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Abstract5

We consider a fluid-saturated porous medium exposed to a non-uniform temper-6

ature field, and describe it as a non-isothermal biphasic mixture comprising a solid7

and a two-constituent fluid. We model such a system by assuming that the fluid8

free energy density depends on the gradient of the solute mass fraction. This consti-9

tutive choice induces a coupling between the temperature gradient and the solute10

diffusive mass flux, which adds itself to the standard Soret effect. We present numer-11

ical simulations of a thermogravitational cell to show how the modified constitutive12

framework, which is mandatory in diffuse-interface problems (e.g. the Cahn-Hilliard13

model), could lead to some novel interpretations of thermodiffusion, and enrich the14

phenomenological description of the considered benchmarks.15
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A Cahn-Hilliard Approach to Thermodiffusion

1 Introduction18

The onset of a mass flux by means of a thermal gradient is a phenomenon known as19

thermodiffusion, and its manifestation is said to be the Soret effect. Dually, the Dufour20

effect consists of the generation of a heat flux by means of the concentration gradient21

of a solute in a fluid solution. Such phenomena are referred to as coupled phenomena or22

cross-effects, as they represent the experimental evidence of the coupling between the23

flux of a given extensive quantity and the gradient of a state variable that is not directly24

power-conjugate to it (Bear and Bachmat, 1990). In the following, we shall be merely25

concerned with thermodiffusion and Soret effect.26

In this work, we study a system comprising a porous medium and a two-constituent27

fluid that rearranges its composition under the action of a thermal gradient. In particular,28

we analyse two experiments in which an initially uniform fluid undergoes a separation of29

its constituents due to a mass flux initiated by a temperature gradient. Such experiments,30

performed by using a device known as thermogravitational cell, have been investigated,31

for example, by Jamet et al. (1992), Fargue et al. (1998), and Benano-Melly et al. (2001).32

In the experimental setting pertaining to the so-called pure Soret effect (Tyrrell, 1956),33

an initially uniform solution is put between two horizontal plates, kept at different tem-34

peratures. To reduce convection, the upper plate is held at a temperature higher than35

that of the lower one. Under these conditions, a stationary state can be attained, in which36

the thermal gradient balances the gradient of concentration. In the case of the thermo-37

gravitational cell, the fluid mixture is initially uniform, but the surfaces kept at different38

temperatures are vertical, which implies that the fluid velocity influences the mass trans-39

port of the mixture constituents by means of convection currents as well as solutal and40

thermal dispersion (Benano-Melly et al., 2001). We remark, however, that both in the41

description given by Tyrrell (1956) and in that provided by Benano-Melly et al. (2001),42

the common feature of thermodiffusion is the capability of developing a concentration43

gradient from an initially uniform mixture.44

As second-order contributions, the Soret and Dufour effects are often disregarded.45

There are cases, however, in which they play an appreciable role. Ingle and Horne (1973)46
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and Rowley and Horne (1980) addressed thermal diffusion and the Dufour effect in mix-47

tures of organic fluids of different composition. The Soret effect was observed in vari-48

ous physical frameworks, such as solar ponds (Celestino et al., 2006) and compact clays49

(Rosanne et al., 2001). Moreover, the thermally induced solutal separation has been inves-50

tigatefd by several authors (Fargue et al., 1998; Zhang et al., 1999; Benano-Melly et al.,51

2001; Rauch and Köhler, 2002, 2003; Fargue et al., 2004; Grillo et al., 2011; Srinivasan52

and Saghir, 2013) both for organic and inorganic compounds. A review on experimental53

results about the Soret effect is provided by Platten (2006).54

Thermodiffusion has attracted several scientists also in more recent times and, in fact,55

studies on Soret and Dufour effects in non-Darcy porous media have been conducted, for56

example, by RamReddy et al. (2016), Yadav and Kim (2015), Mallikarjuna et al. (2014),57

and Srinivasacharya et al. (2014). Soret and Dufour effects have also been investigated by58

Harinath Reddy et al. (2016) for the case of “radiation absorption fluid”, and by Chandra59

Shekar et al. (2016) for the case of magnetohydrodynamic “natural convective heat and60

solute transfer”. Moreover, Veeresh et al. (2016) analysed “thermal diffusion effects in61

unsteady magnetohydrodynamic” problems.62

The theory of thermodiffusion constitutes an important chapter of Non-Equilibrium63

Thermodynamics. The mathematical apparatus on which it is developed relies on the64

Curie Principle and the Onsager-Casimir reciprocity relations (De Groot and Mazur,65

1984; Bear and Bachmat, 1990). These are invoked to express the mass and heat fluxes66

as functions of both the gradient of temperature and the gradient of the solutal relative67

chemical potential.68

In fact, thermodiffusion is the manifestation of a symmetry-breaking that occurs in69

a mixture exposed to a thermal gradient, with the system passing from a uniform to a70

non-uniform distribution of mass, and the separation of the mixture’s components being71

the most relevant effect of the non-uniformity of the chemical potential.72

The main idea of our work is to capture the symmetry-breaking associated with the73

phenomenon of thermodiffusion in the constitutive formulation of the Helmholtz free74

energy density, Âf , of a two-constituent fluid. To this end, we choose the mass fraction of75
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one of the constituents of the mixture as the order parameter of the system, and prescribe76

Âf to be a function of all the state variables of the standard framework of thermodiffusion77

and of the gradient of the selected order parameter. In particular, we assume that Âf is78

of the Cahn-Hilliard type.79

The Cahn-Hilliard model was originally conceived for two-phase flows of non-miscible80

(or weakly miscible) fluids (Anderson and McFadden, 1998; Lowengrub and Truskinovsky,81

1998). It is a mean-field approach that is able to describe also separation processes, which82

are driven by the presence of a superficial tension between the phases, culminating with83

the formation of a diffuse interface between two species. Such separation process can be84

affected also by the presence of a thermal field (Jasnow and Vinals, 1996). Choosing a85

Helmholtz free energy density of the Cahn-Hilliard type allows to account for end-wall86

effects and for the spatial resolution of the solutal mass fraction at the constitutive level,87

and induces a spontaneous coupling between mass diffusion and thermal gradients. We88

remark that this coupling stems from the constitutive framework, rather than being a89

consequence of the Curie Principle and Onsager’s relations. From the theoretical view-90

point, its major consequence is the production of a non-standard Soret effect, which adds91

itself to the one of standard thermodiffusion. To quantify the relevance of our theoretical92

predictions, we reproduce numerically the experiments in a thermogravitational cell by93

enforcing both the standard and the non-standard (i.e., Cahn-Hilliard based) model of94

thermodiffusion. We show how the latter may be used as an additional tool for fitting95

experimental curves, thereby supplying a correction to the results obtained within the96

classical framework.97

Although the Cahn-Hilliard model has been employed especially in the numerical98

treatment of two-fluid systems, there is an analogy between this higher order theory99

and the one developed in the framework of Mixture Theory. Indeed, the Cahn-Hilliard100

model describes the two-fluid system by means of the usual mass and momentum balance101

law of a single-fluid system, plus an evolution law for an order parameter, which in fact102

can be retrieved from the mass balance law of one of the two fluids, if it is regarded as103

a component of a binary mixture. This leads to the definition of two distinct regions,104
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each of which is occupied by one of the two fluids only, and a third region, the diffuse105

interface, whose characteristic dimensions should be smaller than the other two bulk106

domains. In the latter, the mixture model can be employed tout court, while in the other107

two, the order parameter acts as a weight, switching off those terms in the equations108

that pertain to the mixture description. From our understanding, in a two-fluid system,109

the explicit modelling of a diffuse interface could be done for two main reasons: (a) to110

avoid the numerical treatment of the discontinuities at the interface between the fluids,111

which pertains to the sharp interface models (Yue et al., 2004); (b) when the dynamical112

phenomena occurring in that layer influence the entire system, as in the case of an evident113

surface tension, or non negligible diffusion in the transition zone. Still, the mathematical114

introduction of a diffuse interface, arising in the Cahn-Hilliard model, has been used115

for miscible fluids in which dynamical effects that mimic the presence of an interfacial116

tension are, at least instantaneously, relevant (Joseph et al., 1996). This could be the case117

of a mixing problem, in which the Korteweg stress, i.e., an additional stress appearing118

in the momentum balance law of the whole system due to the presence of a gradient of119

composition, should be taken into account as a surface tension that vanishes as far as the120

mixing layer spreads (Davis, 1988). Moreover, a dedicated literature (Swernsath et al.,121

2010; Chen et al., 2017, 2015; Dias et al., 2010) introduces the effects of the Korteweg122

stress tensor also for treating the injection of miscible fluids in porous media, or in the123

case of unsaturated flow Cueto-Felgueroso et al. (2009).124

Our study has been inspired by some discrepancies between the experimental and125

the numerical studies of the curves “separation ratio vs permeability” associated with126

a thermogravitational cell (Benano-Melly et al., 2001; Jamet et al., 1992; Fargue et al.,127

1998). Numerical results obtained within the classical framework of thermodiffusion were128

compared with the experimental ones by Jamet et al. (1992), and quite a relevant dis-129

agreement was noticed. It was observed that the evolution of the fluid in the thermo-130

gravitational cell is strongly influenced by the permeability and porosity of the porous131

medium (Jamet et al., 1992; Davarzani and Marcoux, 2011), by the characteristic dimen-132

sion of the cell, the initial mass fraction of the solute, and the physico-chemical properties133
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of the mixture. Jamet et al. (1992) firstly attributed the discrepancy between the numer-134

ical and the experimental results to an anisotropic permeability. Subsequently, Benano-135

Melly et al. (2001) considered also the effect of dispersion. Latest results are due to136

Nasrabadi et al. (2007), who showed that, by adding a compositional dependence of the137

Soret coefficient on the density (by means of a pressure dependent density), it is possi-138

ble to obtain, at least for a binary mixture in a porous thermogravitational column, a139

good agreement between the experimental and numerical results, even though no further140

contribution of dispersion in the model is observed. The strong effect of the buoyancy141

term on the goodness of the results of the proposed classical models on thermodiffusion142

was also observed by Madariaga et al. (2011). For a non porous column (Thomaes cell),143

thermodiffusion is strongly affected by non trivial natural convection, which, in some144

cases (i.e., when the mean velocity of the mixture in the column is high), requires a full145

3D treatment (Chavepeyer et al., 2002). A review has been given by Costeséque et al.146

(2002). Another fact concerns the closure problem, which could lead to a more or less re-147

alistic coarse scale approximation of the problem (effective thermodiffusion coefficients)148

(Quintard et al., 1997; Davarzani et al., 2010).149

In the following, we show that adopting a Helmholtz free energy density of the Cahn-150

Hilliard type supplies a correction to the mass flux determined within the standard theory151

of thermodiffusion. Such a correction produces an additional coupling between the ther-152

mal gradient and the mass flux, and introduces a dispersive-like effect, which is related153

to the gradient of the solute mass fraction rather than to the fluid velocity. Although154

we are aware of the fact that the experimental set-up of the thermogravitational cell155

gives rise to convection currents, we focus here only on the effects associated with the156

use of a Helmholtz free energy density of the Cahn-Hilliard type. This may contribute157

to enrich the phenomenological picture of thermodiffusion and to stimulate alternative158

interpretations of the effects related to it.159

The paper is structured as follows: In section 2, the mathematical model is developed160

in detail, and the Second Principle of Thermodynamics is exploited to determine con-161

sistent generalisations of the Fick and Darcy’s laws in the context of Porous Media. In162
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section 3, we review the standard theory of thermodiffusion, and reformulate it within163

the Cahn-Hilliard framework. In section 4, we present the benchmark problems used for164

our numerical simulations, and introduce the employed numerical methods and model165

parameters. In section 5, we discuss in detail the obtained results, and validate our model166

by comparing its outputs with the experimental and numerical findings of other Authors.167

Particular care will be given to weighting the influence of the Cahn-Hilliard correction.168

Finally, in section 6, we summarise our results, and suggest some possible research topics.169

2 Mathematical Model170

We consider a physical system consisting of a two-constituent fluid, F, and a porous171

medium, P. The fluid is free to move throughout the void space of P, and is assumed to172

saturate it completely. Due to the hypothesis of saturation, the porosity of P coincides173

with the volumetric fraction of F, denoted by φ, and the volumetric fraction of P is given174

by 1 − φ. At a sufficiently coarse scale of observation, the system under investigation175

can be studied by means of Hybrid Mixture Theory (Hassanizadeh, 1986; Bennethum176

et al., 2000). In this context, F and P can also be referred to as the fluid and solid phase,177

respectively.178

We focus only on the case in which P is rigid, at rest, and incompressible. In particular,179

its mass density, %s, is regarded as a given constant. Thus, the velocity of the solid porous180

medium, us, is null at all times and all points. These assumptions, the mass balance law181

of the solid phase, and the saturation constraint imply that φ is independent of time. In182

the sequel, we shall also assume that φ is constant in space.183

2.1 Balance laws184

The mass balance law of the fluid phase, F, is given by185

∂t(φ%f) + div(φ%fuf) = 0, (1)
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where %f is mass density and uf is the velocity of F. Sometimes it is convenient to186

rewrite (1) in terms of the solid phase velocity, us, and the relative velocity ufs≡uf −us,187

which describes the motion of F relative to P. However, since the velocity of the solid188

phase is null in the present context, it holds that ufs = uf . We denote by C1 and C2 the189

constituents of the fluid phase, and select C1 as the reference constituent. The composition190

of F is determined by the mass fractions of C1 and C2, which are indicated by c1 and c2,191

respectively. Since it holds that c1 + c2 = 1, it suffices to determine the mass fraction192

of the reference constituent, c1 ≡ c, to obtain also c2 = 1 − c, and thus define the local193

amounts of C1 and C2 in F. By introducing the velocity of C1, u1f , and the relative velocity194

v≡u1f − uf , the mass balance law of C1 can be written as195

φ%f ċ+ divJM = 0, (2)

where JM ≡ φ%fcv is the mass flux vector associated with C1, while ċ ≡ ∂tc + uf ·∇c196

is the substantial derivative of c with respect to the velocity of F. In addition to (1)197

and (2), also the balance laws of momentum, energy, and entropy have to be introduced.198

Following Hassanizadeh (1986), it can be shown that, if gravity is the only external force199

acting on the system, if inertial forces are negligible, and the relative velocities ufs and200

v are sufficiently small (i.e., ‖ufs‖2�1 and ‖v‖2�1), the momentum balance laws of F201

and C1 reduce, respectively, to (Hassanizadeh, 1986)202

divσ +m+ φ%fg = 0, (3a)

φ%fc∇ϑ = f . (3b)

In (3a), σ is the Cauchy stress tensor of the fluid phase, g is the gravity acceleration203

vector, and m represents the interaction forces exchanged between P and F. In (3b), f is204

the dissipative part of the interaction forces exchanged between the two fluid constituents,205

and ϑ≡ϑ1−ϑ2 is the relative chemical potential of C1 with respect to C2, whereas ϑ1 and206

ϑ2 are the chemical potentials of the constituents C1 and C2, respectively. Furthermore,207
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the energy balance law for the system as a whole can be written as208

φ%fT η̇f + (1− φ)%sT∂tηs = −divJQ − φ%fϑċ−md · ufs, (4)

where T is absolute temperature, ηf and ηs are the entropy densities per unit mass of the209

fluid and the solid phase, respectively, JQ is referred to as the effective heat flux vector of210

the system, and md is the dissipative part of m. The balance laws (1)–(4) are completed211

with the Second Law of Thermodynamics, which, in the local form of the Clausius-Duhem212

inequality, requires the system’s overall entropy production, Λ, to be non-negative at all213

times and all points of the system, i.e., Λ ≥ 0 (De Groot and Mazur, 1984).214

2.2 Constitutive laws215

The quantities σ, m, md, ϑ, f , ηf , ηs, and JQ will be determined constitutively, and216

should thus comply with the condition Λ ≥ 0. Our constitutive model is based on the217

theory developed by Hassanizadeh (1986) and Bennethum et al. (2000), and is then spe-218

cialised to the problem at hand by enforcing the following further hypotheses (Grillo219

et al., 2011): (1). Radiative sources of energy and mass-exchange processes are excluded220

from the present study; (2). The fluid phase is macroscopically inviscid; (3). The mass221

density of F, %f , is an assigned constitutive function of the mass fraction, c, and absolute222

temperature, T , i.e., we set %f = %̂f(c, T ); (4). The physical processes relevant to the223

investigated problem necessitate the following list of independent constitutive variables224

ICV = {T, c,∇T,∇c,ufs,v}. To provide an explicit mathematical expression of the quan-225

tities introduced so far, and of other constitutive variables necessary for the description226

of the system, we introduce the Helmholtz free energy densities of the solid and the fluid227

phase, As and Af , and express them constitutively as As = Âs(T ) and Af = Âf(c,∇c, T ).228

Within this constitutive framework, the entropy densities of P and F, i.e., ηs and ηf , the229

Cauchy stress tensor borne by F, σ, and the Gibbs free energy density of the fluid phase,230
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2.2 Constitutive laws A Cahn-Hilliard Approach to Thermodiffusion

Gf , are given by:231

ηs = −∂Âs

∂T
, (5a)

ηf = −∂Âf

∂T
+

p

%2
f

∂%̂f

∂T
= −∂Ĝf

∂T
, (5b)

σ = −φpI −∇c⊗

(
φ%f

∂Ĝf

∂∇c

)
, (5c)

Gf = Ĝf(c,∇c, T, p) = Âf(c,∇c, T ) +
p

%̂f(c, T )
, (5d)

where p is the fluid pressure, I is the second-order identity tensor, and the non-hydrostatic232

contribution233

σK ≡ −∇c⊗

(
φ%f

∂Ĝf

∂∇c

)
(6)

is the Korteweg stress tensor. Furthermore, the relative chemical potential, ϑ, reads234

ϑ =

(
∂Âf

∂c
− p

%2
f

∂%̂f

∂c

)
− 1

φ%f

div

(
φ%f

∂Âf

∂∇c

)
(7)

=
∂Ĝf

∂c
− 1

φ%f

div

(
φ%f

∂Ĝf

∂∇c

)
.

Finally, by introducing the system’s heat flux vector, q, and the entropy flux vector235

qη ≡
q

T
+

1

T

(
φ%f

∂Âf

∂∇c

)
ċ =

q

T
+

1

T

(
φ%f

∂Ĝf

∂∇c

)
ċ, (8)

the effective heat flux vector JQ is written as JQ≡Tqη. The presence of ∇c among the236

arguments of Ĝf , cf. (5d), implies that qη cannot be written as the ratio between the q237

and T , as is the case in standard Continuum Thermodynamics (Mićunović, 2009; Gurtin238

et al., 2010). Nevertheless, by construction it does hold that qη = JQ/T .239

A well-known model, constructed upon a free energy density depending on a scalar240

field and its gradient, is the Cahn-Hilliard model (cf., for example, (Gurtin, 1996) for a241

review). It describes the evolution of a two-phase system, in which the distribution of242

the phases is represented by a scalar order parameter, and the free energy is written as243

the sum of a contribution depending on the order parameter only, and a contribution244
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2.2 Constitutive laws A Cahn-Hilliard Approach to Thermodiffusion

depending on the gradient of the order parameter. The order parameter solves a mass245

diffusion equation, in which the mass diffusive flux depends linearly on the gradient of246

the chemical potential of the diffusing substance. In this context, the chemical potential247

is the functional derivative of the system’s free energy.248

Since in our work mass diffusion plays a central role, our thermodynamic model is249

grounded on the Cahn-Hilliard theory. For this purpose, we consider a Helmholtz free250

energy density of the Cahn-Hilliard type, given by251

Âf(c,∇c, T ) = Âst(c, T ) + 1
2
λ‖∇c‖2, (9)

where Âst(c, T ) may be referred to as the standard Helmholtz free energy density, and λ252

is a coefficient having the meaning of a mixing free energy. By plugging (9) into (5d), the253

Gibbs free energy density becomes254

Ĝf(c,∇c, T, p) = Ĝst(c, T, p) + 1
2
λ‖∇c‖2, (10)

where the standard part, Ĝst(c, T, p), is given by255

Ĝst(c, T, p) = Âst(c, T ) +
p

%̂f(c, T )
. (11)

Also the chemical potential, ϑ, can be written as ϑ = ϑst + ϑCH, where256

ϑst =
∂Ĝf

∂c
=
∂Ĝst

∂c
, (12a)

ϑCH = − 1

φ%f

div

(
φ%f

∂Ĝf

∂∇c

)
= − 1

φ%f

div (φ%fλ∇c) . (12b)

We refer to ϑst and ϑCH as to the standard and the Cahn-Hilliard chemical potential,257

respectively. The standard part of the Gibbs free energy of the fluid phase, F, can be258

written as259

Ĝst(c, T, p) = c ϑ̂st1(c, T, p) + (1− c) ϑ̂st2(c, T, p), (13)
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2.3 Entropy production A Cahn-Hilliard Approach to Thermodiffusion

where260

ϑ̂st1(c, T, p) =
RT

M1

log

[
cM2

(1− c)M1 + cM2

]
+ α1(T )p+ β(T ), (14a)

ϑ̂st2(c, T, p) =
RT

M2

log

[
(1− c)M1

(1− c)M1 + cM2

]
+ α2(T )p+ β(T ), (14b)

are the standard chemical potentials associated with the constituents C1 and C2 of F,261

respectively, R is the gas constant, M1 and M2 are the molar masses of C1 and C2, and262

α1(T ), α2(T ), and β(T ) are given functions of the temperature. We remark that ϑ̂st1 and263

ϑ̂st2 are consistent with the equality264

c
∂ϑ̂st1

∂c
+ (1− c)∂ϑ̂st2

∂c
= 0. (15)

When the Cahn-Hilliard model is used to describe binary systems comprising two non-265

miscible fluids, the term 1
2
λ‖∇c‖2 introduces a partial miscibility regularisation (Lowen-266

grub and Truskinovsky, 1998), and λ is referred to as the capillarity coefficient (Jamet,267

2001). In this case, λ should be supplied constitutively. However, it is possible to de-268

termine λ by having recourse to the definition of Cahn number (Choi and Anderson,269

2012; Lowengrub and Truskinovsky, 1998). Hence, we may set λ = CL2ϑref , where L is270

the characteristic length of the computational domain, ϑref is a referential, characteristic271

chemical potential, and C ≡ ξ/L is the Cahn number, i.e., the ratio between the char-272

acteristic meso-scale length ξ, which represents the interface width, and L. Despite these273

considerations, in all the forthcoming numerical simulations, λ will be taken equal to a274

constant known from the outset.275

2.3 Entropy production276

The constitutive relations (5)–(7) allow to obtain an explicit expression for the rate of277

overall entropy production, Λ, which is equal to the ratio between the overall power278
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2.3 Entropy production A Cahn-Hilliard Approach to Thermodiffusion

dissipated by system and the absolute temperature (Grillo et al., 2011), i.e.,279

Λ = −md · ufs

T
− ∇ϑ · JM

T
− ∇T · (JQ − ϑJM)

T 2
≥ 0. (16)

In this work, we admit that the dynamic regime of the fluid phase is compatible with280

Darcy’s law. Thus, we express the dissipative forcemd, which is defined bymd ≡m−p∇φ281

(Hassanizadeh, 1986), as a linear constitutive function of the filtration velocity w ≡282

φufs, i.e., we set md = −rw, where r is a second-order tensor referred to as resistivity283

tensor. Here, we assume that r is symmetric and positive-definite. By accounting for the284

definitions (5c) and (6), we solve (3a) with respect to w, thereby obtaining285

w = −k
µ

[
(∇p− %fg)− 1

φ
divσK

]
, (17)

where k is the permeability tensor, µ is the dynamic viscosity of the fluid, and the identity286

φr−1 = k/µ has been used. Equation (17) is a generalisation to Darcy’s law in which the287

divergence of the Korteweg stress tensor contributes to the fluid filtration velocity. By288

computing σK explicitly, and recalling that φ is assumed to be constant throughout this289

work, we obtain −φ−1divσK = div(%fλ∇c⊗∇c). If the variability of %f is neglected, this290

expression takes on the form (Collins et al., 2013; Diegel et al., 2015)291

−φ−1divσK = div(%fλ∇c⊗∇c) = %fλ(∇∇c)∇c− %fϑCH∇c, (18)

where ϑCH = −λ∆c is the Cahn-Hilliard chemical potential (12b), obtained under the292

hypotheses that φ, %f , and λ are constants. Since r is positive-definite, the first term on293

the right-hand-side of (16) is always non-negative, i.e.,294

ΛF ≡ −
md.ufs

T
=
r : (w ⊗w)

φT
≥ 0, ∀ w, (19)

where ΛF is the part of the overall rate of entropy production associated with the fluid295

flow. Equation (19) implies that, to satisfy the inequality (16), it is sufficient to require296

that the part of Λ due to mass diffusion and heat conduction, denoted by ΛMQ hereafter,297
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has to be non-negative. This requirement can be put in one of the two equivalent forms298

ΛMQ = −∇ϑ · JM

T
− ∇T · (JQ − ϑJM)

T 2
≥ 0, (20a)

ΛMQ = −JM · ∇
(
ϑ

T

)
− JQ ·

∇T
T 2
≥ 0, (20b)

and is enforced in order to extract constitutive information on the heat flux vector JQ299

and on the mass diffusive flux vector JM.300

3 Thermodiffusion301

In spite of the fact that (20a) and (20b) are interchangeable representations of ΛMQ,302

selecting one of these two possible forms has repercussions on the constitutive expressions303

of the fluxes JM and JQ and on the interpretation of the phenomenological coefficients304

featuring in these expressions. A thorough review on this issue was written by De Groot305

and Mazur (1984). In this work, we adhere to the formulation given in (20b) (cf. De Groot306

and Mazur (1984), Ch. 5, Sec. 3, p. 49).307

3.1 Standard thermodiffusion308

In this section, we make a brief review on standard thermodiffusion. For this purpose, we309

take a step backwards and consider the thermodynamic framework in which the Helmholtz310

free energy density of the fluid phase is a function of c and T only, i.e., Af = Âf(c, T ) ≡311

Âst(c, T ). When this is the case, the relative chemical potential reduces to the standard312

one, i.e., ϑ = ϑst, and ΛMQ becomes313

ΛMQ = −JM · ∇
(
ϑst

T

)
− JQ ·

∇T
T 2
≥ 0. (21)

Hence, within the linear theory of the phenomenological laws for isotropic media, the314

fluxes JM and JQ are connected with the gradients −∇(ϑst/T ) and −(∇T )/T 2 = ∇(1/T )315
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through the formulae (De Groot and Mazur, 1984; Rauch, 2006)316

JM = −LMM∇
(
ϑst

T

)
− LMQ

∇T
T 2

, (22a)

JQ = −LQM∇
(
ϑst

T

)
− LQQ

∇T
T 2

, (22b)

where LMM, LMQ, LQM, and LQQ are scalar phenomenological coefficients, constrained to317

satisfy Onsager’s reciprocal relations LMQ = LQM. By working out the gradient of ϑst/T ,318

splitting the gradient of ϑst, and introducing the specific relative enthalpy hst, i.e.,319

∇ϑst = ∇Tϑst +
∂ϑst

∂T
∇T, (23a)

hst ≡ ϑst − T
∂ϑst

∂T
, (23b)

the expressions of JM and JQ become320

JM = −LMM

T
∇Tϑst − (LMQ − hstLMM)

∇T
T 2

, (24a)

JQ = −LQM

T
∇Tϑst − (LQQ − hstLQM)

∇T
T 2

. (24b)

The partial gradient ∇Tϑst is obtained by holding temperature fixed and differentiating321

with respect to all other state variables. Since it follows from (12a) that ϑst depends on322

the mass fraction, c, temperature, T , and pressure, p, i.e., ϑst = ϑ̂st(c, T, p), it holds that323

∇Tϑst =
∂ϑ̂st

∂c
∇c+

∂ϑ̂st

∂p
∇p. (25)

Substituting the second term on the right-hand-side of (25) into (24a) and (24b) leads324

to the baro-diffusion factor (Landau and Lifschitz, 1984) kp ≡ p∂ϑ̂st/∂p

∂ϑ̂st/∂c
, which vanishes325

identically for c = 0 and c = 1. Since the baro-diffusion factor usually has a negligible326

influence on the fluxes JM and JQ, we approximate ∇Tϑst with the first summand on the327
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right-hand-side of (25). Furthermore, by introducing the quantities328

D ≡ 1

%f

LMM

T

∂ϑ̂st

∂c
, (26a)

Sst ≡
1

(1− c)c
LMQ/LMM − hst

T (∂ϑ̂st/∂c)
, (26b)

Q ≡ LQM

LMM

, (26c)

κ ≡ LQQ

T 2
, (26d)

we recast (24a) and (24b) in the form329

JM = −%fD[∇c+ Sstc(1− c)∇T ], (27a)

JQ = −%fDQ∇c−

(
κ− hst

%fDQ

T (∂ϑ̂st/∂c)

)
∇T. (27b)

In (26a)–(26d), D and Sst are the diffusion coefficient and the standard Soret coefficient,330

respectively, Q is the heat of transport, and κ is the thermal conductivity (De Groot and331

Mazur, 1984; Rowley and Horne, 1980). Due to the symmetry requirement LMQ = LQM,332

Sst and Q must satisfy the relation (Rauch, 2006; Grillo et al., 2011)333

(1− c)c∂ϑ̂st

∂c
TSst = Q− hst. (28)

Within the considered constitutive framework, the specific relative enthalpy, hst, is usually334

neglected. This is particularly the case when the fluid phase is regarded as incompressible,335

or when the Boussinesq-Oberbeck approximation is invoked. Finally, although appreciable336

for some physical processes (Ingle and Horne, 1973), in the present work we claim that337

the contribution of the Dufour effect to the overall heat flux vector is negligible. Thus,338

we approximate JQ with standard Fourier’s law, i.e., from here on we set339

JQ = −κ∇T. (29)
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3.2 Thermodiffusion within the Cahn-Hilliard framework340

In this section, we highlight the implications brought about by the use of a Gibbs free341

energy density of the Cahn-Hilliard type. For our purposes, we consider the expression342

of the residual rate of entropy production given in (20b) and, by adopting the same343

argument as in section 3.1, we express the fluxes JM and JQ as344

JM = −LMM∇
(
ϑ

T

)
− LMQ

∇T
T 2

, (30a)

JQ = −LQM∇
(
ϑ

T

)
− LQQ

∇T
T 2

. (30b)

We do not speculate on JQ any further, since it will approximated as in (29) in the sequel.345

Rather, we work out (30a), which can be rewritten as346

JM = −LMM∇
(
ϑst + ϑCH

T

)
− LMQ

∇T
T 2

(31)

= −LMM∇
(
ϑst

T

)
− LMM∇

(
ϑCH

T

)
− LMQ

∇T
T 2

.

According to the procedure shown in section 3.1, and recalling (26a) and (26b), we obtain347

JM = −%fD[∇c+ Sstc(1− c)∇T ] (32)

+%fD
ϑCH

T (∂ϑ̂st/∂c)
∇T − %fD

∂ϑ̂st/∂c
∇ϑCH.

From here on, we call Cahn-Hilliard “Soret coefficient” the quantity348

SCH :=
−ϑCH

(1− c)cT (∂ϑ̂st/∂c)
. (33)

This definition allows to rephrase the expression of the mass flux vector JM as349

JM = −%fD[∇c+ (Sst + SCH)c(1− c)∇T ]− %fD

∂ϑ̂st/∂c
∇ϑCH. (34)

We define effective Soret coefficient the sum Seff ≡ Sst + SCH. According to (34), the350

inclusion of the Cahn-Hilliard theory into the standard framework of thermodiffusion351
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yields two corrections of the mass flux vector, JM. These manifest themselves through352

the additional “Soret coefficient”, SCH, which is generated by the Cahn-Hilliard relative353

chemical potential, ϑCH, and a term proportional to the gradient of ϑCH. We remark that,354

while the standard Soret coefficient, Sst (which is typically expressed constitutively as a355

function of temperature and mass fraction), can be either positive or negative, and its356

sign may change in response to changes of mass fraction and temperature (Kita et al.,357

2004), the sign of SCH depends essentially on the sign of ϑCH. Since φ is assumed to be358

constant in this work, and the Boussinesq-Oberbeck approximation will be enforced (i.e.,359

%f will be regarded as constant everywhere, except in the buoyancy term, %fg, of Darcy’s360

law (17)), ϑCH reduces to ϑCH = −div(λ∇c) = −λ∆c (see (12b)). Thus, the sign of ϑCH361

changes in space and time according to the sign of the Laplacian of the mass fraction.362

4 Benchmark problems363

As stated in the Introduction, a typical framework in which thermodiffusive effects are364

accounted for is the thermally induced separation of the components of a two-constituent365

mixture in response to the combined action of a thermal gradient and density-driven fluid366

flow. Hereafter, we employ a Finite Element model to reproduce numerically two experi-367

ments of thermally induced separation in a thermogravitational cell (Benano-Melly et al.,368

2001; Costeséque et al., 2002; Jamet et al., 1992). In both experiments, a thermogravita-369

tional cell of length L and width H = hL (h is a positive real number smaller than unity)370

is used, in which a porous medium with uniform and constant porosity φ is saturated by371

a two-constituent fluid. The fluid is prepared in such a way that, at the initial time of372

observation, the mass fractions of its constituents are uniformly distributed. In the course373

of time, however, a separation process occurs, thereby leading to a slightly nonuniform374

distribution of the mass fractions within the cell. In the first experiment, the employed375

fluid is a mixture of pure water and heavy water (hereafter referred to as HDO) in a376

porous matrix of aluminium oxide, Al2O3 (Benano-Melly et al., 2001; Costeséque et al.,377

2002). The second experiment adopts a mixture of tetracosane, C24H50, and dodecane,378
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C12H26, (Jamet et al., 1992; Fargue et al., 1998). In the following, the constituent C1,379

whose mass fraction, c, features in the model equations, will be assumed to be HDO in380

the first experiment, and C24H50 in the second one.381

4.1 Summary of the model equations382

The mathematical model considered in this work is based on the mass balance laws (1)383

and (2), and on the energy balance law (4). These are three scalar equations in the three384

unknowns represented by pressure, p, mass fraction, c, and temperature, T . The model385

is closed since w, JQ, and JM are specified in (17), (29), and (34), respectively, while ηs,386

ηf , and ϑ are prescribed in (5a), (5b), and (7), respectively.387

To reduce the computational complexity of the model equations, which are highly388

coupled and non-linear, we enforce the Boussinesq-Oberbeck approximation. Accordingly,389

the mass density of the fluid phase is expressed as a function of c and T only in the390

buoyancy term of Darcy’s law, i.e., in %fg = %̂f(c, T )g, and is set equal to a reference391

constant, %0, everywhere else. Moreover, we neglect the Korteweg stress tensor, σK, in392

the generalised Darcy’s law (17), and the term md ·ufs = −φ−1rw ·w in (4). The latter393

simplification is done under the assumption that the terms of order higher than the first394

in w are not significant in the present study.395

Substituting the expression of JM, given in (34), into (2) leads to an equation that396

involves the derivatives of the mass fraction up to the fourth order. This is due to the fact397

that JM features the gradient of the Cahn-Hilliard chemical potential, ϑCH, which, in turn,398

contains the derivatives of c up to the second order. Rather than following this approach,399

we treat ϑCH as an additional unknown of the model, and determine c consistently with400

the constitutive relation (12b), which becomes ϑCH = −div(λ∇c) due to the considered401

approximations, and is solved together with the balance laws. Thus, the model equations402
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take on the form403

div(%0w) = 0, (35a)

φ%0ċ+ divJM = 0, (35b)

ϑCH = −div(λ∇c), (35c)

Ceff∂tT + div(%0CpfTw) = div(κ∇T )− φ%0ϑCHċ, (35d)

where w is now given by standard Darcy’s law, i.e.,404

w = −k
µ

(∇p− %̂f(c, T )g) , (36)

Ceff is referred to as the effective thermal capacity of the fluid-solid mixture, i.e.,405

Ceff = φ%0Cpf + (1− φ)%sCps, (37)

while Cpf and Cps are the specific heats at constant pressure of the fluid and solid phase,406

respectively. Both are assumed to be constant in the present framework.407

It is worth to remark that, with respect to a standard problem of thermodiffusion,408

there are two relevant differences. The first difference is related to the introduction of409

the Cahn-Hilliard “Soret coefficient”, SCH [cf. (33)], and the second one is due to the410

contribution ∇ϑCH to the overall mass flux vector JM. The presence of these two non-411

standard terms requires a special numerical treatment.412

Notice that the additional term in the energy balance law (35d) could be split into413

two terms: the divergence of an additional flux div(ϑCHJJJM), directed in the sense of the414

mass flux, which in our case is negligible (' 1 · 10−6 W/m2) compared to the conductive415

(' 1 · 105 W/m2) and the convective (' 1 · 102 W/m2) fluxes; a term −JJJM · ∇ϑCH that416

reminds of an energy loss due to the mass exchange, whose order of magnitude is even417

smaller (' 1 · 10−9 W/m3).418

Equations (35a)–(35d) apply in an open set Ω ⊂ Rd, with d = 2 or d = 3, which419

constitutes the computational domain. The boundary of the cell, ∂Ω, is assumed to be420
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impervious, i.e., no-flux conditions are imposed to the filtration velocity, w, and the mass421

flux vector, JM, on all parts of ∂Ω. The lower and the upper boundaries, Γl and Γu, are422

assumed to be thermally insulated, while the lateral boundaries, Γc and Γh, are kept at423

constant temperatures. In formulae, the set of boundary conditions read:424

T |Γc
= Tc, T |Γh

= Th, (38a)

JQ · n = 0, on Γl ∪ Γu, (38b)

JM · n = 0, on ∂Ω, (38c)

w · n = 0, on ∂Ω, (38d)

where n is the unit vector normal to ∂Ω, and Tc < Th. In addition to (38a)–(38d), we425

also impose426

−λ∇ϑCH · n = 0, on ∂Ω, (39)

thereby requiring that ϑCH satisfies homogeneous Neumann conditions on the whole427

boundary of the thermogravitational cell.428

In the standard numerical treatment of the Cahn-Hilliard model, it is rather customary429

to set the normal derivative of the total chemical potential equal to zero at the boundary430

of the computational domain, i.e., ∂nϑ = ∇ϑ ·n = 0, on ∂Ω, and to impose some “wetting431

angle condition” on ∂Ω (Diegel et al., 2015; Jamet, 2001; Zhang et al., 1999). Within our432

framework, the latter condition is a consequence of (38c), and is expressed through a433

restriction on the normal derivative of the solutal concentration, ∂nc = ∇c · n, which434

has to hold on ∂Ω. We emphasise, however, that ∂nc need not be zero in our approach.435

Rather, in order to guarantee the solvability of the formulated mathematical problem, it436

is only required to satisfy some auxiliary constraint on ∂Ω. In this sense, we speak in our437

work of a “generalised wetting condition”.438

In the present study, the combination of (38b), (38c), and (39) implies the boundary439

condition ∂nϑ = 0 as well as the “wetting condition”, ∂nc = 0, on Γl ∪ Γu. This is due to440

the fact that Fourier’s law (29) prescribes the equality JQ = −κ∇T , and (38b) becomes441

JQ · n = −κ∇T · n = 0 on Γl ∪ Γu, thereby yielding ∇T · n = 0 on Γl ∪ Γu. Hence, the442
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boundary condition (38c) reads443

JM · n = −LMM

T
∇ϑ · n = −LMM

T
(∇ϑst · n+∇ϑCH · n) = 0, on Γl ∪ Γu, (40)

with ϑ = ϑst + ϑCH. In fact, (40) is equivalent to ∂nϑ = 0 on Γl ∪ Γu. Moreover, since444

(39) implies that the normal derivative of ϑCH vanishes on ∂Ω, it must also hold ∂nϑCH =445

∇ϑCH · n = 0 on Γl ∪ Γu, and Equation (40) thus leads to446

JM · n = −LMM

T
∇ϑst · n = −LMM

T

∂ϑst

∂c
∇c · n = 0

⇒ ∇c · n = 0, on Γl ∪ Γu. (41)

We conclude that the boundary conditions (38c) and (39) are equivalent to requiring the447

vanishing of the normal derivatives of the chemical potential and of the mass fraction448

(i.e., the so-called “wetting angle condition”) on Γl ∪ Γu, as is usually the case in the449

numerical treatment of the Cahn-Hilliard model.450

Looking at the boundary Γc ∪ Γh, we notice that, by expressing JM as in (34) and451

invoking (39), the boundary condition (38c) becomes a homogeneous Robin-like condition452

on c. In fact, enforcing (39) allows to retrieve the zero-flux boundary condition of standard453

thermodiffusion (Benano-Melly et al., 2001), i.e.,454

JM · n = −(%fD[∇c+ (Sst + SCH)c(1− c)∇T ]) · n = 0, on Γc ∪ Γh, (42)

which could be considered as a “generalised wetting angle condition”. It is important455

to emphasise that, in the case of (42), the “wetting angle condition” is understood in a456

generalised way, i.e., it does not reduce to ∂nc = ∇c · n = 0, as in (41). Rather, (42)457

places the restriction that ∂nc and ∂nT balance each other according to the equation458

∂nc+ (Sst + SCH)c(1− c)∂nT = 0, on Γc ∪ Γh. (43)

We remark that the condition ∂nc = 0 would be unphysical on Γc ∪ Γh, since it would459
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necessarily imply the wrong result ∂nT = 0 on Γc ∪ Γh (there is, indeed, no reason why460

the normal derivative of the temperature —and, thus, the normal heat flux, within our461

approximation— should vanish on this portion of the boundary). Note, also, that we462

speak of “Robin-like” boundary condition because Equation (42), or (43), is non-linear in463

c due to the term c(1− c). A Robin condition, instead, consists of a linear combination of464

a function and its derivative, restricted over a subset of the boundary of a computational465

domain.466

4.2 Numerics467

Equations (35a)–(35d) are implemented in a Finite Element software and have thus to be468

written in weak form. The procedure followed to obtain the weak form of (35a) and (35d)469

is standard, and will not be repeated here. Rather, we shall briefly sketch the main470

steps towards the weak formulation of (35b) and (35c). Since the mass fraction c is471

subjected to the Robin condition (38c), and its derivatives up to the fourth order are472

involved in the strong form of the problem, we choose the test function associated with473

the mass fraction as c̃ ∈ H2(Ω). Moreover, since ϑCH has to comply with the Neumann474

condition (39), and its derivatives up to the second order feature in (35a)–(35d), we475

take ϑ̃ ∈ H1(Ω) as test function associated with ϑCH (Salsa, 2008). Here, Hk(Ω), with476

k = 1, 2, denotes the Sobolev space Hk(Ω) = {u ∈ L2(Ω) : Dαu ∈ L2(Ω)}, where477

Dαu = ∂|α|u
∂x
α1
1 ...∂x

αd
d

is the distributional derivative of u of order α, and α = (α1, . . . , αd) ∈ Nd
478

is an arbitrary d-dimensional multi-index of length equal to, or smaller than, k, i.e.,479

|α| = α1 + . . .+ αd ≤ k (Brezis, 1986).480

By multiplying (35b) by ϑ̃, and (35c) by c̃, integrating over Ω, invoking Gauss’ The-481
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orem, and enforcing the boundary conditions (38d) and (39), we obtain482

∫
Ω

ϑ̃[φ%0ċ]dV =−
∫

Ω

∇ϑ̃ · [%0D∇c]dV (44a)

−
∫

Ω

∇ϑ̃ · [%0D(Sst + SCH)c(1− c)∇T ]dV

−
∫

Ω

∇ϑ̃ ·

[
%0D

∂ϑ̂st/∂c
∇ϑCH

]
dV,∫

Ω

[c̃ ϑCH −∇c̃ · (λ∇c)] dV =

∫
Γc∪Γh

c̃ [λ(Sst + SCH)c(1− c)∂nT ] dA. (44b)

To determine the finite element formulation of (44a) and (44b), we cover the computa-483

tional domain Ω with a conforming, regular mesh Th consisting of Nh non-overlapping484

triangular elements {Ki}Nhi=1, and we introduce the finite dimensional spaces485

V
(m)
h =

{
c̃h ∈ H2(Ω) : c̃h|Ki ∈ Pm, for i = 1, . . . , Nh

}
, (45a)

V
(n)
h =

{
ϑ̃h ∈ H1(Ω) : ϑ̃h|Ki ∈ Pn, for i = 1, . . . , Nh

}
, (45b)

where Pm and Pn are the set of polynomials of orderm and n, respectively. The simulations486

reported in this paper were conducted with m = 2 and n = 1. For completeness, we487

mention that polynomials of order 3 and 1 have been employed for discretising the test488

functions associated with pressure and temperature, respectively. In our simulations, the489

maximum element size is taken to be maxNhi=1`i ≈ 2.5·10−4 m, where `i is the characteristic490

length of the ith finite element Ki.491

To avoid the possibility of obtaining numerical variations in the results of the same492

order of magnitude as the truncation error, the mass fraction, c, has been rescaled as493

c = c0c̄, with c0 and c̄ being the initial and the “normalised” mass fraction, respectively.494

This is done, in particular, because of the very low reference mass fraction in the HDO-495

H2O mixture (see Table 1). Consequently, the mass balance law of the constituent C1 is496

transformed into497

φ%0 ˙̄c = div

[
%0D

(
∇c̄+ (Sst + SCH)c̄(1− c0c̄)∇T +

1

∂ϑ̂st/∂c̄
∇ϑCH

)]
. (46)
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Our numerical solutions are normalised in such a way that the rescaled initial mass498

fraction in the computational domain is unitary for both the considered benchmarks,499

since c0 = c(x, 0) is the “true” initial mass fraction of C1. All the quantities introduced500

in the model are coherently rescaled.501

The weak form of the system of equations (35a)–(35d) has been spatially solved by502

means of Newton’s method, and the time discretisation has been performed adaptively503

by means of a Backward Differentiation Formula (BDF).504

4.3 Model Parameters505

The first experiment here studied considers a mixture of water (H2O) and heavy water506

(HDO). Benano-Melly et al. (2001) assumed that the mass fraction of heavy water, iden-507

tified with the constituent C1 of the mixture, and playing the role of the solute, is so small508

that the term (1 − c)c in (34) can be approximated as (1 − c)c ≈ c. In our simulations,509

however, we kept the nonlinear term (1− c)c, even when it was quite small, for the sake510

of generality. In addition to the boundary conditions (38a)–(38d) and (39), we impose511

that the initial mass fraction is uniformly distributed within the thermogravitational cell,512

and given by c0 = 5.8 · 10−6. The value attributed to c0 has been obtained from the work513

by Jamet et al. (1992), in which the initial distribution of the solute was expressed in514

molarity and taken equal to C0 = 2.9 · 10−4 mol/l. The mass density of the mixture is515

expressed constitutively by the formula (Benano-Melly et al., 2001)516

%f = %̂f(c, T ) = %0 [1− β(T − Tref) + γ(c− cref)] , (47)

where β and γ are the (constant) thermal and solutal expansion coefficients of the fluid,517

respectively, and Tref and cref are reference values of the temperature and solutal mass518

fraction. In particular, the dependence of %̂f on c is neglected in (47) (i.e., γ is set equal519

to zero), because the difference between the mass density of heavy water and the mass520

density of the mixture as a whole is very small (incidentally, this also implies that no521

reference value of the mass fraction, cref , needs to be prescribed). Thus, the mass density522
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actually used in the numerical simulations is %̂f(T ) = %0 [1− β(T − Tref)]. Moreover, the523

viscosity of the mixture is assumed to be constant.524

The second experiment considers a mixture of tetracosane-dodecane, C24H50-C12H26.525

The constituent C1, identified with the tetracosane, C24H50, is assumed to have uniform526

initial mass fraction c0 = 0.15, a value much higher than that assigned in the first527

experiment. This higher concentration is expected to lead to a stronger contribution of528

both the standard and the non-standard thermodiffusion effects. While the viscosity of529

the mixture as a whole is regarded as a constant also in this experiment, the mass density530

%f is prescribed by the empirical formula [slightly adapted from Jamet et al. (1992)]531

%f = %̂f(c;x) =
758.30 · (1− 5.712x)

1− 758.30 · (1− 5.712x) · 8 · 10−5c
, (48)

where x ∈ [0, H] is the space coordinate along the direction of the width of the thermo-532

gravitational cell.533

The parameters employed for simulating both these experiments are listed in Table 1.534

In particular, ∆T ≡ Th − Tc represents the temperature difference between the hot side,535

Γh, and the cold side, Γc, of the computational domain, Ω, while the reference temperature536

Tref is defined as the arithmetical mean between Tc and Th, i.e., Tref ≡ (Tc + Th)/2. By537

reading off Tref and ∆T from Table 1, we obtain Tc = 309.15 K, Th = 334.15 K. It538

is also worthwhile to remark that the initial value of the tetracosane mass fraction, c0,539

has been computed by using the experimental values reported in Table 2: c0 = χ1

χ1+χ2
≈540

0.15, while the reference mass density of the mixture, %0, has been taken equal to %0 =541

758.30 kg/m3. Note that this value is close enough to the value of the density that would be542

computed according to the assumption of ideal mixture (Oldenburg and Pruess, 1998):543

%0 =
(
c0
%1

+ 1−c0
%2

)−1

≈ 757.93 kg/m3, where the true densities %1 and %2 refer to the544

densities of the “pure” constituents C24H50 and C12H26.545

The modelling choice (48), done to comply with Jamet et al. (1992), requires some546

words of explanation. Indeed, as in (47), the equation of state for the fluid mass density547

should express %f as a function of the state variables that are regarded as independent,548

i.e., temperature, T , and solutal concentration, C, in the approach followed in this work.549

26



4.3 Model Parameters A Cahn-Hilliard Approach to Thermodiffusion

In particular, by slightly adapting Equation (15) of Jamet et al. (1992) to our framework550

and notation, we prescribe551

%f = %̃f(C, T ) = %0{1− β[T − Tc]}{1 + αcC}, ⇒ (49a)

%f = %̂f(c, T ) =
%0{1− β[T − Tc]}

1− %0{1− β[T − Tc]}αcc
, (49b)

where c = C/%f is the solutal mass fraction, and Tc is the temperature imposed by means552

of the Dirichlet boundary condition T|Γc = Tc on the cold boundary, Γc ⊂ ∂Ω. To obtain553

(48) from (49b), we proceed in two steps: First, we set αc = 8·10−5 and %0 = 758.30 kg/m3
554

(note that Jamet et al. (1992) use the value 741.1 kg/m3 in lieu of 758.30 kg/m3). Then,555

upon using Equation (15) of Jamet et al. (1992), we write556

1− β[T − Tc] = 1 + αxx, (50)

which, evaluated at x = H, yields Th − Tc = ∆T = −(αxH)/β, and β = −(αxH)/∆T .557

This result can be used to estimate the thermal expansion coefficient, β. Indeed, setting558

αx = −5.712 m−1 (Jamet et al., 1992) leads to β ≈ 10−3 K−1, a value of the same order559

of magnitude as those prescribed by Jamet et al. (1992) for C24H50 and C12H26, i.e.,560

βC24H50
Jamet = 8.1 · 10−4 K−1 and βC12H26

Jamet = 9.6 · 10−4 K−1, respectively.561

We emphasise that (50) amounts to impose, rather than to compute, the temperature562

distribution in the thermogravitational cell, and to identify it with563

T ≡ T (x) = Tc −
αxH

β

x

H
= Tc + ∆T

x

H
. (51)

Although this result complies with the conditions∇T ·n = 0 on Γl∪Γu as well as T|Γc = Tc564

and T|Γh
= Th, Equation (51) is, in fact, the solution of div(κ∇T ) = κ ∂2T/∂x2 = 0, which565

is obtained from (35d) in the stationary limit, and by neglecting the terms div(%0CpfTw)566

and φ%0ϑCHċ. In this work, this approximation is employed only for the simulation of the567

mixture C24H50-C12H26.568
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5 Results569

In this section, we validate our model by recomputing the numerical experiments discussed570

by Jamet et al. (1992) and Benano-Melly et al. (2001), and we show how the introduction571

of the term 1
2
λ‖∇c‖2 into the Helmholtz free energy density of the fluid phase (in fact, a572

mixture of two fluid constituents) produces a small, yet visible, correction to the results573

obtained within the setting of standard thermodiffusion. This correction manifests itself574

in (34) through the Cahn-Hilliard Soret coefficient, SCH, and the term proportional to575

∇ϑCH, and has repercussions on the evolution of the solute (i.e., the constituent C1).576

5.1 Validation of the model577

It has been shown in some works (cf. e.g. Benano-Melly et al. (2001); Fargue et al.578

(1998); Jamet et al. (1992); Rowley and Horne (1980)) that, if an initially uniform fluid579

mixture saturating a porous medium is exposed to a thermal gradient, and is subjected580

to the buoyancy effect due to gravity, a separation of the mixture’s constituents will be581

initiated. The degree of separation depends on the properties of the constituents and582

on permeability of the porous medium. A typical behaviour that can be registered in a583

thermogravitational cell, while the mixture evolves in time, is reported in Figure 1a.584

Benano-Melly et al. (2001) pointed out that, depending on the sign of the Soret585

coefficient, at the steady state the heaviest constituent of the mixture finds itself at the586

bottom of the cell, close to the cold side. The distortion of the mass fraction isolines shown587

in Figure 1a is the outcome of the motion induced by the coupling between gravity and588

the horizontal thermal gradient. The interaction between these two entities characterises589

the results of the thermogravitational cell experiment. Consistently with expectations,590

in our simulations the steady state is approached in a characteristic time that depends591

on the considered mixture. After the formation of an initial horizontal gradient of mass592

fraction, so that the mass fraction isolines are all parallel to the vertical symmetry axis593

of the cell, the evolution of the system towards the steady state is characterised by a594

distortion and rotation of the isolines, whose consequence is the redistribution of the595
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fluid mixture with the heaviest constituent at the bottom. Figure 1a has been produced596

for comparison with similar results previously obtained by Benano-Melly et al. (2001)597

and Fargue et al. (1998).598

The quantity introduced to measure the degree of separation achievable in the mixture599

occupying a thermogravitational cell is the separation ratio (Benano-Melly et al., 2001)600

b∞ ≡
cB∞/(1− cB∞)

cT∞/(1− cT∞)
, (52)

where cB∞ and cT∞ denote, respectively, the mass fractions of the solute reached, at601

the stationary state, at the bottom and at the top of the thermogravitational cell. The602

separation ratio, b∞, depends on the geometry of the cell, on the applied thermal gradient,603

and on the material properties of both the fluid mixture and the porous medium filling604

the cell. For instance, in the case of an isotropic porous medium (so that its permeability605

tensor is spherical, i.e., k = kI, and entirely represented by the scalar permeability k),606

and for a prescribed set of model parameters, the separation ratio can be expressed as a607

function of the scalar permeability. In particular, it is possible to determine an optimal608

value of k, denoted by k? hereafter, such that b is maximum. Benano-Melly et al. (2001)609

supply an approximated formula relating the maximum separation ratio, bmax
∞ , with the610

assigned parameters, i.e.,611

log(bmax
∞ ) =

Sst∆TL
√

120

24H
. (53)

According to (53), for a given thermal gradient, ∆T/H, and cell height, L, the maximum612

separation ratio achievable in the cell can be determined once Sst is known, and vice613

versa. More details on this topic can be found in the works by Lorenz and Emery (1959),614

and Emery and Lorenz (1963).615

In studying the separation of heavy water, HDO, in the HDO-H2O mixture, Benano-616

Melly et al. (2001) observed a discrepancy between the experimental results and the617

analytical and numerical predictions of the separation ratio and the steady state. A618

similar discrepancy was also observed by Jamet et al. (1992) also for the C24H50-C12H26619

mixture. To the best of our understanding, both Benano-Melly et al. (2001) and Jamet620
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et al. (1992) conducted their investigations within the standard setting of thermodiffusion,621

and determined suitable transport and flow properties in order to obtain a good fitting622

of the experimental data. In particular, Benano-Melly et al. (2001) considered dispersion623

in the solutal mass flux vector, Jamet et al. (1992) assumed that the porous matrix was624

transversely isotropic with respect to the permeability, and Fargue et al. (1998) studied625

the influence of a variable dispersive effect on the reduction of the discrepancy between626

the numerical and the experimental results.627

To validate the model presented in this paper, we start by showing that our numerical628

simulations are able to reproduce the same trend as that of the curves obtained by Jamet629

et al. (1992). To this end, we first consider standard thermodiffusion, which amounts to630

set λ = 0 m4/s2 in (9) and, consequently, to switch off all the terms of the model featuring631

the subscript “CH”. The outputs of our numerical simulations are reported in Figure 2,632

in which the separation ratio for both the HDO-H2O and the H24C50-H12C26 mixture is633

plotted as a function of the permeability of the porous medium. The parameters used634

for these numerical simulations are specified in Tables 1 and 2. The value of the Soret635

coefficient, Sst, has been taken from Benano-Melly et al. (2001) and Fargue et al. (1998)636

for the HDO-H2O mixture, and from Jamet et al. (1992) for the H24C50-H12C26 mixture.637

Although our results are in agreement with both the analytical and the numerical638

curves obtained by Jamet et al. (1992), and in spite of the fact that all these curves seem639

to reproduce qualitatively the arrangement of the experimental points, none of them meets640

quantitatively the experimental data. To do so, the numerical and analytical curves should641

be shifted to the right. It is also worthwhile to emphasise that the maximum separation642

ratio, as predicted by both the analytical and the numerical computations, is close to643

the one determined experimentally, but it corresponds to a value of permeability that644

is quite smaller than the experimental one. For example, with the choice of parameters645

supplied in Tables 1 and 2, and for the HDO-H2O mixture, the maximum separation ratio646

is bmax
∞ = 1.0563. Nevertheless, this value is obtained for a permeability different from the647

experimental one, which is instead approximatively given by k ≈ 1.0 ·10−10 m2. We recall648

here that the analytical curves in Figure 2 were obtained by Lorenz and Emery (1959)649
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and Emery and Lorenz (1963).650

5.2 Influence of the Cahn-Hilliard terms651

According to Fargue et al. (1998), while the growth of the separation ratio is related to652

the augmentation of Sst, the offset to the right of the bell-like curves in Figures 2a and 2b653

is primarily due to the increase of the coefficient D in the mass flux vector JM. Within the654

standard setting of thermodiffusion, this may occur either for higher solutal and thermal655

diffusion coefficients or in response to dispersion, which adds itself to diffusion, thereby656

contributing to increment D. Beside these behaviours, in our work we also observed that,657

if the factor λ is switched on in (9), the increase of λ produces both an increase of the sep-658

aration ratio and an offset of the bell-like curves to the right. We remark that switching659

on λ means to activate the Cahn-Hilliard chemical potential ϑCH, its gradient, and the ad-660

ditional Soret coefficient SCH, which all contribute to the mass flux vector in a non-trivial661

way. In particular, in our simulations we observed that the shift of the curves depicted in662

Figure 3a can be attributed to the last summand on the right-hand-side of (34), which663

is proportional to ∇ϑCH, and describes a transport of mass that can be interpreted as a664

“second-order diffusion”. Indeed, the term ∇ϑCH involves the third-order derivatives of665

the mass fraction. The contribution associated with ∇ϑCH is principally active at the top666

and at the bottom of the thermogravitational cell, and is otherwise irrelevant unless the667

mass fraction is distributed in a sufficiently non-uniform way. Looking at Figure 3a, we668

notice that the strength of the non-standard thermodiffusive effects depends also on the669

permeability. Indeed, for permeabilities sufficiently smaller than k?, the separation ratios670

obtained for different values of λ lie closer to each other than those obtained for k ≈ k?.671

Moreover, also the initial mass fraction of the solute is a key parameter that can affect672

the weight of the terms triggering the non-standard thermodiffusion.673

To estimate the influence of the non-standard terms generated by nonzero values of λ,674

we compute ε = 100
[

maxΩ|cst−cλ|
maxΩ cst

]
, where cst is the mass fraction determined within the675

standard setting of thermodiffusion, i.e., for λ = 0, and cλ is the mass fraction calculated676

for nonzero values of λ. The evolution of ε in time and its relation with the permeability677
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of the porous medium are shown in Figures 3b and 3c for the HDO-H2O mixture. The678

discrepancies shown in Figure 3a are consistent with the curves plotted in Figure 3c,679

where ε becomes noticeable only for permeabilities close to k? ∈ [1, 3] · 10−11 m2. From680

Figure 3b, one can observe that the effect of λ manifests itself also in the asymptotic681

value of ε, which characterises the stationary conditions of the system.682

It should be mentioned that, in order for the Cahn-Hilliard chemical potential, ϑCH,683

to give non-negligible contributions to thermodiffusion, it is necessary to build a non-null684

gradient of mass fraction inside the thermogravitational cell. When the mass fraction685

c is initially uniform in the cell, and Sst is set equal to zero a priori, the terms SCH686

and ∇ϑCH are unable to generate a mass flux and, consequently, no separation can be687

observed, regardless of the magnitude of the imposed thermal gradient. Conversely, if a688

nontrivial pattern of mass fraction is present (e.g. in the experiment studied by Rowley689

and Horne (1980)), the contributions to the mass flux stemming from SCH and ∇ϑCH690

are visible, even without the presence of the standard Soret coefficient. Such evidence691

is highlighted in Figure 4a, where the transient evolution in time of the mass fraction692

at the top, cT, and at the bottom, cB, is reported. To obtain the results in Figure 4a,693

we imposed a non-uniform initial distribution of solute in the domain (see Figure 4b).694

The non-uniform mass fraction used as initial condition for this numerical experiment is695

“prepared” by taking the stationary distribution of C24H50 obtained by solving (35a)–696

(35d) with Sst = 1.2·10−4 1/K and λ = 3.8 m4/s2. Recalling the expression of the effective697

Soret coefficient, Seff = Sst + SCH, the lines with no markers correspond to Seff = 0, the698

lines with circles to Seff = SCH, and the lines with asterisks to Seff = Sst. This is done699

to visualise the effect of SCH and Sst on the mass fraction. When Seff = 0, and the mass700

flux vector reduces to JM = −%fD∇c, the mass fractions at the top and the bottom701

of the cell tend towards a common value, thereby making the mixture uniform at the702

steady state. Also in the second case, i.e., when Seff = SCH, the mass fractions cB and703

cT converge to the same common value as in the first case. However, the time required704

to approach the steady state is more than six times longer than the one needed when705

Seff = 0. Finally, when Seff = Sst, the mass fractions cB and cT approach stationary values706

32



5.3 Main results A Cahn-Hilliard Approach to Thermodiffusion

over a characteristic time comparable with that of the first case, but these values are707

different from one another, i.e., cB∞ 6= cT∞, thereby allowing for a nontrivial separation708

ratio. Starting with an initial separation ratio b0 = 2.3407, we obtain b∞ = 1.0384. We709

recall that the initial value of the separation ratio is linked to a simulation in which710

Seff = Sst + SCH, i.e., it is the value of b obtained with the same Sst, but also with the711

Cahn-Hilliard contribution. This value of b, then, is clearly amplified of about 40% by the712

presence of the Cahn-Hilliard effect. The corresponding curve is reported in Figure 2d.713

5.3 Main results714

This section is dedicated to the main results of our study, i.e., the description of the role715

played by SCH on the curves expressing the separation ratio versus the permeability, and716

the determination of a relation between the effective Soret coefficient Seff = Sst + SCH717

and the permeability.718

Looking at Figure 2c, one can see that our separation ratios are in good agreement with719

those obtained by Fargue et al. (1998), and fit the experimental data quite satisfactorily720

for λ = 2.7·104 1/K and Sst = 1.0·10−5 1/K. We emphasise that, while we determined our721

results by introducing the Cahn-Hilliard correction to standard thermodiffusion, Fargue722

et al. (1998) considered different values of the dispersion coefficient, which correspond to723

the dashed blue curve and to the red curve marked with circles. Although λ is quite big724

in this example, the value of Sst = 1.0 · 10−5 1/K is the same as that taken by Fargue725

et al. (1998) (and a little bit smaller than that in Table 1). It is useful to mention that the726

Soret coefficient Sst = 1.0 · 10−5 1/K would not allow to reach the congruence actually727

achieved with the separation ratios determined experimentally if neither SCH nor any728

other contribution to the mass flux vector (as, for instance, dispersion) were taken into729

account. Indeed, the curve corresponding to Sst = 1.0 · 10−5 1/K and λ = 0, i.e., the solid730

line in Figure 2c, is far away from the experimental predictions.731

The results regarding the C24H50-C12H26 mixture are reported in Figure 2d. Differ-732

ent choices of the pair (Sst, λ) are made to fit the experimental data. However, only for733

Sst = 1.2 · 10−4 1/K and λ = 3.8 m4/s2 the experimental points corresponding to high734
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permeabilities are fitted satisfactorily. The uncertainty in the selection of the appropriate735

pair (Sst, λ) could be due to a lack of information about the considered mixture, and a736

possible misreading of the numerical points, for which the precise position of the opti-737

mum value of k could be less plausible (Fargue et al., 1998). Moreover, in the related738

simulations, the fluid viscosity µ, although evaluated with the formula reported in Jamet739

et al. (1992), is here taken as a constant, namely µ = µ̂(c0).740

Finally, in Table 3, we reported the maximum and minimum Seff for each of the741

curves shown in Figure 2d. Indeed, as previously noticed, while Sst is a constant value,742

as prescribed by the literature, SCH can vary within the domain according to the sign of743

∇c.744

From Table 3 we see that both Seff,max and Seff,min diminish with diminishing Sst,745

but the discrepancy between Sst and SCH increases with increasing λ, even though Sst is746

lower when a higher value of λ is considered. This happens to balance the value of Seff ,747

which is ruled by the sum of Sst and SCH. We remark that the value of Seff can also be748

smaller than Sst, since SCH may be negative. To give an idea of these occurrences, we749

refer to Figure 1b and Figure 1c. In these figures, the ends of the computational domain750

have been zoomed, since the actual width of the cell is too thin. Figure 1b refers to a751

small value of k, whereas Figure 1c refers to a higher value of k. The normalised isolines752

of the mass fraction at the steady state are shown in the first column of each of these753

two figures. In these columns, the blue isolines represent smaller values of SCH, whereas754

the red isolines are for higher values. One can see that SCH diminishes at the hot and at755

the bottom boundaries of the cell, where it also attains negative values, and increases at756

the cold and top boundaries of the cell. In the case of low permeability (see the second757

and third column of Figures 1b), the mass fraction isolines are arranged almost linearly758

in the domain, so that the majority of the solute is at the bottom left corner of the759

cell. Thus, in this case, the arrangement of the solute is preferentially at the bottom.760

The corresponding SCH is then negative at the bottom and at the cold side, and positive761

at the top. For higher permeabilities, the mass fraction isolines feature a rather curvy762

pattern (Figure 1c). Also in this case, the heaviest constituent in the mixture evolves in763

34



A Cahn-Hilliard Approach to Thermodiffusion

such a way that it is more concentrated at the bottom of the cell. However, the Cahn-764

Hilliard Soret coefficient, SCH, is now distributed variably from the left to the right. The765

negative values of SCH can be found at the hot side and the positive ones at the cold766

side, whereas at the bottom and at the top ends both positive and negative values can be767

observed. We recall that SCH depends on the Laplacian of the mass fraction through ϑCH,768

which, in the case under study, is positive at the cold side. Therefore, at a given instant769

of time, the maximum and the minimum of Seff are attained in the domain. The mean770

value of the effective Soret coefficient is approximatively in the middle of the domain at771

each height. The sign of this coefficient is then ruled by the sign of the second gradient772

of the mass fraction itself, since SCH depends on the non-standard chemical potential, as773

defined in (33).774

A remarkable difference between the two considered experiments analysed in this775

paper is the choice of λ. Although we determined λ by having recourse to the Cahn776

number (Lowengrub and Truskinovsky, 1998), the way in which this number is defined777

may necessitate revisions. In particular, the choice of the characteristic mesoscale, and778

the characteristic coarse scale could lead to quite big variations of the Cahn number.779

Moreover, if the solute mass fraction is low in the domain, then a higher λ is required to780

make the Cahn-Hilliard contribution weighty. This is the case of the mixture HDO-H2O,781

for which the optimal λ is λ = 2.7 ·104 m4/s2. Vice versa, for the mixture C24H50-C12H26,782

the solute mass fraction is three orders of magnitude higher, thereby producing a required783

λ that is in the neighbourhood of unity.784

6 Conclusions and outlook785

In this work, we studied the evolution of the composition of a two-constituent fluid786

mixture flowing through a porous medium exposed to a non-uniform thermal field. The787

mixture’s composition was described by the mass fraction of one constituent, denoted by788

C1. In accordance with the standard theory of Thermodiffusion, the thermal gradient de-789

veloped in the mixture, ∇T , contributes to transport the mass of C1 by inducing the term790
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J st
MQ≡−%fDSstc(1− c)∇T , which augments the purely diffusive(-dispersive) Fick’s mass791

flux vector associated with C1. The magnitude of the Soret coefficient, Sst, determines792

the thermodiffusive strength.793

We proposed a generalisation of the standard framework of thermodiffusion based on794

the assumption that the Helmholtz free energy density of the fluid is of the Cahn-Hilliard795

type [cf. Equation (9)]. The main consequence of this hypothesis is that the mass flux796

vector acquires two additional quantities: The first quantity is proportional to ∇ϑCH,797

with ϑCH being referred to as the Cahn-Hilliard chemical potential [cf. Equation (12b)],798

while the second one is given by −%fDSCHc(1 − c)∇T , and is formally identical to J st
MQ799

except for the fact that Sst is replaced by the Cahn-Hilliard Soret coefficient SCH [cf.800

Equation (33)].801

We tested our model by solving two benchmark problems taken from the literature,802

and compared our results with those of other authors [cf. Figures 2a, 2b, 2c, and 2d]. In803

particular, we focused on the determination of the separation ratio attainable in a thermo-804

gravitational cell. Following Jamet et al. (1992), Fargue et al. (1998), and Benano-Melly805

et al. (2001), we simulated these experiments by considering the fluid mixtures HDO-806

H2O and C24H50-C12H26. Firstly, we observed that, since the Cahn-Hilliard contributions807

arise when the mass fraction varies in space, their strength increases with the separation808

ratio. Moreover, it is necessary to adapt the effective Soret coefficient Seff = Sst + SCH to809

obtain the required separation. Secondly, we noticed that the discrepancies between the810

analytical and the experimental values of the optimal permeability and the corresponding811

separation ratio could be imputed to dispersion, which affects the coefficient D, and to a812

lack of knowledge of all the parameters of the model. Still, for the mixture HDO-H2O, the813

introduction of SCH, and the definition of the effective Soret coefficient Seff , led to a good814

agreement with the experimental curves that express the separation ratio as a function815

of the permeability [cf. Figures 2c and 2d]. For the mixture C24H50-C12H26, instead, our816

best fit of the experimental data could only approximate the expected curve. This was817

due to quite a large amount of uncertainty of some experimental values used as model818

parameters [cf. also with Fargue et al. (1998)]. In addition, a stronger contribution of the819
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Cahn-Hilliard contributions was registered, also because the mass fraction of the solute is820

quite bigger than in the thermogravitational cell studied for the HDO-H2O experiment.821

For future research it could be interesting to employ the theoretical framework out-822

lined in this paper to the thermodiffusion in physical systems for which an initial gradient823

of mass fraction is present [cf., for example, Rowley and Horne (1980)]. Furthermore, also824

the contribution provided by the Korteweg stress tensor to Darcy’s law necessitates a825

more thorough study.826
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Mićunović, M.V., Thermodynamics of Viscoplasticity – Fundamentals and Applications,939

New York, USA: Springer, 2009.940

Nasrabadi, H., Hoteit, H. and Firoozabadi, A., An analysis of species separation in a941

thermogravitational column filled with a porous medium, Transport in Porous Media,942

vol. 67, pp. 437–486, 2007.943

Oldenburg, C.M. and Pruess, K., Layered Thermohaline Convection in Hypersaline944

Geothermal Systems, Transport in Porous Media, vol. 33, pp. 29–63, 1998.945

41



REFERENCES A Cahn-Hilliard Approach to Thermodiffusion

Oldenburg, C.M. and Pruess, K., Layered Plume separation by transient thermohaline946

convection in porous media, Geophysical Research Letters, vol. 26, no. 19, pp. 2997–947

3000, 1999.948

Platten, J.K., The Soret Effect: A Review of Recent Experimental Results, Journal of949

Applied Mechanics, vol. 73, pp. 5–15, 2006.950

Quintard, M., Kaviany, M. and Whitaker, S., Two-medium treatment of heat transfer in951

porous media: numerical results for effective properties, Adv. Water Resour., 20, nos.952

2–3, pp. 77–94, 1997.953

RamReddy, Ch., Murthy, P.V.S.N., Rashad, A.M. and Chamkha, A.J., Soret effect on954

stagnation-point flow past a stretching/shrinking sheet in a nanofluid-saturated non-955

Darcy porous medium, Special Topics & Reviews in Porous Media — An International956

Journal, vol. 7, no. 3, pp. 229–243, 2016.957

Rauch, J., Diffusion and thermal diffusion in polymer solutions, PhD, Universität958

Bayreuth, Germany, 2006 (In German).959
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List of tables998

Quantity Units HDO-H2O C24H50-C12H26

L m 4.0 · 10−1 [1] 4.0 · 10−1 [1]
H m 4.0 · 10−3 [1] 4.5 · 10−3 [1]
φ — 0.4 [1] 0.4 [1]
%0 kg/m3 989.10 [2] 758.30
c0 — 5.8 · 10−6 0.15
Tref

oC 47.5 [1] 48.5 [1]
∆T oC 19 [1] 25 [1]
β 1/K 4.4 · 10−4 [2] —
γ — 0 —
µ Pa · s 5.7 · 10−4 [2] 0.96 · 10−3 [1]
D̄ = D/φ m2/s 2.09 · 10−9 [2] 6.5 · 10−10 [1]
Sst 1/K 6.3158 · 10−5 [2] 1 · 10−3 [3]
Cpf J/(kg ·K) 4180.1 [2] 1094.7
Cps J/(kg ·K) 1000.0 [4] 1000.0 [4]
κ W/(m ·K) ∈ [2.89, 9.27] [2] ≈ 13

Table 1: D̄ = 6.5 · 10−10 m2/s refers to C24H50. Sst = 6.3158 · 10−5 K−1 is obtained by
dividing S = 1.2 ·10−3 (Benano-Melly et al., 2001) by ∆T = 19 K. [1] Jamet et al. (1992);
[2] Benano-Melly et al. (2001); [3] Fargue et al. (1998); [4] Oldenburg and Pruess (1999).

Quantity Units C24H50 C12H26

True mass densities kg/m3 %1 = 799.1 %2 = 751.1
Initial concentrations kg/m3 χ1 = 113.8 χ2 = 644.9

Table 2: Experimental values taken from Jamet et al. (1992).

λ [m4/s2] Sst [1/K] Seff,max [1/K] Seff,min [1/K]

1.8 3.5 · 10−4 6.39 · 10−4 2.13 · 10−4

3.0 2.0 · 10−4 5.73 · 10−4 6.81 · 10−5

3.8 1.2 · 10−4 5.04 · 10−4 7.14 · 10−6

Table 3: Values corresponding to the curves in Figure 2d (cf. Fargue et al. (1998)).

Figure Captions999

Figure 1: (a) Isolines of the solute mass fraction during the time, from the early times (left)1000

to the steady state (right). The results are obtained for the HDO-H2O mixture within the1001
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standard setting of thermodiffusion. The benchmark is taken from Benano-Melly et al.1002

(2001) and has been recomputed in the present paper with parameters L = 0.02 m,1003

H = 0.004 m, and permeability k = 5 · 10−12 m2 (cf. Jamet et al. (1992)). (b) Spatial1004

Pattern of SCH for λ = 1.8 m4/s2 and k = 5 ·10−12 m2, and the corresponding normalised1005

mass fraction at the steady state. (c) Spatial Pattern of SCH for λ = 1.8 m4/s2 and1006

k = 1 · 10−10 m2, and its corresponding normalised mass fraction at the steady state.1007

1008

Figure 2: (a) Separation ratio as a function of permeability for the HDO-H2O mixture. (b)1009

Separation ratio as a function of permeability for the C24H50-C12H26 mixture. The results1010

are obtained within the standard setting of thermodiffusion, λ = 0 m4/s2. (c) Mixture1011

HDO-H2O: Results obtained with standard Soret coefficient equal to Sst = 1.0 ·10−5 1/K.1012

(d) Mixture C24H50-C12H26: Results obtained for various values of λ and Sst. Best fit1013

obtained for Sst = 2.55 · 10−4 1/K. Experimental data and analytical curves have been1014

recomputed and redrawn from Jamet et al. (1992) and Fargue et al. (1998).1015

1016

Figure 3: (a) Steady state separation ratio for different values of λ in the HDO-H2O1017

mixture (see also Jamet et al. (1992) and Fargue et al. (1998) for comparison). The stan-1018

dard Soret coefficient, Sst, is defined in Table 1. (b) Time evolution of ε for k = 8·10−11 m2.1019

(c) Dependence of ε on the permeability for some nonzero values of λ.1020

1021

Figure 4: Mixture C24H50-C12H26. (a) Time behaviour of cB (solid lines) and cT (dashed1022

lines), starting from a non-uniform mass fraction. Circled lines correspond to simulations1023

involving SCH 6= 0 (λ = 3.8 m4/s2) and Sst = 0. Lines with asterisks correspond to simu-1024

lations in which Sst = 1.2 · 10−4 1/K and SCH = 0. Lines with no markers correspond to1025

the case with no cross effects. (b) Initial mass fraction.1026
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