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DISCRETE-TO-CONTINUUM LIMITS OF PARTICLES WITH AN1

ANNIHILATION RULE∗2

PATRICK VAN MEURS† AND MARCO MORANDOTTI‡3

Abstract. In the recent trend of extending discrete-to-continuum limit passages for gradient4
flows of single-species particle systems with singular and nonlocal interactions to particles of opposite5
sign, any annihilation effect of particles with opposite sign has been side-stepped. We present the6
first rigorous discrete-to-continuum limit passage which includes annihilation. This result paves the7
way to applications such as vortices, charged particles, and dislocations. In more detail, the discrete8
setting of our discrete-to-continuum limit passage is given by particles on the real line. Particles of9
the same type interact by a singular interaction kernel; those of opposite sign interact by a regular10
one. If two particles of opposite sign collide, they annihilate, i.e., they are taken out of the system.11
The challenge for proving a discrete-to-continuum limit is that annihilation is an intrinsically discrete12
effect where particles vanish instantaneously in time, while on the continuum scale the mass of the13
particle density decays continuously in time. The proof contains two novelties: (i) the observation14
that empirical measures of the discrete dynamics (with annihilation rule) satisfy the continuum15
evolution equation that only implicitly encodes annihilation, and (ii) the fact that, by imposing a16
relatively mild separation assumption on the initial data, we can identify the limiting particle density17
as a solution to the same continuum evolution equation.18

Key words. Particle system, discrete-to-continuum asymptotics, annihilation, gradient flows19

AMS subject classifications. 82C22, (82C21, 35A15, 74G10).20

1. Introduction. A recent trend in discrete-to-continuum limit passages in over-21

damped particle systems with singular and nonlocal interactions (with applications22

to, e.g., vortices [9, 19, 38], charged particles [36], dislocations [18, 27, 30], and dis-23

location walls [13, 47, 48]) is to extend such results to two-species particle systems.24

The singularity in the interaction potential imposes the immediate problem that the25

evolution of the particle system is only defined up to the first collision time between26

particles of opposite sign. This problem is dealt with by either regularising the singu-27

lar interaction potential (see [11, 12]) or by limiting the geometry such that particles of28

opposite sign cannot collide (see [7, 46]). However, more realistic models of vortices,29

charged particles, and dislocations include the annihilation of particles of opposite30

sign. While annihilation has been analysed on the discrete scale [40, 41] and contin-31

uum scale [3, 6] separately, there is no rigorous discrete-to-continuum limit passage32

known between these two scales.33

The main result in this paper establishes the first result on a discrete-to-continuum34

limit passage in two-species particle systems in one dimension with annihilation.35

Below, we first describe the physical context of our main result. Then, we intro-36

duce the discrete and continuum problems. Our main result is the connection between37

them in terms of the limit passage as the number of particles n tends to∞. Then, we38

put our discrete and continuum problems in the perspective of the literature, and com-39
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2 P. VAN MEURS AND M. MORANDOTTI

ment how our proof combines known techniques with novel ideas. We conclude with40

an exposition of possible extensions to work towards singular interspecies interactions41

and higher dimensions.42

1.1. Application to plasticity and dislocations. The main application we43

have in mind is to increase the understanding of the plastic behaviour of metals.44

Plasticity in metals is the emergent behaviour of large groups of dislocations moving45

and interacting on microscopic time- and length-scales. Dislocations are stacking46

faults in the atomic lattice. We keep the description of dislocations concise, and refer47

to the classical textbooks [21, 24] for a detailed description. In two-dimensional elastic48

bodies, dislocations are often represented as points in the elastic body at which the49

stress has a prescribed singularity. This singularity depends on the orientation of the50

dislocation, which is described by the so-called Burgers vector. While dislocations51

themselves exert a stress field, they can also move in response to the stress induced52

by other dislocations in the elastic body. The simplest model to capture such effects53

is an interacting particle system which fits to the setting in this paper.54

One of the main unsolved problems in plasticity is how to describe the group55

behaviour of many dislocations in terms of a dislocation density. While there are56

many different models available in the engineering literature for the dislocation density57

[5, 15, 16, 22, 25, 26, 42], it is not clear which of these models describes the group58

behaviour of a given collection of dislocations for a given set of parameters. This59

problem arises from a lack of rigour in the derivation of these continuum dislocation60

models from the dynamics of a large group of interacting dislocations (called discrete61

dislocation models).62

To resolve this lack of rigour, over the course of two decades a large mathematical63

community has established rigorous connections between discrete and continuum dis-64

location models; see [1, 10, 11, 13, 18, 29, 30] for a few examples of different discrete65

dislocation models and different techniques. The final aim is to lift all the currently66

required simplifications on the discrete dislocation models without losing the rigorous67

connection(s) with the related continuum model(s).68

In recent years, the simplification that all dislocations have the same Burgers69

vector is being lifted. This generalisation corresponds to particle systems with mul-70

tiple species. It has the difficulty that dislocations with different Burgers vector may71

collide in finite time (due to the singular stress they exert). In particular, two (screw)72

dislocations with opposite Burgers vector are known to collide in finite time [23], and73

disappear upon collision. Such a collision is called annihilation. In the current litera-74

ture, the difficulty of including annihilation or other collision rules is side-stepped by75

either enforcing geometrical restrictions [7, 46], or by introducing an artificial regu-76

larisation of the singularity in the stress field (see [12] and [44, Chap. 9]). A common77

observation in these papers is that, depending on the geometrical restrictions or the78

regularisation, rigid micro-structures can appear over time which are not recovered by79

the expected continuum dislocation model. In fact, the simulations in [44, Chap. 9]80

show that the group behaviour of dislocations can depend on the choice of regulari-81

sation, which would imply that the continuum model has to depend on the choice of82

regularisation.83

Therefore, to avoid the dependence of the continuum model on the choice of reg-84

ularisation or geometrical restrictions, we aim to make the first step for including85

dislocation annihilation in connecting discrete to continuum dislocation models. Our86

novel result includes an annihilation rule, but sidesteps the additional difficulty that87

prior to collision, the speed of the colliding dislocations becomes unbounded. To avoid88
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MANY-PARTICLE LIMITS INCLUDING ANNIHILATION 3

unbounded velocities prior to collision, we replace the singular interaction between89

dislocations of opposite Burgers vector by a regular one. This choice induces the90

further restriction of a one-dimensional spatial setting, which is needed to enforce col-91

lisions. Indeed, for regular interactions in higher dimensions, dislocations of opposite92

Burgers vector need not collide in finite time.93

In Section 1.7 we demonstrate how our main result can be used as a stepping94

stone for considering annihilation with singular interactions between dislocations of95

opposite Burgers vector.96

1.2. The discrete problem (particle system with annihilation). We re-97

turn our attention from dislocations to a more general particle system with two species98

and an annihilation rule. We introduce the related evolution problem by first spec-99

ifying the state of the system, then the related interaction energy, and finally the100

evolution law. The state of the system is described by x := (x1, . . . , xn) ∈ Rn and101

b := (b1, . . . , bn) ∈ {−1, 0, 1}n, with n ≥ 2 the number of particles. The point xi is102

the location of the i-th particle, and bi is its charge (or Burgers vector, in the setting103

of dislocations).104

To any state (x, b) we assign the interaction energy En : Rn × {−1, 0, 1}n →105

R ∪ {+∞} by106

(1.1) En(x; b) :=
1

2n2

n∑
i=1

( n∑
j=1
j 6=i

bibj=1

V (xi − xj) +

n∑
j=1

bibj=−1

W (xi − xj)
)
,107

where V and W are the interaction potentials between particles of equal and opposite108

charge, respectively. For V and W , we have three choices in mind, all of which are of109

separate interest:110

(i) V (r) = − log |r| and W ≡ 0. This corresponds to the easiest case in which111

the two species only interact with their own kind. It is distinct from the112

single-particle case solely by the annihilation rule which we specify below.113

We consider this setting as a convenient benchmark problem, but we have no114

direct application in mind.115

(ii) V (r) = − log |r| and W a regularisation of −V (as illustrated in Figure 1).116

This is a first step to considering the case of positive and negative charges117

(or positive and negative dislocations) in which W = −V is chosen in a two-118

dimensional setup [40, 41, 43]. After stating our main result for regular W , we119

comment in Subsection 1.7 on how this result helps in passing to the limit in120

the particle dynamics corresponding to regular potentials Wδ which converge121

to the singular −V as the regularisation parameter δ tends to 0.122

(iii) V (r) = r coth r − log |2 sinh r| and W a regularisation of −V . This setting123

corresponds to that of dislocation walls, i.e., infinite arrays of equi-spaced124

dislocations. The explicit expression for V is found by summing over all125

dislocations in such a wall; see [21, (19-75)] or [46, Sec. 2]. This potential126

V has several pleasant properties: it has a logarithmic singularity at 0, it127

is decreasing on (0,∞), and it is positive with integrable tails. Discrete-128

to-continuum limits of particle systems consisting of interacting dislocation129

walls are established in [13, 17, 21, 46, 47, 48] for either single-sign scenarios130

or without annihilation.131

For our analysis, we propose a unified setting which includes the three cases above:132

we consider a class of potentials V and W which satisfy a certain set of assumptions133
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4 P. VAN MEURS AND M. MORANDOTTI

r

V (r)

W (r)

Figure 1. Plots of V (r) = − log |r| and a typical regularisation W of −V .

specified in Assumption 2.1. The crucial assumptions are that the singularity of V at 0134

is at most logarithmic, that V (r)→ +∞ as r → 0, that W is regular, and that V and135

W have at most logarithmic growth at infinity. In view of other typical assumptions136

in the literature, we do not rely on convexity or monotonicity. In Subsection 1.6 we137

elaborate on the necessity of these assumptions to our main discrete-to-continuum138

result.139

Finally, we make three observations on the structure of (1.1). First, if the i-th140

particle has 0 charge (i.e., bi = 0), then it does not contribute to En. Second, the141

factor 1/2 in front of the energy is common; it corrects the fact that all interactions are142

counted twice in the summation. Third, the condition j 6= i prevents self-interaction.143

144

Equation (1.2) formally describes the dynamics; for a rigorous definition see Prob-145

lem 4.1 and Definition 4.2.146

(1.2)


d

dt
xi = − 1

n

∑
j : bibj=1

V ′(xi − xj)−
1

n

∑
j : bibj=−1

W ′(xi − xj) on (0, T ) \ Tcol,

annihilation rule at Tcol.

147

Here, Tcol = {t1, . . . , tK} is a finite set of collision times, outside of which x(t) is the148

gradient flow of En. The version of (1.2) in two dimensions and in which W (r) =149

−V (r) = log |r| is discussed in great detail in [41].150

Next we explain the “annihilation rule at Tcol”. Given that at t = 0 all particles151

are at different positions, (1.2) follows for at least a small time interval simply the152

gradient flow of En(· ; b) in which b is constant in time. Since V is a singular, repelling153

interaction potential and W is regular, particles of the same sign will not cross each154

other, but particles of opposite sign may. We call the first time instance at which155

such a crossing happens a collision time, and denote it by t1. At t1, the annihilation156

rule states that those particles of opposite sign which are at the same position are157

‘removed’ from the system, and that the system is restarted at time t1 with the158

remaining particles at their current positions. It again follows the gradient flow of En159

(but now with fewer particles) until the next collision time t2 at which two particles of160

opposite sign cross. At t2, an analogous annihilation rule is applied. In this manner,161

Tcol is constructed. We allow for more than one pair of particles to annihilate at the162

same time instance tk. Because of the singularity of V , annihilations that happen at163

the same time always occur at different points in space.164
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MANY-PARTICLE LIMITS INCLUDING ANNIHILATION 5

For technical reasons, we encode the removal of particles by putting their charge165

bi(t) from ±1 to 0 as opposed to making n dependent on t. We note that, if particle166

i has zero charge, then167

• xi(t) remains stationary,168

• the velocity of all other particles does not depend on xi(t), and169

• particle i cannot annihilate any more with any other particle.170

We note that each bi(t) is a shifted Heaviside functions that jumps at some collision171

time tk.172

Next we motivate the applicability of (1.2) by two related examples. The first173

example is that of dislocations, whose dynamical law naturally includes annihilation174

effects. The linear relation in (1.2) between the velocity and the gradient of the energy175

is purely phenomenological, and is, due to its simplicity and lack of consensus for a176

better alternative, the most commonly used relation in dislocation dynamics models.177

We refer to [43] for simulations of a generalized version of (1.2) in the context of178

dislocations.179

The second example of a system related to (1.2) is that in [40] and [41, Theo-180

rems 1.3 and 1.4], where the limit of the Ginzburg-Landau equation on the dynamics181

of vortices is studied as the phase-field parameter ε tends to 0. In the limiting equa-182

tion, the vortices are characterised as points with a charge whose dynamics are given183

by the version of (1.2) in which W (r) = −V (r) = log |r| and the particles are two-184

dimensional. While detailed properties of the particles trajectories are proven, a pre-185

cise solution concept to this version of (1.2) remains elusive. In our one-dimensional186

setting, we establish a solution concept to (1.2) in Definition 4.2 and Proposition 4.5.187

1.3. The continuum problem (PDE for the particle density). On the188

continuum level, the state of the system is described by the nonnegative measures ρ±,189

which represent the density of the positive/negative particles (including those that190

are annihilated). We further set191

ρ := ρ+ + ρ− and κ := ρ+ − ρ−,192

and require the total mass of ρ to be 1. We note that ρ+ and ρ− need not be mutually193

singular, and thus ρ± ≥ [κ]±, where [κ]± denotes the positive/negative part of the194

signed measure κ. We interpret [κ]± as the density of positive/negative particles that195

have not been annihilated yet.196

For ρ±(t) we consider the following set of evolution equations197

(1.3)

{
∂tρ

+ =
(
[κ]+ (V ′ ∗ [κ]+ +W ′ ∗ [κ]−)

)′
in D′((0, T )× R),

∂tρ
− =

(
[κ]− (V ′ ∗ [κ]− +W ′ ∗ [κ]+)

)′
in D′((0, T )× R),

198

where we denote by the prime symbol ′ the derivative with respect to the spatial199

variable. We remark that no annihilation rule is specified; the annihilation is encoded200

in taking the positive/negative part of κ. Indeed, it is easy to imagine that while the201

integral of ρ = ρ+ + ρ− is conserved in time, the integral of [κ]+ + [κ]− = |ρ+ − ρ−|202

may not be conserved.203

1.4. Main result: discrete-to-continuum limit. Our main theorem (Theo-204

rem 5.1) states that the solutions to (1.2) converge to a solution of (1.3) as n → ∞.205

It specifies the concept of solution to both problems, the required conditions on the206

sequence of initial data of (1.2), and guarantees that the so-constructed solution to207

(1.3) at time 0 corresponds to the limit of the initial conditions as n → ∞. The208
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6 P. VAN MEURS AND M. MORANDOTTI

convergence is uniform in time on [0, T ] for any T > 0. The convergence in space is209

with respect to the weak convergence. As a by-product of Theorem 5.1, we obtain210

global-in-time existence of a solution (ρ+, ρ−) to (1.3) for which the masses of ρ± are211

conserved in time.212

In order to give effectively an outline of the proof and the motivation for the main213

assumptions under which Theorem 5.1 holds (Subsection 1.6), we first describe the214

related literature.215

1.5. Related literature. We start by relating (1.3) formally to its singular216

counterpart. Replacing W by −V , we obtain from a formal calculation that the217

difference of the two equations in (1.3) is given by218

(1.4) ∂tκ =
(
|κ|(V ′ ∗ κ)

)′
.219

For V (r) = − log |r|, equation (1.4) was introduced by [20] and later proven in [6] to220

attain unique solutions when posed on R with proper initial data.221

In the remainder of this subsection, we put our main result Theorem 5.1 in the222

perspective of the literature. We start by describing those specifications of [10, 28, 29]223

which are closest to our main result. A specification of [10, Theorems 2.1–2.3] proves a224

‘discrete’-to-continuum result from (1.2) to (1.4), in the case where V (r) = −W (r) is225

a regularisation of − log |r| on the length-scale 1/n. We put ‘discrete’ in apostrophes,226

because their equivalent of (1.2), given by [10, equation (5)], is a Hamilton-Jacobi227

equation, which includes the solution to (1.2) only if all particles have the same sign.228

It is not clear if this Hamilton-Jacobi equation relates to (1.2) if the particles have229

opposite sign.230

As opposed to [10], [29] starts from a different Hamilton-Jacobi equation, which231

corresponds to the Peierls-Nabarro model [32, 33]. This model is a phase-field model232

for the dynamics of dislocations which naturally includes annihilation. In this model,233

opposite to encoding dislocations as points on the line, the dislocations are identified234

by the pulses of the derivative of a multi-layer phase field on the real line. In [29], the235

width of these pulses is taken to be on the same length-scale as the typical distance236

between neighbouring dislocations. Then, in the joint limit when the regularisation237

length-scale (and thus simultaneously 1/n) tend to 0, an implicit Hamilton-Jacobi238

equation is recovered [29]. In [28, Theorem 1.2] it is shown that this implicit Hamilton-239

Jacobi equation converges to (1.4) in the dilute dislocation density limit. While this240

framework seems promising for a direct ‘discrete’-to-continuum result (‘discrete’ being241

the Peierls-Nabarro model) to (1.3), it only applies to co-dimension 1 objects, i.e.,242

particles in 1D and curves in 2D.243

Regarding the continuum problem (1.3), we have not found this set of equations244

in the literature. Nonetheless, we believe the case W = 0 to be of independent245

interest, since then (1.3) serves as the easiest benchmark problem for future studies246

on annihilating particles. Also, since our discrete-to-continuum result holds for taking247

W as a regularisation of −V , we expect that (1.4) can be obtained from (1.3) as the248

regularisation length-scale tends to 0 (see Subsection 1.7). Therefore, we review the249

literature on (1.4).250

Equation (1.4) as posed on R with V (r) = − log |r|, or even V (r) = |r|−a with251

0 < a < 1, attains a self-similar solution [6, Theorem 2.4] in which κ has a sign.252

The self-similar solution is expanding in time (due to the repelling interaction force253

V ′(r)), and describes the long-time behaviour of the unique viscosity solutions to254

(1.4) [6, Theorem 2.5] for appropriate initial data. Moreover, for V (r) = − log |r| and255
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MANY-PARTICLE LIMITS INCLUDING ANNIHILATION 7

initial condition κ◦ ∈ L1(R), the viscosity solution κ to (1.4) satisfies κ(t) ∈ Lp(R)256

for all 1 ≤ p ≤ ∞ [6, Theorem 2.7]. In conclusion, despite (1.4) being the singular257

counterpart of (1.3), it has a well-defined global-in-time solution concept.258

Lastly, we compare our result to that of [3]. There, the authors are interested259

in deriving a gradient flow structure of (1.4) on R2 with V having a logarithmic260

singularity at 0 by defining a discrete in time minimising movement scheme and261

passing to the limit as the time step size tends to 0. The related convergence result is262

[3, Theorem 1.4]. However, the limit equation is not fully characterised as (1.4), since263

in that equation |κ| is replaced by an unknown measure µ ≥ |κ| which is obtained from264

compactness. The connection to our main result is that we faced a similar problem.265

Due to our 1D setup and by a technical assumption on the initial data, we were able266

to characterise the corresponding µ as |κ|.267

1.6. Discussion on the proof, assumptions, and possible extensions. We268

divide this section into several topics regarding the proof, assumptions, and possible269

extensions of Theorem 5.1 (outlined in Subsection 1.4).270

Summary of the proof. A crucial step is the observation that the solution to (1.2),271

seen as a pair of empirical measures µ±n , is a solution to (1.3), i.e.,272

(1.5)

{
∂tµ

+
n =

(
[κn]+ (V ′ ∗ [κn]+ +W ′ ∗ [κn]−)

)′
in D′((0, T )× R),

∂tµ
−
n =

(
[κn]− (V ′ ∗ [κn]− +W ′ ∗ [κn]+)

)′
in D′((0, T )× R),

273

where κn := µ+
n − µ−n . The annihilation is completely covered by taking the positive274

and negative part of κn. This property is the reason for encoding annihilation in the275

charges bi(t) rather than removing particles from the dynamics. Then, relying on276

the gradient flow structure underlying (1.2) and the boundedness of W , we find, by277

the usual compactness arguments à la Arzelà-Ascoli, limiting curves ρ±(t). It then278

remains to pass to the limit n → ∞ in (1.5). The difficulty is in characterising the279

limit of [κn]±, which only accounts for the particles that have not collided yet. Indeed,280

the convergence of measures is not invariant with respect to taking the positive and281

negative part. It is here that we heavily rely on the one-dimensional setting and282

on a technical assumption on the initial data (Assumption 2.2), which provides an283

n-independent bound on the number of neighbouring pairs of particles with opposite284

sign. This bound allows us to characterise the limit of [κn]± as [κ]±.285

Motivation for Assumption 2.2. Assumption 2.2 prevents small-scale oscillations286

between ±1 phases. A similar assumption is made in [29], where the initial data287

for the particles is constructed from the continuum initial datum. While one might288

expect that small-scale oscillations cancel out on small time scales, the simulations in289

[45, Chapter 9] suggest otherwise. The problem with such small-scale oscillations is290

that they cause the limit of [κn]± to be larger than [κ]±, which makes it difficult to291

characterise the limit as n→∞ of (1.5) as (1.3).292

Singularity of V . Assuming the singularity of V to be at most logarithmic is293

needed to apply the discrete-to-continuum limit passage technique in [38].294

In fact, we also require that V (r)→∞ as r → 0, i.e., we do not allow for a regular295

V . While regular V and W (in particular W = −V ) would simplify the equations and296

many steps in the proof of our main theorem, it may result in two technical difficulties:297

collision between three or more particles, and the limiting signed measure κ having298

atoms. These difficulties complicate the convergence proof of [κn]± to [κ]± as n→∞.299

Since all our intended applications correspond to singular potentials V , we choose to300

side-step these technical difficulties by simply requiring V to have a singularity at 0.301
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8 P. VAN MEURS AND M. MORANDOTTI

Regularity of W . W being bounded around 0 results in a lower bound on the302

energy along the evolution, which we need for equicontinuity and thus for compactness303

of µ±n . Also, while passing to the limit n → ∞ in (1.5), we need W ′ regular enough304

(the technique in [38] does not apply for logarithmic W ).305

Logarithmic tails of V,W . While it would be easier to assume that V is bounded306

from below and W is globally bounded, we also allow for logarithmic tails to include307

all three scenarios in Subsection 1.2. The logarithmic tails of V and W result in the308

energy En to be unbounded from below. However, following the idea in [38] to prove309

a priori bounds on the moments of µ±n (t), we easily obtain that E(µ±n (t)) is bounded310

from below by −C(1 + t) for some C > 0 independent of n and t.311

Uniqueness of solutions to (1.3). While Theorem 5.1 provides a solution of (1.3)312

that exists globally in time, we have not investigated uniqueness. We rather interpret313

(1.3) as a stepping stone for a future convergence result to (1.4), for which a uniqueness314

result is established in [6].315

1.7. Conclusion and outlook. We intend our main result to open a new thread316

of research on including annihilation in discrete-to-continuum limits. Here we discuss317

several open ends.318

W = −V singular. This setting corresponds to charges (or dislocations) on the319

real line. On the continuum level, see (1.4), this equation is well-understood [6],320

but on the discrete level we have not found a closed set of equations to describe321

the discrete counterpart of (1.2) (other than [40, 41], whose results are discussed in322

Subsection 1.5). Since our main result does allow for −W to be a regularisation Vδ of323

V (δ denotes the arbitrarily small, but fixed, length-scale of the regularisation), this324

calls for three interesting limit passages:325

(a) δ → 0 with n fixed. This limit seems the easiest out of the three. Similar to326

[40, 41], the idea is to pass to the limit, and describe the limit rather than327

posing a closed set of equations for it. One challenge is that in the limiting328

curves prior to collision at t∗, the particles’ speed blows up as ∼ 1/
√
t∗ − t329

(this is easily seen by considering only two particles; one positive and one330

negative). While the resulting curves are not Lipschitz in time, they are C1/2331

in time. However, such collisions correspond to −∞ wells in the energy, which332

require the development of a proper renormalisation of En.333

Another challenge is that particles need not collide if they come close, regard-334

less how small δ > 0 is. To see this, consider two particles with opposite sign335

and with mutual distance smaller than δ. Since Vδ is regular, the particles336

will come exponentially close, but they will not collide in finite time. In the337

case of many particles, such a close pair will only collide if the external force338

(induced by the other particles) acts in the right direction. If it does not col-339

lide, then the pair remains in the system (as opposed to the case of singular340

W ), and may even interact with or annihilate other particles that come close.341

(b) Connecting (1.3) to (1.4) by δ → 0. Taking W = −Vδ and setting ρ±δ as a342

corresponding solution to (1.3), it is impossible to pass directly to the limit in343

(1.3) due to the term [κδ]±(V ′δ ∗[κδ]∓). Instead, the structure of (1.4) in terms344

of viscosity solutions (see [6]) seems promising. We leave it to future research345

to find out whether (1.3) enjoys a similar structure, and if not, whether there346

is a different continuum model for annihilating particles that does.347

(c) Connecting (1.2) to (1.4) by a joint limit n→∞ and δn → 0. This approach348

fits to the convergence result obtained in [29], where roughly speaking δn ∼349
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1/n is considered, but where a different equation than (1.4) is obtained in the350

limit. It would be interesting to see whether those results can be extended to351

the case δn � 1/n, in which case the expected limit is (1.4) (see [28]).352

Different regularisations of collisions. In the spirit of proving any of the above353

limit passages, we discuss alternative regularisations other than taking W regular.354

One idea is ‘premature annihilation’, where particles are removed from the system355

when they come δ-close, with δ > 0 a regularisation parameter. This approach is356

commonly adapted in numerical simulations of discrete systems with an annihilation357

rule. However, it is not obvious what the limiting equation as n → ∞ (counterpart358

of (1.4)) is for δ > 0 fixed, because we expect the supports of [κ]+ and [κ]− to be359

separated by at least δ. A third option is to mollify the jump of the charge bi(t) from360

±1 to 0, possibly by an additional ODE for bi(t). We have not found a proper rule361

for this that would still allow for a discrete-to-continuum convergence result.362

Higher dimensions. In this paragraph we consider the extension to two dimen-363

sions; the discussion easily extends to higher dimensions. The one ingredient in our364

proof which intrinsically relies on our 1D setting, is the separation condition on the365

initial data. This condition limits the collisions to happen only at a finite number366

of points. In 2D, collisions are bound to happen along curves (or more complicated367

subsets of R2), which makes it challenging to characterise the limit of [κn]±. A similar368

problem occurred in [3] as discussed in Subsection 1.5. In future research we plan to369

relax our ‘separation’ assumption, possibly by considering a different regularisation370

of collisions.371

The remainder of the paper is organised as follows. In Section 2 we fix our notation372

and list the assumptions on V , W and the initial data. In Section 3 we recall known373

results and provide the preliminaries. In Section 4 we give a rigorous definition of374

(1.2), show that it attains a unique solution, and establish several properties of it. In375

Section 5 we state and prove our main result, Theorem 5.1.376

2. Notation and standing assumptions. Here we list the symbols and nota-377

tion which we use in the remainder of this paper:378

B(R) space of Borel sets on R Section 3
f(a−) limy↑a f(y)
[f ]± positive or negative part of f
µ⊗ ν product measure; (µ⊗ ν)(A×B) = µ(A)ν(B) Section 3
C > 0 constant whose value can possibly change from

line to line
µ µ := (µ+, µ−) ∈ P(R× {±1}) (3.2)
M(R) space of finite, signed Borel measures on R Section 3
M+(R) space of the non-negative measures in M(R) Section 3
N {1, 2, 3, . . .}
P(R) space of probability measures;

P(R) = {µ ∈M+(R) : µ(R) = 1}
Section 3

P2(R) probability measures with finite second moment;
P2(R) = {µ ∈ P2(R) :

´∞
−∞ x2 dµ(x) <∞}

Section 3

V interaction potential for equally signed particles Assumption 2.1
W interaction potential for oppositely signed particles Assumption 2.1
W (µ, ν) 2-Wasserstein distance between µ, ν ∈ P(R) [2]
W(µ,ν) 2-Wasserstein distance between µ,ν ∈ P2(R) (3.3)
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10 P. VAN MEURS AND M. MORANDOTTI

Assumption 2.1 lists the standing properties which we impose on V and W .379

Assumption 2.1. We require that the interaction potentials V : R \ {0} → R and380

W : R→ R satisfy the following conditions:381

V ∈ C1(R \ {0}), W ∈ C1(R), V ′ ∈ Liploc(R \ {0}), and W ′ ∈ Lip(R),(2.1a)382

V and W are even;(2.1b)383

V (r)→ +∞ as r → 0;(2.1c)384

r 7→ rV ′(r) and r 7→ rW ′(r) are in L∞(R).(2.1d)385

For convenience, we set V ′(0) := 0. Below we list two remarks on Assumption 2.1:386

• we assume no monotonicity on V or W ;387

• Condition (2.1d) implies that V has at most a logarithmic singularity (as388

mentioned in Subsection 1.2), and that V and W have at most logarithmically389

diverging tails, namely390

(2.2) |V (r)|+ |W (r)| ≤ C
(∣∣ log |r|

∣∣+ 1
)
, for all r 6= 0.391

Due to condition (2.1c), and keeping (2.1a) into account, we can sharpen this392

inequality around 0 by393

(2.3) (V +W )(r) ≥ −Cr2, for all r 6= 0.394

The following assumption on the initial data states that no pair of particles of395

opposite sign should start at the same position.396

Assumption 2.2 (Separation assumption on the initial data (x◦; b◦)). There397

exist −∞ < a0 ≤ a1 ≤ . . . ≤ a2L < +∞ such that398

{x◦i : b◦i = 1} ⊂
L⋃
`=1

(a2`−2, a2`−1), {x◦i : b◦i = −1} ⊂
L⋃
`=1

(a2`−1, a2`).399

The importance of this assumption is clarified later when the limit n→∞ is consid-400

ered, in which the number L is assumed to be n-independent (see also Subsection 1.6).401

Moreover, we will show in Proposition 4.5 that this assumption is conserved in time.402

3. Preliminary results. We collect here some basic definitions and known re-403

sults that will be useful in the sequel.404

3.1. Probability spaces and the Wasserstein distance. On P2(R) (space405

of probability measures with finite second moment; see Section 2), the square of the406

2-Wasserstein distance W (µ, ν) with µ, ν ∈ P2(R) is defined as407

W 2(µ, ν) := inf
γ∈Γ(µ,ν)

¨
R2

|x− y|2 dγ(x, y),(3.1)408
409

where Γ(µ, ν) is the set of couplings of µ and ν, namely,410

Γ(µ, ν) :=
{
γ ∈ P(R2) : γ(A× R) = µ(A), γ(R×A) = ν(A) for all A ∈ B(R)

}
.411

We refer to [4] for the basic properties of W . As usual, we set Γ◦(µ, ν) ⊂ Γ(µ, ν) as412

the set of transport plans γ which minimise (3.1).413
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Since we are working with positive and negative particles, we follow [12] by defin-414

ing a space of probability measures on R × {±1}, where R × {±1} is endowed with415

the distance416

d2(x̄, ȳ) := |x− y|2 + |p− q|, x̄ = (x, p) ∈ R× {±1}, ȳ = (y, q) ∈ R× {±1}.417

We denote this probability space by P(R×{±1}), and its elements by µ or (µ+, µ−),418

with the understanding that419

(3.2) µ(A+, A−) = µ+(A+) + µ−(A−), for all A+, A− ∈ B(R).420

On421

P2(R× {±1}) :=

{
µ ∈ P(R× {±1}) :

ˆ
R
|x|2 dµ±(x) < +∞

}
422

we define the (square of the) 2-Wasserstein distance between µ and ν as423

W2
(
µ,ν

)
:= inf

γ∈Γ(µ,ν)

¨
(R×{±1})2

d2(x̄, ȳ) dγ(x̄, ȳ),(3.3)424

425

where Γ(µ,ν) is the set of couplings of µ and ν, namely,426

Γ(µ,ν) :=
{
γ ∈ P

(
(R× {±1})2

)
: γ(A× (R× {±1})) = µ(A),

γ((R× {±1})×A) = ν(A) for all A ∈ B(R× {±1})
}
.

427

Since it turns out that (1.3) has a mass-preserving solution ρ(t) := (ρ+(t), ρ−(t))428

belonging to P2(R × {±1}), for which also the mass of ρ+(t) and ρ−(t) is conserved429

in time, we define the corresponding subspace430

Pm2 (R× {±1}) := {µ ∈ P2(R× {±1}) : µ+(R) = m};431

where m ∈ [0, 1] is the total mass of the positive particle density. Clearly, if µ ∈432

Pm2 (R× {±1}), then µ−(R) = 1−m. For any µ,ν ∈ Pm2 (R× {±1}) we have that433

(3.4) W2(µ,ν) ≤W 2(µ+, ν+) +W 2(µ−, ν−),434

which simply follows by shrinking the set of couplings Γ(µ,ν) in (3.3).435

3.2. Weak form of the continuum problem (1.3). We use the following436

notation convention. For any ρ ∈ P(R× {±1}), we set437

(3.5) ρ := ρ+ + ρ− ∈ P(R), κ := ρ+ − ρ− ∈M(R), ρ̃± := [κ]± ∈M+(R).438

We consider the following weak form of (1.3): given an initial condition ρ◦ ∈ P2(R×439

{±1}), find ρ satisfying440

0 =

ˆ T

0

ˆ
R
∂tϕ
±(x) dρ±(x)dt

− 1

2

ˆ T

0

¨
R×R

(
(ϕ±)′(x)− (ϕ±)′(y)

)
V ′(x− y) d([κ]± ⊗ [κ]±)(x, y)dt

−
ˆ T

0

ˆ
R
(ϕ±)′(x) (W ′ ∗ [κ]∓)(x) d[κ]±(x)dt,

(3.6)441

for all ϕ± ∈ C∞c ((0, T ) × R), where we have exploited that V ′ is odd. We seek a442

solution of (3.6) in AC(0, T ;Pm2 (R× {±1})) with m = ρ◦,+(R) ∈ [0, 1].443
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12 P. VAN MEURS AND M. MORANDOTTI

3.3. Several topologies and their connections. Next we define the space444

of absolutely continuous curves and their metric derivatives. While the following445

definitions work on any complete metric space, we limit our exposition to (P2(R ×446

{±1}),W). For any 1 ≤ p < ∞, ACp(0, T ;P2(R × {±1})) denotes the space of all447

curves µ : (0, T )→ P2(R× {±1}) for which there exists a function f ∈ Lp(0, T ) such448

that449

(3.7) W
(
µ(s),µ(t)) ≤

ˆ t

s

|f(r)|p dr, for all 0 < s ≤ t < T.450

We set AC(0, T ;P2(R × {±1})) := AC1(0, T ;P2(R × {±1})). By [2, Theorem 1.1.2],451

the metric derivative452

(3.8) |µ′|W(t) := lim
s→t

W
(
µ(s),µ(t)

)
|s− t|

453

is defined for any µ ∈ AC(0, T ;P2(R×{±1})) and for a.e. t ∈ (0, T ). Moreover, |µ′|W454

is a possible choice for f in (3.7).455

The following theorem is a simplified version of [31, Theorem 47.1] applied to the456

metric space (P2(R× {±1}),W).457

Lemma 3.1 (Ascoli-Arzelà). F ⊂ C([0, T ];P2(R× {±1})) is pre-compact if and458

only if459

(i) {µ(t) : µ ∈ F} is pre-compact in P2(R× {±1}) for all t ∈ [0, T ],460

(ii) ∀ ε > 0 ∃ δ > 0 such that ∀µ ∈ F , ∀ t, s ∈ [0, T ] : |t − s| < δ =⇒461

W
(
µ(t),µ(s)

)
< ε.462

The following theorem provides a lower semi-continuity result on the L2(0, T )-463

norm of the metric derivative. We expect it to be well-known, but we only found it464

proven in the PhD thesis [45, Lemma 8.2.8].465

Theorem 3.2 (Lower semi-continuity of metric derivatives). Let µn,µ : [0, T ]→466

P2(R× {±1}). If W(µn(t),µ(t))→ 0 as n→∞ pointwise for a.e. t ∈ (0, T ), then467

(3.9) lim inf
n→∞

ˆ T

0

|µ′n|2W(t) dt ≥
ˆ T

0

|µ′|2W(t) dt.468

Proof. We start with several preparations. First, we take a dense subset (t`)` of469

[0, T ] for which W(µn(t`),µ(t`))→ 0 as n→∞ for any ` ∈ N. Second, without loss470

of generality, we assume that there exists C > 0 such that for all n471

(3.10)

ˆ T

0

|µ′n|2W(t) dt ≤ C.472

In particular, this means that µn has a representative in AC2(0, T ;P2(R × {±1}))473

which is defined for all t ∈ (0, T ). Taking this representative, we set D`
n(t) :=474

W(µn(t`),µn(t)), and obtain from [2, Theorem 1.1.2] that475

(3.11) |µ′n|W(t) = sup
`∈N

∣∣(D`
n)′(t)

∣∣ for a.e. t ∈ (0, T ).476

Next we prove (3.9). Firstly, since W(µn(t),µ(t)) → 0 as n → ∞ for a.e. t ∈477

(0, T ), we have for fixed ` ∈ N and for a.e. t ∈ (0, T ) that478

(3.12)
∣∣D`

n(t)−D`(t)
∣∣ n→∞−−−−→ 0, where D`(t) := W

(
µ(t`),µ(t)

)
.479
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Secondly, ‖D`
n‖H1(0,T ) and ‖D`‖H1(0,T ) are bounded uniformly in n and `. To see480

this, we have by the definition of the metric derivative and (3.10) that481

D`
n(t) ≤

∣∣∣∣ˆ t

t`

|µ′n|W(s) ds

∣∣∣∣ ≤ C√T .482

Hence, ‖D`
n‖L2(0,T ) is uniformly bounded. With the characterisation of |µ′n|W in483

(3.11), we estimate484

(3.13) C ≥
ˆ T

0

|µ′n|2W(t) dt ≥
ˆ T

0

(
(D`

n)′(t)
)2

dt for all ` ∈ N,485

and thus ‖D`
n‖H1(0,T ) is uniformly bounded. Therefore, in view of (3.12), we have486

(3.14) D`
n ⇀ D` in H1(0, T ) as n→∞.487

In particular, we observe from (3.14) that D` ∈ H1(0, T ) and that488

C ≥ lim inf
n→∞

‖D`
n‖H1(0,T ) ≥ ‖D`‖H1(0,T ) for all ` ∈ N.489

To establish (3.9), we carefully perform a joint limit passage as n → ∞ and a490

maximisation over ` in (3.13). With this aim, we take a large fixed L ∈ N, and choose491

a partition {A`}L`=1 of Borel sets of (0, T ) such that for all ` = 1, . . . , L,492 ∣∣(D`)′(t)
∣∣ = sup

1≤˜̀≤L

∣∣(D ˜̀
)′(t)

∣∣ for a.e. t ∈ A`.493

We estimate494

ˆ T

0

|µ′n|2W(t) dt ≥
ˆ T

0

sup
1≤`≤L

(
(D`

n)′(t)
)2

dt ≥
L∑
`=1

ˆ
A`

(
(D`

n)′(t)
)2

dt.495

Using (3.14), we pass to the limit n→∞ to obtain496

lim inf
n→∞

ˆ T

0

|µ′n|2W(t) dt ≥
L∑
`=1

ˆ
A`

(
(D`)′(t)

)2
dt =

ˆ T

0

sup
1≤`≤L

(
(D`)′(t)

)2
dt.497

By using the Monotone Convergence Theorem, we take the supremum over L ∈ N to498

deduce that499

lim inf
n→∞

ˆ T

0

|µ′n|2W(t) dt ≥
ˆ T

0

sup
`∈N

(
(D`)′(t)

)2
dt.500

We conclude by using [2, Theorem 1.1.2] to identify sup`∈N |(D`)′| in L2(0, T ) by501

|µ′|W.502

Next we introduce the narrow convergence of measures. For νn, ν ∈ M(R), we503

say that νn converges in the narrow topology to ν (and write νn ⇀ ν) as n→∞ if504

ˆ
ϕdνn

n→∞−−−−→
ˆ
ϕdν.505

for any bounded test function ϕ ∈ C(R). The following lemma extends this notion506

for non-negative measures by allowing for discontinuous test functions.507
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Lemma 3.3 ([34, Lemma 2.1]). Let νn ⇀ ν in M+(Rd). Let A ∈ B(Rd) such508

that ν(A) = 0. Then for every bounded ϕ ∈ C(Rd \A) it holds that509

ˆ
ϕdνn

n→∞−−−−→
ˆ
ϕdν.510

Proofs can be found in [39, Theorems 62-63, chapter IV, paragraph 6] and in [8, 14],511

or [37] in the case where A is closed.512

Finally, we state and prove a lemma which allows us to show that Assumption 2.2513

is conserved in the limit as n→∞.514

Lemma 3.4 (Narrow topology preserves separation of supports). Let (νε)ε>0,515

(ρε)ε>0 ⊂M+(R) converge in the narrow topology as ε→ 0 to ν and ρ, respectively.516

If517

∀ ε > 0 : sup(supp νε) ≤ inf(supp ρε),518

then also sup(supp ν) ≤ inf(supp ρ).519

Proof. We reason by contradiction. Suppose M := sup(supp ν) > inf(supp ρ) =:520

m. Take a non-decreasing test function ϕ ∈ Cb(R) which satisfies521

ϕ ≡ 0 on
(
−∞, m+ 2M

3

]
, and ϕ ≡ 1 on [M,∞).522

Since M = sup(supp ν), it holds that
´
ϕdν > 0. Hence, from νε

ε→0−−−→ ν we infer523

that for all ε small enough, it also holds that
´
ϕdνε > 0, and thus524

sup(supp νε) ≥
m+ 2M

3
.525

With a similar argument, we can deduce that inf(supp ρε) ≤ 2m+M
3 , which contradicts526

with m < M .527

4. Definition and properties of the discrete problem (1.2). In this section528

we give a rigorous definition to the discrete dynamics formally given by (1.2). We529

start by formulating it as Problem 4.1, which may have several solutions. Then, we530

define a precise solution concept to Problem 4.1 (see Definition 4.2) which encodes the531

annihilation rule and selects a unique solution to Problem 4.1. After establishing some532

properties of the energy En introduced in (1.1), we prove an existence and uniqueness533

result (see Proposition 4.5). Finally, we state the discrete problem in the language of534

measures (see Lemma 4.6).535

Problem 4.1. Given (x◦, b◦) ∈ Rn × {±1}n such that x◦1 < x◦2 < . . . < x◦n, find536

(x, b) : [0, T ]→ Rn × {−1, 0, 1}n such that537

(4.1)


d

dt
xi = − 1

n

∑
j : bibj=1

V ′(xi − xj)−
1

n

∑
j : bibj=−1

W ′(xi − xj) on (0, T ) \ Tcol

(xi(0), bi(0)) = (x◦i , b
◦
i )

538

for all i = 1, . . . , n, where Tcol is the jump set of b.539

We encode the annihilation rule in the solution concept below. With this aim,540

we set H : R ∪ {+∞} → [0, 1] as the usual Heaviside function, with H(0) := 0 and541

H(+∞) := 1.542
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Definition 4.2 (Solution to Problem 4.1). We say that (x, b) : [0, T ] → Rn ×543

{−1, 0, 1}n is a solution to Problem 4.1 if544

(a) there exists a vector of collision times τ = (τ1, . . . , τn) with τi ∈ (0, T )∪{+∞}545

such that, setting546

(4.2) Tcol := {τi : 1 ≤ i ≤ n} \ {+∞} = {t1, t2, . . . , tK} ⊂ (0, T )547

with 0 < t1 < . . . < tK < T , there holds548

(4.3) bi(t) := b◦iH(τi − t) for all i = 1, . . . , n;549

(b) x ∈ Lip([0, T ];Rn) ∩ C1((0, T ) \ Tcol;Rn);550

(c) (4.1) is satisfied in the classical sense;551

(d) setting t0 := 0, for all k = 1, . . . ,K,552

553

tk = inf
{
t ∈ (0, T ) : ∃ (i, j) such that554

bi(tk−1)bj(tk−1) = −1 and xi(t) = xj(t)
}
> tk−1;555556

(e) at each time t ∈ [0, T ], there is a bijection557

α : {i : b◦i = 1, τi ≤ t} → {j : b◦j = −1, τj ≤ t}558

such that xi(t) = xα(i)(t).559

Remark 4.3 (Comments on Definition 4.2). We collect here some remarks on the560

notion of solution presented above.561

• τi is the time at which particle xi gets annihilated: equation (4.3) describes562

this by putting to zero the charge bi at time τi. If τi = +∞, then it means563

that the particle xi does not collide in the time interval (0, T ).564

• (tk) is the ordered list of collision times at which at least one collision occurs.565

• In equation (4.1), both xi and bi depend on time. However, on each open566

component of (0, T ) \ Tcol, the charges bi remain constant.567

• Since V is singular and W is regular, straight-forward a priori energy esti-568

mates show that particles of the same type can never come closer than some569

positive distance. Hence, the only type of collision that can occur is that570

of two particles with opposite sign. We prove precise energy estimates in571

Proposition 4.5.572

• Property (d) ensures that for each pair of two colliding particles, at least573

one gets annihilated. Property (e) ensures that both particles are getting574

annihilated, and that annihilation can only occur for colliding particles with575

non-zero charge. These two properties are the mathematical formulation of576

the annihilation process described in Subsection 1.2.577

• Recalling (4.1), by (4.3), it follows that colliding particles are stationary after578

collision.579

With reference to the collision times t1 < . . . < tK in (4.2), we define the set of580

indices of the particles colliding at tk and its cardinality by581

(4.4) Γk := {i : τi = tk}, γk := #Γk.582

We observe that γk is even for every k and that583

(4.5)

K∑
k=1

γk ≤
n

2
.584
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We first establish some properties of En defined in (1.1). For convenience, we585

display586

(4.6)
∂

∂xi
En(x; b) =

1

n2

∑
j : bibj=1

V ′(xi − xj) +
1

n2

∑
j : bibj=−1

W ′(xi − xj),587

where we rely on the choice V ′(0) = 0. We also introduce588

Mk : Rn → [0,∞), Mk(x) :=
1

n

n∑
i=1

|xi|k, k = 1, 2, . . .589

which is the k-th moment of the empirical measure related to the particles x1, . . . , xn.590

Lemma 4.4 (Properties of En). Let n ≥ 2. For any x ∈ Rn and b ∈ {−1, 0, 1}n,591

the following properties hold:592

(i) En(x; b) < +∞ if and only if ∀ i 6= j : xi = xj ⇒ bibj 6= 1;593

(ii) En +M2 is bounded from below;594

(iii) ∇En is Lipschitz continuous on the sublevelsets of y 7→ En(y; b) + 2M2(y);595

(iv) if En(x; b) < +∞ and if there exists an index pair (I, J) which satisfies596

bIbJ = −1 and xI = xJ , then, there exists C > 0 independent of n such that597

En(x; b̄) ≤ En(x; b) +
C

n
(M2(x) + x2

I + 1),598

where b̄ is the modification of b in which bI and bJ are put to 0.599

Proof. Property (i) is a direct consequences of the properties of V,W (see As-600

sumption 2.1). Property (ii) is a matter of a simple estimate. Using Assumption 2.1)601

(in particular (2.2)), some manipulations inspired by [37], and r 7→ r2 −C log r being602

bounded from below, we obtain603

En(x; b) +M2(x) =
1

2n2

( ∑
i 6=j

bibj=1

V (xi − xj) +
∑
i,j

bibj=−1

W (xi − xj) +

n∑
i,j=1

(x2
i + x2

j )
)

≥ 1

2n2

n∑
i,j=1

(
− C

(
[log |xi − xj |]+ + 1

)
+

1

2
(xi − xj)2

)
≥ C.

604

Property (iii) follows easily from property (ii) by (2.1a) and (2.1c). To prove (iv),605

we set y := xI = xJ and assume for convenience that bI = 1 and bJ = −1. Then, we606

compute607

En(x; b)− En(x; b̄) =
1

2n2

(∑
j 6=I
bj=1

V (xI − xj) +
∑
i 6=J
bi=−1

V (xi − xJ)

)

+
1

2n2

( ∑
j : bj=−1

W (xI − xj) +
∑
i : bi=1

W (xi − xJ)

)
− W (0)

2n2

=
1

2n2

( n∑
i=1
i6=I,J

|bi|V (xi − y) +

n∑
i=1

|bi|W (xi − y)

)
− W (0)

2n2

608
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609

=
1

2n2

n∑
i=1
i 6=I,J

|bi|(V +W )(xi − y) +
W (0)

2n2

≥ − C

n2

n∑
i=1

(xi − y)2 +
W (0)

2n2
≥ −C

n
(M2(x) + y2 + 1),

610

where we have used (2.3).611

We now prove that Problem 4.1 has a unique solution. In addition, we establish612

several properties of it.613

Proposition 4.5. Let n ≥ 2, T > 0, and (x◦, b◦) ∈ Rn × {±1}n be such that614

x◦1 < x◦2 < . . . < x◦n. Then there exists a unique solution (x, b) to Problem 4.1 in the615

sense of Definition 4.2. Moreover, the following properties are satisfied:616

(i) there exists C > 0 independent of n such that617

M2(x(t)) ≤ Ct+M2(x◦), M4(x(t)) ≤ Ct(M2(x◦) + t) +M4(x◦)618

for all t ∈ [0, T ];619

(ii) inf
0<t<T

min{|xi(t)− xj(t)| : bi(t)bj(t) = 1} > 0;620

(iii) the energy function e : [0, T ) → R defined by e(t) := En(x(t); b(t)) is left-621

continuous on [0, T ), differentiable on (0, T ) \ Tcol, and e′(t) ≤ 0 for all622

t ∈ (0, T ) \ Tcol. Moreover, denoting by Je(tk)K := e(tk)− e(tk−) the jump of623

e at tk, we have that624

(4.7) Je(tk)K ≤ C

n

(
γkM2(x(tk)) + γk +

∑
i∈Γk

x2
i (tk)

)
625

for every k = 1, . . . ,K, and626

(4.8)

K∑
k=1

Je(tk)K ≤ C(T +M2(x◦) + 1),627

where γk and Γk are defined in (4.4), and C > 0 is a constant independent628

of n;629

(iv) En(x(t); b(t))− En(x◦; b◦) ≤ C(t+M2(x◦) + 1)− 1

n

ˆ t

0

|ẋ(s)|2 ds for all t ∈630

(0, T ];631

(v) there exists an L ∈ N (independent of n) such that for all t ∈ [0, T ), (x(t), b(t))632

satisfies Assumption 2.2, i.e., there exist −∞ < a0(t) ≤ a1(t) ≤ . . . ≤633

a2L(t) < +∞ such that634

{xi(t) : bi(t) = 1} ⊂
L⋃
`=1

(
a2`−2(t), a2`−1(t)

)
,

{xi(t) : bi(t) = −1} ⊂
L⋃
`=1

(
a2`−1(t), a2`(t)

)
.

635
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Proof. Step 1: Construction of (x, b), properties (i) and (ii), and (4.7). We636

define the counterpart of (4.1) in which no collision occurs, i.e., we seek n trajectories637

yi : [0, T ]→ R such that yi(0) = x◦i and638

(4.9)
d

dt
yi = − 1

n

∑
j : b◦i b

◦
j =1

V ′(yi − yj)−
1

n

∑
j : b◦i b

◦
j =−1

W ′(yi − yj) on (0,+∞).639

for all i = 1, . . . , n. From (4.6) we observe that (4.9) is the gradient flow of En(·; b◦)640

given by641

(4.10)

{
ẏ(t) = −n∇En(y(t); b◦),

y(0) = x◦.
642

From Lemma 4.4 we observe that (4.10) has a unique, classical solution y(t) locally643

in time. In particular, t 7→ En(y(t); b◦) is non-increasing.644

Next we show that the solution y can be extended to the complete time interval645

[0, T ]. With this aim, we prove that the second moment M2(y(t)) (and for later use646

the fourth moment M4(y(t))) are finite as long as t 7→ y(t) exists. We follow the647

argument in [38]. From (4.9), using (2.1b) and (2.1d), we estimate648

d

dt
M2(y(t)) =

2

n

n∑
i=1

yi(t)ẏi(t)649

= − 2

n2

n∑
i=1

( ∑
j : bibj=1

yiV
′(yi − yj) +

∑
j : bibj=−1

yiW
′(yi − yj)

)
650

= − 1

n2

∑
i,j: bibj=1

(yi − yj)V ′(yi − yj)−
1

n2

∑
i,j: bibj=−1

(yi − yj)W ′(yi − yj) ≤ C.651

652

Hence,653

(4.11) M2(y(t)) ≤M2(y(0)) + Ct ≤M2(x◦) + CT, for all t ∈ [0, T ].654

Similarly, using the identity a3 − b3 = (a2 + ab+ b2)(a− b), we compute655

d

dt
M4(y(t)) =

4

n

n∑
i=1

y3
i (t)ẏi(t)656

= − 4

n2

n∑
i=1

( ∑
j : bibj=1

y3
i V
′(yi − yj) +

∑
j : bibj=−1

y3
iW
′(yi − yj)

)
657

= − 2

n2

∑
i,j : bibj=1

(y3
i − y3

j )V ′(yi − yj)−
2

n2

∑
i,j : bibj=−1

(y3
i − y3

j )W ′(yi − yj)658

≤ C

n2

∑
i,j : bibj=1

(y2
i + yiyj + y2

j ) +
C

n2

∑
i,j : bibj=−1

(y2
i + yiyj + y2

j )659

≤ C

n2

n∑
i=1

n∑
j=1

(y2
i (t) + y2

j (t)) = CM2(y(t)) ≤ C(t+M2(x◦)),660

661

where we have used (4.11). Hence,662

(4.12) M4(y(t)) ≤M4(x◦) + CT
(
M2(x◦) + T

)
, for all t ∈ [0, T ].663
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In conclusion, (4.11) and (4.12) provide a priori bounds for M2(y(t)) and M4(y(t))664

that are uniform in n and t. Finally, from (4.11) and Lemma 4.4(i)–(iii) we obtain665

that the solution y to (4.10) is defined and unique at least up to time T .666

Next we identify t1 and choose those bi that jump at t = t1 (see (4.3)). For this667

choice, it is enough to specify the collision times τi (see (4.2)). We note that668

t∗ := inf
{
t ∈ (0, T ] : ∃ (i, j) : b◦i b

◦
j = −1 and yi(t) = yj(t)

}
669

is either attained or t∗ = +∞. If t∗ ≥ T , we set x = y and τi = +∞ for all i,670

and observe that properties (d) and (e) of Definition 4.2 are satisfied. If t∗ < T , we671

observe that t1 in Definition 4.2(d) has to be equal to t∗. We set x|[0,t1] := y|[0,t∗]672

and observe from (4.11) and (4.12) that property (i) is satisfied up to t = t1. For the673

choice of τi, we follow the algorithm explained in Subsection 1.2, i.e., for each pair674

of particles that collide at t1, we set the corresponding τi equal to t1. We choose the675

remaining values for τj > t1 later on in the construction. With this choice for τi,676

it follows from the continuity of xi that properties (d) and (e) of Definition 4.2 are677

satisfied by construction. Since En(x(t)) ≤ En(x◦) for all t ∈ [0, t1), it follows that678

(ii) holds on [0, t1].679

Next we show that we can continue the construction above for t > t1. First,680

applying Lemma 4.4(iv) 1
2γ1 times (recall from (4.4) that γ1 is even), we find that681

En(x(t1); b(t1)) ≤ En(x(t1); b(t1−)) +
C

2n

(
γ1M2(x(t1)) + γ1 +

∑
i∈Γ1

x2
i (t1)

)
.682

Hence, (4.7) is satisfied for k = 1. Furthermore, we obtain that En(x(t1); b(t1)) <∞,683

and thus we can continue the construction above for t > t1 by putting x(t1), b(t1) as684

the initial condition at t = t1.685

Iterating over k, this construction identifies all τi < T (for i /∈ ∪Kk=1Γk, we set686

τi := +∞) and tk, and guarantees that x is piecewise C1 on [tk, tk+1] and globally687

Lipschitz. In addition, (4.7) holds for all k = 1, . . . ,K.688

Step 2: Uniqueness of (x, b). Let x and τ be as constructed in Step 1, and set b689

accordingly. Since (4.10) has a unique solution, Definition 4.2(d) defines uniquely the690

time t1 until which x(t) is uniquely defined. By Definition 4.2(e), b has to be constant691

on [0, t1). Since x satisfies Property (ii) at t = t1, all collisions at t1 are collisions692

of two particles with opposite type. Then, from the explanation in Remark 4.3, it is693

obvious that properties (d) and (e) of Definition 4.2 define uniquely the set of indices694

i for which τi = t1. Hence, b(t1) is uniquely determined. We conclude by iterating695

over k.696

Step 3: The remaining Properties (iii)–(v). Estimate (4.7) is already proved;697

summing over k reads698

(4.13)

K∑
k=1

Je(tk)K ≤ C

n

( K∑
k=1

γkM2(x(tk)) +

K∑
k=1

γk +

K∑
k=1

∑
i∈Γk

x2
i (tk)

)
.699

The first and second sums in the right-hand side above can be easily estimated using700

(i) and (4.5). We estimate the third sum by using that the sets Γk for k = 1, . . . ,K701

are disjoint, and that for every k = 1, . . . ,K and for every i ∈ Γk we have that702

xi(t) = xi(tk) for all t ≥ tk. Hence, the third sum is bounded by M2(x(T )). Collecting703

our estimates, we obtain (4.8) from (4.13).704
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With (iii) proven, we prove (iv) for t = T by the following computation (the case705

t < T follows by a similar estimate). Setting tK+1 := T , we compute706

En(x(T ); b(T ))−En(x◦; b◦) = En(x(T ); b(T ))− En(x(tK); b(tK))

+

K∑
k=1

[
Je(tk)K +

(
En(x(tk−); b(tk−))− En(x(tk−1); b(tk−1))

)]
≤

K+1∑
k=1

ˆ tk

tk−1

d

dt
En(x(t); b(t)) dt+ C(T +M2(x◦) + 1)

= −
K+1∑
k=1

1

n

ˆ tk

tk−1

|ẋ(t)|2 dt+ C(T +M2(x◦) + 1)

= − 1

n

ˆ T

0

|ẋ(t)|2 dt+ C(T +M2(x◦) + 1),

707

where we have used in the second-to-last equality that x(t) satisfies (4.1).708

Finally, we prove (v). First, we claim that the strict ordering of the particles709

{xi(t) : |bi(t)| = 1} is conserved in time. Clearly, this ordering holds at t = 0.710

From (ii) it follows that any two particles, say with corresponding indices i 6= j such711

that bi(t)bj(t) = 1, can never swap position. Similarly, any pair (xi(t), xj(t)) with712

bi(t)bj(t) = −1 cannot swap either, because Definition 4.2(d) ensures that bi(t) and713

bj(t) jump to 0 at the first t at which xi(t) = xj(t). In fact, as soon as this happens,714

the particles cease to move (see the last bullet in Remark 4.3 and also the first bullet715

in Subsection 1.2 regarding the properties of particles with zero charge).716

Next we construct a`(t). We start with t = 0, and set a0(0), a1(0), . . . sequentially.717

We set a0(0) := x◦1 − 1, and, if b◦1 = −1, we also put a1(0) := x◦1 − 1. For each pair of718

consecutive particles x◦i , x
◦
i+1 of opposite sign, we define a new point719

a`(0) :=
1

2
(x◦i + x◦i+1).720

If the current value of ` is odd, we define L := (`+ 1)/2 and set a2L(0) := x0
n + 1. If721

` is even, we define L := (`+ 2)/2 and set a2L−1(0) := a2L(0) := x◦n + 1.722

Since the strict ordering of the particles {xi(t) : |bi(t)| = 1} is conserved in time,723

we can construct a`(t) analogously, but for a time-dependent Lt. Next we show how724

to modify this construction such that Lt can be chosen independently of t. Because725

of the ordering of {xi(t) : |bi(t)| = 1} and that its cardinality is non-increasing in726

time, the numbers of pairs of consecutive particles xi(t), xi+1(t) of opposite non-zero727

charge is also non-increasing in time. Hence, t 7→ Lt is non-increasing in time. In728

case Lt < L, we modify the construction of a`(t) above simply by adding a surplus of729

points a`(t) which all equal a2Lt
(t).730

Next we establish several properties of the empirical measures associated to the731

solution (x; b) of Problem 4.1 with initial condition (x◦, b◦) as in Proposition 4.5.732

With this aim, we set733

(4.14) n± := #{i : b◦i = ±1}734

as the number of positive/negative particles at time 0, and note that n+ + n− = n.735

The empirical measures associated to (x(t); b(t)) are736

(4.15) µ◦,±n :=
1

n

∑
i : b◦i =±1

δx◦
i
, µ±n (t) :=

1

n

∑
i : b◦i =±1

δxi(t),737
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which both have total mass equal to n±/n for all t ∈ [0, T ). As in (3.5), we also set738

(4.16) κn(t) :=
1

n

n∑
i=1

b◦i δxi(t), µn(t) :=
1

n

n∑
i=1

δxi(t), µ̃±n (t) := [κn(t)]±.739

Lemma 4.6 (Proposition 4.5 in terms of measures). Given the setting as in740

Proposition 4.5 with (x, b) the solution to (4.1), let µn := (µ+
n , µ

−
n ), µ̃n := (µ̃+

n , µ̃
−
n ),741

and κn as constructed from (x, b) through (4.15) and (4.16). Then,742

(i) µ̃±n (t) =
1

n

n∑
i=1

[bi(t)]±δxi(t);743

(ii) µn ∈ AC2(0, T ;Pm2 (R2)) with m = n+/n (see (4.14)), and744

(4.17) |µ′n|2W(t) ≤ 1

n

n∑
i=1

( d

dt
xi(t)

)2

for all 0 < t < T ;745

(iii) µn is a solution to (1.3) with initial condition µ◦n = (µ◦,+n , µ◦,−n ).746

Proof. Property (i) is a corollary of Proposition 4.5. Indeed, Proposition 4.5(v)747

implies that [κn(t)]± ≥ 1
n

∑n
i=1[bi(t)]±δxi(t), while Definition 4.2(e) implies that748

|κn(t)|(R) ≤ 1
n

∑n
i=1 |bi(t)|. We conclude (i).749

Next we prove (ii). From the definition of µn in (4.15) we observe that µn(t) ∈750

Pm2 (R2) for all 0 < t < T . Hence, (3.4) applies, and we obtain751

(4.18) W2
(
µn(s),µn(t)

)
≤W 2

(
µ+
n (s), µ+

n (t)
)

+W 2
(
µ−n (s), µ−n (t)

)
752

for all 0 < s ≤ t < T . To estimate the right-hand side, we let 0 < s ≤ t < T be given,753

and introduce the coupling754

γ±n :=
1

n

∑
i : b◦i =±1

δ(xi(s),xi(t)) ∈ Γ
(
µ±n (s), µ±n (t)

)
.755

By definition of the Wasserstein distance (3.1), we obtain756

(4.19) W 2
(
µ±n (s), µ±n (t)

)
≤
¨

R2×R2

|x− y|2 dγ±n (x, y) =
1

n

∑
i : b◦i =±1

(
xi(s)− xi(t)

)2
.757

Finally, using in sequence the estimates (3.8), (4.18), and (4.19), we conclude (4.17).758

Since x ∈ Lip([0, T ];Rn), we obtain that µn ∈ AC2(0, T ;Pm2 (R2 × {±1})).759

Next we prove (iii). We rewrite (4.1) as760

ẋi(t) = −bi(t)
(
V ′ ∗ µ̃+

n (t) +W ′ ∗ µ̃−n (t)
)
(xi(t)), for i such that b◦i = 1,761

ẋi(t) = −bi(t)
(
W ′ ∗ µ̃+

n (t) + V ′ ∗ µ̃−n (t)
)
(xi(t)), for i such that b◦i = −1.762763

Let ϕ ∈ C∞c ((0, T )× R) be any test function. Since xi is Lipschitz, the Fundamental764
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Theorem of Calculus applies, and thus we obtain, using (i),765

0 =
1

n

∑
i : b◦i =1

ˆ T

0

d

dt
ϕ(t, xi(t)) dt766

=
1

n

∑
i : b◦i =1

[ˆ T

0

∂tϕ(t, xi(t)) dt+

ˆ T

0

ϕ′(t, xi(t)) ẋi(t) dt

]
767

=

ˆ T

0

ˆ
R
∂tϕdµ+

n dt−
ˆ T

0

1

n

∑
i : bi=1

ϕ′(xi)
(
V ′ ∗ µ̃+

n +W ′ ∗ µ̃−n
)
(xi) dt768

=

ˆ T

0

ˆ
R
∂tϕdµ+

n dt−
ˆ T

0

ˆ
R
ϕ′
(
V ′ ∗ [κn]+ +W ′ ∗ [κn]−

)
d[κn]+dt,769

770

where ϕ′ denotes the partial derivative with respect to the spatial variable. Since ϕ is771

arbitrary and V ′ is odd, we conclude that µ+
n satisfies (3.6). From a similar argument,772

it follows that also µ−n satisfies (3.6).773

5. Statement and proof of the main convergence theorem. In this section,774

we state and prove our main convergence theorem.775

Theorem 5.1 (Discrete-to-continuum limit). Let the potentials V and W satisfy776

Assumption 2.1. Let (xn,◦, bn,◦)n be a sequence of initial conditions such that777

(i) En(xn,◦; bn,◦) is bounded uniformly in n,778

(ii) (µ◦n)n (see (4.15)) has bounded fourth moment uniformly in n,779

(iii) there exists an L ∈ N independent of n such that Assumption 2.2 is satisfied780

for all n.781

Then for every T > 0 the curves µn ∈ AC2(0, T ;P2(R × {±1})) determined by the782

solution (xn, bn) to Problem 4.1 through (4.15) for each n, converge in measure uni-783

formly in time along a subsequence to a solution ρ of (3.6), whose initial condition784

ρ◦ is the limit of (µ◦n)n along the same subsequence.785

The proof is divided in three steps. In the first step we use compactness of µn(t) to786

extract a subsequence nk along which µn(t) converges to some ρ(t). In the remaining787

two steps we pass to the limit in (3.6) as k →∞ to show that the limiting curve ρ(t)788

also satisfies (3.6). Step 2 contains the main novelty; relying on Assumption 2.2 with789

an nk-independent number L, we prove that [κnk
(t)]± ⇀ [κ(t)]± as k →∞ pointwise790

in t.791

Proof. Step 1: µn converges along a subsequence nk → ∞ in C([0, T ];P2(R ×792

{±1})) to ρ ∈ AC2(0, T ;Pm2 (R×{±1})) with m := ρ◦,+(R). We prove this statement793

by means of the Ascoli-Arzelà Theorem (see Lemma 3.1) applied to the metric space794

(P2(R× {±1}),W).795

First, we show that, for fixed t ∈ [0, T ], the sequence (µn(t))n is pre-compact in796

P2(R × {±1}). From the assumption on the initial data and Proposition 4.5(i) we797

observe that the second and fourth moments of the measures µn(t) defined in (4.16),798

given by799

M2(xn(t)) =

ˆ
R
y2 dµn(t)(y), M4(xn(t)) =

ˆ
R
y4 dµn(t)(y),800

are bounded uniformly in n and t ∈ [0, T ]. Then, from [47, Lemma B.3] and [2,801

Proposition 7.1.5] we find that (µn(t))n is pre-compact in the Wasserstein distance802

W.803

This manuscript is for review purposes only.



MANY-PARTICLE LIMITS INCLUDING ANNIHILATION 23

Second, we show that the sequence (µn)n ⊂ C([0, T ];P2(R × {±1})) is equicon-804

tinuous (i.e., (µn)n satisfies Lemma 3.1(ii)). For any 0 ≤ s < t ≤ T , we estimate805

(5.1) W2
(
µn(t),µn(s)

)
≤
(ˆ t

s

|µ′n|W(r) dr

)2

≤ (t− s)
ˆ T

0

|µ′n|2W(r) dr.806

To estimate the last integral above, we use the estimates in Lemma 4.6(ii) and Propo-807

sition 4.5(iv) to obtain808

ˆ T

0

|µ′n|2W(r) dr ≤ 1

n

ˆ T

0

n∑
i=1

( d

dt
xni (r)

)2

dr =
1

n

ˆ T

0

|ẋn(r)|2 dr

≤C(T +M2(xn,◦) + 1) + En(xn,◦; bn,◦)− En(xn(T ); bn(T )).

(5.2)809

Since, by Lemma 4.4(ii) and Proposition 4.5(i), we have810

En(xn(T ); bn(T )) =[En(xn(T ); bn(T )) +M2(xn(T ))]−M2(xn(T ))

≥− C − [C̃T +M2(xn,◦)],
811

we obtain from (5.2) that812

(5.3)

ˆ T

0

|µ′n|2W(r) dr ≤ C(T +M2(xn,◦) + 1) + En(xn,◦; bn,◦).813

By the assumptions on the initial data, the right-hand side is bounded uniformly in814

n. Hence, the right-hand side in (5.1) is bounded by C(t − s), and thus (µn)n is815

equicontinuous.816

From the pre-compactness of (µn(t))n and the equicontinuity of (µn)n, we obtain817

from Lemma 3.1 the existence of a subsequence nk along which (µn)n converges818

in C([0, T ];P2(R × {±1})) to some limiting curve ρ ∈ C([0, T ];P2(R × {±1})). In819

fact, combining the lower semi-continuity obtained in Theorem 3.2 with (5.3), we820

obtain that ρ ∈ AC2(0, T ;P2(R× {±1})). Moreover, since the total mass of µ+
n (t) is821

conserved in time, and since the narrow topology conserves mass, we conclude that822

ρ(t) ∈ Pm2 (R× {±1}) for all t ∈ [0, T ]. This completes the proof of Step 1. For later823

use, we set as in (3.5)824

ρ := ρ+ + ρ−, κ := ρ+ − ρ−, ρ̃± := [κ]±.825

Step 2: µ̃nk
(t) ⇀ ρ̃(t) as k →∞ pointwise for all t ∈ [0, T ]. We set µ̃±nk

= [κnk
]±826

as in (4.16) and µ̃nk
as in Lemma 4.6. We keep t ∈ [0, T ] fixed, and remove it from827

the notation in the remainder of this step. The structure of the proof of Step 2 is to828

show by compactness that (µ̃nk
)k has a converging subsequence, and to characterise829

the limit as ρ̃. Since ρ̃ is independent of the choice of subsequence, we then conclude830

that the full sequence (µ̃nk
)k converges to ρ̃. Keeping this in mind, in the following831

we omit all labels of subsequences of n.832

Since the second moments of µ̃n are obviously bounded by M2(xn), the sequence833

(µ̃n) is tight, and thus, by Prokhorov’s Theorem, (µ̃n) converges narrowly along a834

subsequence to some µ̃ ∈M+(R× {±1}).835

We claim that µ̃ does not have atoms. We reason by contradiction. Suppose that836

µ̃+ has an atom at y of mass α > 0 (the case of µ̃− can be treated analogously).837

Then, setting Bη(y) as the ball around y with radius η, we infer from µ̃+
n ⇀ µ̃+ that838

This manuscript is for review purposes only.



24 P. VAN MEURS AND M. MORANDOTTI

lim infn→∞ µ̃+
n (Bη(y)) ≥ α > 0 for any η > 0. By choosing η > 0 small enough,839

the contribution of the particles in Bη(y) to the energy En(xn; bn) can be made840

arbitrarily large, which contradicts with the uniform bound on En(xn; bn) given by841

Proposition 4.5(iv).842

In the remainder of this step we show that µ̃± = [κ]±, regardless of the choice of843

the subsequence. It is enough to show that844

[κ]± ≤ µ̃±(5.4)845

[κ]±(R) ≥ µ̃±(R)(5.5)846847

Regarding (5.4), we obtain from Step 1 that848

µ̃+
n − µ̃−n = κn ⇀ κ as n→∞.849

Hence, µ̃+ − µ̃− = κ, which implies (5.4). To prove (5.5), we let {an` }2L`=0 be as in850

Proposition 4.5(v), and set851

µ̃`n :=

{
µ̃+
n |(an`−1,a

n
` ) ` odd

µ̃−n |(an`−1,a
n
` ) ` even

852

for all ` ∈ {1, . . . , 2L}. By construction,853

L∑
`=1

µ̃2`−1
n = µ̃+

n and

L∑
`=1

µ̃2`
n = µ̃−n .854

Together with µ̃n ⇀ µ̃, we conclude that (µ̃`n)n are tight for any `, and thus, applying855

Prokhorov’s Theorem once more, each sequence (µ̃`n)n converges along a subsequence856

in the narrow topology to some µ̃` ∈M+(R). In particular, from µ̃n ⇀ µ̃ and857

µ̃−n =

L∑
`=1

µ̃2`
n ⇀

L∑
`=1

µ̃2`,858

we infer that µ̃− =
∑L
`=1 µ̃

2`. By a similar argument, it follows that µ̃+ =
∑L
`=1 µ̃

2`−1.859

Finally, since sup(supp µ̃`n) < inf(supp µ̃`+1
n ) for all 1 ≤ ` ≤ 2L − 1, we obtain from860

Lemma 3.4 that sup(supp µ̃`) < inf(supp µ̃`+1) for all 1 ≤ ` ≤ 2L − 1. Hence, there861

exists A := {a`}2L−1
`=1 such that862

863

supp µ̃+ ∩ supp µ̃− =

( L⋃
`=1

supp µ̃2`−1

)
∩
( L⋃
k=1

supp µ̃2k

)
864

=

L⋃
`=1

L⋃
k=1

(
supp µ̃2`−1 ∩ supp µ̃2k

)
=

2L−1⋃
`=1

(
supp µ̃` ∩ supp µ̃`+1

)
⊂ A.865

866

Since µ̃± does not have atoms, µ̃±(A) = 0. Together with µ̃+ − µ̃− = κ, it is easy867

to construct a Hahn decomposition of κ (see, e.g., [35, Theorem 6.14]). We conclude868

(5.5).869

Step 3: ρ is a solution to (1.3). To ease notation, we replace nk by n. We show870

that ρ satisfies (3.6). With this aim, let ϕ± ∈ C∞c ((0, T )×R) be arbitrary. We recall871
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from Lemma 4.6(iii) that µn satisfies872

0 =

ˆ T

0

ˆ
R
∂tϕ
±(x) dµ±n (x)dt−

ˆ T

0

ˆ
R

(ϕ±)′(x) (W ′ ∗ [κn]∓)(x) d[κn]±(x)dt

− 1

2

ˆ T

0

¨
R×R

(
(ϕ±)′(x)− (ϕ±)′(y)

)
V ′(x− y) d([κn]± ⊗ [κn]±)(x, y)dt.

(5.6)873

We show that we can pass to the limit in all three terms separately. From Step 1874

it follows that µn ⇀ ρ, and thus the limit of the first integral equals875

ˆ T

0

ˆ
R
∂tϕ
±(x) dρ±(x)dt.876

Regarding the other two integrals in (5.6), we recall from Step 2 that [κn(t)]± ⇀877

[κ(t)]± as n → ∞ pointwise for all t ∈ [0, T ]. Then, for the second term, since878

(x, y) 7→ (ϕ±)′(x)W ′(x− y) is bounded and continuous on R2, we obtain that879

ˆ
R

(ϕ±)′(x) (W ′ ∗ [κn]∓)(x) d[κn]±(x) =

¨
R2

(ϕ±)′(x)W ′(x−y) d([κn]±⊗ [κn]∓)(x, y)880

converges, as n→∞, to881

¨
R2

(ϕ±)′(x)W ′(x− y) d([κ]± ⊗ [κ]∓)(x, y) =

ˆ
R
(ϕ±)′(x) (W ′ ∗ [κ]∓)(x) d[κ]±(x).882

Finally, we pass to the limit in the third integral in (5.6). We employ Lemma 3.3883

with d = 2 and ∆ = {(y, y) : y ∈ R} the diagonal in R2. To show that the conditions884

of Lemma 3.3 are satisfied, we observe from the fact that r 7→ rV ′(r) is bounded and885

belongs to C(R\{0}), it holds that (x, y) 7→ [(ϕ±)′(x)−(ϕ±)′(y)]V ′(x−y) is bounded886

and belongs to C(R2\∆). Moreover, by Step 2, ([κ]±⊗ [κ]±)(∆) = (µ̃±⊗ µ̃±)(∆) = 0.887

Hence, by Lemma 3.3 we can pass to the limit in the third term in (5.6), whose limit888

reads889

−1

2

ˆ T

0

¨
R×R

(
(ϕ±)′(x)− (ϕ±)′(y)

)
V ′(x− y) d([κ]± ⊗ [κ]±)(x, y)dt.890

Combining the three limits above, and recalling the time regularity of ρ from Step 1,891

we conclude that ρ is a solution to (1.3).892
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