequence an ∈ A such that an−1/an → 1.
Fix an integer k ≥ 2 and pick x ∈ S k−1 with x1, . . . , xk > 0. Clearly, for every integer
m ≥ a1 /min{x1, . . . , xk} there exist integers m1, . . . ,mk ≥ 2 such that ami−1 ≤ mxi <
ami for each i ∈ {1, . . . , k}. Hence, for every i ∈ {1, . . . , k}, we have that

xi <
ami

m
≤

ami

ami−1
xi,

which, since mi → +∞ as m → +∞, yields that ami/m → xi as m → +∞. Putting
a(m) := (am1 , . . . , amk ), it follows that ρ(a(m)) → x. Therefore, Dk(A) is dense in S k−1,
as claimed.
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