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Abstract: The high flame-retardant loading required for ethylene-vinyl acetate copolymer blends
with polyethylene (EVA-PE) employed for insulation and sheathing of electric cables represents
a significant limitation in processability and final mechanical properties. In this work, melamine
triazine (TRZ) and modified bentonite clay have been investigated in combination with aluminum
trihydroxide (ATH) for the production of EVA-PE composites with excellent fire safety and improved
mechanical properties. Optimized formulations with only 120 parts per hundred resin (phr) of
ATH can achieve self-extinguishing behavior according to the UL94 classification (V0 rating), as well
as reduced combustion kinetics and smoke production. Mechanical property evaluation shows
reduced stiffness and improved elongation at break with respect to commonly employed EVA-PE/ATH
composites. The reduction in filler content also provides improved processability and cost reductions.
The results presented here allow for a viable and halogen-free strategy for the preparation of high
performing EVA-PE composites.

Keywords: EVA/LLDPE blend; flame retardant; wire and cable; melamine triazine; clay

1. Introduction

The need for safe materials represents one of the main driving forces continuously pushing the
developments and advances in materials science and technology. The area of fire retardant materials
is of great concern. Indeed, recent catastrophic events and present legislations clearly highlight the
potential danger related to fire events, as well as the environmental and toxicological risks associated
with some of the most commonly used flame-retardant chemicals. Particular fire risk is associated
with electrical cables as they contain several polymeric parts (insulation, bedding, sheath) constituting
fuel sources (for fire start and spread) as a consequence of arcing, excessive ohmic heating (without
arcing) and external heating [1,2]. Ethylene-vinyl acetate copolymer (EVA) and EVA blends with
polyethylene (EVA-PE) are among the most widely used polymers for insulation and sheathing of
electric cables. Common practice is to load the polymer with high amounts (typically 60–70 wt.%) of
metal hydrates such as aluminum hydroxide or magnesium hydroxide [3]. Another possible strategy
to more efficiently reduce the fire and environmental risks of these materials comprises the use of
nanoparticles in combination with halogen-free flame-retardant additives (FRs) [4,5]. For instance,
the fire retardancy of ethylene-vinylacetate (EVA) and low-density polyethylene (LDPE) blends using
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organoclay in combination with either aluminum or magnesium hydroxide has been assessed by
thermogravimetric analysis and cone calorimetric measurements evaluating the effect of the surface
layer formed during pyrolysis of the polymer nanocomposites by numerical models [6]. The inclusion
of 68 wt.% of metal hydroxides considerably reduced the heat release rate (HRR); this effect was further
improved by coupling the hydroxide with 5 wt.% of organoclay. The reduction of HRR was attributed
to the formation of a ceramic-like layer on the surface of unpyrolysed material in the solid phase
during pyrolysis. This ceramic-like layer acts as a barrier reducing the heat and mass transfer thus
resulting in a flame retardant effect. Remarkable improvements on flame retardancy by combinations
of nanofiller and aluminum trihydroxide (ATH) were found in EVA [7]. These performances have been
correlated to the formation of a more efficient protective barrier during combustion, thus, highlighting
the beneficial role of the inclusion of relatively small amounts (≤5 wt.%) of nanofiller.

Similar improvements have been observed in EVA blends for industrial cable applications by
including modified bentonite clay and ATH; however, while significantly contributing to the flame
retardancy properties, the presence of the nanofiller did not result in improvements in the tensile
strength and elongation at break of prepared composites [8]. The detrimental effects on mechanical
properties linked to the high FR loading required for the cable application of EVA and EVA blends is a
well-known issue [9].

Indeed, due to the high loading required to obtain suitable FR properties for cable applications,
the resulting materials are more rigid and brittle than the unmodified polymer and thus
more prone to damage and cracking, eventually reducing the insulation and protection of the
polymer sheath [10,11]. In order to solve this problem, research aims at the development of
new and environmentally friendly flame-retardant systems capable of being efficient at loading
levels below traditional amounts. Nitrogen-based compounds, such as triazines, represent a
possible candidate to be incorporated in a FR system with improved efficiency [12,13]. As an
example, the combination of ammonium polyphosphate and a commercial triazine derivative
(poly-[2,4-(piperazine-1,4-yl)-6-(morpholine-4-yl)-1,3,5-triazine]/piperazine) has been adopted to
produce a novel phosphorous nitrogen intumescent flame-retardant system for polypropylene capable
of granting self-extinguishing properties at low FR content (i.e., 20 wt.%) [14]. The use of triazine
derivatives as part of an intumescent system has proven to provide good effects on the fire retardancy
performances of polymers [15]. However, such intumescent systems are relatively expensive and
their application for electrical requirements is rather limited. In the present paper, melamine triazine
has been used in combination with bentonite nanoparticles and aluminum hydroxide to produce a
novel FR system for EVA-PE blends, capable of achieving excellent flame-retardant performance while
preserving their mechanical properties. The developed FR systems allow for a reduction of the filler
loading down to 37% with improved mechanical properties while granting FR performance suitable for
electrical cables applications. This work provides a viable solution for the preparation of FR EVA-PE
blends with reduced costs and improved efficiency.

2. Materials and Methods

Elvax® 460, a copolymer of ethylene vinyl acetate with 18 wt.% vinyl acetate content
(2.5 g/10 min melt flow rate) from Dupont and BDL 92010 C, and linear low density polyethylene
(LLDPE) (1.0 g/10 min melt flow rate) from PEMEX-Petroquímica, Coatzacoalcos, Ver., Mexico
were purchased. Fusabond N493, an anhydride-modified ethylene copolymer (1.6 g/10 min
melt flow), supplied by Dupont, was employed as compatibilizer. ALOLT 60DLS, aluminum
trihydroxide (ATH), with average particle size d50 of 1.0–2.2 microns (99.5% purity and surface area
of 12 m2/g) was purchased from Mal Hungarian. MCA® PPM Triazine HF, melamine triazine (TRZ),
poly-[2,4-(piperazine-1,4-yl)-6-(morpholine-4-yl)-1,3,5-triazine]/piperazin (Figure 1), was supplied
by MCA Technologies GmbH. ATH and TRZ were used as halogen-free FRs. Actisil 220FF, sodium
bentonite clay (55 meq/100g cationic capacity), was purchased from Clariant. Sodium bentonite
clay was modified using L-lysine mono-chlorohydrated via ionic interchange reaction, as previously



Materials 2019, 12, 2393 3 of 16

reported [16–18]. Briefly, 100 g of sodium bentonite clay was added to a water solution of 10 g L-lysine
in 1.5 L. After 30 min stirring, the suspension was decantated and the solid was retrieved by filtration
and drying of the modified bentonite clay (L-lysine loading = 3 wt.%).
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The adopted EVA-PE blend was composed of 67 parts of EVA, 17 parts of LLDPE and 16 parts of
Fusabond N493 [19–21]. This formulation constitutes the polymer matrix (EVA/LLDPE/compatibilizer)
coded as E-PE. The polymer composites containing ATH, TRZ and clay were obtained in a co-rotating
twin-screw extruder type SHJ 40D, with an optimized configuration for easier compounding and
dispersing process as demonstrated elsewhere [22]. The extruder had a 41-mm diameter and a
length/diameter ratio = 40, and 10 independent heating zones for optimal processing. A detailed
description of the twin-screw configuration is reported in the Supporting Information file. Table 1
summarizes the composition of investigated composites.

Table 1. Compositions of investigated composites.

Sample ATH
[phr] *

TRZ
[phr]

Clay
[phr]

E-PE - - -
E-PE/185ATH 185 - -
E-PE/160ATH 160 - -
E-PE/120ATH 120 - -

E-PE/120ATH/20TRZ 120 20 -
E-PE/120ATH/15TRZ 120 15 -
E-PE/120ATH/10TRZ 120 10 -

E-PE/120ATH/15TRZ/1CLAY 120 15 1
E-PE/120ATH/15TRZ/3CLAY 120 15 3
E-PE/120ATH/15TRZ/5CLAY 120 15 5

E-PE/120ATH/10TRZ/1CLAY 120 10 1
E-PE/120ATH/10TRZ/3CLAY 120 10 3
E-PE/120ATH/10TRZ/5CLAY 120 10 5

* phr = parts per hundred resin.

The extrusion process was carried out at 300 rpm rotational speed with a temperature profile of
137/137/157/157/165/170/175/180/185/185 ◦C, from feeding zone to die (Figure S1).

Specimens for flammability, cone calorimetry and mechanical tests were produced by injection
molding in a Milacron M50 machine (Milacron LLC, Karnataka, India) at 170/175/180/180 ◦C temperature
profile, 70 mm/s injection/fill speed, 110 bar pack/hold pressure, 15 s pack/hold time and 20 s cooling time.

The morphology of E-PE blends and the corresponding composites was studied using a
field-emission scanning electron microscope (SEM) JEOL JSM-7600F (JEOL, Ltd., Akishima, Japan).
Specimens were prepared by using cryogenic fragile fracture and gold-coated prior to SEM analyses.
Element mapping was carried out in the scanned area by energy dispersive spectroscopy (EDS, Oxford
Instruments, Concord, MA, USA). Thermal stability was evaluated by thermogravimetric analysis by
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a TA-Instrument Q-550 equipment (TA-Instrument, Inc., New Castle, DE, USA) at a heating rate of
10 ◦C/min from 25 ◦C up to 800 ◦C, under argon and air atmospheres. The sample size was 10 ±1 mg,
the experimental error was ±1 ◦C and ±0.01 wt.%. Flammability was assessed following UL94 vertical
classification tests according to the ASTM D3801-19 standard [23], using specimens with dimensions
of 127 × 12.7 × 3.1 mm3. Combustion behavior under forced combustion was investigated by cone
calorimetry (Fire Testing Technology). Specimens (100 × 100 × 3 mm3) were exposed to a 35 kW/m2

radiative heat flux in horizontal configuration. Average values concerning time to ignition (TTI),
peak of heat release rate (pkHRR), total heat release (THR), maximum average rate of heat emission
(MARHE), total smoke release (TSR) and final residue were evaluated and are presented with their
experimental deviations. Measurements were performed four times for each formulation. Prior to
flammability and forced combustion tests, all specimens were conditioned in a climatic chamber
(23 ±1 ◦C 50% relative humidity) for 48 h. Tensile tests were carried out using an Instron Universal
testing machine 5565 model (Instron Corp., Norwood, MA, USA) at a crosshead speed of 50 mm/min
at 25 ±2 ◦C and type I specimen dimensions, following the ASTM D638 standard [24]. At least five
specimens were tested for each sample, and the average value for Young modulus, tensile strength,
elongation at break and tenacity is reported.

The rheological behavior of the composites was measured in a strain-controlled Ares G2
TA-Instrument (TA-Instrument, Inc., New Castle, DE, USA) rheometer using parallel plates of
25 mm diameter. All tests were performed at 195 ◦C under small amplitude oscillatory shear flow
(SAOS). The dynamic frequency sweep mode was carried out in linear viscoelastic regimen with a
strain of 1% from 0.1 to 100 rad/s.

3. Results and Discussion

3.1. Morphology

The morphology of the prepared composites was studied by scanning electron microscopy (SEM).
Figure 2 displays SEM micrographs of the neat polymer matrix (E-PE blend, Figure 2A) and selected
corresponding composites containing ATH, ATH/TRZ and ATH/TRZ/clay (Figure 2B,D).
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E-PE polymer blend shows a ductile fracture characterized by a deformed surface and a continuous
pattern; no phase separation or droplets are observed for this blend (Figure 2A). This is ascribed to the
use of the compatibilizer (anhydride-modified ethylene copolymer) as it is well-known that blends
based on ethylene-vinyl acetate copolymer and polyethylene (i.e., LDPE or LLDPE) are immiscible [25].
The absence of a compatibilizer would result in phase separation and polymer droplet formation as
a function of the interfacial tension and viscosity ratio between the EVA and PE [26]. The inclusion
of ATH deeply modifies the resulting morphology in a fragile fracture attributed to the presence of
the filler (Figure 2B). ATH particles, with dimensions ranging from sub micronic up to 4 µm, show a
good distribution and dispersion within the polymer matrix even at such high filler loading (185 phr,
65 wt.%). This is ascribed to the screw configuration and high rotational speed employed during the
melt extrusion process. A similar morphology is observed for composites containing TRZ and TRZ/clay
with reduced ATH content (Figure 2C,D), thus highlighting no substantial changes in the distribution
of ATH in the presence of the other additives. The distribution of clay within the composites was
further evaluated by elemental mapping; Figure 3 reports the aluminum and silicon elemental analysis
of E-PE/120ATH/10TRZ/5clay.

Materials 2019, 12, x FOR PEER REVIEW 5 of 16 

 

E-PE polymer blend shows a ductile fracture characterized by a deformed surface and a 
continuous pattern; no phase separation or droplets are observed for this blend (Figure 2A). This is 
ascribed to the use of the compatibilizer (anhydride-modified ethylene copolymer) as it is well-
known that blends based on ethylene-vinyl acetate copolymer and polyethylene (i.e., LDPE or 
LLDPE) are immiscible [25]. The absence of a compatibilizer would result in phase separation and 
polymer droplet formation as a function of the interfacial tension and viscosity ratio between the 
EVA and PE [26]. The inclusion of ATH deeply modifies the resulting morphology in a fragile fracture 
attributed to the presence of the filler (Figure 2B). ATH particles, with dimensions ranging from sub 
micronic up to 4 μm, show a good distribution and dispersion within the polymer matrix even at 
such high filler loading (185 phr, 65 wt.%). This is ascribed to the screw configuration and high 
rotational speed employed during the melt extrusion process. A similar morphology is observed for 
composites containing TRZ and TRZ/clay with reduced ATH content (Figure 2C,D), thus 
highlighting no substantial changes in the distribution of ATH in the presence of the other additives. 
The distribution of clay within the composites was further evaluated by elemental mapping; Figure 
3 reports the aluminum and silicon elemental analysis of E-PE/120ATH/10TRZ/5clay. 

 
Figure 3. (A) SEM micrograph of fractured surface of E-PE/120ATH/10TRZ/5clay composite, (B) 
scanned area of E-PE/120ATH/10TRZ/5clay composite for elemental analysis, (C) aluminum and (D) 
Si mapping. 

According to the silicon elemental analysis, clay particles exhibit a homogenous dispersion and 
distribution. No agglomerates are observed, likely due to the low clay content within the composites 
(i.e., 5 phr, 2 wt.%). Furthermore, Al distribution is similar to that of E-PE/120ATH (Figure S2) 
highlighting that the presence of TRZ and clay does not alter ATH distribution and dispersion. 

3.2. Rheological Properties 

Rheological properties of the E-PE blend and composites included continuous simple and small 
amplitude oscillatory shear flow. This test provides information on the dispersion of the filler within 
the polymer matrix. Figure 4 depicts shear viscosity as a function of shear rate for E-PE blend and 
investigated composites. 

Figure 3. (A) SEM micrograph of fractured surface of E-PE/120ATH/10TRZ/5clay composite, (B) scanned
area of E-PE/120ATH/10TRZ/5clay composite for elemental analysis, (C) aluminum and (D) Si mapping.

According to the silicon elemental analysis, clay particles exhibit a homogenous dispersion and
distribution. No agglomerates are observed, likely due to the low clay content within the composites
(i.e., 5 phr, 2 wt.%). Furthermore, Al distribution is similar to that of E-PE/120ATH (Figure S2)
highlighting that the presence of TRZ and clay does not alter ATH distribution and dispersion.

3.2. Rheological Properties

Rheological properties of the E-PE blend and composites included continuous simple and small
amplitude oscillatory shear flow. This test provides information on the dispersion of the filler within
the polymer matrix. Figure 4 depicts shear viscosity as a function of shear rate for E-PE blend and
investigated composites.
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E-PE/120ATH/15TRZ/clay and E-PE/120ATH/10TRZ/clay composites varying clay content.

In Figure 4A, the shear viscosity of the polymer matrix (E-PE blend) presents a nearly
Newtonian-like behavior at low shear rates (0.1–1.0 1/s). Newtonian-like behavior corresponds to the
region in the flow curve where the viscosity becomes independent of the shear rate (i.e., a constant
viscosity). On the other hand, E-PE blend presents moderate shear thinning behavior at high shear rate
(1.0–10.0 1/s). By including ATH and TRZ in the formulation, the viscosity increases at low shear rates
(0.1–1.0 1/s), reaching the maximum value for E-PE/185ATH. Nevertheless, at high shear rates (1.0–10
1/s) the viscosity of E-PE/185ATH composite decreases similarly to the rest of other formulations. All
composites exhibit the typical feature of shear-thinning behavior with no plateau region observed
over the studied shear rate range. Such behavior has been ascribed to a good dispersion of both flame
retardants (ATH and TRZ) within the polymer matrix (Figure 4A) [27]. Composites containing clay
show a remarkable shear-thinning behavior in the whole shear rate range (Figure 4B). Such behavior
implies low shear viscosity at high shear rate, an important characteristic for the easy processing of
these composites. In addition, the storage modulus was also evaluated, and its plot as function of
angular frequency for E-PE blend and prepared composites is reported in Figure 5.
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TRZ at different content, and (B) E-PE/120ATH/15TRZ/clay and E-PE/120ATH/10TRZ/clay composites
varying clay content.

The neat E-PE blend displays a storage modulus with a constant slope over the entire frequency
range, indicating non-terminal flow behavior characteristic of pure polymers [28]. Composites
containing ATH and ATH/TRZ show a pronounced solid-like behavior at low frequency (0.1–1.0 rad/s).
In particular, the storage modulus of E-PE/185ATH exhibited the highest value likely due to the
high particle loading (Figure 5A). On the other hand, the presence of TRZ does not influence the
storage modulus, as all TRZ containing composites disclose a similar slope in the whole frequency
range with respect to E-PE/120ATH. This result indicates the absence of interactions between the filler
particles in the flow stage. A similar behavior is observed for clay containing formulations (Figure 5B).
The performed rheological measurements suggest a good dispersion of flame retardant additives
within the polymer matrix, further confirming previous SEM observations.

3.3. Thermal Stability

The thermal stability of neat components and prepared composites under inert and oxidative
atmosphere has been evaluated by thermogravimetric analyses in argon and air, respectively. As far
as neat components are concerned (Figure S3 and Table S1), neat ATH yields a weight loss ascribed
to its dehydration with consequent water release within a 200–300 ◦C range. Bentonite clay shows a
slow and constant weight loss associated to its dehydration from the interlayer space and cavities,
and cation hydration spheres, as well as dihydroxylation at high temperatures [29,30]. On the other
hand, TRZ shows a more complicated degradation path associated to melamine gradual condensation
releasing melam, melem and melon products due to ammonia elimination [31].
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Figure 6 displays TG and dTG curves, and Table 2 discloses the collected data of the most
representative samples. The complete curves and thermal data are reported in Figures S4–S6 and
Tables S2–S4, respectively.
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Figure 6. TG and dTG curves of E-PE, E-PE/120ATH, E-PE/120ATH/10TRZ and E-PE/120ATH/

10TRZ/5clay composites. (A,B) curves in argon, and (C,D) curves in air atmospheres.

Table 2. Thermal data of polymer E-PE, E-PE/120ATH, E-PE/120ATH/10TRZ and E-PE/120ATH/

10TRZ/5clay composites by thermogravimetric analyses.

Sample

Argon Air

* Tmax
[◦C]

Deriv.
Mass

[%/◦C]

Residue
at 800 ◦C

[%]

* Tmax 1
[◦C]

Deriv.
Mass 1
[%/◦C]

* Tmax 2
[◦C]

Deriv.
Mass 2
[%/◦C]

Residue
at 800 ◦C

[%]

E-PE 467 2.27 0.0 346 0.67 410 1.69 1.5
E-PE/120ATH 472 1.02 37.2 320 0.35 385 0.48 40.2

E-PE/120ATH/10TRZ 476 1.13 35.2 318 0.31 470 0.42 32.4
E-PE/120ATH/10TRZ/5clay 476 1.06 34.8 315 0.33 467 0.49 34.9

* From derivative curves.

Under non-oxidative conditions, the E-PE blend decomposes in two steps (Figure 6A,B). The first
occurs at nearly to 350 ◦C and corresponds to the de-acylation of the vinyl acetate groups in EVA [31,32].
The second step, associated with the highest weight loss, takes place between 400 and 500 ◦C as a
result of EVA unsaturated backbone and PE hydrocarbon chains decomposition, leaving no residue
at 800 ◦C [33,34]. The presence of ATH is responsible for an anticipated degradation due to water
release, and the formation of an inorganic barrier that partially slows down the E-PE decomposition,
as observed in the dTG curves (Figure 6 and Figure S4). The final residue consists of aluminum oxide,
and increases as the ATH loading increases. TRZ and clay do not substantially modify this behavior
likely due to the lower content with respect to ATH, as confirmed in samples containing different
amounts of TRZ and clay (Figures S5 and S6).
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Under thermo-oxidative conditions, EVA de-acylation still occurs within the first decomposition
step. Subsequently, the presence oxygen results in two separate weight loss steps in the 350–470 ◦C
range related to the different thermo-oxidation of EVA and PE that produces a 10 wt.% residue,
eventually oxidized above 500 ◦C (Figure 6C,D) [35]. The barrier produced by ATH limits oxygen
diffusion and results in delayed and reduced degradation kinetics above 350 ◦C. This effect is clearly
visible in the TG and dTG curves of Figure 6C,D. The presence of TRZ and clay improve the efficiency of
the produced barrier as observable in the residues at 450 ◦C (i.e., 51%, 59% and 62%, for E-PE/120ATH,
E-PE/120ATH/10TRZ and E-PE/120ATH/10TRZ/5Clay, respectively). TRZ is effective only at 15 and
20 phr, whereas different clay content does not change this effect, as reported in Figures S5 and S6.

3.4. Flammability

The flammability of E-PE blend and the investigated composites using ATH, TRZ additives and
modified bentonite was assessed by UL94 vertical classification. This test evaluates the reaction of
prepared materials when subjected to a direct flame application, thus providing information on their
ability to start a fire. Table 3 reports UL94-V classification of the investigated materials and Figure 7
collects digital images of some specimens at the end of the test.

Table 3. Flammability results of E-PE blend and the investigated composites following the UL94
vertical configuration method.

Sample t 1 ± σ t 2 ± σ
UL94

Classification Burning Characteristics

E-PE >60 - n.c. * Intense melt dripping
E-PE/185ATH - 3 ± 1 V0 No melt dripping
E-PE/160ATH - 85 ± 26 n.c. Moderated melt dripping
E-PE/120ATH - 57 ± 35 n.c. Flaming droplets

E-PE/120ATH/20TRZ - 3 ± 1 V0 No melt dripping
E-PE/120ATH/15TRZ 41 ± 78 105 ± 30 n.c. Intense melt dripping
E-PE/120ATH/10TRZ 7 ± 8 77 ± 40 n.c. Intense melt dripping

E-PE/120ATH/15TRZ/1CLAY - 7 ± 5 V1 No melt dripping
E-PE/120ATH/15TRZ/3CLAY - 4 ± 2 V0 No melt dripping
E-PE/120ATH/15TRZ/5CLAY - 4 ± 2 V0 No melt dripping

E-PE/120ATH/10TRZ/1CLAY - 83 ± 39 n.c. Intense melt dripping
E-PE/120ATH/10TRZ/3CLAY - 9 ± 3 V1 No melt dripping
E-PE/120ATH/10TRZ/5CLAY - 4 ± 3 V0 No melt dripping

* n.c.: not classifiable. Note: the occurrence of intense melt dripping in n.c. samples are responsible for a large
standard deviation as this might cause the specimen to self-extinguish at random times.

As is well-known, the E-PE blend is a highly flammable material. Indeed, upon flame application
the sample starts to burn vigorously with the formation of flaming droplets that may extinguish
the flame prior to the complete combustion of the sample, as reported in Figure 7A. This is highly
undesirable as this phenomenon can easily spread the fire to other ignitable materials in a real fire
scenario, thus resulting in a serious fire threat. The inclusion of ATH considerably changes the burning
behavior of the composite (Figure 7B,C). Indeed, at 185 phr no ignition is observed after the first
flame application while the second flame application results in short burning times (<5 s) granting
the maximum rating for this test: V0 classification (Figure 7A). This is due to the formation of a
protective inorganic barrier as ATH accumulates on the surface of the specimen exposed to the flame;
the release of water also provides beneficial effects lowering the temperature of the flame and diluting
volatiles. Reducing the content of ATH to 160 and 120 phr (Figure 7C) compromises the performances
of the composites with a downgrade to not classifiable rating due to the presence of melt dripping.
These results clearly confirm the mandatory need for very high ATH content in order to achieve good
flame retardant effects, as already reported in the literature. To overcome this problem, TRZ and
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clay have been added to the formulation containing 120 phr of ATH (Figure 7D,E). The inclusion of
20 phr of TRZ alone allows for the maximum rating pairing the results of the E-PE/185ATH composites
(see Figure 7D and Table 3). A reduction to 15 and 10 phr does not grant similar performances and
results in extensive melt dripping (Figure 7E,G) and prolonged burning times (>60 s). Such results
are improved by the addition of clay at either 3 or 5 phr, achieving the highest rating with TRZ at
both 15 and 10 phr (Figure 7F,H). It is worth highlighting the beneficial role of modified bentonite
that is capable of considerable improvements in the flame-retardant performances at relatively low
loadings (i.e., E-PE/120ATH/10TRZ/5clay). Such results can be related to the good distribution and
dispersion of the clay during processing. This is deemed to have a fundamental role in the achieved
flame retardancy properties, as it allows the clay to substantially improve the efficiency of the barrier
produced by ATH [7,36]. From the above results, the TRZ/clay combination allows for substantial
reductions in the total filler loadings while maintaining fire safety.
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Figure 7. Digital pictures of specimens after UL94-V tests: (A) E-PE, (B) E-PE/185ATH, (C)
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(G) E-PE/120ATH/10TRZ, and (H) E-PE/120ATH/10TRZ/5clay composites.

3.5. Burning Behavior under Forced Flaming Combustion

Cone calorimetry was employed to evaluate the reaction of prepared composites to the exposure
to a heat flux typical of developing fires (i.e., 35 kW/m2). For this test, samples have been selected on
the basis of flammability results and total filler loading in order to test the more efficient formulations
along with their reference material. During the test, as a consequence of the heat flux exposure, the
sample starts degrading and releasing flammable volatiles that are ignited by a spark positioned above
the samples. Once ignition occurs, the instrument evaluates all parameters linked to heat and smoke
release. The main parameter is the heat release rate, which as function of time, is reported in Figure 8.
Table 4 collects the complete set of parameters for each composite.
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and E-PE/120ATH/10TRZ/5clay composites.

Table 4. Combustion data results of E-PE and some corresponding composites by cone calorimetry.

Sample TTI
[s]

pkHRR
[kW/m2]

THR
[MJ/m2]

MARHE
[kW/m2]

TSR
[m2/m2]

Residue
[%]

E-PE 62 ± 4 850 ± 59 110 ± 1 379 ± 15 1178 ± 33 0
E-PE/185ATH 111 ± 5 186 ± 2 77 ± 4 112 ± 2 570 ± 53 44 ± 1
E-PE/120ATH 107 ± 2 281 ± 14 80 ± 9 155 ± 5 907 ± 62 37 ± 1

E-PE/120ATH/20TRZ 98 ± 3 210 ± 5 88 ± 1 109 ± 4 725 ± 44 35 ± 1
E-PE/120ATH/15TRZ 99 ± 5 237 ± 13 86 ± 5 147 ± 9 951 ± 68 33 ± 1
E-PE/120ATH/10TRZ 103 ± 4 223 ± 15 83 ± 5 138 ± 10 945 ± 42 35 ± 1

E-PE/120ATH/15TRZ/3clay 101 ± 4 212 ± 12 86 ± 3 116 ± 3 843 ± 47 35 ± 1
E-PE/120ATH/10TRZ/5clay 101 ± 3 218 ± 9 82 ± 6 133 ± 2 806 ± 43 36 ± 1

An apparent flame-retardant effect can be achieved by including 185 phr of ATH with considerable
reduction in heat release values (pkHRR, THR and MARHE reduced by 78%, 30% and 70%, respectively)
as well as smoke production (TSR reduced by 52%). This result is related to both the reduced amount
of polymer matrix in the composite and to the barrier and water release effect produced by ATH [37].
The produced barrier, clearly visible from the digital pictures of the residues reported in Figure S7,
hinders volatile release and limits heat transmission and mass transfer from the flame to the polymer,
resulting in reductions of combustion kinetics as well as smoke production. The released water can
dilute smoke by reducing its optical density while simultaneously lowering the flame temperature.
Reducing the content of the hydroxide to 120 phr maintains good flame retardant properties with
the most apparent detrimental effect on TSR values likely due to the production of an inefficient
barrier during combustion and to the lesser release of water. On the other hand, it should be pointed
out that by reducing the ATH content, the amount of combustible polymer is inevitably increased,
thus providing an additional challenge for the developed formulations.

As observed from flammability results, the inclusion of TRZ helps in improving the properties
of the 120 phr ATH formulation from the assessment of pkHRR and TSR reductions. This can be
ascribed to the mode of action of TRZ that, as for other melamine derivatives, shows mostly diluting
and cooling effects in the gas phase [38]. The beneficial effect of TRZ is remarkable only at 20 phr while
lower loadings only partially improve the pkHRR reduction (see Table 4). Further improvements of
the formulations containing 15 and 10 phr of TRZ can be achieved by incorporating bentonite clay.
The ability of clay in promoting the formation of a more efficient barrier to volatiles and heat transfer
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allows for further reducing pkHRR and TSR values [39,40], as reported in Table 4 mostly matching the
results of E-PE/120ATH/20TRZ. The evaluation, by optical microscopy, of the top surface of the residues
collected at the end of the test (Figure S8) show no apparent differences between each formulation.
A compact and brittle inorganic layer mostly resulting from the cumulation of aluminum oxide at the
polymer/flame interface is observed. The internal structure of the residue has also been investigated.
To this aim, small pieces have been collected from the main structure and tilted in order to make the
internal structure visible (Figure S9). Differences in macroscopic morphology can be easily detected.
Indeed, while formulations containing 185 and 120 phr of ATH yielded a quite dense structure, the
presence of TRZ produced porous structures with pore number and distribution proportional to
TRZ content. This can be ascribed to the release of volatiles by TRZ and helps in improving the
heat shielding properties of the produced protective layer that benefits from the reinforcing effect
of clay [31,36]. From an overall point of view, the addition of TRZ and clay compensates for the
reduced ATH content, thus providing a valuable strategy to simultaneously reduce the FR loading
while guaranteeing considerable FR performances. Indeed, the observed reductions in combustion
parameters (pkHRR, THR and MARHE reduced by 74%, 25% and 65%, respectively) and smoke
production (TSR reduced by 32%), ensures the fire safety of the ATH/TRZ/clay formulations.

3.6. Mechanical Properties

The impact of the flame-retardant formulation on the mechanical properties of the E-PE blend
was assessed by tensile tests [24]. Table 5 collects Young’s modulus, tensile strength, elongation at
break and tenacity of prepared composites.

Table 5. Mechanical properties of E-PE blend and corresponding composites.

Sample Young’s Modulus
[MPa]

Tensile Strength
[MPa]

Elongation at
Break [%] Tenacity [MPa]

E-PE 27 ± 1 7.0 ± 0.3 478 ± 26 27 ± 2
E-PE/185ATH 92 ± 5 13.0 ± 0.4 101 ± 8 11 ± 1
E-PE/160ATH 68 ± 1 12.0 ± 0.2 147 ± 9 14 ± 1
E-PE/120ATH 58 ± 1 10.0 ± 0.2 165 ± 11 13 ± 1

E-PE/120ATH/20TRZ 58 ± 2 7.0 ± 0.4 115 ± 6 6 ± 1
E-PE/120ATH/15TRZ 61 ± 2 11.0 ± 0.1 180 ± 7 16 ± 1
E-PE/120ATH/10TRZ 68 ± 2 12.0 ± 0.4 167 ± 9 16 ± 1

E-PE/120ATH/15TRZ/1CLAY 69 ± 1 11.0 ± 0.2f 146 ± 11 13 ± 1
E-PE/120ATH/15TRZ/3CLAY 74 ± 3 11.0 ± 0.2 137 ± 4 12 ± 0
E-PE/120ATH/15TRZ/5CLAY 77 ± 2 11.0 ± 0.3 113 ± 5 10 ± 1

E-PE/120ATH/10TRZ/1CLAY 74 ± 2 12.0 ± 0.4 130 ± 9 13 ± 1
E-PE/120ATH/10TRZ/3CLAY 70 ± 2 12.0 ± 0.3 142 ± 6 13 ± 1
E-PE/120ATH/10TRZ/5CLAY 70 ± 1 10.0 ± 0.2 137 ± 8 11 ± 1

As is well-known, the high contents of FR additives needed to ensure safety inevitably result
in substantial changes of the mechanical properties of the polymer matrix, increasing modulus and
tensile strength while reducing elongation at break and tenacity [9,41]. Such behavior is observed
for formulation containing 185 phr of ATH that show increased stiffness (Young´s modulus and
tensile strength up to 92 and 13 MPa, respectively) and reduced deformability (elongation at break
reduced from 478% to 101%). The reduction of ATH content from 185 to 120 phr partially limits
this phenomenon (elongation at break is improved), but has the unwanted result of considerably
limiting the fire safety of the prepared materials as demonstrated by flammability and cone testing.
The inclusion of TRZ at 20 phr further increases the stiffness of the materials, while reducing its content
to 15 and 10 phr partially improves the elongation at break and tenacity of the formulations with respect
to E-PE/120ATH/20TRZ. Similarly, bentonite clay does not improve deformability with respect to the
formulations containing ATH and TRZ. However, it should be pointed out that the elongation at break
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displayed by formulations containing TRZ and clay is always superior to E-PE/185ATH (i.e., 137%
vs. 101%), which is the reference material as far as fire protection is concerned. Such improvements
can be mainly ascribed to the reduced additive content. This indicates that composites such as
E-PE/120ATH/15TRZ/3clay and E-PE/120ATH/10TRZ/5clay can improve on the overall deformability
of the materials while still maintaining the required flame retardant properties. In order to evaluate
the potential economic impact of the performed formulations, a simple cost-benefit analysis has
been performed evaluating the cost of raw materials employed in the most performing formulations
(Table 6).

Table 6. Cost of the total loading for composite classified as V0 following the UL94 vertical configuration.

Sample Formulation Composition
* Cost of

Formulation/kg of
E-PE [USD/kg]

* Cost of
Formulation/m3 of

E-PE [USD/m3]

E-PE/185ATH 185 phr ATH 7.3 6.8
E-PE/120ATH/20TRZ 120 phr ATH+20 phr TRZ 7.7 7.1

E-PE/120ATH/15TRZ/3clay 120 phr ATH+15 phr TRZ+3 clay 7.1 6.6
E-PE/120ATH/10TRZ/5clay 120 phr ATH+10 phr TRZ+5 clay 6.4 5.9

* Cost estimated for ATH: 3.95 USD/kg, TRZ: 15.00 USD/kg, clay: 5.00 USD/kg.

It is apparent that the optimized E-PE/120ATH/10TRZ/5clay helps in saving up to 13% of the costs,
with respect to the E-PE/185ATH reference sample (both to the same V0 classification according to
the UL94 vertical configuration), thus making this formulation the most appealing from an industrial
point of view.

4. Conclusions

In this work, melamine triazine and bentonite clay have been employed as novel flame-retardant
additives for ethylene-vinyl acetate copolymer blends with polyethylene loaded with reduced amounts
(i.e., 120 phr) of conventional aluminum trihydroxide particles. The aim was to maintain excellent
flame-retardant properties, comparable with those of conventionally employed E-PE composites at high
filler loading (i.e., 185 phr), while preserving mechanical properties. Different contents of TRZ and clay at
fixed ATH content were prepared and thoroughly investigated from the morphology, rheology, thermal
stability, flame retardancy and mechanical properties point of view. Optimized E-PE formulations
grant self-extinguishing behavior during flammability tests in the vertical configuration, reaching
the highest classification rating (V0) while E-PE/120ATH composites fail the test (not classifiable).
The presence of TRZ and clay improves the efficiency of the protective barrier produced by ATH
during combustion. This was also confirmed by cone calorimetry where samples containing TRZ and
clay were capable of further reducing combustion kinetics (−23% in pkHRR) and smoke production
(−11% in TSR) with respect to the E-PE/120ATH reference. Mechanical properties showed significant
improvements as compared with conventional formulations (i.e., E-PE/185ATH) with reduced stiffness
and improved elongation at break.

The ability of preserving mechanical properties while still achieving high flame-retardant
performances in combination with easier processing conditions and reduced costs make the composites
developed in this work highly promising and attractive solutions for further industrial exploitation.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/15/2393/s1,
Figure S1: Digital pictures of the screw configuration. 1-5 kneading element blocks, Figure S2: (A) Area of
E-PE/120ATH composite analyzed by SEM for elemental analysis. (B) Aluminum mapping, Figure S3: TG and
dTG curves of ATH, TRZ, and clay. (A,B) curves in argon, and (C,D) curves in air atmospheres, Figure S4:
TG and dTG curves of E-PE/ATH composites varying ATH content. (A,B) curves in argon, and (C,D) curves in
air atmospheres, Figure S5: TG and dTG curves of E-PE/120ATH/TRZ composites varying TRZ amount. (A,B)
curves in argon, and (C,D) curves in air atmospheres, Figure S6: TG and dTG curves of E-PE/120ATH/15TRZ/clay
and E-PE/120ATH/10TRZ/clay composites varying the content of modified bentonite. (A,B) curves in argon,
and (C,D) curves in air atmospheres, Figure S7: Digital pictures of residues after cone calorimetry tests
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for: (A) E-PE, (B) E-PE/185ATH, (C) E-PE/120ATH, (D) E-PE/120ATH/20TRZ, (E) E-PE/120ATH/15TRZ, (F)
E-PE/120ATH/15TRZ/3clay, (G) E-PE/120ATH/10TRZ, and (H) E-PE/120ATH/10TRZ/5clay composites. Figure
S8: Optical microscopy pictures of the surface of the residues after cone calorimetry tests for: (A)
E-PE/185ATH, (B) E-PE/120ATH, (C) E-PE/120ATH/20TRZ, (D) E-PE/120ATH/15TRZ, (E) E-PE/120ATH/10TRZ,
(F) E-PE/120ATH/15TRZ/3clay, (G) E-PE/120ATH/10TRZ/5clay composites, Figure S9: Digital pictures of the
internal portion of the residues after cone calorimetry tests for: (A) E-PE/185ATH, (B) E-PE/120ATH, (C)
E-PE/120ATH/20TRZ, (D) E-PE/120ATH/15TRZ, (E) E-PE/120ATH/10TRZ, (F) E-PE/120ATH/15TRZ/3clay, (G)
E-PE/120ATH/10TRZ/5clay composites. Table S1: Thermal data of ATH, melamine triazine (TRZ) and modified
bentonite (clay) in argon and air atmospheres, Table S2: Thermal data of E-PE/ATH composites using different
content of ATH by thermogravimetric analysis, Table S3: Thermal data of E-PE/120ATH/TRZ composites
varying TRZ content by thermogravimetric analysis, Table S4: Thermal data of E-PE/120ATH/15TRZ/clay and
E-PE/120ATH/10TRZ/clay composites varying bentonite content by thermogravimetric analysis.
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