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Abstract

The ability to generalize across visual domains is cru-

cial for the robustness of artificial recognition systems. Al-

though many training sources may be available in real con-

texts, the access to even unlabeled target samples cannot be

taken for granted, which makes standard unsupervised do-

main adaptation methods inapplicable in the wild. In this

work we investigate how to exploit multiple sources by hal-

lucinating a deep visual domain composed of images, pos-

sibly unrealistic, able to maintain categorical knowledge

while discarding specific source styles. The produced ag-

nostic images are the result of a deep architecture that ap-

plies pixel adaptation on the original source data guided

by two adversarial domain classifier branches at image and

feature level. Our approach is conceived to learn only from

source data, but it seamlessly extends to the use of unlabeled

target samples. Remarkable results for both multi-source

domain adaptation and domain generalization support the

power of hallucinating agnostic images in this framework.

1. Introduction

Domain Adaptation (DA) is at its core the quest for

principled algorithms enabling the generalization of visual

recognition methods. Given at least a source domain for

training, the goal is to obtain recognition results as good

as those achievable on source test data on any other target

domain, in principle belonging to a different probability dis-

tribution. While originally defined assuming to have access

to annotated data from a single source domain, and to un-

labeled data from a different target domain [30], there is

growing interest on how to leverage over multiple sources,

and for domain generalization (DG), i.e. the case when

it is not possible to access target data of any sort a pri-

ori. Algorithm-wise, three strategies have been proposed,

i.e. dealing with model [8, 19], feature [23, 28], or im-

*This work was done while at University of Rome Sapienza, Italy

age adaptation [29, 15]. A basic assumption for both fea-

ture and image adaptation approaches is the existence of a

shared space among domains, however only feature-based

methods attempt to explicitly identify it [14, 16, 3]. In the

image-based approaches, the domain generic component is

always silently recombined with the specific domain style

to obtain images that show the same content of the target,

but with source-like appearance or vice-versa [15, 29, 22].

Moreover, although these methods have shown to be effec-

tive in the single source scenario , it is questionable whether

they could be extended to multi-source DA, or to DG.

With this paper we make two contributions: (1) we in-

troduce image adaptation for DG, (2) we propose an archi-

tecture that exploits the power of layer aggregation to hal-

lucinate samples of the latent pixel space shared among do-

mains. We call our method Agnostic DomAin GEneraliza-

tion (ADAGE). To our knowledge it is the first solution to

introduce an image-level component in an end-to-end deep

learning architecture for DG and that can work seamlessly

also in the multi-source unsupervised DA setting.

We start by acknowledging that the notion of visual

cross-domain generic information is intuitive yet ambigu-

ous, as ground truth examples of pure semantic images

without a characteristic style do not exist. Thus, while it

is possible to interpret the produced samples as capturing

domain agnostic knowledge, it should be clear that they

are built for the network’s benefit only and we do not ex-

pect them to be pleasant to the human eye. Practically,

we let the network learn what this generic information is

through a mapping guided by adversarial adaptive con-

straints. These constraints are applied directly on the agnos-

tic space, rather than on standard images that always contain

domain-specific information.

To realize the mapping we define a dedicated convolu-

tional structure loosely related to a previous image coloriza-

tion network [6]. The new architecture has a low number of

parameters which prevents overfitting and at the same time

allows to comfortably accommodate two gradient reversal

layers that adversarially exploit both image and feature clas-



sification across domains. As the image domain discrimina-

tor maintains the ability to evaluate the similarity of a target

image to the different source domains, it is straightforward

to extend the method to multi-source DA, and learn how to

bias the classification loss towards the sources that are more

similar to the target.

We test ADAGE in the DG and multi-source DA sce-

narios, comparing against recent approaches [19, 42, 40].

In all experiments, for both settings, ADAGE significantly

outperforms the state of the art. An ablation study and vi-

sualizations of the agnostic domain images complete our

experimental study.

2. Related Work

In single source DA, feature adaptation approaches aim

at learning deep domain invariant representations [23, 35,

4, 5, 28, 12, 33, 13, 31]. Other methods rely on adversar-

ial loss functions [10, 37, 32]. Besides end-to-end trained

architectures also two-step adaptive networks have shown

practical advantages [38, 1]. Most of work based on image

adaptation aims at producing either target-like source im-

ages or source-like target images, but it has been recently

shown that integrating both the transformation directions is

highly beneficial [29, 15]. In particular [15] combines both

image and feature-level adaptation. Considering that the

proposed network contains two generators, three discrim-

inators and one classifier for a single source-target domain

pair, its extension to multi-source DA, and even more to

DG, is not straightforward. Multi-source DA was initially

studied from a theoretical point of view [7]. Within the

context of convnet-based approaches, the vanilla solution of

collecting all the source data in a single domain is already

quite effective. Only very recently two methods presented

multi-source deep learning approaches that improve over

this baseline. The method proposed in [40] builds over [10]

by replicating the adversarial domain discriminator branch

for each available source. A similar multi-way adversar-

ial strategy is used also in [42], where a theoretical support

frees it from the need of learning the source weights.

In the DG setting, no access to the target data is allowed,

thus the main objective is to look across multiple sources for

shared factors which are either searched at model-level to

regularize the learning process on the sources, or at feature-

level to learn some domain-shared representation. Deep

model-level strategies are presented in [24, 20, 8]. The first

work proposes a weighting procedure on the source mod-

els, while the others aim at separating the source knowl-

edge into domain-specific and domain-agnostic sub-models

either with a low-rank parametrized network or through a

dedicated learning architecture with a shared backbone and

source-specific aggregative modules. A meta-learning ap-

proach was recently presented in [19]. Regarding feature-

based methods, [25] proposed to exploit a Siamese architec-

ture to learn an embedding space where samples from dif-

ferent source domains but same labels are projected nearby,

while samples from different domains and different labels

are mapped far apart. Both works [11, 21] exploit deep

autoencoders for DG still focusing on representation learn-

ing. New DG approaches based on data augmentation

have shown promising results. Both [34] and [39] pro-

pose domain-guided perturbation of the input instances in

the embedding space, with the second work able to gener-

alize to new targets also when starting from a single source.

Although a two-step DG solution involving an image-

adaptive process, followed by a deep classifier with feature

adversarial training is always possible [27], we go beyond

this naı̈ve strategy. Differently from GAN-based meth-

ods that need a typical alternating training between image

adaptation and classification, we train the whole model of

ADAGE with a single optimizer while performing adver-

sarial training by inverting the gradient originating from two

domain discriminators at image and feature level.

3. Agnostic Domain Generalization

We assume to observe i = 1 . . . S source domains with

the ith domain containing Ni labeled instances {xi
j , y

i
j}

Ni

j=1,

where xi
j is the jth input image and yij ∈ {1 . . .M} is the

class label. In addition we also have an unlabeled target do-

main whose data {xt
j}

Nt

j=1 might (DA) or might not (DG) be

provided at training time. All the source and target domains

share the same label space, but their marginal distribution is

different thus inducing a domain shift. The goal of ADAGE

is to achieve domain generalization by hallucinating images

stripped down of domain specific information, that thus can

be seen as samples of a machine-created agnostic domain.

We obtain this by learning to modify the images such that

it becomes impossible to identify their original source do-

main both from their pixels and from the extracted features,

while maintaining their relevant semantic information. Fig-

ure 1 shows our architecture, consisting of two main com-

ponents: (1) the Hallucinator block, in charge of generating

the agnostic images from the input samples, and (2) the Do-

main Generalizer, that performs adaptation from the new

domain. The architecture is end-to-end, meaning that the

two components are interconnected and trained jointly.

The Hallucinator (H) modifies the input images to re-

move their domain-specific style. To achieve this, we got

inspiration from the colorization literature and define a new

structure exploiting the power of layer aggregation [41]: the

output of two 3 × 3 convolutional layers, each followed by

Relu and Batch Normalization are stacked up with the input

and propagated to every subsequent layer (see Figure 2).

Specifically, the produced feature build up in size resulting

in a growing sequence of {3, 8, 16, 32, 64, 128} maps, after

which a convolution layer brings them down to 3 channels,

interpretable as RGB images. With respect to previous map-
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Figure 1. A schematic description of ADAGE. All samples (including target ones, in the DA setting) follow the same path in the network.

The inverted gradient from I flows through H driving image modifications towards domain confusion. Similarly, the gradient from D also

inverted, is backpropagated through F and H so that both the feature and the image dedicated blocks benefit from a further push towards

the domain agnostic space. The classification gradient travels through the whole network, excluding I and D.

ping architectures proposed within the context of depth col-

orization [6], our hallucinator has a significantly lower num-

ber of parameters thanks to its incrementally aggregative

structure. This is crucial for generalization both because it

reduces the risk of overfitting to the available sources and

because leaves space for a multi-branch network able to im-

pose constraints that in turn will lead to learning a stronger

and more stable hallucinator in our end-to-end framework.

The Domain Generalizer is composed by the Image

Domain Discriminator I , the Feature Domain Discrimina-

tor D and the Feature Extractor F . The first two impose

respectively an adversarial generalization condition on the

pixels and on the feature extracted from the images pro-

duced by H , while the third defines an intermediate step

between the first two. Moreover, thanks to its direct con-

nection with the Classifier C, it maintains the basic seman-

tic knowledge in the hallucinated images, so that, despite

they lack domain style, their label can still be recognized.

The Image Domain Discriminator I receives as input

the images produced by H and predicts their domain la-

bel. More in details, this module is a multi-class classifier

that learns to distinguish among the S source domains in

DG, and S + 1 in DA (including the target), by minimizing

a simple cross-entropy loss LI . The information provided

by this module is used in two ways: to adversarially guide

the hallucinator H to produce images with confused domain

identity, and to estimate a similarity measure between the

[...]

Input

image

Features maps

Convolution +

Relu +

BatchNorm

Legend

Output

image

Figure 2. The Hallucinator. The output of the two multicolor

blocks (Convolutional + Relu + Batch Normalization) are concate-

nated with the previous inputs, forming a group of images and fea-

tures maps that grow along the depth of the network. The number

of features increases from 3 (input data) to 256 (final aggregation

step), while a last Convolutional layer squeezes the features back

into 3 channels, interpretable as an RGB image.

source and the target data when available. The first task is

executed through a gradient reversal layer as in [10]. The

second is obtained as a byproduct of the domain classifier I
by collecting the probability of every source sample in each

batch to be recognized as belonging to the target.

The Feature Domain Discriminator D is analogous to

I but, instead of images, it takes as input their features,

performing domain classification by minimizing the cross-

entropy loss LD. During backpropagation, the inverted

gradient regulates the feature extraction process to con-

fuse the domains. Finally, the Feature Extractor F , as

well as the Classifier C, is a standard deep learning mod-

ule. We built both of them with the same network struc-

ture used in [42] to put them on equal footing. In partic-

ular, in the DG setting the classifier learns to distinguish

among the M categories of the sources by minimizing the

cross-entropy loss LC , while for the DA setting it can also

provide the classification probability on the target samples

p(xt) = C(F (H(xt))) that is used to minimize the related

entropy loss LE = p(xt)log(p(xt)).

If we indicate with θ the network parameters and we use

subscripts to identify the different network modules, we can

write the overall loss function optimized by ADAGE as:

L(θH , θF ,θD, θI , θC) =

S,S+1∑

i=1

Ni∑

j=1

Lj,i �=S+1
C (θH , θF , θC) + ηLj,i=S+1

E (θH , θF , θC)

− λLj,i
D (θH , θF , θD)− γLj,i

I (θH , θI) . (1)

We remark that, as specified by its superscripts, Lj,i=S+1
E is

only active in the DA setting, while LD and LI in the DA

case deal with an {S+1}-multiclass task involving also the

target together with the source domains.

As can be noted from (1), the number of meta-

parameters of our approach is very limited. For λ we use the

same rule introduced by [10] that grows the importance of

the feature domain discriminator with the training epochs:

λk = 2
1+exp(−10k) − 1, where k = current epoch

total epochs
. We set



γk = 0.1λk so that only a small portion of the full gradient

of the image domain discriminator is backpropagated: in

this way we can still get useful similarity measures among

the domains while progressively guiding the hallucinator to

make them alike. When the image adaptation part is enough

to close the domain gap, the feature discriminator loss might

be abnormally high causing divergence. We easily obviate

such extreme cases by maintaining a record on the initial

feature discriminative loss and avoiding the loss backprop-

agation if it is higher than twice its initial value. Finally, the

experimental evaluation indicates that ADAGE is robust to

the exact choice of η, thus we keep it always fixed to 0.5

just for simplicity.

4. Experiments

We tested ADAGE1 on the DG and multi-source DA sce-

narios. Our framework can easily switch between the two

cases with a few key differences. For DG the image I and

the feature D domain discriminators deal with S domains,

while for DA they need to distinguish among S+1 domains

including the target. Moreover, in DA, the unlabeled target

data trigger the classification block C to activate the entropy

loss and to use the source domain weights provided by the

image domain discriminator I . Specifically these weights

make sure that our classifier is biased towards the sources

more similar to the target.

4.1. Domain Generalization

Datasets We focus on five digits datasets and one object

classification dataset. MNIST [18] contains 70k centered,

28× 28 pixel, grayscale images of single digit numbers on

a black background. MNIST-M [10] is a variant where the

background is substituted by a randomly extracted patch ob-

tained from color photos of BSDS500 [2]. USPS [9] is a

digit dataset automatically scanned from envelopes by the

U.S. Postal Service containing a total of 9,298 16 × 16
pixel grayscale samples; the images are centered, normal-

ized and show a broad range of font styles. SVHN [26]

is the challenging real-world Street View House Number

dataset. It contains over 600k 32 × 32 pixel color sam-

ples, while we focused on the smaller version of almost

100k cropped digits. Besides presenting a great variety of

shapes and textures, images from this dataset often contain

extraneous numbers in addition to the labeled, centered one.

The Synthetic Digits (SYNTH) collection [10] consists of

500k images generated from WindowsTM fonts by varying

the text (that includes different one-, two-, and three-digit

numbers), positioning, orientation, background and stroke

colors, as well as the amount of blur. Finally, the ETH80

object dataset consists of 8 object classes with 10 instances

for each class and 41 different views of each instance with

1Our PyTorch implementation: https://github.com/fmcarlucci/ADAGE.

respect to pose angles. All the images are subsampled to

28× 28 and greyscaled.

Scenarios We consider three experimental scenarios on

digits images already presented in previous work. A first

case from [42] involves three sources chosen in {MNIST,

MNIST-M, SYNTH, SVHN}. Each dataset, with the ex-

ception of SYNTH, is used in turn as target. All the im-

ages are resized to 28 × 28 pixels and subsets of 20k and

9k samples are chosen respectively from each source and

from the target. A second case from [40] involves four

sources by adding USPS to the previous dataset group,

and focuses on two possible targets, SVHN and MNIST-M.

Even in this case the images are resized to 28 × 28 pixels,

and 25/9k samples are drawn from each dataset to define

the source/target sets. A third case from [11] involves five

sources and exploits rotated variants of MNIST. Specifi-

cally we started by randomly choosing 100 images for each

of the 10 classes and indicating this basic view with M0.

The versions {M15,M30,M45,M60,M75} are obtained by

rotating the images of 15 degrees in counterclock-wise di-

rection. Note that the authors of [40] kindly shared the ex-

act splits used for their paper, while for all the other ex-

periments we considered multiple random selections of the

samples from the datasets. For the object classification ex-

periment, we followed [11] focusing on the ETH80-p set-

ting that covers 5 domains built from equally spaced pitch-

rotated views of the 8 objects. Each domain is considered in

turn as the target, while the remaining ones are the sources.

Implementation Details For our experiments all the

datasets were normalized and zero-centered. The mean and

standard deviation of the target for data normalization are

calculated batch-by-batch during the testing process. A

standard random crop of 90− 100% of the total image size

was applied as data augmentation. The training procedure

runs for 600 epochs with Adam optimizer [17] . The initial

learning rate is set to 1e−3 and step down after 80% of the

training. All experiments are repeated three times and we

report the average on the obtained classification accuracy.

Results in Table 1 (top part) As a main baseline for

the three and four sources settings we use the naı̈ve com-

bine sources strategy that consists in learning a classifier on

all the source data combined together. For a fair compari-

son we produced these results by keeping on only the fea-

ture extractor F and the classifier C, while turning off all

the adaptive blocks in the domain generalizer. We bench-

mark against the meta-learning method MLDG [19] using

the code provided by the authors and running the experi-

ments on our settings. The obtained results indicate that

ADAGE outperforms all the reference sota baselines in DG

both using three and four sources with an advantage up to 3

percentage points. Interestingly, using four sources slightly

worsens the performances when SVHN is the target: our

interpretation is that adding the USPS dataset increases the



Sources

SVHN SVHN MNIST-M

Avg.MNIST-M MNIST SYNTH

SYNTH SYNTH MNIST

Target MNIST MNIST-M SVHN

DG

combine sources 98.7 62.6 69.5 76.9

MLDG [19] 99.1 61.2 69.7 76.7

ADAGE 99.1 66.3 76.4 80.3

DA

combine sources 98.7 62.6 69.5 76.9

combine DANN [42] 92.5 65.1 77.6 78.4

MDAN [42] 97.9 68.7 81.6 82.7

ADAGE 99.3 88.5 86.0 91.3

Sources

SYNTH SYNTH

Avg.

MNIST MNIST

MNIST-M SVHN

USPS USPS

Target SVHN MNIST-M

DG

combine sources 73.2 61.9 67.5

MLDG [19] 68.0 65.6 66.8

ADAGE 75.8 67.0 71.4

DA

combine sources 73.2 61.9 67.5

combine DANN [40] 68.9 71.6 70.3

DCTN [40] 77.5 70.9 74.2

ADAGE 85.3 85.3 85.3

Table 1. Classification accuracy results on the digits images Left: experiments with three sources. Right: experiments with four sources.

(a) MNIST (b) SVHN (c) SYNTH (d) MNIST-M

Figure 3. Examples of domain-agnostic digits generated by Hallucinator H in the three source experiments with MNIST-M as target. The

top row show images produced in the DG setting by H. The central line shows the original images and in the bottom row we display images

produced by H in the DA setting. Reminder: although we can always visualize the domain agnostic images to better understand the inner

functioning of the network, they are not trained to be be pleasant to the human eye.

(a) combine sources (b) DG ADAGE (c) DA ADAGE

Figure 4. TSNE plots of features from the 3-source experiment,

target MNIST-M. Class distributions are shown in the suppl mat.

domain shift between the training and test domains, making

the adaptation somehow more difficult.

Results in Table 2 For the five sources experi-

ments on rotated digit images we benchmark against two

autoencoder-based DG methods D-MTAE [11] and MMD-

AAE [21], as well as against the metric-learning CCSA

method [25] and the very recent CROSS-GRAD [34].

The results indicate that ADAGE outperforms three of the

four competitors and has results similar to CROSS-GRAD

which proposes an adaptive solution based on data augmen-

tation that could potentially be combined with ADAGE.

Results in Table 3 For the object classification experi-

ments on ETH80-p, ADAGE obtains an average accuracy

Target M0 M15 M30 M45 M60 M75 Avg.

DG

D-MTAE [11] 82.5 96.3 93.4 78.6 94.2 80.5 87.6

CCSA [25] 84.6 95.6 94.6 82.9 94.8 82.1 89.1

MMD-AAE [21] 83.7 96.9 95.7 85.2 95.9 81.2 89.8

CROSS-GRAD [34] 88.3 98.6 98.0 97.7 97.7 91.4 95.3

ADAGE 88.8 97.6 97.5 97.8 97.6 91.9 95.2

Table 2. DG accuracy results on experiments with five MNIST-

rotated sources. Each column title indicate the considered target.

Target ETH00 ETH22 ETH45 ETH68 ETH90 Avg.

DG

combine sources 70.0 93.8 96.2 98.8 81.2 88.0

D-MTAE [11] - - - - - 87.9

MLDG [19] 70.0 85.0 95.0 97.5 73.7 84.2

ADAGE 67.5 95.0 100.0 100.0 88.8 90.2

ETH00 hall. ETH00 ETH90 hall. ETH90

Table 3. Top: DG accuracy results on experiments with ETH-80

rotated sources. Bottom: real and hallucinated image examples.

of 90.2% , outperforming D-MTAE [11] and MLDG [19].

4.2. Domain Adaptation

We extend our analysis to the multi-source DA setting

considering the same three and four scenarios on digits im-

ages described in the previous section. In terms of imple-

mentation details, the only difference with respect to what

already discussed above is that we now have all the un-

labeled target samples at training time, so their mean and

standard deviation can be calculated at once. Moreover, for

the training process we used the RmsProp optimizer [36],

running for 200 epochs with initial learning rate of 5e−4.

Results in Table 1 (bottom part) We benchmark

ADAGE against reference results from previous DA works.

In particular for the three sources experiments the compar-

ison is with the Multisource Domain Adversarial Network

MDAN [42]. Since this method builds over the DANN al-

gorithm [10] the result obtained with DANN applied on the



combination of all the sources (combine DANN) is also re-

ported. For the four sources experiments the main compari-

son is instead with the Deep Cocktail Network (DCN) [40],

a recent method able to work even with partial class overlap

among the sources. The results indicate that ADAGE out-

performs the competing methods also in this setting with

an average advantage up to 11 percentage points. As a fur-

ther test we verified the obtained weights assigned by the I
network component in the three source setting: when using

MNIST-M as target they converge to {0.5, 0.3, 0.2} respec-

tively for MNIST, SVHN, SYNTH, which sounds reason-

able given the visual similarity among the domains.

While ADAGE is specifically tailored for the multi-

source settings, we checked its behaviour also in the case

of single source DA with access to unlabeled target data.

As a proof of concept experiment, we tested ADAGE us-

ing SVHN as source and MNIST as target. With the same

protocol used in our DA experiments, we achieve 95.7% ac-

curacy, which is on par with the very recent [13] and better

than several others competitive methods [15, 29, 22, 31].

4.3. Ablation Study and Qualitative Results

Our ablation study analyzes the effect of progressively

enabling the key components of the domain generalizer

alone, and in combination with the hallucinator.

Results in Table 4 We start by evaluating the perfor-

mance obtained when we do not generate the domain ag-

nostic samples. In this case the hallucinator H is removed

from the network and the original images of all sources are

fed directly to the domain generalizer. In this case, since we

cannot modify the original images, the only active adaptive

component is D that operates on the features. Moreover the

classifier can also take advantage of the entropy loss (that

we indicate with E) in the DA setting. The results indicate

that feature alignment is very helpful for DA but can induce

confusion in DG with results lower than those of the com-

bine sources baseline. Another important result is obtained

when only H is enabled and the features are extracted di-

rectly from the generated images with the components I and

D off. In this case the network is not performing any effort

to align the domains and the final accuracy is just slightly

better than the combine sources baseline. This shows that

the advantage of ADAGE is clearly not just due to the use of

a deeper architecture. Keeping the hallucinator H active to-

gether with the D component produces a good advantage in

accuracy but only in the DA setting (H +D = 69.9). Here

adding E provides a further advantage (H+D+E = 82.4).

Overall the entropy loss appears quite effective in the con-

sidered scenario: our intuition is that the presence of mul-

tiple sources helps reducing the risk that the entropy loss

might mislead the classifier. The contribution of the image

domain discriminator I is negligible by itself and this be-

havior can be explained considering that we backpropagate

combine
D D+E H H+E H+D H+I H+D+I H+E+I H+D+E H+D+E+I Hres+D+E+I

sources

62.6
DG 53.0 53.0

63.2
63.2 62.2 61.4 66.3 61.4 62.2 66.3 65.8

DA 65.9 75.1 63.9 69.9 60.8 68.8 63.9 82.4 88.5 87.6

Table 4. Ablation analysis on the experiment with three sources

and target MNIST-M. We turn on and off the different parts of the

model: H= Hallucinator, E= Entropy, D= Feature Domain Dis-

criminator, I= Image Domain Discriminator. Note that H+D+E+I

corresponds to our whole method ADAGE.

only a small part of the I gradient (γ = 0.1λ, see section

3). However its beneficial effect becomes evident in col-

laboration with the other network modules: passing from

H +D+E to H +D+E + I implies an improvement in

accuracy of at least 4 percentage points in the difficult DG

setting, which shows that the adversarial guidance provided

by I on H allows for an image adaptation process com-

plementary to the feature adaptation one. Note that, since

the image domain discriminator backpropagates only on the

hallucinator, it is not possible to test any combination con-

taining I but not H .

Finally we benchmark against an existing residual struc-

ture previously used to transform pixels in depth image col-

orization [6]. When plugging in this residual version of the

hallucinator (Hres) we observe that the overall classifica-

tion performance is slightly lower than what obtained with

our original aggregative H . Besides this small variation,

the most important difference is that our hallucinator has

only 1/3 of the parameters of [6], thus it is faster in training

and allows to avoid overfitting while mapping the source

domain images into a compact agnostic space.

Qualitative Analysis Figure 3 shows the agnostic im-

ages generated by the hallucinator, in the three source ex-

periment with target MNIST-M, while the bottom part of

Table 3 shows examples of ETH-80 original and halluci-

nated images. The main effect of H is that of removing the

backgrounds and enhancing the edges: this is quite clear

in the DG setting for both digits and objects, while in the

DA case the produced digits images appear slightly more

confused. Figure 4 shows the TSNE embedding of features

extracted immediately before the final classifier. In the DA

setting we completely align the feature spaces of the do-

mains, resulting in a clear per class clustering. In the DG

setting the results are less clean, but the clusters are still

tighter than those obtained by the combine source baseline.

5. Conclusions

This paper proposes the first end-to-end joint image- and

feature-level adaptive solution for DG. We define a new net-

work, named ADAGE, able to hallucinate domain agnos-

tic images guided by two adversarial adaptive conditions at

pixel and feature level. ADAGE can be seamlessly used

both for DG and multi-source unsupervised DA: it achieves

impressive results on several benchmarks, outperforming

the current state of the art by a significant margin.
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S. Rota Bulò. Just dial: domain alignment layers for un-

supervised domain adaptation. In International Conference

on Image Analysis and Processing (ICIAP), 2017. 2

[6] F. M. Carlucci, P. Russo, and B. Caputo. (de)2co: Deep depth

colorization. IEEE Robotics and Automation Letters, 2018.

1, 3, 6

[7] K. Crammer, M. Kearns, and J. Wortman. Learning from

multiple sources. J. Mach. Learn. Res., 9:1757–1774, June

2008. 2

[8] A. D’Innocente and B. Caputo. Domain generalization with

domain-specific aggregation modules. In German Confer-

ence on Pattern Recognition (GCPR), 2018. 1, 2

[9] J. Friedman, T. Hastie, and R. Tibshirani. The elements of

statistical learning, volume 1. Springer series in statistics

Springer, Berlin, 2001. 4

[10] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle,

F. Laviolette, M. Marchand, and V. Lempitsky. Domain-

adversarial training of neural networks. J. Mach. Learn. Res.,

17(1):2096–2030, 2016. 2, 3, 4, 5

[11] M. Ghifary, W. B. Kleijn, M. Zhang, and D. Balduzzi. Do-

main generalization for object recognition with multi-task

autoencoders. In International Conference on Computer Vi-

sion, (ICCV), 2015. 2, 4, 5

[12] M. Ghifary, W. B. Kleijn, M. Zhang, D. Balduzzi, and

W. Li. Deep reconstruction-classification networks for un-

supervised domain adaptation. In European Conference on

Computer Vision (ECCV), 2016. 2

[13] P. Haeusser, T. Frerix, A. Mordvintsev, and D. Cremers. As-

sociative domain adaptation. In International Conference on

Computer Vision (ICCV), 2017. 2, 6

[14] J. Hoffman, B. Kulis, T. Darrell, and K. Saenko. Discov-

ering latent domains for multisource domain adaptation. In

European Conference on Computer Vision (ECCV), 2012. 1

[15] J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko,

A. Efros, and T. Darrell. CyCADA: Cycle-consistent ad-

versarial domain adaptation. In International Conference on

Machine Learning (ICML), 2018. 1, 2, 6

[16] I.-H. Jhuo, D. Liu, D. T. Lee, and S.-F. Chang. Robust visual

domain adaptation with low-rank reconstruction. In Com-

puter Vision and Pattern Recognition (CVPR), 2012. 1

[17] D. Kingma and J. Ba. Adam: A method for stochastic op-

timization. In International Conference on Learning Repre-

sentations (ICLR), 2015. 4

[18] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998. 4

[19] D. Li, Y. Yang, Y. Song, and T. M. Hospedales. Learning

to generalize: Meta-learning for domain generalization. In

Conference of the Association for the Advancement of Artifi-

cial Intelligence (AAAI), 2018. 1, 2, 4, 5

[20] D. Li, Y. Yang, Y. Z. Song, and T. M. Hospedales. Deeper,

broader and artier domain generalization. In International

Conference on Computer Vision (ICCV), 2017. 2

[21] H. Li, S. Jialin Pan, S. Wang, and A. C. Kot. Domain gen-

eralization with adversarial feature learning. In Computer

Vision and Pattern Recognition (CVPR), 2018. 2, 5

[22] M.-Y. Liu, T. Breuel, and J. Kautz. Unsupervised image-to-

image translation networks. In Neural Information Process-

ing Systems (NIPS), 2017. 1, 6

[23] M. Long, H. Zhu, J. Wang, and M. I. Jordan. Deep trans-

fer learning with joint adaptation networks. In International

Conference on Machine Learning (ICML), 2017. 1, 2

[24] M. Mancini, S. R. Bulo, B. Caputo, and E. Ricci. Robust

place categorization with deep domain generalization. IEEE

Robotics and Automation Letters, 2018. 2

[25] S. Motiian, M. Piccirilli, D. A. Adjeroh, and G. Doretto. Uni-

fied deep supervised domain adaptation and generalization.

In International Conference on Computer Vision (ICCV),

2017. 2, 5

[26] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y.

Ng. Reading digits in natural images with unsupervised fea-

ture learning. In Workshop on deep learning and unsuper-

vised feature learning (NIPS-W), 2011. 4

[27] M. M. Rahman, C. Fookes, M. Baktashmotlagh, and S. Srid-

haran. Multi-component image translation for deep domain

generalization. In IEEE Winter Conference on Applications

of Computer Vision (WACV), 2019. 2

[28] A. Rozantsev, M. Salzmann, and P. Fua. Beyond sharing

weights for deep domain adaptation. IEEE Trans. Pattern

Anal. Mach. Intell. (PAMI), 2018. 1, 2

[29] P. Russo, F. M. Carlucci, T. Tommasi, and B. Caputo. From

source to target and back: symmetric bi-directional adaptive

gan. In Computer Vision and Pattern Recognition (CVPR),

2018. 1, 2, 6

[30] K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting vi-

sual category models to new domains. In European Confer-

ence on Computer Vision, (ECCV), 2010. 1

[31] K. Saito, Y. Ushiku, and T. Harada. Asymmetric tri-training

for unsupervised domain adaptation. In International Con-

ference on Machine Learning, (ICML), 2017. 2, 6

[32] S. Sankaranarayanan, Y. Balaji, C. D. Castillo, and R. Chel-

lappa. Generate to adapt: Aligning domains using genera-

tive adversarial networks. In Computer Vision and Pattern

Recognition (CVPR), 2018. 2

[33] O. Sener, H. O. Song, A. Saxena, and S. Savarese. Learning

transferrable representations for unsupervised domain adap-

tation. In Advances in Neural Information Processing Sys-

tems (NIPS), 2016. 2



[34] S. Shankar, V. Piratla, S. Chakrabarti, S. Chaudhuri,

P. Jyothi, and S. Sarawagi. Generalizing across domains

via cross-gradient training. In International Conference on

Learning Representations (ICLR), 2018. 2, 5

[35] B. Sun, J. Feng, and K. Saenko. Return of frustratingly easy

domain adaptation. In Conference of the Association for the

Advancement of Artificial Intelligence (AAAI), 2016. 2

[36] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the

gradient by a running average of its recent magnitude. In

COURSERA: Neural Networks for Machine Learning, 2012.

5

[37] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko. Simultane-

ous deep transfer across domains and tasks. In International

Conference in Computer Vision (ICCV), 2015. 2

[38] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko. Adversarial

discriminative domain adaptation. In Computer Vision and

Pattern Recognition (CVPR), 2017. 2

[39] R. Volpi, H. Namkoong, O. Sener, J. C. Duchi, V. Murino,

and S. Savarese. Generalizing to unseen domains via adver-

sarial data augmentation. In Neural Information Processing

Systems (NIPS), 2018. 2

[40] R. Xu, Z. Chen, W. Zuo, J. Yan, and L. Lin. Deep cocktail

network: Multi-source unsupervised domain adaptation with

category shift. In Computer Vision and Pattern Recognition

(CVPR), 2018. 2, 4, 5, 6

[41] F. Yu, D. Wang, E. Shelhamer, and T. Darrell. Deep layer

aggregation. In Computer Vision and Pattern Recognition

(CVPR), 2018. 2

[42] H. Zhao, S. Zhang, G. Wu, J. ao P. Costeira, J. M. F. Moura,

and G. J. Gordon. Multiple source domain adaptation with

adversarial learning. In Workshop of the International Con-

ference on Learning Representations (ICLR-W), 2018. 2, 3,

4, 5


