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Abstract

This study focusses on the remodelling of biological tissues in the framework of the theory of material uniformity. A
constitutive evolution model is introduced, including fibre recruitment and reorientation, and subjected to the entropy
inequality, which enforces the Second Principle of Thermodynamics. The model is applied to a numerical example
describing a pressurised fibre-reinforced cylinder, roughly representing an artery, and is able to capture the major

characteristics of remodelling in arteries, as reported in the literature.
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1. Introduction

Growth and remodelling in biological tissues can be
studied as anelastic phenomena. Anelastic processes, such
as plasticity or growth-remodelling, are accompanied by a
change in microstructure resulting in configurational forces
and residual stresses (e.g., Hoger, {1997} |Gurtin, (1999).
While plasticity occurs at constant mass, biological tissues
not only experience a change in microstructure, but also an
increase (growth) or decrease (resorption) of mass. Among
the first attempts to approach the problem of growth and
remodelling from the continuum mechanical perspective
are the seminal works by |Cowin and Hegedus| (1976)) and
Hegedus and Cowin| (1976)) on bone remodelling. |Rodriguez
et al| (1994) studied growth and remodelling in arteries
and used the Bilby-Kroner-Lee decomposition of the de-
formation gradient F' into a growth part Fy, and an elastic
part F.. In practice, they considered a residually stressed
reference configuration which grows into a stress-free inter-
mediate (and generally incompatible) configuration, and
finally deforms elastically to the current (and compatible)
configuration actually attained by the body. Moreover,
the fact that the collagen fibres in a biological tissue may
be undulated in the reference configuration, and will thus
bear stress only after a certain threshold stretch, has been
studied as an additional remodelling parameter for the case
of aneurysms (Watton et al.,|2004; |Watton and Hill, 2009)).

Here we employ the framework proposed by [Epstein
and Maugin (2000), in which growth and remodelling are
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seen as the two aspects of an evolution process imply-
ing a local rearrangement of material inhomogeneities, de-
scribed in terms of an ¢mplant, under the light of the the-
ory of material uniformity. In this framework, growth
and remodelling are governed by the inhomogeneity rate,
Lp = PP, where P! formally corresponds to the
growth tensor Fy of Rodriguez et al. (1994)). Specifically,
the trace of Lp is often required to be proportional to the
source or sink of mass due to growth that features in the
local mass balance of the body. Given Lp, the implant
tensor P can be determined by integrating the differential
equation P = LpP. However, the way in which Lp is
supplied is not unique.

We had previously modelled the effect of the undula-
tion of the individual fibrils in a collagen fibre (Hamedzadeh
et al., 2018)) and, in this study, we employ the same mech-
anism for an entire fibre, and in terms of the theory of
material uniformity. Therefore, we introduce the proper
material implant describing both reorientation and recruit-
ment of the fibres in an artery, and solve the benchmark
problem previously studied by |Grillo et al.| (2015 in order
to elucidate our results.

2. Theory of Uniformity

We follow the theory of uniformity, originally intro-
duced by [Nolll (1967) and further developed by [Epstein
and Maugin| (1990). A material body B is said to be uni-
form if all of its points are made of the same material.
This implies that the tangent spaces TxB of the points
X of B have been modelled on an archetypal vector space
A = R3, called precisely the archetype, via an isomorphism

P(X): A — TxB, (1)
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at every point X. In other words, if we look at the mi-
croscopic structures surrounding two materially uniform
points X and Y, we might not see identical pictures, as
one might have been distorted or rotated in a different
manner than the other. However, we can pass from X to
Y via P(Y) P~Y(X) : TxB — TyB. For this reason, P is
called the material isomorphism.

Now, suppose to have an elastic material with elastic
potential W (X, t) = W(F(X,t), X,t) depending explicitly
on the point X and time ¢. If the body is uniform, then
the elastic potential depends on the point X and time ¢
only through the (in this case, time-dependent) uniformity
field P, i.e.,

W(F(X,t),X,t) = Jp' (X, t) W(F(X,t)P(X,1)), (2)

where W is the elastic potential in the archetype, and J 1;1
comes from the theorem of the change of variables (Epstein
and Maugin), [1990]).

3. Material Implant for a Single Fibre

The generic fibre is straight with no undulation in the
archetype, and the implant P(X,t) rotates the fibre, crimps
it and maps it into the tangent space Tx B at X, as shown
in Figure[I] Note that using the implant P is equivalent to
assuming the existence of a non-compatible intermediate
configuration, which is mapped onto by the straightening
deformation Fy coming from the multiplicative decompo-
sition F' = F,F, (Hamedzadeh et al.| [2018)).

X(B,1t)

A=R?
1

Figure 1: Collagen fibre recruitment seen in terms of the theory of
uniformity, with the straightened fibre in the archetype.

P(X,t)

The archetypal straightened fibre is represented by the
vector \su, where p is a unit vector and A; is the straight-
ening stretch needed to map a fibre from its referential
crimped state back to the archetypal straight state. The
uniformity field P maps the archetypal vector A\sp into
the unit referential vector M. Application of the polar
decomposition theorem to P yields

P=RU=RU(\,), PY%=R"U%, (3
where R rotates and shifts the fibre vector p € A from
the archetype to the referential vector M € TxB, and
U= U()\s) is the crimping experienced by the fibre when
passing from the straight archetypal configuration to the
undulated referential one. In order to find the expressions
of R and U, we need some geometrical preliminaries.

Let g be a metric in the archetype A and {a,}>_; a
g-orthonormal basis of A. Since the body B is a trivial
manifold embedded in the affine space § = E3, we can
afford the luxury of choosing Cartesian coordinates {Z“},
such that the associated basis {I,}3_; coincides with the
archetypal basis {a, }2_; at every tangent space TxB. We
also choose a system of curvilinear coordinates {X4} in
the body B, with associated basis {E4}%_,. The change
of basis and the transformation rule for vectors are

0z~ _0x4

_ A_
T 9XA W 0z

EA IOU

we. (4)

Consider the vector M € A such that its components are
equal to the Cartesian components of M € Tx3B, ie.,
M* = M*. The orthogonal tensor R is obtained as

oxA
R = 5726 (5)

where (Q“g are the components of the archetypal tensor
Q@ rotating the archetypal direction p into M. The cor-
responding matrix [Q] is found as a function of the unit
vector w = p x M /|| x M]||, which describes the axis of
rotation, and the amplitude § = arccos(u.M) of the rota-
tion. Then, the rotation matrix [Q] can be obtained by
exponentiating the skew-symmetric matrix [Q] associated
with the vector w, i.e.,

[Q] = 17,

which can be conveniently expressed by Rodriguez’ for-
mula (Koks| [2006) as

0%, = gy, (6)

Q% =0%, + (sinh) Q% + (1 —cos0) Qs Q7. (7)
The components of the pure stretch U are given by
U = (AJ" = D pg + 6%, (8)

where p15 = gg- 17 are the components of the covector p’
associated with p via the archetypal metric g. Finally, the
material implant P is given by

A aXA a —1 B B
PW:@ZQQ B[()‘s = Dp Nv+5v]7 (9)
which can be simplified into
_ x4
PA»y:(Aslfl)MA#w+@Q s (10)

since Q% p® = M® and (0X4/9Z%) M® = M#. For an
isochoric implant P (i.e., pure remodelling, no growth,
see [Epstein and Elzanowski, 2007)), the stretch U must be
changed into

Us = (A" = AV pg + A2 6%, (11)
so that we have
_ oxA
PA'Y = (As t— )‘;/2) MAN”Y + )‘;/2 Q% (12)
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4. Material Implant for a Distribution of Fibres

We assume that the fibres in our biological tissue have
a statistical distribution of orientation. Thus, rather than
implanting fibres individually, we can implant a whole fam-
ily of statistically oriented fibres into a material point X.
We also assume that the elastic potential Wf of the fi-
bres is the sum of an isotropic part Wﬁ and an anisotropic
part Wfa. With an abuse of notation, we do not indicate
the arguments (X,t¢) of the tensor fields, and write the
anisotropic ensemble elastic potential of the fibres (Fed-
erico and Herzog, 2008) as

W.(C, X, t) = Wia(L, X, t) W(M; X, 1),
52,8

(13)

where I, = C : (M ® M) is the fourth invariant of the
right Cauchy-Green deformation C' along the vector M,
and the probability distribution ¥ depends explicitly on X
and ¢. Following the definition of material uniformity,
the fibre elastic potential Wy, is related to its archetypical
counterpart by

Wia(Is, X, t) = Jp' Wya(L), (14)
where f4 = PTCP : p ® pis the fourth invariant of
PTCP along the vector of u. Thus, Eq. becomes

We(C7X7 t) = JI;I /S2 Wf(j4) \I](M)7 (15)

where S? denotes the archetypical unit sphere and ¥ is the
archetypal probability distribution.

5. Dissipation Inequality and Evolution Law

An evolution equation is required as an additional dif-
ferential equation providing the inhomogeneity rate Lp =
PP~ as a function of all quantities that can act as driving
forces of the evolution process, i.e.,

Lp(X,t) =F(P(X,t),A(X,t), X), (16)
where %I represents all possible driving force arguments,
such as Eshelby stress, & = WIT — FTT, or Mandel
stress, Mt = FTT, T being the first Piola-Kirchhoff stress.
Note that, here, F does not depend on time explicitly, i.e.,
it is autonomous with respect to time.

As shown by [Epstein and Maugin| (2000) and [Epstein
and Elzanowski| (2007)), and mentioned in the Introduc-
tion, there are some restrictions that are essential for an
appropriate choice of evolution law. First, the evolution
law should be invariant with respect to a change of ref-
erence configuration. Such an evolution law is said to be
reduced to the archetype and reads

Lp=PP ' =FJpPTapT). (17)

Second, the evolution law should satisfy the dissipation in-
equality, i.e., within a purely mechanical framework and

for a hyperelastic material, for which the first Piola-Kirchhoff

stress tensor T is given by T = (9W/9F)(F), the dissi-
pation © per unit reference volume satisfies (Epstein and
Elzanowskil, 2007
D=-W+T:F=-9:Lp>0. (18)
The same result has been found with the BKL decomposi-
tion in several works on inelastic processes (see e.g.,|Simo
and Hughes| 1986} [Simo, 1988} |Cleja-Tigoiu and Maugin
2000; [matani and Mauginl, 2002} |Grillo et al. 2018 [Di Ste-
fano et all 2018} |Crevacore et all 2018|). Here, we as-
sume a rate-dependent type of remodelling and reformu-
late ® = D(C, P, Lp) as a quadratic function of 9t via
a Legendre transformation on Lp and enforcing the Prin-
ciple of Maximum Dissipation (Hackl and Fischer| [2008]).
Setting ® = D(C, P, M) = —Mt : K(F, P) : M, we have
109

Lp=--—=—K(F,P): M,

20M (19)

where K(F, P) is a fourth-order tensor with major symme-
try only. For the purpose of this work, we define K(F', P)
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as K(F, P) = kbp ® cp (with components k (bp)A€ (cp)ppies

the “tensor-down” product ® is defined in |Curnier et al.l
1995), with k being a positive constant, and bp = P g~ !PT
and cp = bl_g1 being the “left Cauchy-Green tensor” and
the “Finger tensor” associated with P, respectively. More-
over, in order to enforce a deviatoric Lp (no growth), we
make it function of the deviatoric Mandel stress Mt; =
M — (I :MIT, ie.,

Lp =—k bpmtde, (20)

which can be shown to respect condition .

6. Example: Application to the Arterial Wall

Here, we apply our recruitment-reorientation remod-
elling framework to the benchmark problem reported by
Olsson and Klarbring| (2008) and |Grillo et al.| (2015)), with
a cylinder reinforced by two families of fibres (mimicking
the arterial wall) under plane strain in the plane orthogo-
nal do the direction X3 = Z of the axis of the cylinder.

Fibre Implant. At each material point, we implant
an archetypal distribution with dominant direction pg =
0a; +0as+1as into two families of fibres with equal and
opposite angles, v and —v, measured from the Z-direction
in the ©-Z-plane and corresponding to the material direc-
tions My and Mj_, as shown in Figure|2| This amounts
to defining an implant tensor P and then adapting its ex-
pression to the two angles v and —+, which gives the im-
plants P, and P_, respectively. The polar decomposition
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P = RU of the implant (Equation ) yields

Vs 00 1 0 0
[Ul=] 0 VA 0 |,[R]=|0 cosy siny
0 0 At 0 —sin~y cosvy

(21)

Fibre Orientation Probability. In each family, the
fibre orientation follows a bivariate von Mises distribution
(Holzapfel et al.l |2015; |Gizzi et al., 2018)), in which we set
the constants so to normalise it to one, i.e.,

. _[2bexp(acos2a)exp(b(1 + cos203))
V(B,a) = \/; 211y (a) erfi(v/2b) @)

where a and [ are the archetypical longitude and co-
latitude angle, erfi is the imaginary error function and I
is the Bessel function of zero kind (see [Abramowitz and
Stegun, 1964). In this study, we used the values a = —1
and b = 5 of the concentration parameters, to obtain fibres
mostly laying in the ©-Z-plane, as illustrated in Figure [2}

Figure 2: Tensors P4 and P_, with identical expressions except for
the angles v and —v, respectively, implant the two fibre families,
described by My and Mpp—, from the archetypal straight state,
described by Aspuo.

Deformation. We cover the body manifold with a po-
lar chart, denoted by (R, ©, Z), in which, R € [R;, R,],0 €
[0,27], Z € [0, L]. Here, R; and R,, are the inner and outer
radii respectively, © is the referential polar angle and L is
the length of the cylinder. The current configuration is
obtained under the assumption of pure inflation as:

(R,0,2) — (r,0,z) = (x"(R,1),0, Z). (23)

For convenience, from this point forward, we write £ = x".
Since ¢ is a function solely of the radial coordinate R and
time, we denote & = 9x"/JR. The orthonormal bases for
the tangent spaces of the referential and the current con-
figurations are denoted by { Eg, Eo, Ez} and {e,, ey, €.},
respectively. Thus, the deformation gradient F' reads

§(R, 1)
R

ep @ E® +e, 2 EZ.
(24)

F(R,t)=¢(R,t)e, ® ER +

Imposing incompressibility, i.e., J = det F' = 1, we have

& (R,t)E(R,t) = R. (25)

Note that the condition J = 1, together with the restric-
tion Jp = 1, amounts to require that also the tensor F'P
has unitary determinant.

The separable differential equation has solution

E(R,t) =/ R2+v(t),

in which the function v is independent of R and has to be
determined from the boundary conditions. Note that, in
order for £(R,t) to be well defined, v(t) must be bounded
from below, i.e., it must hold v(t) > —R?, for all t. Also,
we have

(26)

R R
"(R,t) = = , 27
R0 VRZFo(t)  E(R,t) @)

so that the matrix representation of F' is
R

ery 00
[F(RA]=| o o0 g (28)

0 0 1

Constitutive Equations. Following the premises in
Section [d] the artery is modelled as hyperelastic with an
isotropic matrix contribution Wm, an isotropic fibre con-
tribution Wﬁ and an anisotropic fibre contribution Web
integral of the anisotropic fibre contribution Wfai, based
on the ensemble potential W, introduced in . Thus,

W(Ca X) - (1 - (I)f)VVm(C’)+
LB (WR(C) + W (O, X) + W, (C, X)), (29)

where @ is the fibre volumetric fraction, assumed homo-
geneous through the sample, and

Wi (C) = Skn[I1 — 3], (30a)
Wa(C) = Shally — 3, (30b)

Wiat (C, X) = kg H(14x(X) — 1)[Lix (X) — 1]%, (30c)
where I; = tr(C) and the step function ¥ is needed to
“switch-oft” fibres with stretch smaller than one. The sec-
ond Piola-Kirchhoff stress is obtained as S = 20W/oC

and, in particular, the anisotropic ensemble contribution
is given by

Set = JI;I/ 2
SZ

where we used to transform Wfai into Wfai and

OWrpar Ol
. U(p),
i, oc LW

(31)

I o(Pfcpy :

Ol OPLCPMOW _ propl ipem (3

with components (Py)4,(Py)? 5 u®pu? (see/Curnier et al.,

1995| for the definition of the “tensor-down” product ®).
In order to enforce the incompressibility constraint, we

employ the pulled-back deviatoric part (seeFederico,|2012)

of the second Piola-Kirchhoff stress,

Sy=Dev’S=S—-LC:8)C".

(33)
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We emphasise that, since we consider that the elastic po-
tential of the matrix does not evolve and we have two
families of fibres with different implants, we only consider
the fibre part of the deviatoric Mandel stress as the driving
force of evolution, i.e.,

Megr = Dev (CSer) = CSey — 2(I:CS.)I". (34)
Equilibrium, Boundary Conditions, Integration.
The cylinder is under uniform pressure o on the inner
boundary 0B; and and zero traction on the outer bound-
ary 0B,, and body force and inertial effects are neglected.
Thus, the evolution of the tissue is governed by the equa-
tion for P, given in and equipped with appropriate
initial conditions, and by the boundary value problem

DivT = 0, inB. (35a)
TN=-JpF T, on 9B;, (35b)
TN =0, ondB,, (35¢)

where N is the normal covector to the boundary 9B, and
the hypothesis of isochoric deformation implies J = 1.

Since we consider an axisymmetric problem, the first
Piola-Kirchhoff stress is independent of © and Z. Also,
the boundary conditions ensure that the matrix associated
with the first Piola-Kirchhoff stress is diagonal, i.e., [T] =
diag[T,.®, T,®,T.#]. The first Piola-Kirchhoff stress can
be expressed as the sum of its hydrostatic and deviatoric
components, and in terms of the deviatoric second Piola-
Kirchhoff stress, as

T=T,+T;=-JpF T +gF8, (36)
The hydrostatic pressure p is found from (see |Grillo
et al.| |2015).

Evolution Equation. The evolution equation for each
of the P is obtained from that of Lp, = P.P;' by
right-multiplying Equation written for each Py, by
the corresponding Py

Pi——kJp, Pog ' PIOuP g,

In our example, using and , solving Equation
for the deviatoric Mandel stress 9Mt.q4+ of each of the two
fibre families, and then summing to obtain the overall de-
viatoric Mandel stress of the fibres M.y, yields

(37)

ij =k(M.a)r", (38a)
132 S — -g— 6_1)4sin
122 (3 cos(27) Ui}g (A8—1)5sin(2v) — k(Da)6®.  (38h)

Numerical Algorithm. To study the numerical ex-
ample discussed in the previous sections, a code is devel-
oped in Wolfram Mathematica. The main focus of the
numerical algorithm in this study is to have high accuracy
and precision as we are studying a model with a simple ge-
ometry (isochoric inflation of a hollow cylinder). Although
the geometry is simple, the evolution equation makes

Parameter Value Symbol
inner radius 1 mm R;
outer radius 2 mm R,
internal pressure 0.02 MPa ©i
initial angle /4 Yo
initial Ag 1.014 As0

0.0375MPa Ky,
0.0375MPa  ky;

matrix stiffness

fibre isotropic stiffness
fibre anisotropic stiffness 0.0375 MPa
remodelling stiffness 5x1078s/Pa k
fibre volume fraction 0.2 O

Table 1: Parameters employed in the numerical analysis.

the model computationally heavy. In this numerical study,
we have two types of integrals: the surface integral over
the unit sphere S?, which describes the fibre distribution,
and the integral over the interval bounded by the inner
and the outer radii [R;, R,]. For the surface integral, we
use the Lebedev quadrature (Lebedev, [1977), in which the
grid points and the corresponding weights are obtained
from the exact integration of spherical harmonics up to
an arbitrary order. The model parameters are given in
Table 11

7. Numerical Results

Figure [3] represents the evolution of the straightening
stretch A\s. The behaviour of )4 is monotonically decreas-
ing in the radius R throughout the evolution. The dif-
ference As(R;,t) — A\s(Ry,t) increases monotonically with
time. We note that the As(R,) evolves due to the fact that
the radial deviatoric Mandel stress of the fibres, 9ty is not
zero (Equation (38)), although the total Mandel stress 9t
vanishes due to the boundary conditions.

1.3
’<f'> -—- 0s ——200s
P 400s —— 600's
[}
— 8005
T 12 °
2
o0
g
5
£ 11
o0
=
=
wn
tob———— [ ]

1.0 1.2 1.4 1.6 1.8 2.0
undeformed radius R (mm)

Figure 3: Evolution of the straightening stretch A\g with time.

Figure [] shows the evolution of the behaviour of the
angle «y describing the preferred fibres direction with time.
After remodelling, the maximum and minimum angles oc-
cur at the inner and outer radii, respectively. The differ-
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ence v(R;,t) — v(Ry,t) is more pronounced in the early
cycles and then tends to remain constant with time.

65 T T
--- 0s ——200s
400s —— 600s
60 ——800s

55

50

preferred angle v (deg)

45p----- S M
1.0 1.2 1.4 1.6 1.8 2.0

undeformed radius R (mm)

Figure 4: Evolution of the preferred fibre angle v with time.

Figure [5| shows the evolution of the radial first Piola-
Kirchhoff stress T, (dashed lines) and circumferential
first Piola-Kirchhoff stress Tp® (solid lines) as a function
of the deformed radius r = {(R, t). The remodelling makes
the circumferential stress Tp© more homogeneous through-
out the thickness of the tube. The difference Typ®(R;,t) —
Ty®(R,,t) before remodelling is about 23 kPa at t = 0s
and it reduces to 16 kPa at ¢t = 400s and to 14 kPa at
t =800s.

40
= 30| :
&
S 20 L ]
&
= 10l ——  0s——400s N
wn
¥ ——800s--- Os
v ol ---400s--- 800s o pesee==—|
2 ozzEEEEETT TR
& —10 |
90 o | \

|
1.2 14 1.6 1.8 2.0 2.2

deformed radius r (mm)

Figure 5: First Piola-Kirchhoff stresses T, (dashed lines) and T®
(solid lines).

One of the most prominent mechanical aspects of bi-
ological tissues is the presence of residual stresses. [Fung
predicted that the distribution of residual stresses
in the arteries is such that the residual circumferential
stress (along ©-axis) is compressive in the interior layers
and tensile in the outer ones. The residual second Piola-
Kirchhoff stresses for our benchmark problem is shown in
Figure[f] as a function of the undeformed radius R, at time
t = 800s. All three principal residual stresses increase
monotonically and the residual circumferential stress S©°,

in accordance with (1983)), is compressive at the in-

ner wall and tensile at the outer wall.

2

second P-K stress (kPa)

| | | |
1.0 1.2 1.4 1.6 1.8 2.0

undeformed radius R (mm)

Figure 6: Residual second Piola-Kirchhoff stresses at time ¢ = 800s.

8. Discussion and Conclusions

In this work we introduced a thermodynamically ad-
missible model for pure remodelling of a fibre-reinforced
material representing the arterial wall tissue. The ap-
proach is based on the theory of material uniformity, which
is described by the material implant P. We proposed a
simple evolution law, in which the inhomogeneity rate Lp
is linearly related to the deviatoric Mandel stress I .

Using the evolution law 7 we solved a benchmark
numerical problem describing a pressurised thick-walled
cylinder under plane strain conditions, with uniform in-
ternal pressure, as in the works by |Olsson and Klarbring
(2008) and |Grillo et al| (2015). We use the same consti-
tutive laws as in the work by |Grillo et al.| (2015) but a
more realistic fibre orientation probability, with two fam-
ilies of fibres each obeying a bivariate von Mises distribu-
tion (Holzapfel et al., 2015; |Gizzi et all [2018)) (Figure [2).

The results for the remodelling angle are qualitatively
similar to those obtained by |Grillo et al. (2015). Both
models predict that the preferred angle « increases with
time, with values at the inner radius R; being the largest.
Moreover, the dependence on radius and time of the ra-
dial and circumferential stresses T, and T4© in our model
(Figure |5 is similar to that in the paper by
(2015)). However, while in |Grillo et al.| (2015)) the cylin-
der deflates as it becomes stiffer circumferentially, in our
study the cylinder inflates. This is not surprising, as we
have two evolving mechanisms that work simultaneously,
namely the relaxation of the fibres (increasing straighten-
ing stretch \;) and the change in fibre angle (increasing
preferred angle 7). Indeed, when ), increases, it causes a
relaxation of the fibres, and the cylinder needs to inflate
so that the fibres reach their straightening stretch and are
able to bear load.

Other studies considered a change of undulation of the
fibres or fibrils and our model is in agreement with these
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findings, despite being fundamentally different in the basic
assumptions. Indeed, [Humphrey| (1999)) considers resorp-
tion and deposition of new fibres and [Watton and Hill
(2009) and Watton et al.| (2009) consider pre-stretch in Z-
direction. The relaxation effect that our model predicts
has been observed by Kamiya and Togawa, (1980). In ad-
dition, the residual stress is compressive in the inner layer
and tensile in the outer layer, in agreement with the be-
haviour described by [Fung (1983).

It is noteworthy that, in our model, we did not pre-
scribe the evolution law in accordance to experimental ob-
servations. Rather, we postulated an evolution law solely
based on the conditions of reduction to the archetype (|17))
and of compliance with the dissipation inequality . In
spite of its relatively simple form, the evolution law could
qualitatively reproduce the remodelling behaviour seen in
other studies. This indicates that the framework based
on the theory of evolution and material uniformity can be
a viable and promising paradigm to explore growth and
remodelling of biological tissues.

This work followed Epstein and Maugin| (2000) and |[Ep-
stein and Elzanowski (2007, who used the theory of uni-
formity with a time-dependent implant P, which consti-
tutes an internal variable. In contrast, Grillo et al.| (2015])
treated the fibre mean angle as a kinematic variable that
satisfies a balance of generalised forces, following the same
philosophy used by Di Carlo and Quiligotti (2002). Al-
though different in nature, these two approaches give qual-
itatively similar results.

The proposed model constitutes a step further in the
study of growth and remodelling of fibre-reinforced soft
biological tissues, in the framework of material implant
theory. Even though the numerical example lacks the nec-
essary details to study specific cases such as hypertension
and aneurysms, the agreements of the results with previ-
ous studies make this framework promising.
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