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Abstract

We consider a fluid-saturated porous medium exposed to a non-uniform temper-
ature field, and describe it as a non-isothermal biphasic mixture comprising a solid
and a two-constituent fluid. We model such a system by assuming that the fluid
free energy density depends on the gradient of the solute mass fraction. This consti-
tutive choice induces a coupling between the temperature gradient and the solute
diffusive mass flux, which adds itself to the standard Soret effect. We present numer-
ical simulations of a thermogravitational cell to show how the modified constitutive
framework, which is mandatory in diffuse-interface problems (e.g. the Cahn-Hilliard
model), could lead to some novel interpretations of thermodiffusion, and enrich the

phenomenological description of the considered benchmarks.
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A Cahn-Hilliard Approach to Thermodiffusion

1 Introduction

The onset of a mass flux by means of a thermal gradient is a phenomenon known as
thermodiffusion, and its manifestation is said to be the Soret effect. Dually, the Dufour
effect consists of the generation of a heat flux by means of the concentration gradient
of a solute in a fluid solution. Such phenomena are referred to as coupled phenomena or
cross-effects, as they represent the experimental evidence of the coupling between the
flux of a given extensive quantity and the gradient of a state variable that is not directly
power-conjugate to it (Bear and Bachmat, 1990). In the following, we shall be merely
concerned with thermodiffusion and Soret effect.

In this work, we study a system comprising a porous medium and a two-constituent
fluid that rearranges its composition under the action of a thermal gradient. In particular,
we analyse two experiments in which an initially uniform fluid undergoes a separation of
its constituents due to a mass flux initiated by a temperature gradient. Such experiments,
performed by using a device known as thermogravitational cell, have been investigated,
for example, by Jamet et al. (1992), Fargue et al. (1998), and Benano-Melly et al. (2001).
In the experimental setting pertaining to the so-called pure Soret effect (Tyrrell, 1956),
an initially uniform solution is put between two horizontal plates, kept at different tem-
peratures. To reduce convection, the upper plate is held at a temperature higher than
that of the lower one. Under these conditions, a stationary state can be attained, in which
the thermal gradient balances the gradient of concentration. In the case of the thermo-
gravitational cell, the fluid mixture is initially uniform, but the surfaces kept at different
temperatures are vertical, which implies that the fluid velocity influences the mass trans-
port of the mixture constituents by means of convection currents as well as solutal and
thermal dispersion (Benano-Melly et al., 2001). We remark, however, that both in the
description given by Tyrrell (1956) and in that provided by Benano-Melly et al. (2001),
the common feature of thermodiffusion is the capability of developing a concentration
gradient from an initially uniform mixture.

As second-order contributions, the Soret and Dufour effects are often disregarded.

There are cases, however, in which they play an appreciable role. Ingle and Horne (1973)
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A Cahn-Hilliard Approach to Thermodiffusion

and Rowley and Horne (1980) addressed thermal diffusion and the Dufour effect in mix-
tures of organic fluids of different composition. The Soret effect was observed in vari-
ous physical frameworks, such as solar ponds (Celestino et al., 2006) and compact clays
(Rosanne et al., 2001). Moreover, the thermally induced solutal separation has been inves-
tigatefd by several authors (Fargue et al., 1998; Zhang et al., 1999; Benano-Melly et al.,
2001; Rauch and Kohler, 2002, 2003; Fargue et al., 2004; Grillo et al., 2011; Srinivasan
and Saghir, 2013) both for organic and inorganic compounds. A review on experimental
results about the Soret effect is provided by Platten (2006).

Thermodiffusion has attracted several scientists also in more recent times and, in fact,
studies on Soret and Dufour effects in non-Darcy porous media have been conducted, for
example, by RamReddy et al. (2016), Yadav and Kim (2015), Mallikarjuna et al. (2014),
and Srinivasacharya et al. (2014). Soret and Dufour effects have also been investigated by
Harinath Reddy et al. (2016) for the case of “radiation absorption fluid”, and by Chandra
Shekar et al. (2016) for the case of magnetohydrodynamic “natural convective heat and
solute transfer”. Moreover, Veeresh et al. (2016) analysed “thermal diffusion effects in
unsteady magnetohydrodynamic” problems.

The theory of thermodiffusion constitutes an important chapter of Non-Equilibrium
Thermodynamics. The mathematical apparatus on which it is developed relies on the
Curie Principle and the Onsager-Casimir reciprocity relations (De Groot and Mazur,
1984; Bear and Bachmat, 1990). These are invoked to express the mass and heat fluxes
as functions of both the gradient of temperature and the gradient of the solutal relative
chemical potential.

In fact, thermodiffusion is the manifestation of a symmetry-breaking that occurs in
a mixture exposed to a thermal gradient, with the system passing from a uniform to a
non-uniform distribution of mass, and the separation of the mixture’s components being
the most relevant effect of the non-uniformity of the chemical potential.

The main idea of our work is to capture the symmetry-breaking associated with the
phenomenon of thermodiffusion in the constitutive formulation of the Helmholtz free

energy density, A, of a two-constituent fluid. To this end, we choose the mass fraction of
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A Cahn-Hilliard Approach to Thermodiffusion

one of the constituents of the mixture as the order parameter of the system, and prescribe
Af to be a function of all the state variables of the standard framework of thermodiffusion
and of the gradient of the selected order parameter. In particular, we assume that Ay is
of the Cahn-Hilliard type.

The Cahn-Hilliard model was originally conceived for two-phase flows of non-miscible
(or weakly miscible) fluids (Anderson and McFadden, 1998; Lowengrub and Truskinovsky,
1998). It is a mean-field approach that is able to describe also separation processes, which
are driven by the presence of a superficial tension between the phases, culminating with
the formation of a diffuse interface between two species. Such separation process can be
affected also by the presence of a thermal field (Jasnow and Vinals, 1996). Choosing a
Helmholtz free energy density of the Cahn-Hilliard type allows to account for end-wall
effects and for the spatial resolution of the solutal mass fraction at the constitutive level,
and induces a spontaneous coupling between mass diffusion and thermal gradients. We
remark that this coupling stems from the constitutive framework, rather than being a
consequence of the Curie Principle and Onsager’s relations. From the theoretical view-
point, its major consequence is the production of a non-standard Soret effect, which adds
itself to the one of standard thermodiffusion. To quantify the relevance of our theoretical
predictions, we reproduce numerically the experiments in a thermogravitational cell by
enforcing both the standard and the non-standard (i.e., Cahn-Hilliard based) model of
thermodiffusion. We show how the latter may be used as an additional tool for fitting
experimental curves, thereby supplying a correction to the results obtained within the
classical framework.

Although the Cahn-Hilliard model has been employed especially in the numerical
treatment of two-fluid systems, there is an analogy between this higher order theory
and the one developed in the framework of Mixture Theory. Indeed, the Cahn-Hilliard
model describes the two-fluid system by means of the usual mass and momentum balance
law of a single-fluid system, plus an evolution law for an order parameter, which in fact
can be retrieved from the mass balance law of one of the two fluids, if it is regarded as

a component of a binary mixture. This leads to the definition of two distinct regions,
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each of which is occupied by one of the two fluids only, and a third region, the diffuse
interface, whose characteristic dimensions should be smaller than the other two bulk
domains. In the latter, the mixture model can be employed tout court, while in the other
two, the order parameter acts as a weight, switching off those terms in the equations
that pertain to the mixture description. From our understanding, in a two-fluid system,
the explicit modelling of a diffuse interface could be done for two main reasons: (a) to
avoid the numerical treatment of the discontinuities at the interface between the fluids,
which pertains to the sharp interface models (Yue et al., 2004); (b) when the dynamical
phenomena occurring in that layer influence the entire system, as in the case of an evident
surface tension, or non negligible diffusion in the transition zone. Still, the mathematical
introduction of a diffuse interface, arising in the Cahn-Hilliard model, has been used
for miscible fluids in which dynamical effects that mimic the presence of an interfacial
tension are, at least instantaneously, relevant (Joseph et al., 1996). This could be the case
of a mixing problem, in which the Korteweg stress, i.e., an additional stress appearing
in the momentum balance law of the whole system due to the presence of a gradient of
composition, should be taken into account as a surface tension that vanishes as far as the
mixing layer spreads (Davis, 1988). Moreover, a dedicated literature (Swernsath et al.,
2010; Chen et al., 2017, 2015; Dias et al., 2010) introduces the effects of the Korteweg
stress tensor also for treating the injection of miscible fluids in porous media, or in the
case of unsaturated flow Cueto-Felgueroso et al. (2009).

Our study has been inspired by some discrepancies between the experimental and
the numerical studies of the curves “separation ratio vs permeability” associated with
a thermogravitational cell (Benano-Melly et al., 2001; Jamet et al., 1992; Fargue et al.,
1998). Numerical results obtained within the classical framework of thermodiffusion were
compared with the experimental ones by Jamet et al. (1992), and quite a relevant dis-
agreement was noticed. It was observed that the evolution of the fluid in the thermo-
gravitational cell is strongly influenced by the permeability and porosity of the porous
medium (Jamet et al., 1992; Davarzani and Marcoux, 2011), by the characteristic dimen-

sion of the cell, the initial mass fraction of the solute, and the physico-chemical properties
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of the mixture. Jamet et al. (1992) firstly attributed the discrepancy between the numer-
ical and the experimental results to an anisotropic permeability. Subsequently, Benano-
Melly et al. (2001) considered also the effect of dispersion. Latest results are due to
Nasrabadi et al. (2007), who showed that, by adding a compositional dependence of the
Soret coefficient on the density (by means of a pressure dependent density), it is possi-
ble to obtain, at least for a binary mixture in a porous thermogravitational column, a
good agreement between the experimental and numerical results, even though no further
contribution of dispersion in the model is observed. The strong effect of the buoyancy
term on the goodness of the results of the proposed classical models on thermodiffusion
was also observed by Madariaga et al. (2011). For a non porous column (Thomaes cell),
thermodiffusion is strongly affected by non trivial natural convection, which, in some
cases (i.e., when the mean velocity of the mixture in the column is high), requires a full
3D treatment (Chavepeyer et al., 2002). A review has been given by Costeséque et al.
(2002). Another fact concerns the closure problem, which could lead to a more or less re-
alistic coarse scale approximation of the problem (effective thermodiffusion coefficients)
(Quintard et al., 1997; Davarzani et al., 2010).

In the following, we show that adopting a Helmholtz free energy density of the Cahn-
Hilliard type supplies a correction to the mass flux determined within the standard theory
of thermodiffusion. Such a correction produces an additional coupling between the ther-
mal gradient and the mass flux, and introduces a dispersive-like effect, which is related
to the gradient of the solute mass fraction rather than to the fluid velocity. Although
we are aware of the fact that the experimental set-up of the thermogravitational cell
gives rise to convection currents, we focus here only on the effects associated with the
use of a Helmholtz free energy density of the Cahn-Hilliard type. This may contribute
to enrich the phenomenological picture of thermodiffusion and to stimulate alternative
interpretations of the effects related to it.

The paper is structured as follows: In section 2, the mathematical model is developed
in detail, and the Second Principle of Thermodynamics is exploited to determine con-

sistent generalisations of the Fick and Darcy’s laws in the context of Porous Media. In
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section 3, we review the standard theory of thermodiffusion, and reformulate it within
the Cahn-Hilliard framework. In section 4, we present the benchmark problems used for
our numerical simulations, and introduce the employed numerical methods and model
parameters. In section 5, we discuss in detail the obtained results, and validate our model
by comparing its outputs with the experimental and numerical findings of other Authors.
Particular care will be given to weighting the influence of the Cahn-Hilliard correction.

Finally, in section 6, we summarise our results, and suggest some possible research topics.

2 Mathematical Model

We consider a physical system consisting of a two-constituent fluid, ¥, and a porous
medium, P. The fluid is free to move throughout the void space of P, and is assumed to
saturate it completely. Due to the hypothesis of saturation, the porosity of P coincides
with the volumetric fraction of &, denoted by ¢, and the volumetric fraction of P is given
by 1 — ¢. At a sufficiently coarse scale of observation, the system under investigation
can be studied by means of Hybrid Mixture Theory (Hassanizadeh, 1986; Bennethum
et al., 2000). In this context, F and P can also be referred to as the fluid and solid phase,
respectively.

We focus only on the case in which P is rigid, at rest, and incompressible. In particular,
its mass density, gs, is regarded as a given constant. Thus, the velocity of the solid porous
medium, ug, is null at all times and all points. These assumptions, the mass balance law
of the solid phase, and the saturation constraint imply that ¢ is independent of time. In

the sequel, we shall also assume that ¢ is constant in space.

2.1 Balance laws

The mass balance law of the fluid phase, &, is given by

9i(por) + div(porur) = 0, (1)
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2.1 Balance laws A Cahn-Hilliard Approach to Thermodiffusion

where ¢f is mass density and wg is the velocity of F. Sometimes it is convenient to
rewrite (1) in terms of the solid phase velocity, us, and the relative velocity wg=wus — us,
which describes the motion of F relative to P. However, since the velocity of the solid
phase is null in the present context, it holds that ug = wg. We denote by €; and Gy the
constituents of the fluid phase, and select C; as the reference constituent. The composition
of F is determined by the mass fractions of €¢; and €y, which are indicated by ¢; and ¢,
respectively. Since it holds that ¢; + co = 1, it suffices to determine the mass fraction
of the reference constituent, ¢; = ¢, to obtain also ¢ = 1 — ¢, and thus define the local
amounts of €; and G, in F. By introducing the velocity of C1, w¢, and the relative velocity

v=u1r — us, the mass balance law of €; can be written as

oor¢ + divdy = 0, (2)

where Jy = ¢orcv is the mass flux vector associated with €y, while ¢ = d;¢c + u;- Ve
is the substantial derivative of ¢ with respect to the velocity of F. In addition to (1)
and (2), also the balance laws of momentum, energy, and entropy have to be introduced.
Following Hassanizadeh (1986), it can be shown that, if gravity is the only external force
acting on the system, if inertial forces are negligible, and the relative velocities ug and
v are sufficiently small (i.e., ||ug]|*<1 and ||v||*<1), the momentum balance laws of F

and C; reduce, respectively, to (Hassanizadeh, 1986)

dive +m + ¢org = 0, (3a)

porcVY = f. (3b)

In (3a), o is the Cauchy stress tensor of the fluid phase, g is the gravity acceleration
vector, and m represents the interaction forces exchanged between P and F. In (3b), f is
the dissipative part of the interaction forces exchanged between the two fluid constituents,
and Y =1 — 1, is the relative chemical potential of C; with respect to Gy, whereas /1 and

¥ are the chemical potentials of the constituents €; and Cs, respectively. Furthermore,
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the energy balance law for the system as a whole can be written as

dosTns + (1 — @) osTOms = —divdg — pordé — myq - ugs, (4)

where T' is absolute temperature, n; and 7, are the entropy densities per unit mass of the
fluid and the solid phase, respectively, Jq is referred to as the effective heat flux vector of
the system, and my is the dissipative part of m. The balance laws (1)—(4) are completed
with the Second Law of Thermodynamics, which, in the local form of the Clausius-Duhem
inequality, requires the system’s overall entropy production, A, to be non-negative at all

times and all points of the system, i.e., A > 0 (De Groot and Mazur, 1984).

2.2 Constitutive laws

The quantities o, m, mq, ¥, f, n, 7s, and Jq will be determined constitutively, and
should thus comply with the condition A > 0. Our constitutive model is based on the
theory developed by Hassanizadeh (1986) and Bennethum et al. (2000), and is then spe-
cialised to the problem at hand by enforcing the following further hypotheses (Grillo
et al., 2011): (1). Radiative sources of energy and mass-exchange processes are excluded
from the present study; (2). The fluid phase is macroscopically inviscid; (3). The mass
density of F, gf, is an assigned constitutive function of the mass fraction, ¢, and absolute
temperature, T, i.e., we set of = g¢(c,T); (4). The physical processes relevant to the
investigated problem necessitate the following list of independent constitutive variables
ICV ={T,¢,VT, Ve, ug, v}. To provide an explicit mathematical expression of the quan-
tities introduced so far, and of other constitutive variables necessary for the description
of the system, we introduce the Helmholtz free energy densities of the solid and the fluid
phase, A, and Ag, and express them constitutively as A, = A, (T) and A; = A¢(c, Ve, T).
Within this constitutive framework, the entropy densities of P and &, i.e., ns and 7, the

Cauchy stress tensor borne by F, o, and the Gibbs free energy density of the fluid phase,
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o G, are given by:

DA,
Ns = — T (5a)

&Zlf D 8@ . 8éf

"=or tger ~ ar o)
oG

o=—¢pl —Vc® <¢Qf f) , (5¢)

Gf — Gf(C, VC, T, p) == Af(c, VC, T) + ~ p (5d)

Qf(c7 T) ’

22 where p is the fluid pressure, I is the second-order identity tensor, and the non-hydrostatic

233 contribution

oG
ox=-Ve® <¢Qf f) (6)
2 is the Korteweg stress tensor. Furthermore, the relative chemical potential, ¥, reads
0Ar _pOar) 1 0A;
v =|—=—-=—= 7
o1 80) L (28] 0
_9Gy 1 aGf

235 Finally, by introducing the system’s heat flux vector, q, and the entropy flux vector

1 0A 1 oG
% <¢Qf f) c= % (Cbe f) ¢, (8)

2 the effective heat flux vector Jq is written as Jo =Tgq,. The presence of Vc among the

a4,

237 arguments of éf, cf. (5d), implies that q,, cannot be written as the ratio between the g
23 and T, as is the case in standard Continuum Thermodynamics (Mi¢unovi¢, 2009; Gurtin
20 et al., 2010). Nevertheless, by construction it does hold that q, = Jqo/T.

240 A well-known model, constructed upon a free energy density depending on a scalar
21 field and its gradient, is the Cahn-Hilliard model (cf., for example, (Gurtin, 1996) for a

22 review). It describes the evolution of a two-phase system, in which the distribution of

243

244

the phases is represented by a scalar order parameter, and the free energy is written as

the sum of a contribution depending on the order parameter only, and a contribution

10
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depending on the gradient of the order parameter. The order parameter solves a mass
diffusion equation, in which the mass diffusive flux depends linearly on the gradient of
the chemical potential of the diffusing substance. In this context, the chemical potential
is the functional derivative of the system’s free energy.

Since in our work mass diffusion plays a central role, our thermodynamic model is
grounded on the Cahn-Hilliard theory. For this purpose, we consider a Helmholtz free

energy density of the Cahn-Hilliard type, given by
Ai(e, Ve, T) = Ag(e, T) + X[ Vel)?, (9)

where flst(c, T') may be referred to as the standard Helmholtz free energy density, and A
is a coefficient having the meaning of a mixing free energy. By plugging (9) into (5d), the

Gibbs free energy density becomes
Gi(c, Ve, T,p) = Gylc, T,p) + X Ve|)?, (10)

where the standard part, Gst(q T,p), is given by

- ; p
T p)=A T ) 11
Gst<cv 7p> St(c7 ) + éf(C, T) ( )

Also the chemical potential, 9}, can be written as ¥ = ¥y + ¥cn, where

_9Gy  0Gy
e T (122)
1 dGy 1
= = . 1
ﬁCH gbgf div <¢Qf aVC> ¢Qf div ((bgf/\Vc) ( 2b)

We refer to ¥y and Jcy as to the standard and the Cahn-Hilliard chemical potential,
respectively. The standard part of the Gibbs free energy of the fluid phase, &, can be
written as

ést(c7 T; p) - Cﬁstl(ca T7 p) + (1 - C) 198172(07 T7 p)7 (13)

11
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where

. RT M.

daales Top) = 7108 | =iy | H @+ 8T ()
~ . RT (1 - C)Ml

aale, Top) = - tog | o b aal@p 8. (1)

are the standard chemical potentials associated with the constituents €; and Gy of F,
respectively, R is the gas constant, M; and M, are the molar masses of C; and C,, and
a1(T), aa(T), and B(T) are given functions of the temperature. We remark that U, and

~

Jg2 are consistent with the equality

a1951;1 aﬁsﬂ
C

5% +(1—2¢) % 0. (15)

When the Cahn-Hilliard model is used to describe binary systems comprising two non-
miscible fluids, the term $A||Vc¢||? introduces a partial miscibility regularisation (Lowen-
grub and Truskinovsky, 1998), and X is referred to as the capillarity coefficient (Jamet,
2001). In this case, A should be supplied constitutively. However, it is possible to de-
termine A by having recourse to the definition of Cahn number (Choi and Anderson,
2012; Lowengrub and Truskinovsky, 1998). Hence, we may set A = C'L?0,¢, where L is
the characteristic length of the computational domain, ¥, is a referential, characteristic
chemical potential, and C' = £/L is the Cahn number, i.e., the ratio between the char-
acteristic meso-scale length &, which represents the interface width, and L. Despite these
considerations, in all the forthcoming numerical simulations, A will be taken equal to a

constant known from the outset.

2.3 Entropy production

The constitutive relations (5)-(7) allow to obtain an explicit expression for the rate of

overall entropy production, A, which is equal to the ratio between the overall power

12
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dissipated by system and the absolute temperature (Grillo et al., 2011), i.e.,

md~ufS_V19~JM_VT-(JQ—19JM) >

A=— >
T T T2

0. (16)

In this work, we admit that the dynamic regime of the fluid phase is compatible with

Darcy’s law. Thus, we express the dissipative force myg, which is defined by mgq = m—pVo

(Hassanizadeh, 1986), as a linear constitutive function of the filtration velocity w
dug, i.e., we set mq = —rw, where r is a second-order tensor referred to as resistivity
tensor. Here, we assume that r is symmetric and positive-definite. By accounting for the

definitions (5¢) and (6), we solve (3a) with respect to w, thereby obtaining

w=—

=&

(Vp— oig) - %divaK , (17)

where k is the permeability tensor, p is the dynamic viscosity of the fluid, and the identity
¢r~' = k/u has been used. Equation (17) is a generalisation to Darcy’s law in which the
divergence of the Korteweg stress tensor contributes to the fluid filtration velocity. By
computing ok explicitly, and recalling that ¢ is assumed to be constant throughout this
work, we obtain —¢~'divek = div(0sAVe ® Ve). If the variability of of is neglected, this

expression takes on the form (Collins et al., 2013; Diegel et al., 2015)
—¢ tdivok = div(gAVe ® Ve) = oA\ (VVe)Ve — orden Ve, (18)

where Jcyp = —AAc is the Cahn-Hilliard chemical potential (12b), obtained under the
hypotheses that ¢, gof, and A are constants. Since r is positive-definite, the first term on

the right-hand-side of (16) is always non-negative, i.e.,

maui T (ww)
Ap = — = > 1

where Ap is the part of the overall rate of entropy production associated with the fluid
flow. Equation (19) implies that, to satisfy the inequality (16), it is sufficient to require

that the part of A due to mass diffusion and heat conduction, denoted by Ayiq hereafter,

13
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has to be non-negative. This requirement can be put in one of the two equivalent forms

VY- Ju VT (Jg—9Jw) |

AMQ - — T T2 - Oa (20&)
v vT
Mm:—ﬁpv(?)—&yﬁgza (20b)

and is enforced in order to extract constitutive information on the heat flux vector Jg

and on the mass diffusive flux vector Jy.

3 Thermodiffusion

In spite of the fact that (20a) and (20b) are interchangeable representations of Ayq,
selecting one of these two possible forms has repercussions on the constitutive expressions
of the fluxes Jy and Jg and on the interpretation of the phenomenological coefficients
featuring in these expressions. A thorough review on this issue was written by De Groot
and Mazur (1984). In this work, we adhere to the formulation given in (20b) (cf. De Groot

and Mazur (1984), Ch. 5, Sec. 3, p. 49).

3.1 Standard thermodiffusion

In this section, we make a brief review on standard thermodiffusion. For this purpose, we
take a step backwards and consider the thermodynamic framework in which the Helmholtz
free energy density of the fluid phase is a function of ¢ and T only, i.e., Af = Af(c, T) =

Ag(c,T). When this is the case, the relative chemical potential reduces to the standard

one, i.e., ¥ = ¥y, and Ayq becomes

lsst C T
MQ M ( T > Q T2 0 (21)

Hence, within the linear theory of the phenomenological laws for isotropic media, the

fluxes Jy and Jgq are connected with the gradients —V (J/T) and —(VT)/T? = V(1/T)
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through the formulae (De Groot and Mazur, 1984; Rauch, 2006)

- vT
JM = —LMMV <?> - LMQW, (22&)
Vst vT
=L — | — Loo— 22
Jq QuV < T ) Q7 (22b)

where Ly, Lavq, Lom, and Lqq are scalar phenomenological coefficients, constrained to
satisfy Onsager’s reciprocal relations Lyiq = Lqgu. By working out the gradient of dy /T,

splitting the gradient of ¥y, and introducing the specific relative enthalpy hg, i.e.,

aﬁst
Vﬁst = VTﬁst + 8—TVT, (23&)
a1951;
=g — T — 2
hst ﬁst 8T ) ( 3b)
the expressions of Jy; and Jg become

L vT
Ju = —%Vﬂ% — (Lmq — hstLnam) T2 (24a)

L vT
Jo = —%vﬂ%t ~ (Lag ~ hatLow) 27 (24b)

The partial gradient Vg is obtained by holding temperature fixed and differentiating

with respect to all other state variables. Since it follows from (12a) that 9 depends on

~

the mass fraction, ¢, temperature, 7', and pressure, p, i.e., Oy = (¢, T, p), it holds that

- aést a1951;
Vg = 9% Ve + ap \Y

(25)

Substituting the second term on the right-hand-side of (25) into (24a) and (24b) leads
to the baro-diffusion factor (Landau and Lifschitz, 1984) k, = p%, which vanishes
identically for ¢ = 0 and ¢ = 1. Since the baro-diffusion factor usually has a negligible

influence on the fluxes Jy and Jgq, we approximate Vv with the first summand on the
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right-hand-side of (25). Furthermore, by introducing the quantities

1 Ly 90
D=——F 2
S, = 1 LMQ/LAMM — hs (26b)
(I—c)c  T(904/0c)
Q= o (260)
Ly
L
K= %, (26d)
we recast (24a) and (24b) in the form
Ju = —0eD[Ve + Ssee(l — ¢) VT, (27a)
D
Jo = —0:DQVe— [k — he— P9\ gr (27b)
T(@ﬁbt/ac)

In (26a)—(26d), D and Sy are the diffusion coefficient and the standard Soret coefficient,
respectively, @ is the heat of transport, and k is the thermal conductivity (De Groot and
Mazur, 1984; Rowley and Horne, 1980). Due to the symmetry requirement Lyq = Lqwm,
Sst and @ must satisfy the relation (Rauch, 2006; Grillo et al., 2011)

a/ést

(1—-c)c P

TSSt - Q - hst' (28)

Within the considered constitutive framework, the specific relative enthalpy, hg, is usually
neglected. This is particularly the case when the fluid phase is regarded as incompressible,
or when the Boussinesq-Oberbeck approximation is invoked. Finally, although appreciable
for some physical processes (Ingle and Horne, 1973), in the present work we claim that
the contribution of the Dufour effect to the overall heat flux vector is negligible. Thus,

we approximate Jq with standard Fourier’s law, i.e., from here on we set

JQ = —HVT. (29)

16



340

341

342

343

344

345

346

347

348

349

350

351

3.2 Thermodiffusion and Cahn-Hilliard A Cahn-Hilliard Approach to Thermodiffusion

3.2 Thermodiffusion within the Cahn-Hilliard framework

In this section, we highlight the implications brought about by the use of a Gibbs free
energy density of the Cahn-Hilliard type. For our purposes, we consider the expression
of the residual rate of entropy production given in (20b) and, by adopting the same

argument as in section 3.1, we express the fluxes Jy and Jq as

v vT
) vT
Jo = —LouV <?) ~ Lo (30b)

We do not speculate on Jq any further, since it will approximated as in (29) in the sequel.

Rather, we work out (30a), which can be rewritten as

Vg + U vT
Ju = —LyuV (tTCH) — Lug 7 (31)
195 TQCH VT

According to the procedure shown in section 3.1, and recalling (26a) and (26b), we obtain

Ju = —0D[Ve+ Sge(l —¢)VT) (32)
¥ D
+oD— VT — 2Ty
T(094/0c) Vg /Oc

From here on, we call Cahn-Hilliard “Soret coefficient” the quantity

—Vcu

Scn = ~ . 33
T (1= o) eT(994)0¢) (33)
This definition allows to rephrase the expression of the mass flux vector Jy; as
ot D
JM = —QfD[VC + (Sst + SCH)C(l — C)VT] — = VﬁCH (34)
0195t/8c

We define effective Soret coefficient the sum Seg = Sg + Scu. According to (34), the

inclusion of the Cahn-Hilliard theory into the standard framework of thermodiffusion
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A Cahn-Hilliard Approach to Thermodiffusion

yields two corrections of the mass flux vector, Jy. These manifest themselves through
the additional “Soret coefficient”, Scy, which is generated by the Cahn-Hilliard relative
chemical potential, ¥y, and a term proportional to the gradient of Jcy. We remark that,
while the standard Soret coefficient, Sy (which is typically expressed constitutively as a
function of temperature and mass fraction), can be either positive or negative, and its
sign may change in response to changes of mass fraction and temperature (Kita et al.,
2004), the sign of Scy depends essentially on the sign of J¢y. Since ¢ is assumed to be
constant in this work, and the Boussinesq-Oberbeck approximation will be enforced (i.e.,
or will be regarded as constant everywhere, except in the buoyancy term, org, of Darcy’s
law (17)), Ycn reduces to Jeg = —div(AVe) = —AAc (see (12b)). Thus, the sign of Jcpn

changes in space and time according to the sign of the Laplacian of the mass fraction.

4 Benchmark problems

As stated in the Introduction, a typical framework in which thermodiffusive effects are
accounted for is the thermally induced separation of the components of a two-constituent
mixture in response to the combined action of a thermal gradient and density-driven fluid
flow. Hereafter, we employ a Finite Element model to reproduce numerically two experi-
ments of thermally induced separation in a thermogravitational cell (Benano-Melly et al.,
2001; Costeséque et al., 2002; Jamet et al., 1992). In both experiments, a thermogravita-
tional cell of length L and width H = hL (h is a positive real number smaller than unity)
is used, in which a porous medium with uniform and constant porosity ¢ is saturated by
a two-constituent fluid. The fluid is prepared in such a way that, at the initial time of
observation, the mass fractions of its constituents are uniformly distributed. In the course
of time, however, a separation process occurs, thereby leading to a slightly nonuniform
distribution of the mass fractions within the cell. In the first experiment, the employed
fluid is a mixture of pure water and heavy water (hereafter referred to as HDO) in a
porous matrix of aluminium oxide, Al,O3 (Benano-Melly et al., 2001; Costeséque et al.,

2002). The second experiment adopts a mixture of tetracosane, CyqHsg, and dodecane,
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CioHog, (Jamet et al., 1992; Fargue et al., 1998). In the following, the constituent Cy,
whose mass fraction, ¢, features in the model equations, will be assumed to be HDO in

the first experiment, and Cy4Hpsy in the second one.

4.1 Summary of the model equations

The mathematical model considered in this work is based on the mass balance laws (1)
and (2), and on the energy balance law (4). These are three scalar equations in the three
unknowns represented by pressure, p, mass fraction, ¢, and temperature, 7. The model
is closed since w, Jq, and Jy; are specified in (17), (29), and (34), respectively, while 7,
ne, and ¥ are prescribed in (5a), (5b), and (7), respectively.

To reduce the computational complexity of the model equations, which are highly
coupled and non-linear, we enforce the Boussinesq-Oberbeck approximation. Accordingly,
the mass density of the fluid phase is expressed as a function of ¢ and T only in the
buoyancy term of Darcy’s law, i.e., in org = 0¢(c,T)g, and is set equal to a reference
constant, g, everywhere else. Moreover, we neglect the Korteweg stress tensor, ok, in
the generalised Darcy’s law (17), and the term myg - ug, = —¢ 'rw - w in (4). The latter
simplification is done under the assumption that the terms of order higher than the first
in w are not significant in the present study.

Substituting the expression of Jy, given in (34), into (2) leads to an equation that
involves the derivatives of the mass fraction up to the fourth order. This is due to the fact
that Jyr features the gradient of the Cahn-Hilliard chemical potential, J¢y, which, in turn,
contains the derivatives of ¢ up to the second order. Rather than following this approach,
we treat Yoy as an additional unknown of the model, and determine ¢ consistently with
the constitutive relation (12b), which becomes Yoy = —div(AVe) due to the considered

approximations, and is solved together with the balance laws. Thus, the model equations
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take on the form

div(gow) = 0, (35a)
doo¢ + divdy = 0, (35h)
Yon = —div(AVe), (35¢)
Ce O T + div(0oCptTw) = div(kVT) — ¢ooVcnd, (35d)

where w is now given by standard Darcy’s law, i.e.,

w = —S (Vp— x(c; T)g) (36)

Cef 1s referred to as the effective thermal capacity of the fluid-solid mixture, i.e.,

Oeﬂ - QSQOOpf + (1 - ¢)Qs0ps, (37)

while Cp¢ and Cs are the specific heats at constant pressure of the fluid and solid phase,
respectively. Both are assumed to be constant in the present framework.

It is worth to remark that, with respect to a standard problem of thermodiffusion,
there are two relevant differences. The first difference is related to the introduction of
the Cahn-Hilliard “Soret coefficient”, Scy [cf. (33)], and the second one is due to the
contribution Vicy to the overall mass flux vector Jy. The presence of these two non-
standard terms requires a special numerical treatment.

Notice that the additional term in the energy balance law (35d) could be split into
two terms: the divergence of an additional flux div(dcudy), directed in the sense of the
mass flux, which in our case is negligible (~ 1-107% W/m?) compared to the conductive
(~1-10° W/m?) and the convective (~ 1 - 10> W/m?) fluxes; a term —Jy - Vdcp that
reminds of an energy loss due to the mass exchange, whose order of magnitude is even
smaller (~1-107° W/m?).

Equations (35a)—(35d) apply in an open set Q C R¢, with d = 2 or d = 3, which

constitutes the computational domain. The boundary of the cell, 0f2, is assumed to be
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impervious, i.e., no-flux conditions are imposed to the filtration velocity, w, and the mass
flux vector, Jy, on all parts of 02. The lower and the upper boundaries, I'} and I'y, are
assumed to be thermally insulated, while the lateral boundaries, I'. and I'y,, are kept at

constant temperatures. In formulae, the set of boundary conditions read:

Tl =T, Ty, =T, (38a)
Jq-n=0, on IMUT,, (38b)
Ju-n=0, on 012, (38¢)
w-n =0, on 012, (38d)

where m is the unit vector normal to 02, and T, < Tj,. In addition to (38a)—(38d), we
also impose

—)\VﬁCH N = 0, on GQ, (39)

thereby requiring that Yoy satisfies homogeneous Neumann conditions on the whole
boundary of the thermogravitational cell.

In the standard numerical treatment of the Cahn-Hilliard model, it is rather customary
to set the normal derivative of the total chemical potential equal to zero at the boundary
of the computational domain, i.e., 9,9 = Vi-n = 0, on 0f2, and to impose some “wetting
angle condition” on 0f) (Diegel et al., 2015; Jamet, 2001; Zhang et al., 1999). Within our
framework, the latter condition is a consequence of (38c), and is expressed through a
restriction on the normal derivative of the solutal concentration, 0,¢c = V¢ - n, which
has to hold on 0€). We emphasise, however, that 0,c need not be zero in our approach.
Rather, in order to guarantee the solvability of the formulated mathematical problem, it
is only required to satisfy some auxiliary constraint on 0€2. In this sense, we speak in our
work of a “generalised wetting condition”.

In the present study, the combination of (38b), (38¢c), and (39) implies the boundary
condition 0, = 0 as well as the “wetting condition”, d,,c = 0, on I U I',. This is due to
the fact that Fourier’s law (29) prescribes the equality Jq = —xVT', and (38b) becomes

Jq-n=—kVT -n=0onIl1UI,, thereby yielding VI'-n = 0 on I' UT',. Hence, the
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boundary condition (38¢c) reads

L L
JM-n:—%W-n:—%(wﬁ-n+wc}l-n>:o, on Iy UT,, (40)

with ¢ = Jy + Yen. In fact, (40) is equivalent to 0,0 = 0 on I'y UT,. Moreover, since
(39) implies that the normal derivative of ¥cy vanishes on 9€2, it must also hold 0,0cy =

Ve -n =0on I'TUT,, and Equation (40) thus leads to

LMM LMM 8795t
Ju - n=—Viy n=———
Mo T e T Oc

= Ve-n=0, onlhTUTL,. (41)

Ve-n=0

We conclude that the boundary conditions (38c) and (39) are equivalent to requiring the
vanishing of the normal derivatives of the chemical potential and of the mass fraction
(i.e., the so-called “wetting angle condition”) on I'y U T, as is usually the case in the
numerical treatment of the Cahn-Hilliard model.

Looking at the boundary T'. U T}, we notice that, by expressing Jy as in (34) and
invoking (39), the boundary condition (38c) becomes a homogeneous Robin-like condition
on c. In fact, enforcing (39) allows to retrieve the zero-flux boundary condition of standard

thermodiffusion (Benano-Melly et al., 2001), i.e.,

Ju-n=—(0tD[Vc+ (Sg + Scu)e(l = ¢)VT])-n =0, on . UTY, (42)

which could be considered as a “generalised wetting angle condition”. It is important
to emphasise that, in the case of (42), the “wetting angle condition” is understood in a
generalised way, i.e., it does not reduce to d,c = Vc-n = 0, as in (41). Rather, (42)

places the restriction that 0,c and 0, T balance each other according to the equation

Onc+ (Sst + Scu)e(1 — ¢)0,T =0, on T .UTY. (43)

We remark that the condition d,c = 0 would be unphysical on I'. U I'y, since it would
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4.2  Numerics A Cahn-Hilliard Approach to Thermodiffusion

necessarily imply the wrong result 9,7 = 0 on I'. U T, (there is, indeed, no reason why
the normal derivative of the temperature —and, thus, the normal heat flux, within our
approximation— should vanish on this portion of the boundary). Note, also, that we
speak of “Robin-like” boundary condition because Equation (42), or (43), is non-linear in
¢ due to the term ¢(1 —¢). A Robin condition, instead, consists of a linear combination of
a function and its derivative, restricted over a subset of the boundary of a computational

domain.

4.2 Numerics

Equations (35a)—(35d) are implemented in a Finite Element software and have thus to be
written in weak form. The procedure followed to obtain the weak form of (35a) and (35d)
is standard, and will not be repeated here. Rather, we shall briefly sketch the main
steps towards the weak formulation of (35b) and (35c). Since the mass fraction c¢ is
subjected to the Robin condition (38c), and its derivatives up to the fourth order are
involved in the strong form of the problem, we choose the test function associated with
the mass fraction as ¢ € H?(Q2). Moreover, since Yoy has to comply with the Neumann
condition (39), and its derivatives up to the second order feature in (35a)—(35d), we
take ¥ € H'(Q) as test function associated with dcy (Salsa, 2008). Here, H*(Q), with
k = 1,2, denotes the Sobolev space H*(Q) = {u € L*(Q) : D € L*(Q)}, where
D = ﬁ is the distributional derivative of u of order a, and o = (ay, . . ., ag) € N?
is an arbitrary d-dimensional multi-index of length equal to, or smaller than, k, i.e.,
lal = a1 + ...+ ag < k (Brezis, 1986).

By multiplying (35b) by 9, and (35¢) by ¢, integrating over €, invoking Gauss’ The-
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orem, and enforcing the boundary conditions (38d) and (39), we obtain

‘/§W@d&/:—}/VﬁﬂmDVd&/ (44a)
Q Q
—:/Vémewﬂ+&myu—QVva
Q
—/v@- 90D G| av
Q 3195t/ac
/ Eon — VE - (AVE)]dV = / & M(Su + Scm)e(1 — €)0,T] dA. (44b)
Q FCUFh

To determine the finite element formulation of (44a) and (44b), we cover the computa-
tional domain 2 with a conforming, regular mesh T} consisting of N, non-overlapping

triangular elements {K;}",, and we introduce the finite dimensional spaces

VW = (e € HX(Q) : G|, € P, fori=1,..., Ny}, (452)
Vi) = {0 € HYQ): Uhli, € P, fori=1,... Ny}, (45D)

where P,,, and IP,, are the set of polynomials of order m and n, respectively. The simulations
reported in this paper were conducted with m = 2 and n = 1. For completeness, we
mention that polynomials of order 3 and 1 have been employed for discretising the test
functions associated with pressure and temperature, respectively. In our simulations, the
maximum element size is taken to be max\" ¢; ~ 2.5-10~* m, where ; is the characteristic
length of the ith finite element K.

To avoid the possibility of obtaining numerical variations in the results of the same
order of magnitude as the truncation error, the mass fraction, ¢, has been rescaled as
¢ = ¢oC, with ¢y and ¢ being the initial and the “normalised” mass fraction, respectively.
This is done, in particular, because of the very low reference mass fraction in the HDO-
H>0 mixture (see Table 1). Consequently, the mass balance law of the constituent C; is

transformed into

i 1
¢Qoé = div QQD Ve + (Sst + SCH>E(1 — COE)VT + — _VﬁCH . (46)
5’198t/8c
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Our numerical solutions are normalised in such a way that the rescaled initial mass
fraction in the computational domain is unitary for both the considered benchmarks,
since ¢y = ¢(x,0) is the “true” initial mass fraction of €;. All the quantities introduced
in the model are coherently rescaled.

The weak form of the system of equations (35a)—(35d) has been spatially solved by
means of Newton’s method, and the time discretisation has been performed adaptively

by means of a Backward Differentiation Formula (BDF).

4.3 Model Parameters

The first experiment here studied considers a mixture of water (HyO) and heavy water
(HDO). Benano-Melly et al. (2001) assumed that the mass fraction of heavy water, iden-
tified with the constituent C; of the mixture, and playing the role of the solute, is so small
that the term (1 — ¢)c in (34) can be approximated as (1 — ¢)c ~ ¢. In our simulations,
however, we kept the nonlinear term (1 — ¢)¢, even when it was quite small, for the sake
of generality. In addition to the boundary conditions (38a)—(38d) and (39), we impose
that the initial mass fraction is uniformly distributed within the thermogravitational cell,
and given by ¢y = 5.8 - 1075, The value attributed to ¢y has been obtained from the work
by Jamet et al. (1992), in which the initial distribution of the solute was expressed in
molarity and taken equal to Cp = 2.9 - 10~ mol/l. The mass density of the mixture is

expressed constitutively by the formula (Benano-Melly et al., 2001)

0 = @f<c7 T) = 0o [1 - ﬁ(T - Tref) + P)/(C - cref)] s (47)

where 3 and ~ are the (constant) thermal and solutal expansion coefficients of the fluid,
respectively, and Ti.s and c.r are reference values of the temperature and solutal mass
fraction. In particular, the dependence of g; on ¢ is neglected in (47) (i.e., 7y is set equal
to zero), because the difference between the mass density of heavy water and the mass
density of the mixture as a whole is very small (incidentally, this also implies that no

reference value of the mass fraction, ¢, needs to be prescribed). Thus, the mass density
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actually used in the numerical simulations is g¢(7T") = oo [1 — B(T — Trer)]. Moreover, the
viscosity of the mixture is assumed to be constant.

The second experiment considers a mixture of tetracosane-dodecane, CoyHz0-CioHog.
The constituent €y, identified with the tetracosane, CoyHsg, is assumed to have uniform
initial mass fraction ¢y = 0.15, a value much higher than that assigned in the first
experiment. This higher concentration is expected to lead to a stronger contribution of
both the standard and the non-standard thermodiffusion effects. While the viscosity of
the mixture as a whole is regarded as a constant also in this experiment, the mass density

or is prescribed by the empirical formula [slightly adapted from Jamet et al. (1992)]

) 758.30 - (1 — 5.712.)
o = (%) = 775y (1 -5.712x)-8-10-5’ )

where x € [0, H] is the space coordinate along the direction of the width of the thermo-
gravitational cell.

The parameters employed for simulating both these experiments are listed in Table 1.
In particular, AT = Tj, — T, represents the temperature difference between the hot side,
I'y,, and the cold side, I';, of the computational domain, {2, while the reference temperature
Tref is defined as the arithmetical mean between Ti. and Ty, i.e., Tef = (Tt + 1h)/2. By
reading off T, and AT from Table 1, we obtain T, = 309.15 K, T}, = 334.15 K. It

is also worthwhile to remark that the initial value of the tetracosane mass fraction, co,

has been computed by using the experimental values reported in Table 2: ¢y = X1)$X2 ~
0.15, while the reference mass density of the mixture, gy, has been taken equal to gy =
758.30 kg/m3. Note that this value is close enough to the value of the density that would be
computed according to the assumption of ideal mixture (Oldenburg and Pruess, 1998):
00 = <% + 1;%)_1 ~ 757.93 kg/m?, where the true densities p; and g refer to the
densities of the “pure” constituents CosHsg and CioHog.

The modelling choice (48), done to comply with Jamet et al. (1992), requires some
words of explanation. Indeed, as in (47), the equation of state for the fluid mass density

should express of as a function of the state variables that are regarded as independent,

i.e., temperature, T', and solutal concentration, C'; in the approach followed in this work.
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In particular, by slightly adapting Equation (15) of Jamet et al. (1992) to our framework

and notation, we prescribe

Or = éf(C> T) = 90{1 - B[T - Tc]}{l + OéCC}, = (493)

= D) = T e o

where ¢ = C'/ g¢ is the solutal mass fraction, and T, is the temperature imposed by means
of the Dirichlet boundary condition Tjr, = 7T; on the cold boundary, I C 9€2. To obtain
(48) from (49b), we proceed in two steps: First, we set a, = 8-107° and gy = 758.30 kg/m?
(note that Jamet et al. (1992) use the value 741.1 kg/m? in lieu of 758.30 kg/m?). Then,

upon using Equation (15) of Jamet et al. (1992), we write
1 - B[ —-T] =1+ a,n, (50)

which, evaluated at © = H, yields T}, — T. = AT = —(a,H)/S, and § = —(a,H)/AT.
This result can be used to estimate the thermal expansion coefficient, 5. Indeed, setting
a, = —5.712 m™! (Jamet et al., 1992) leads to 8 =~ 1073 K~!, a value of the same order
of magnitude as those prescribed by Jamet et al. (1992) for CoyHsy and CioHog, i.e.,
Caaflso — 81.107* K~ and f52M0 — 9.6 . 10~* K1, respectively.
We emphasise that (50) amounts to impose, rather than to compute, the temperature
distribution in the thermogravitational cell, and to identify it with

H x T
TE —Tc—i—ATﬁ. (51)

Although this result complies with the conditions VI'-n = 0 on I'|UI', as well as Tjr, = Tt
and Tjr,, = Ty, Equation (51) is, in fact, the solution of div(kVT) = x §°T /02 = 0, which
is obtained from (35d) in the stationary limit, and by neglecting the terms div(gyCpeT'w)
and ¢opUcyuc. In this work, this approximation is employed only for the simulation of the

mixture C24H50—C12 H26 .
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5 Results

In this section, we validate our model by recomputing the numerical experiments discussed
by Jamet et al. (1992) and Benano-Melly et al. (2001), and we show how the introduction
of the term $A||Vc¢||? into the Helmholtz free energy density of the fluid phase (in fact, a
mixture of two fluid constituents) produces a small, yet visible, correction to the results
obtained within the setting of standard thermodiffusion. This correction manifests itself
in (34) through the Cahn-Hilliard Soret coefficient, Scy, and the term proportional to

Vdcn, and has repercussions on the evolution of the solute (i.e., the constituent C;).

5.1 Validation of the model

It has been shown in some works (cf. e.g. Benano-Melly et al. (2001); Fargue et al.
(1998); Jamet et al. (1992); Rowley and Horne (1980)) that, if an initially uniform fluid
mixture saturating a porous medium is exposed to a thermal gradient, and is subjected
to the buoyancy effect due to gravity, a separation of the mixture’s constituents will be
initiated. The degree of separation depends on the properties of the constituents and
on permeability of the porous medium. A typical behaviour that can be registered in a
thermogravitational cell, while the mixture evolves in time, is reported in Figure 1a.
Benano-Melly et al. (2001) pointed out that, depending on the sign of the Soret
coefficient, at the steady state the heaviest constituent of the mixture finds itself at the
bottom of the cell, close to the cold side. The distortion of the mass fraction isolines shown
in Figure la is the outcome of the motion induced by the coupling between gravity and
the horizontal thermal gradient. The interaction between these two entities characterises
the results of the thermogravitational cell experiment. Consistently with expectations,
in our simulations the steady state is approached in a characteristic time that depends
on the considered mixture. After the formation of an initial horizontal gradient of mass
fraction, so that the mass fraction isolines are all parallel to the vertical symmetry axis
of the cell, the evolution of the system towards the steady state is characterised by a

distortion and rotation of the isolines, whose consequence is the redistribution of the
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fluid mixture with the heaviest constituent at the bottom. Figure 1la has been produced
for comparison with similar results previously obtained by Benano-Melly et al. (2001)
and Fargue et al. (1998).

The quantity introduced to measure the degree of separation achievable in the mixture

occupying a thermogravitational cell is the separation ratio (Benano-Melly et al., 2001)

CBoo/<1 — CBoo)
CToo/<1 — CToo)

7 (52)

boo =

where ¢ and crs denote, respectively, the mass fractions of the solute reached, at
the stationary state, at the bottom and at the top of the thermogravitational cell. The
separation ratio, b, depends on the geometry of the cell, on the applied thermal gradient,
and on the material properties of both the fluid mixture and the porous medium filling
the cell. For instance, in the case of an isotropic porous medium (so that its permeability
tensor is spherical, i.e., k = kI, and entirely represented by the scalar permeability k),
and for a prescribed set of model parameters, the separation ratio can be expressed as a
function of the scalar permeability. In particular, it is possible to determine an optimal
value of k, denoted by k, hereafter, such that b is maximum. Benano-Melly et al. (2001)
supply an approximated formula relating the maximum separation ratio, b2, with the

assigned parameters, i.e.,
 SGATLV120

log(boe™) i

(53)

According to (53), for a given thermal gradient, AT /H, and cell height, L, the maximum
separation ratio achievable in the cell can be determined once Sy is known, and vice
versa. More details on this topic can be found in the works by Lorenz and Emery (1959),
and Emery and Lorenz (1963).

In studying the separation of heavy water, HDO, in the HDO-H50O mixture, Benano-
Melly et al. (2001) observed a discrepancy between the experimental results and the
analytical and numerical predictions of the separation ratio and the steady state. A
similar discrepancy was also observed by Jamet et al. (1992) also for the CoyH50-Ci9Hog

mixture. To the best of our understanding, both Benano-Melly et al. (2001) and Jamet

29



621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

5.1 Validation of the model A Cahn-Hilliard Approach to Thermodiffusion

et al. (1992) conducted their investigations within the standard setting of thermodiffusion,
and determined suitable transport and flow properties in order to obtain a good fitting
of the experimental data. In particular, Benano-Melly et al. (2001) considered dispersion
in the solutal mass flux vector, Jamet et al. (1992) assumed that the porous matrix was
transversely isotropic with respect to the permeability, and Fargue et al. (1998) studied
the influence of a variable dispersive effect on the reduction of the discrepancy between
the numerical and the experimental results.

To validate the model presented in this paper, we start by showing that our numerical
simulations are able to reproduce the same trend as that of the curves obtained by Jamet
et al. (1992). To this end, we first consider standard thermodiffusion, which amounts to
set A = 0 m?/s? in (9) and, consequently, to switch off all the terms of the model featuring
the subscript “CH”. The outputs of our numerical simulations are reported in Figure 2,
in which the separation ratio for both the HDO-H>O and the Hy Cs50-H15Cog mixture is
plotted as a function of the permeability of the porous medium. The parameters used
for these numerical simulations are specified in Tables 1 and 2. The value of the Soret
coefficient, Sy, has been taken from Benano-Melly et al. (2001) and Fargue et al. (1998)
for the HDO-H5O mixture, and from Jamet et al. (1992) for the HyyCs-H12Cos mixture.

Although our results are in agreement with both the analytical and the numerical
curves obtained by Jamet et al. (1992), and in spite of the fact that all these curves seem
to reproduce qualitatively the arrangement of the experimental points, none of them meets
quantitatively the experimental data. To do so, the numerical and analytical curves should
be shifted to the right. It is also worthwhile to emphasise that the maximum separation
ratio, as predicted by both the analytical and the numerical computations, is close to
the one determined experimentally, but it corresponds to a value of permeability that
is quite smaller than the experimental one. For example, with the choice of parameters
supplied in Tables 1 and 2, and for the HDO-H50O mixture, the maximum separation ratio
is b2* = 1.0563. Nevertheless, this value is obtained for a permeability different from the
experimental one, which is instead approximatively given by k£ ~ 1.0-107° m2. We recall

here that the analytical curves in Figure 2 were obtained by Lorenz and Emery (1959)
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and Emery and Lorenz (1963).

5.2 Influence of the Cahn-Hilliard terms

According to Fargue et al. (1998), while the growth of the separation ratio is related to
the augmentation of S, the offset to the right of the bell-like curves in Figures 2a and 2b
is primarily due to the increase of the coefficient D in the mass flux vector Jy. Within the
standard setting of thermodiffusion, this may occur either for higher solutal and thermal
diffusion coefficients or in response to dispersion, which adds itself to diffusion, thereby
contributing to increment D. Beside these behaviours, in our work we also observed that,
if the factor \ is switched on in (9), the increase of A produces both an increase of the sep-
aration ratio and an offset of the bell-like curves to the right. We remark that switching
on A means to activate the Cahn-Hilliard chemical potential ¥¢y, its gradient, and the ad-
ditional Soret coefficient Scy, which all contribute to the mass flux vector in a non-trivial
way. In particular, in our simulations we observed that the shift of the curves depicted in
Figure 3a can be attributed to the last summand on the right-hand-side of (34), which
is proportional to Vicy, and describes a transport of mass that can be interpreted as a
“second-order diffusion”. Indeed, the term Vicy involves the third-order derivatives of
the mass fraction. The contribution associated with Vi¢y is principally active at the top
and at the bottom of the thermogravitational cell, and is otherwise irrelevant unless the
mass fraction is distributed in a sufficiently non-uniform way. Looking at Figure 3a, we
notice that the strength of the non-standard thermodiffusive effects depends also on the
permeability. Indeed, for permeabilities sufficiently smaller than k,, the separation ratios
obtained for different values of A lie closer to each other than those obtained for k = k,.
Moreover, also the initial mass fraction of the solute is a key parameter that can affect
the weight of the terms triggering the non-standard thermodiffusion.

To estimate the influence of the non-standard terms generated by nonzero values of A,

maxg|cst—c |

Ve }, where cg is the mass fraction determined within the
S

we compute € = 100 [
standard setting of thermodiffusion, i.e., for A = 0, and ¢, is the mass fraction calculated

for nonzero values of A. The evolution of € in time and its relation with the permeability
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of the porous medium are shown in Figures 3b and 3¢ for the HDO-H50O mixture. The
discrepancies shown in Figure 3a are consistent with the curves plotted in Figure 3c,
where e becomes noticeable only for permeabilities close to k, € [1,3] - 107 m?. From
Figure 3b, one can observe that the effect of A manifests itself also in the asymptotic
value of e, which characterises the stationary conditions of the system.

It should be mentioned that, in order for the Cahn-Hilliard chemical potential, ¥y,
to give non-negligible contributions to thermodiffusion, it is necessary to build a non-null
gradient of mass fraction inside the thermogravitational cell. When the mass fraction
¢ is initially uniform in the cell, and S is set equal to zero a priori, the terms Scy
and Vicy are unable to generate a mass flux and, consequently, no separation can be
observed, regardless of the magnitude of the imposed thermal gradient. Conversely, if a
nontrivial pattern of mass fraction is present (e.g. in the experiment studied by Rowley
and Horne (1980)), the contributions to the mass flux stemming from Scy and Vdcpn
are visible, even without the presence of the standard Soret coefficient. Such evidence
is highlighted in Figure 4a, where the transient evolution in time of the mass fraction
at the top, cr, and at the bottom, cg, is reported. To obtain the results in Figure 4a,
we imposed a non-uniform initial distribution of solute in the domain (see Figure 4b).
The non-uniform mass fraction used as initial condition for this numerical experiment is
“prepared” by taking the stationary distribution of Cy4Hso obtained by solving (35a)—
(35d) with Sy = 1.2:107* 1/K and X = 3.8 m*/s%. Recalling the expression of the effective
Soret coefficient, Seq = S + Scu, the lines with no markers correspond to Seg = 0, the
lines with circles to Seg = Scn, and the lines with asterisks to Seg = Sg. This is done
to visualise the effect of Scy and Sg on the mass fraction. When S.g = 0, and the mass
flux vector reduces to Jyy = —orDVe, the mass fractions at the top and the bottom
of the cell tend towards a common value, thereby making the mixture uniform at the
steady state. Also in the second case, i.e., when Seg = Scy, the mass fractions cg and
cr converge to the same common value as in the first case. However, the time required
to approach the steady state is more than six times longer than the one needed when

Seg = 0. Finally, when S = Sy, the mass fractions cg and cr approach stationary values
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over a characteristic time comparable with that of the first case, but these values are
different from one another, i.e., cgo # CToo, thereby allowing for a nontrivial separation
ratio. Starting with an initial separation ratio by = 2.3407, we obtain b,, = 1.0384. We
recall that the initial value of the separation ratio is linked to a simulation in which
Set = Sst + Scw, i.e., it is the value of b obtained with the same Sy, but also with the
Cahn-Hilliard contribution. This value of b, then, is clearly amplified of about 40% by the

presence of the Cahn-Hilliard effect. The corresponding curve is reported in Figure 2d.

5.3 Main results

This section is dedicated to the main results of our study, i.e., the description of the role
played by Scy on the curves expressing the separation ratio versus the permeability, and
the determination of a relation between the effective Soret coefficient Seg = Sst + Scu
and the permeability.

Looking at Figure 2c, one can see that our separation ratios are in good agreement with
those obtained by Fargue et al. (1998), and fit the experimental data quite satisfactorily
for A = 2.7-10* 1/K and Si; = 1.0-107° 1/K. We emphasise that, while we determined our
results by introducing the Cahn-Hilliard correction to standard thermodiffusion, Fargue
et al. (1998) considered different values of the dispersion coefficient, which correspond to
the dashed blue curve and to the red curve marked with circles. Although X is quite big
in this example, the value of Sy = 1.0 - 107° 1/K is the same as that taken by Fargue
et al. (1998) (and a little bit smaller than that in Table 1). It is useful to mention that the
Soret coefficient Sy = 1.0-107° 1 /K would not allow to reach the congruence actually
achieved with the separation ratios determined experimentally if neither Scy nor any
other contribution to the mass flux vector (as, for instance, dispersion) were taken into
account. Indeed, the curve corresponding to Sg; = 1.0-107° 1/K and A = 0, i.e., the solid
line in Figure 2c, is far away from the experimental predictions.

The results regarding the CoyHz0-CioHog mixture are reported in Figure 2d. Differ-
ent choices of the pair (Sg, A) are made to fit the experimental data. However, only for

Sq = 1.2-107* 1/K and A = 3.8 m*/s? the experimental points corresponding to high
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permeabilities are fitted satisfactorily. The uncertainty in the selection of the appropriate
pair (Ss, A) could be due to a lack of information about the considered mixture, and a
possible misreading of the numerical points, for which the precise position of the opti-
mum value of k could be less plausible (Fargue et al., 1998). Moreover, in the related
simulations, the fluid viscosity p, although evaluated with the formula reported in Jamet
et al. (1992), is here taken as a constant, namely p = fi(co).

Finally, in Table 3, we reported the maximum and minimum Seg for each of the
curves shown in Figure 2d. Indeed, as previously noticed, while Sy is a constant value,
as prescribed by the literature, Scy can vary within the domain according to the sign of
Ve.

From Table 3 we see that both Seg max and Seg min diminish with diminishing S,
but the discrepancy between S and Scy increases with increasing A, even though Sy is
lower when a higher value of X is considered. This happens to balance the value of S,
which is ruled by the sum of Sy and Scp. We remark that the value of Seg can also be
smaller than Sy, since Scy may be negative. To give an idea of these occurrences, we
refer to Figure 1b and Figure 1c. In these figures, the ends of the computational domain
have been zoomed, since the actual width of the cell is too thin. Figure 1b refers to a
small value of k, whereas Figure 1c refers to a higher value of k. The normalised isolines
of the mass fraction at the steady state are shown in the first column of each of these
two figures. In these columns, the blue isolines represent smaller values of Scy, whereas
the red isolines are for higher values. One can see that Scy diminishes at the hot and at
the bottom boundaries of the cell, where it also attains negative values, and increases at
the cold and top boundaries of the cell. In the case of low permeability (see the second
and third column of Figures 1b), the mass fraction isolines are arranged almost linearly
in the domain, so that the majority of the solute is at the bottom left corner of the
cell. Thus, in this case, the arrangement of the solute is preferentially at the bottom.
The corresponding Scy is then negative at the bottom and at the cold side, and positive
at the top. For higher permeabilities, the mass fraction isolines feature a rather curvy

pattern (Figure 1c). Also in this case, the heaviest constituent in the mixture evolves in
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such a way that it is more concentrated at the bottom of the cell. However, the Cahn-
Hilliard Soret coefficient, Scy, is now distributed variably from the left to the right. The
negative values of Scy can be found at the hot side and the positive ones at the cold
side, whereas at the bottom and at the top ends both positive and negative values can be
observed. We recall that Scy depends on the Laplacian of the mass fraction through ¥cy,
which, in the case under study, is positive at the cold side. Therefore, at a given instant
of time, the maximum and the minimum of S, are attained in the domain. The mean
value of the effective Soret coefficient is approximatively in the middle of the domain at
each height. The sign of this coefficient is then ruled by the sign of the second gradient
of the mass fraction itself, since Scy depends on the non-standard chemical potential, as
defined in (33).

A remarkable difference between the two considered experiments analysed in this
paper is the choice of A. Although we determined A by having recourse to the Cahn
number (Lowengrub and Truskinovsky, 1998), the way in which this number is defined
may necessitate revisions. In particular, the choice of the characteristic mesoscale, and
the characteristic coarse scale could lead to quite big variations of the Cahn number.
Moreover, if the solute mass fraction is low in the domain, then a higher X is required to
make the Cahn-Hilliard contribution weighty. This is the case of the mixture HDO-H-0O,
for which the optimal A is A = 2.7-10%* m*/s%. Vice versa, for the mixture CyyHz-C1oHag,
the solute mass fraction is three orders of magnitude higher, thereby producing a required

A that is in the neighbourhood of unity.

6 Conclusions and outlook

In this work, we studied the evolution of the composition of a two-constituent fluid
mixture flowing through a porous medium exposed to a non-uniform thermal field. The
mixture’s composition was described by the mass fraction of one constituent, denoted by
C;. In accordance with the standard theory of Thermodiffusion, the thermal gradient de-

veloped in the mixture, VT, contributes to transport the mass of €; by inducing the term
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Jlf/}Q = —0rDSsc(1 — ¢)VT, which augments the purely diffusive(-dispersive) Fick’s mass
flux vector associated with €;. The magnitude of the Soret coefficient, Sy, determines
the thermodiffusive strength.

We proposed a generalisation of the standard framework of thermodiffusion based on
the assumption that the Helmholtz free energy density of the fluid is of the Cahn-Hilliard
type [cf. Equation (9)]. The main consequence of this hypothesis is that the mass flux
vector acquires two additional quantities: The first quantity is proportional to V¢,
with Ycn being referred to as the Cahn-Hilliard chemical potential [cf. Equation (12b)],
while the second one is given by —o¢DScnc(l — ¢)VT, and is formally identical to Jf}jQ
except for the fact that Sy is replaced by the Cahn-Hilliard Soret coefficient Scy [cf.
Equation (33)].

We tested our model by solving two benchmark problems taken from the literature,
and compared our results with those of other authors [cf. Figures 2a, 2b, 2¢, and 2d]. In
particular, we focused on the determination of the separation ratio attainable in a thermo-
gravitational cell. Following Jamet et al. (1992), Fargue et al. (1998), and Benano-Melly
et al. (2001), we simulated these experiments by considering the fluid mixtures HDO-
H>0 and CoyHs50-CioHog. Firstly, we observed that, since the Cahn-Hilliard contributions
arise when the mass fraction varies in space, their strength increases with the separation
ratio. Moreover, it is necessary to adapt the effective Soret coefficient Seg = Sg; + Scu to
obtain the required separation. Secondly, we noticed that the discrepancies between the
analytical and the experimental values of the optimal permeability and the corresponding
separation ratio could be imputed to dispersion, which affects the coefficient D, and to a
lack of knowledge of all the parameters of the model. Still, for the mixture HDO-H50, the
introduction of Scy, and the definition of the effective Soret coefficient S.g, led to a good
agreement with the experimental curves that express the separation ratio as a function
of the permeability [cf. Figures 2c¢ and 2d]. For the mixture CoyHs50-C12Hag, instead, our
best fit of the experimental data could only approximate the expected curve. This was
due to quite a large amount of uncertainty of some experimental values used as model

parameters [cf. also with Fargue et al. (1998)]. In addition, a stronger contribution of the
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Cahn-Hilliard contributions was registered, also because the mass fraction of the solute is
quite bigger than in the thermogravitational cell studied for the HDO-H,O experiment.

For future research it could be interesting to employ the theoretical framework out-
lined in this paper to the thermodiffusion in physical systems for which an initial gradient
of mass fraction is present [cf., for example, Rowley and Horne (1980)]. Furthermore, also
the contribution provided by the Korteweg stress tensor to Darcy’s law necessitates a

more thorough study.
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« List of tables

’ Quantity \ Units \ HDO-H,0 \ CaqH50-Ci2Hog ‘
L m 4.0-1071 [1] 4.0-1071 [1]
H m 4.0-1073 [1] 4.5-1073 [1]
¢ — 0.4 [1] 0.4 [1]

% kg/m? 989.10 [2] 758.30

co — 5.8-1076 0.15

Tret °C 47.5 [1] 48.5 [1]
AT °C 19 [1] 25 [1]

3 1/K 4.4-107 [2] —

g — 0 —

w Pa - s 57-107% 2] | 0.96-1072 [1]
D=D/¢ | m?/s 2.09-1079 2] | 6.5-1071 [1]
Sst 1/K 6.3158 -107° [2] | 1-1073 3]
Cot J/(kg - K) 4180.1 [2] 1094.7
Cos J/(kg - K) 1000.0 [4] 1000.0 [4]
K W/(m-K) | €[2.89,9.27] [2] ~ 13

Table 1: D = 6.5 - 1071° m?/s refers to CyyHso. Ss; = 6.3158 - 107° K~ is obtained by
dividing S = 1.2-1073 (Benano-Melly et al., 2001) by AT = 19 K. [1] Jamet et al. (1992);
[2] Benano-Melly et al. (2001); [3] Fargue et al. (1998); [4] Oldenburg and Pruess (1999).

’ Quantity \ Units \ CasHsxg \ Ci2Hog ‘
True mass densities | kg/m? | o, = 799.1 | gy = 751.1
Initial concentrations | kg/m? | y; = 113.8 | xo = 644.9

Table 2: Experimental values taken from Jamet et al. (1992).

] A [m*/s?] \ Sst [1/K] \ Settmax [1/K] \ Seftmin |1/K] \
1.8 3.5-107%* | 6.39-1071 2.13-107*
3.0 2.0-107*| 5.73-10* 6.81-107°
3.8 1.2-107*| 5.04-10~* 714 -1076

Table 3: Values corresponding to the curves in Figure 2d (cf. Fargue et al. (1998)).

» Figure Captions

o Figure 1: (a) Isolines of the solute mass fraction during the time, from the early times (left)

o to the steady state (right). The results are obtained for the HDO-H50O mixture within the
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standard setting of thermodiffusion. The benchmark is taken from Benano-Melly et al.
(2001) and has been recomputed in the present paper with parameters L = 0.02 m,
H = 0.004 m, and permeability k¥ = 5 - 107" m? (cf. Jamet et al. (1992)). (b) Spatial
Pattern of Scy for A = 1.8 m*/s? and k = 5-107'2 m?, and the corresponding normalised
mass fraction at the steady state. (c) Spatial Pattern of Scy for A = 1.8 m*/s? and

k=1-10"1m? and its corresponding normalised mass fraction at the steady state.

Figure 2: (a) Separation ratio as a function of permeability for the HDO-H;O mixture. (b)
Separation ratio as a function of permeability for the CoyHs0-Ci2Hog mixture. The results
are obtained within the standard setting of thermodiffusion, A = 0 m*/s2. (c) Mixture
HDO-H,0: Results obtained with standard Soret coefficient equal to Sy, = 1.0-107° 1/K.
(d) Mixture CoqHs50-C1oHog: Results obtained for various values of A and Sg. Best fit
obtained for Sy = 2.55 - 107* 1/K. Experimental data and analytical curves have been

recomputed and redrawn from Jamet et al. (1992) and Fargue et al. (1998).

Figure 3: (a) Steady state separation ratio for different values of A in the HDO-H,O
mixture (see also Jamet et al. (1992) and Fargue et al. (1998) for comparison). The stan-
dard Soret coefficient, Sy, is defined in Table 1. (b) Time evolution of € for k = 810~ m?.

(c) Dependence of € on the permeability for some nonzero values of \.

Figure 4: Mixture CoyH50-C1oHag. (a) Time behaviour of cp (solid lines) and ¢t (dashed
lines), starting from a non-uniform mass fraction. Circled lines correspond to simulations
involving Scg # 0 (A = 3.8 m*?/s?) and Sy, = 0. Lines with asterisks correspond to simu-
lations in which Sy = 1.2-107* 1/K and Scy = 0. Lines with no markers correspond to

the case with no cross effects. (b) Initial mass fraction.
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