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An Improved Algorithm for On-Chip Clustering and
Lossless Data Compression of HL-LHC Pixel Hits

Giuseppe Baruffa, Pisana Placidi, Member, IEEE, Andrea Di Salvo, Sara Marconi, and Andrea Paternò

Abstract—A prototype chip, called RD53A, has been designed
by the RD53 collaboration to face the very high hit and trigger
rate requirements (up to 3 GHz/cm2 and 1 MHz, respectively) of
the High Luminosity LHC experiment upgrades. In this paper, an
improved algorithm for data compression, capable of sustaining
the very high data volume and proposed to be implemented in
the periphery of the chip, is presented: it exploits Run Length
Encoding (RLE) and Variable Length Coding (VLC) to compact
chip pixel hit patterns. The compression and decompression
algorithms are implemented with MATLAB, and the performance
is calculated taking into account the RD53A data readout im-
plementation and its chip simulation and verification framework
(called VEPIX53). In all considered cases, the results show that
the RLE and VLC combination achieves a data compression ratio
between 1.57 and 1.62, resulting in a bitstream size reduction
between 36.2% and 38.4% with respect to the rate of the current
data transmission format.

I. INTRODUCTION

APIXEL readout chip has been designed within the RD53

Collaboration to face the challenging requirements of the

High Luminosity LHC (HL-LHC) experiment upgrades, called

RD53A [1]. The chip has to sustain very high hit and trigger

rates (up to 3 GHz/cm2 and 1 MHz, respectively), together

with an high radiation level. Due to the increase in data rates,

on-chip lossless data compression should be considered to

reduce the required bandwidth in the development of final

pixel chips for the experiments [2]. In addition, low power

consumption and strict requirements on the complexity of the

algorithm implementation should be taken into account.

The bidimensional nature of pixel hit patterns and the

associated charge information introduce significant complexity

on the efficiency estimation of the readout binary encoding,

without knowing all the details of the detector, as highlighted

in [2]. For instance, the readout encoding used by the ATLAS

FE-I4 chip shows that data compression can achieve a 40%

reduction of the total readout bandwidth [2]. In [3], two on-

chip algorithms exploiting arithmetic and Huffman coding are

proposed for HL-LHC. However, the performance analysis has

been carried out by considering a full GEANT4 simulation
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with only 2 GHz/cm2 hit rate, neglecting constraints due to

the RD53A prototype implementation.

The RD53A sensitive area is arranged as an array of

192×400 pixels, each one of size 50 μm × 50 μm, with two

different digital buffering architectures. The sensitive area is

placed at the top of the chip and, in the considered digital

buffering scheme, the pixel matrix is built up of 8×8 pixel

cores; each core is logically divided into 16 four-pixel regions.

Thus, each region spans horizontally by four columns and

vertically by one row. The content of regions enclosing at

least one pixel hit is copied into FIFOs placed at the bottom

of each core-column. The chip output is encoded with the

Aurora 64b/66b protocol over 1 to 4 parallel lanes [1], each

nominally capable to convey up to 1.28 Gb/s.

In this work, an improved algorithm for data compression

capable of handling the high data volume has been considered

for implementation in the chip periphery: it exploits Run
Length Encoding (RLE) and Variable Length Coding (VLC).

Additionally, Huffman coding has been taken into account.

The performance of the proposed algorithms has been inves-

tigated in MATLAB by using the output produced by the

VEPIX53 chip analysis and simulation framework [4] (see

Fig. 1), thus providing the possibility of importing hit patterns

from physics data of the ATLAS and CMS experiments. The

data analysis simulation chains of the experiments use ROOT,

a common tool developed in C++, to flexibly obtain statistics

on the events [4]. The format used by ROOT for representing

big data sets is the so-called TTree. The hit generator is

written in SystemVerilog (SV), from which, by using Direct

Programming Interface (DPI), it is possible to set up interfaces

with C++. Functions can be therefore defined in the SV hit

generator, which directly calls the ROOT routines. To test the

performance of the algorithm, the Monte Carlo data from the

CMS data analysis framework (CMSSW), including events

related to the layer 0 of the pixel detector, are combined with

constrained random input data and with meaningful cluster

distribution (producing stimuli with the expected hit rate of

3 GHz/cm2). In particular, the modules at the center of the

barrel, with a pixel size of 50 μm × 50 μm, sensor thickness

of 150 μm, digitizer threshold of 1500 e− and a pile-up of

140, are considered.

II. PROPOSED DATA COMPRESSION ALGORITHM

In this scenario, the redundancy in the generated chip

output data can be reduced by exploiting data compression

algorithms. In Fig. 1, where an example of the chip output for



Fig. 1. Implemented simulation workflow.
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Fig. 2. Occurrence of cluster sizes.

Fig. 3. Traditional encoding of the pixel values in active regions.

a single trigger event hit pattern is reported, the white areas

represent active pixels (i.e., with a non-null reading). The hit

pattern is sparse, with large blank areas including only few

small clusters of active pixels, as highlighted by the cluster size

histogram of Fig. 2. The histogram shows that the typical hit

cluster size is not larger than 3×12 pixels. In the chip, a smart

encoding of the pixel hits (denoted as current in the following)

is already implemented at the core-column level, after the

trigger selection. Therefore, only the active regions (regions

including at least one active pixel for the specified trigger)

address and content are encapsulated in the Aurora packets: 7

bits are used for the column address, 9 bits for the row address,

and 16 bits for the readings of the Time-over-Threshold (ToT)

values (Fig. 3). Although this packetization protocol is efficient

in dealing with the sparsity of the pixel matrix data, it does not

account for the spatial correlation among active regions and

for the non-uniform statistical distribution of the pixel values.

To address this inefficiency, a customized data compression

algorithm, exploiting RLE and VLC [5], is considered in the

following.

In the algorithm, instead of including the address for every

active region, we propose to use a single address for a cluster

of regions. Consecutive inactive regions within the cluster can

be represented with RLE codes by recording the number of

occurrences. Furthermore, core-column, core-row, and region

addresses are encoded as in the remainder part of Golomb

codes [5]. The non-uniform distribution of the pixel values

can be dealt with VLC, as in [3]. In particular, with Huffman

coding [5] it is possible to reduce the redundancy approaching

the entropy of the source. In this paper we follow a simplified

scheme, devising a VLC prefix code that uses, for the two

most probable values, the lowest number of bits, as in Huffman

coding.

The presented algorithm can be operated either in column-

by-column (intra-column) mode or in multiple column (inter-

column) mode, increasing complexity. Indeed, in the latter, the

compression module should have simultaneous access to all

the FIFOs to detect if the considered cluster includes multiple

adjacent columns.

The resulting code alphabet is summarized in Table I. In the

first column, the codeword symbol, which is represented by

an identifier and by a maximum of four optional parameters,

has been reported. The word indentation is used to show the

nesting relation between a symbol and its ancestor. The second

column reports the binary codeword associated to the symbol,

where characters correspond to the digits of the optional

parameters (OP) in the symbol. The third column describes

the symbol and reports the codeword bit size.



TABLE I
CODE ALPHABET FOR THE RLE-VLC ALGORITHM (ID = IDENTIFIER, OP

= OPTIONAL PARAMETERS)

Symbol
(ID, OP)

Codeword bits Description and size

C,COL cc . . . c
︸ ︷︷ ︸

Bcbits

Column address
Bc = no. of address bits

K,CORE,REG cc . . . c
︸ ︷︷ ︸

Bkbits

rr . . . r
︸ ︷︷ ︸

Brbits

Cluster address (Bk+Br bits)
Bk = no. of core address bits,
Br = no. of region address bits

F 1 Start of active region (1 bit)

T,A,B,C,D 1 aa . . . a
︸ ︷︷ ︸

Bpbits

bb . . . b
︸ ︷︷ ︸

Bpbits

cc . . . c
︸ ︷︷ ︸

Bpbits

dd . . . d
︸ ︷︷ ︸

Bpbits

Active Region with current
coding (1 + 4Bp bits)
Bp = no. of ToT bits

H 0 Active region with VLC, 1 bit

V1 0 1st most probable value, 1 bit

V2 11 2nd most probable value, 2 bits

V,VAL 10 vv . . . v
︸ ︷︷ ︸

Bpbits

All other values, 2 +Bp bits

R,RUN 0 rr . . . r
︸ ︷︷ ︸

Brunbits

Inactive regions, 1+Brun bits

EOK 0 11...1
︸ ︷︷ ︸

Brunbits

End of cluster, 1 +Brun bits

EOC 0 00...0
︸ ︷︷ ︸

Brunbits

End of column, 1 +Brun bits

A. Spatial Compression of Active Regions

First, we deal with the uneven spatial distribution of the

active regions. Figure 4 shows an example of an hit pattern

that could be encoded as a single cluster. In the cluster, we

can identify both active and inactive regions. Active regions

naturally occur in clusters, and therefore it is more efficient to

address the cluster instead of each single region. The adopted

scan order proceeds from top to bottom and from left to right,

following the same scheme used in the chip. As reported in

Table I, Bk bits are associated with the address of the first

core of the cluster, while Br bits are used to address the

first active region in the core. The inactive regions included

in the cluster can be compressed with RLE prefix codes by

encoding the number of occurrences LR (with Brun bits).

The run values LR = 0 and LR = 2Brun − 1 are used

to indicate the end-of-cluster (EOK) and the end-of-column
(EOC) symbols, respectively. Therefore, the maximum run

value can be LRmax = 2Brun − 2.

Depending on the number of inactive regions between two

clusters, it might be convenient to fuse two clusters into a

single one: the full addressing is less convenient than the RL

coding if

(1 +Brun) �Dk/LRmax� < Bk +Br, (1)

where Dk is the number of inactive regions between the two

clusters.

The non-uniform statistical distribution of the ToT values is

dealt with VLC, such as in [3]. In our approach, we adopted a

simplified form of Huffman coding (that is a specific VLC

code) by encoding the two most probable values with the

smallest number of bits. The proposed algorithm dynamically
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Fig. 4. Clustering for the intra-column mode of operation.
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Fig. 5. Histogram of the pixel values in active regions.

chooses between the current coding and the VLC approach,

depending on the values of the ToTs. It should be underlined

that the VLC is advantageous over traditional coding when

N1 (1 +Bp) +N2Bp > 2Np, (2)

where N1 and N2 represent the number of pixels with the

first and second most probable ToT value in the specific active

region, respectively, Bp is the number of bits used to encode

the ToT value, and Np is the number of pixels in a region.

B. Clustering and Bitstream Formation

The proposed spatial compression of active regions results

in the formation of active region clusters, which can be

represented by a binary bitstream. In Fig. 4, we consider an

example obtained with Bc = 6, Bk = 6, Br = 4, Bp = 4,

Brun = 3. In the figure, the first cluster, occurring in column

no. 12, has been enclosed within the dashed border. This

cluster spans across cores no. 22 and 23 and across 16 regions,

of which only 9 are active. The full symbol sequence produced

by the proposed algorithm is reported in Table II. The first

emitted symbol (C, 12) denotes the address of column 12,

because it is the first cluster in this column. It is followed

by the cluster symbol (K,22,9), specified in terms of core

and region address. The first active region is encoded with

VLC and the symbol H is emitted (since this is the first

region in the cluster, it is active and the symbol F must be

omitted). The first pixel in this region is encoded as a generic

value (V,4), while the three following pixels have the most

probable value (the ToT value 0), and thus they are encoded



TABLE II
SYMBOL SEQUENCE FOR THE EXAMPLE IN FIG. 4 (Bc = 6, Bk = 6, Br = 4, Bp = 4, Brun = 3)

Index Code symbols Description

0 C,12 First cluster of column no. 12

1 K,22,9 Cluster begins at core no. 22, region no. 9

2 H Active region with VLC

3 V,4 Pixel with ToT value 4

4-6 V1 V1 V1 Three pixels with most frequent ToT value

7 R,1 Run of one empty region

8-9 F H Active region with VLC

10 V,1 Pixel with ToT value 1

11 V,5 Pixel with ToT value 5

12-13 V1 V1 Two pixels with most frequent ToT value

14 R,1 Run of one empty region

15-16 F H Active region with VLC

17 V1 One pixel with most frequent ToT value

18 V,7 Pixel with ToT value 7

19 V,5 Pixel with ToT value 5

20 V1 One pixel with most frequent ToT value

21 R,1 Run of one empty region

22 F Active region

23-26 T,15 13 3 5 Four pixels with ToTs 15, 13, 3, and 5

27 F H Active region with VLC

Index Code symbols Description

28 V,4 Pixel with ToT value 4

29-31 V1 V1 V1 Three pixels with most frequent ToT value

32-33 F H Active region with VLC

34-36 V1 V1 V1 Three pixels with most frequent ToT value

37 V,3 Pixel with ToT value 3

38-39 F H Active region with VLC

40 V,14 Pixel with ToT value 14

41 V,4 Pixel with ToT value 4

42-43 V1 V1 Two pixels with most frequent ToT value

44 R,1 Run of one empty region

45-46 F H Active region with VLC

47 V1 Pixel with most frequent ToT value

48 V,4 Pixel with ToT value 4

49 V2 Pixel with 2nd most frequent ToT value

50 V1 Pixel with most frequent ToT value

51 R,3 Run of three empty regions

52-53 F H Active region with VLC

54-56 V1 V1 V1 Three pixels with most frequent ToT value

57 V,5 Pixel with ToT value 5

58 EOK End of the cluster

TABLE III
BITSTREAM OF SYMBOLS IN TABLE II

001100 – 0101101001 – 0 – 100100 – 0 – 0 – 0 – 0001 – 1
– 0 – 100001 – 100101 – 0 – 0 – 0001 – 1 – 0 – 0 – 100111
– 100101 – 0 – 0001 – 1 – 11111110100110101 – 1 – 0 –
000100 – 0 – 0 – 0 – 1 – 0 – 0 – 0 – 0 – 100011 – 1 – 0 –
101110 – 100100 – 0 – 0 – 0001 – 1 – 0 – 0 – 100100 – 11
– 0 – 0011 – 1 – 0 – 0 – 0 – 0 – 100101 – 0111

by using three symbols for the most probable value (V1 V1

V1). A run of a single inactive region is then encoded (R,1),

followed by one active region (F) in VLC mode (H). The four

pixels are: one ToT value 1 (V,1), one ToT value 5 (V,5),

and two most probable values (V1 V1). Then, another single

inactive region is encoded (R,1). The active region symbol

(F) has been used after this run, since another run could have

been possible. Therefore, the maximum possible number of

consecutive inactive regions in this example is 12, according to

(1). Then, the encoding process continues until the cluster ends

(EOK). The EOK should be replaced with the EOC symbol if

the cluster is the last of the column.

The resulting bitstream is also reported in Table III, where

each group of bits (separated by dashes) corresponds to an

encoded symbol. The size of this bitstream is equal to 161

bits. Compared with the current encoding method (requiring

in this case 288 bits), we reduce the number of bits by 44.1%,

with a compression ratio of C ≈ 1.79 (defined as the ratio

between the sizes of the bitstreams generated by the current
and by the considered algorithm).

C. Extension to the Tnter-column Case

Differently from the intra-column case, in the inter-column

operation the compression circuit should take into account the

TABLE IV
RATE AND COMPRESSION RATIO OF THE TESTED ALGORITHMS

Algorithm R (bpp) C

Current 0.0338 1.0

RLE-VLC intra-column 0.0216 1.57

Huffman intra 0.0208 1.62

RLE-VLC inter-column 0.0212 1.59

GZIP 0.0286 1.18

position of active regions in all involved columns. Thus, a

cluster is formed by exploring all the active adjacent regions,

up to a pre-defined maximum cluster size. Then, the code al-

phabet is slightly modified, by adding a width parameter after

the cluster symbol (K,CORE,REG). Therefore, the addition

of inter-column compression increases the memory needs and

introduces a larger complexity.

III. SIMULATION RESULTS

Performance is evaluated using MATLAB R©, averaging the

results over 342 triggers and neglecting the Aurora protocol

encapsulation overhead, in terms of compression ratio C and

in terms of average bit rate per pixel R (defined as the

ratio between the size NB of the bitstream generated by the

considered algorithm and the number of pixels P of the chip,

resulting in R = NB/P bpp).

In all cases, the compressed bitstream has also been de-

compressed, without any detected difference, decoding failure,

and ambiguity. The performance of the proposed RLE-VLC

algorithm has been compared to that of a full Huffman

encoding implementation, where the probability of occurrence

of the code symbols in Table I is estimated during a first

encoding pass. Then, an optimized Huffman dictionary is



generated and used during a second encoding pass, to calculate

the compression performance, without considering the size of

the dictionary in the compression ratio calculation. Finally, we

have considered the GZIP file encoding algorithm applied to

the current bitstream.

In Table IV, the results show that the RLE-VLC intra-

column method achieves a compression ratio C = 1.57,

resulting in a bitstream size reduction of 36.2% with respect

to the current bitstream size. On the other hand, full Huffman

encoding in intra-column mode increases the compression

ratio to C = 1.62, with a reduction of 38.4%. Instead, for

the RLE-VLC inter-column method, the compression ratio

is of C = 1.59, with a reduction of 37.2%. Finally, by

considering the GZIP method, a smaller compression ratio has

been obtained.

IV. CONCLUSION

In this paper, an improved algorithm for data compression,

to handle the high data volume of the HL-LHC experiment

upgrade, has been proposed for implementation in the next

generation of the RD53A prototype chip, which is called

RD53B. The algorithm exploits RLE and VLC compres-

sion techniques and its performance has been evaluated in

MATLAB R©. From the obtained results, we conclude that

RLE-VLC in intra-column mode provides a good compression

efficiency, whereas only moderate improvements are obtained

switching to an inter-column mode or to a full Huffman

implementation.

REFERENCES

[1] RD53 Collaboration, “The RD53A integrated circuit,” CERN, Tech. Rep.
CERN-RD53-PUB-17-001, Nov. 2017.

[2] M. Garcia-Sciveres and X. Wang, “Data encoding efficiency in pixel
detector readout with charge information,” NIMA, vol. 815, pp. 18–22,
2016.

[3] S. Poulios, K. Androsov, M. Minuti, and F. Palla, “Lossless data compres-
sion for the HL-LHC silicon pixel detector readout,” in Proc. of MOCAST
2016, Thessaloniki, Greece, May 2016, pp. 1–4.

[4] E. Conti, S. Marconi, J. Christiansen, P. Placidi, and T. Hemperek,
“Simulation of digital pixel readout chip architectures with the RD53
SystemVerilog-UVM verification environment using Monte Carlo physics
data,” Journal of Instrumentation, vol. 11, no. 01, p. C01069, 2016.

[5] K. Sayood, Introduction to data compression, 5th ed. Cambridge, MA,
USA: Morgan Kauffmann, 2018.


