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Remodelling of Biological Tissues with Fibre Recruitment and Reorientation
in the Light of the Theory of Material Uniformity
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bDepartment of Mathematical Sciences “G.L. Lagrange”, Dipartimento di Eccellenza 2018-2022, Politecnico di Torino
Corso Duca degli Abruzzi 24, 10124, Torino, Italy

Abstract

This study focusses on the remodelling of biological tissues in the framework of the theory of material uniformity. A
constitutive evolution model is introduced, including fibre recruitment and reorientation, and subjected to the entropy
inequality, which enforces the Second Principle of Thermodynamics. The model is applied to a numerical example
describing a pressurised fibre-reinforced cylinder, roughly representing an artery, and is able to capture the major
characteristics of remodelling in arteries, as reported in the literature.
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1. Introduction1

Growth and remodelling in biological tissues can be2

studied as anelastic phenomena. Anelastic processes, such3

as plasticity or growth-remodelling, are accompanied by a4

change in microstructure resulting in configurational forces5

and residual stresses (e.g., Hoger, 1997; Gurtin, 1999).6

While plasticity occurs at constant mass, biological tissues7

not only experience a change in microstructure, but also an8

increase (growth) or decrease (resorption) of mass. Among9

the first attempts to approach the problem of growth and10

remodelling from the continuum mechanical perspective11

are the seminal works by Cowin and Hegedus (1976) and12

Hegedus and Cowin (1976) on bone remodelling. Rodriguez13

et al. (1994) studied growth and remodelling in arteries14

and used the Bilby-Kröner-Lee decomposition of the de-15

formation gradient F into a growth part Fg and an elastic16

part Fe. In practice, they considered a residually stressed17

reference configuration which grows into a stress-free inter-18

mediate (and generally incompatible) configuration, and19

finally deforms elastically to the current (and compatible)20

configuration actually attained by the body. Moreover,21

the fact that the collagen fibres in a biological tissue may22

be undulated in the reference configuration, and will thus23

bear stress only after a certain threshold stretch, has been24

studied as an additional remodelling parameter for the case25

of aneurysms (Watton et al., 2004; Watton and Hill, 2009).26

Here we employ the framework proposed by Epstein27

and Maugin (2000), in which growth and remodelling are28
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Email address: salvatore.federico@ucalgary.ca (Salvatore

Federico)

seen as the two aspects of an evolution process imply- 29

ing a local rearrangement of material inhomogeneities, de- 30

scribed in terms of an implant, under the light of the the- 31

ory of material uniformity. In this framework, growth 32

and remodelling are governed by the inhomogeneity rate, 33

LP = ṖP−1, where P−1 formally corresponds to the 34

growth tensor Fg of Rodriguez et al. (1994). Specifically, 35

the trace of LP is often required to be proportional to the 36

source or sink of mass due to growth that features in the 37

local mass balance of the body. Given LP , the implant 38

tensor P can be determined by integrating the differential 39

equation Ṗ = LPP . However, the way in which LP is 40

supplied is not unique. 41

We had previously modelled the effect of the undula- 42

tion of the individual fibrils in a collagen fibre (Hamedzadeh 43

et al., 2018) and, in this study, we employ the same mech- 44

anism for an entire fibre, and in terms of the theory of 45

material uniformity. Therefore, we introduce the proper 46

material implant describing both reorientation and recruit- 47

ment of the fibres in an artery, and solve the benchmark 48

problem previously studied by Grillo et al. (2015) in order 49

to elucidate our results. 50

2. Theory of Uniformity 51

We follow the theory of uniformity, originally intro- 52

duced by Noll (1967) and further developed by Epstein 53

and Maugin (1990). A material body B is said to be uni- 54

form if all of its points are made of the same material. 55

This implies that the tangent spaces TXB of the points 56

X of B have been modelled on an archetypal vector space 57

A ≡ R3, called precisely the archetype, via an isomorphism 58

P (X) : A→ TXB, (1)
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at every point X. In other words, if we look at the mi-59

croscopic structures surrounding two materially uniform60

points X and Y , we might not see identical pictures, as61

one might have been distorted or rotated in a different62

manner than the other. However, we can pass from X to63

Y via P (Y )P−1(X) : TXB→ TYB. For this reason, P is64

called the material isomorphism.65

Now, suppose to have an elastic material with elastic66

potentialW (X, t) = Ŵ (F (X, t), X, t) depending explicitly67

on the point X and time t. If the body is uniform, then68

the elastic potential depends on the point X and time t69

only through the (in this case, time-dependent) uniformity70

field P , i.e.,71

Ŵ (F (X, t), X, t) = J−1
P (X, t) W̌ (F (X, t)P (X, t)), (2)

where W̌ is the elastic potential in the archetype, and J−1
P72

comes from the theorem of the change of variables (Epstein73

and Maugin, 1990).74

3. Material Implant for a Single Fibre75

The generic fibre is straight with no undulation in the76

archetype, and the implant P (X, t) rotates the fibre, crimps77

it and maps it into the tangent space TXB at X, as shown78

in Figure 1. Note that using the implant P is equivalent to79

assuming the existence of a non-compatible intermediate80

configuration, which is mapped onto by the straightening81

deformation Fs coming from the multiplicative decompo-82

sition F = FeFs (Hamedzadeh et al., 2018).83

A ≡ R3

λsµ

B χ(B, t)F (X, t)

P (X, t)

X M
x

FM

Figure 1: Collagen fibre recruitment seen in terms of the theory of
uniformity, with the straightened fibre in the archetype.

The archetypal straightened fibre is represented by the84

vector λsµ, where µ is a unit vector and λs is the straight-85

ening stretch needed to map a fibre from its referential86

crimped state back to the archetypal straight state. The87

uniformity field P maps the archetypal vector λsµ into88

the unit referential vector M . Application of the polar89

decomposition theorem to P yields90

P = RU = RÛ(λs), PAβ = RAα U
α
β , (3)

where R rotates and shifts the fibre vector µ ∈ A from91

the archetype to the referential vector M ∈ TXB, and92

U = Û(λs) is the crimping experienced by the fibre when93

passing from the straight archetypal configuration to the94

undulated referential one. In order to find the expressions95

of R and U , we need some geometrical preliminaries.96

Let g be a metric in the archetype A and {aα}3α=1 a 97

g-orthonormal basis of A. Since the body B is a trivial 98

manifold embedded in the affine space S ≡ E3, we can 99

afford the luxury of choosing Cartesian coordinates {Zα}, 100

such that the associated basis {Iα}3α=1 coincides with the 101

archetypal basis {aα}3α=1 at every tangent space TXB. We 102

also choose a system of curvilinear coordinates {XA} in 103

the body B, with associated basis {EA}3A=1. The change 104

of basis and the transformation rule for vectors are 105

EA =
∂Zα

∂XA
Iα, WA =

∂XA

∂Zα
Wα. (4)

Consider the vector M̃ ∈ A such that its components are 106

equal to the Cartesian components of M ∈ TXB, i.e., 107

M̃α = Mα. The orthogonal tensor R is obtained as 108

RAβ =
∂XA

∂Zα
Qαβ , (5)

where Qαβ are the components of the archetypal tensor 109

Q rotating the archetypal direction µ into M̃ . The cor- 110

responding matrix [[Q]] is found as a function of the unit 111

vector ω = µ× M̃/‖µ× M̃‖, which describes the axis of 112

rotation, and the amplitude θ = arccos(µ.M̃) of the rota- 113

tion. Then, the rotation matrix [[Q]] can be obtained by 114

exponentiating the skew-symmetric matrix [[Ω]] associated 115

with the vector ω, i.e., 116

[[Q]] = e[[Ω]]θ, Ωαγ = εαβγω
β , (6)

which can be conveniently expressed by Rodriguez’ for- 117

mula (Koks, 2006) as 118

Qαγ = δαγ + (sin θ) Ωαγ + (1− cos θ) Ωαβ Ωβγ . (7)

The components of the pure stretch U are given by 119

Uαβ = (λ−1
s − 1)µαµβ + δαβ , (8)

where µβ = gβγ µ
γ are the components of the covector µ[ 120

associated with µ via the archetypal metric g. Finally, the 121

material implant P is given by 122

PAγ =
∂XA

∂Zα
Qαβ

[
(λ−1
s − 1)µβµγ + δβγ

]
, (9)

which can be simplified into 123

PAγ = (λ−1
s − 1)MAµγ +

∂XA

∂Zα
Qαγ , (10)

since Qαβ µβ = M̃α and (∂XA/∂Zα) M̃α = MA. For an 124

isochoric implant P (i.e., pure remodelling, no growth, 125

see Epstein and Elzanowski, 2007), the stretch U must be 126

changed into 127

Uαβ = (λ−1
s − λ1/2

s )µαµβ + λ1/2
s δαβ , (11)

so that we have 128

PAγ = (λ−1
s − λ1/2

s )MAµγ + λ1/2
s

∂XA

∂Zα
Qαγ . (12)
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4. Material Implant for a Distribution of Fibres129

We assume that the fibres in our biological tissue have130

a statistical distribution of orientation. Thus, rather than131

implanting fibres individually, we can implant a whole fam-132

ily of statistically oriented fibres into a material point X.133

We also assume that the elastic potential Ŵf of the fi-134

bres is the sum of an isotropic part Ŵfi and an anisotropic135

part Ŵfa. With an abuse of notation, we do not indicate136

the arguments (X, t) of the tensor fields, and write the137

anisotropic ensemble elastic potential of the fibres (Fed-138

erico and Herzog, 2008) as139

Ŵe(C, X, t) =

∫
S2XB

Ŵfa(Î4, X, t) Ψ(M ;X, t), (13)

where Î4 = C : (M ⊗M) is the fourth invariant of the140

right Cauchy-Green deformation C along the vector M ,141

and the probability distribution Ψ depends explicitly on X142

and t. Following the definition (2) of material uniformity,143

the fibre elastic potential Ŵfa is related to its archetypical144

counterpart by145

Ŵfa(Î4, X, t) = J−1
P W̌fa(Ǐ4), (14)

where Ǐ4 = P TCP : µ ⊗ µ is the fourth invariant of146

P TCP along the vector of µ. Thus, Eq. (13) becomes147

Ŵe(C, X, t) = J−1
P

∫
S2
W̌f (Ǐ4) Ψ̌(µ), (15)

where S2 denotes the archetypical unit sphere and Ψ̌ is the148

archetypal probability distribution.149

5. Dissipation Inequality and Evolution Law150

An evolution equation is required as an additional dif-151

ferential equation providing the inhomogeneity rate LP =152

ṖP−1 as a function of all quantities that can act as driving153

forces of the evolution process, i.e.,154

LP (X, t) = F̂(P (X, t),A(X, t), X), (16)

where A represents all possible driving force arguments,155

such as Eshelby stress, E = W IT − F TT , or Mandel156

stress, M = F TT , T being the first Piola-Kirchhoff stress.157

Note that, here, F̂ does not depend on time explicitly, i.e.,158

it is autonomous with respect to time.159

As shown by Epstein and Maugin (2000) and Epstein160

and Elzanowski (2007), and mentioned in the Introduc-161

tion, there are some restrictions that are essential for an162

appropriate choice of evolution law. First, the evolution163

law should be invariant with respect to a change of ref-164

erence configuration. Such an evolution law is said to be165

reduced to the archetype and reads166

LP = ṖP−1 = F̌(JP P
T AP−T ). (17)

Second, the evolution law should satisfy the dissipation in- 167

equality, i.e., within a purely mechanical framework and 168

for a hyperelastic material, for which the first Piola-Kirchhoff 169

stress tensor T is given by T = (∂Ŵ/∂F )(F ), the dissi- 170

pation D per unit reference volume satisfies (Epstein and 171

Elzanowski, 2007) 172

D = −Ẇ + T : Ḟ = −M : LP ≥ 0. (18)

The same result has been found with the BKL decomposi- 173

tion in several works on inelastic processes (see e.g., Simo 174

and Hughes, 1986; Simo, 1988; Cleja-Tigoiu and Maugin, 175

2000; Imatani and Maugin, 2002; Grillo et al., 2018; Di Ste- 176

fano et al., 2018; Crevacore et al., 2018). Here, we as- 177

sume a rate-dependent type of remodelling and reformu- 178

late D = D̂(C,P ,LP ) as a quadratic function of M via 179

a Legendre transformation on LP and enforcing the Prin- 180

ciple of Maximum Dissipation (Hackl and Fischer, 2008). 181

Setting D = Ď(C,P ,M) = −M : Ǩ(F ,P ) : M, we have 182

LP = −1

2

∂Ď

∂M
= −Ǩ(F ,P ) : M, (19)

where Ǩ(F ,P ) is a fourth-order tensor with major symme- 183

try only. For the purpose of this work, we define Ǩ(F ,P ) 184

as Ǩ(F ,P ) = k bP ⊗ cP (with components k (bP )AC (cP )BD;185

the “tensor-down” product ⊗ is defined in Curnier et al., 186

1995), with k being a positive constant, and bP = P g−1P T
187

and cP = b−1
P being the “left Cauchy-Green tensor” and 188

the “Finger tensor” associated with P , respectively. More- 189

over, in order to enforce a deviatoric LP (no growth), we 190

make it function of the deviatoric Mandel stress Md = 191

M− 1
3 (I : M)IT , i.e., 192

LP = −k bPMdcP , (20)

which can be shown to respect condition (17). 193

6. Example: Application to the Arterial Wall 194

Here, we apply our recruitment-reorientation remod- 195

elling framework to the benchmark problem reported by 196

Olsson and Klarbring (2008) and Grillo et al. (2015), with 197

a cylinder reinforced by two families of fibres (mimicking 198

the arterial wall) under plane strain in the plane orthogo- 199

nal do the direction X3 ≡ Z of the axis of the cylinder. 200

Fibre Implant. At each material point, we implant 201

an archetypal distribution with dominant direction µ0 = 202

0a1 + 0a2 + 1a3 into two families of fibres with equal and 203

opposite angles, γ and −γ, measured from the Z-direction 204

in the Θ-Z-plane and corresponding to the material direc- 205

tionsM0+ andM0−, as shown in Figure 2. This amounts 206

to defining an implant tensor P and then adapting its ex- 207

pression to the two angles γ and −γ, which gives the im- 208

plants P+ and P−, respectively. The polar decomposition 209
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P = RU of the implant (Equation (3)) yields210

[[U ]] =

√λs 0 0
0
√
λs 0

0 0 λ−1
s

 , [[R]] =

1 0 0
0 cos γ sin γ
0 − sin γ cos γ

 .
(21)

Fibre Orientation Probability. In each family, the211

fibre orientation follows a bivariate von Mises distribution212

(Holzapfel et al., 2015; Gizzi et al., 2018), in which we set213

the constants so to normalise it to one, i.e.,214

Ψ̌(β, α) =

√
2b

π

exp(a cos 2α) exp(b(1 + cos 2β))

2πI0(a) erfi(
√

2b)
, (22)

where α and β are the archetypical longitude and co-215

latitude angle, erfi is the imaginary error function and I0216

is the Bessel function of zero kind (see Abramowitz and217

Stegun, 1964). In this study, we used the values a = −1218

and b = 5 of the concentration parameters, to obtain fibres219

mostly laying in the Θ-Z-plane, as illustrated in Figure 2.220

A

λsµ0

P−

P+

M0−

M0+

γ− γ+

ER

EΘ

EZ

Figure 2: Tensors P+ and P−, with identical expressions except for
the angles γ and −γ, respectively, implant the two fibre families,
described by M0+ and M0−, from the archetypal straight state,
described by λsµ0.

Deformation. We cover the body manifold with a po-221

lar chart, denoted by (R,Θ, Z), in which, R ∈ [Ri, Ro],Θ ∈222

[0, 2π], Z ∈ [0, L]. Here, Ri and Ro, are the inner and outer223

radii respectively, Θ is the referential polar angle and L is224

the length of the cylinder. The current configuration is225

obtained under the assumption of pure inflation as:226

(R,Θ, Z) 7→ (r, θ, z) = (χr(R, t),Θ, Z). (23)

For convenience, from this point forward, we write ξ ≡ χr.227

Since ξ is a function solely of the radial coordinate R and228

time, we denote ξ′ ≡ ∂χr/∂R. The orthonormal bases for229

the tangent spaces of the referential and the current con-230

figurations are denoted by {ER,EΘ,EZ} and {er, eθ, ez},231

respectively. Thus, the deformation gradient F reads232

F (R, t) = ξ′(R, t) er ⊗ER +
ξ(R, t)

R
eθ ⊗EΘ + ez ⊗EZ .

(24)

Imposing incompressibility, i.e., J = detF = 1, we have233

ξ′(R, t)ξ(R, t) = R. (25)

Note that the condition J = 1, together with the restric- 234

tion JP = 1, amounts to require that also the tensor FP 235

has unitary determinant. 236

The separable differential equation (25) has solution 237

ξ(R, t) =
√
R2 + υ(t), (26)

in which the function υ is independent of R and has to be 238

determined from the boundary conditions. Note that, in 239

order for ξ(R, t) to be well defined, υ(t) must be bounded 240

from below, i.e., it must hold υ(t) ≥ −R2
i , for all t. Also, 241

we have 242

ξ′(R, t) =
R√

R2 + υ(t)
=

R

ξ(R, t)
, (27)

so that the matrix representation of F is 243

[[F (R, t)]] =

 R
ξ(R,t) 0 0

0 ξ(R,t)
R 0

0 0 1

 . (28)

Constitutive Equations. Following the premises in 244

Section 4, the artery is modelled as hyperelastic with an 245

isotropic matrix contribution Ŵm, an isotropic fibre con- 246

tribution Ŵfi and an anisotropic fibre contribution Ŵe±, 247

integral of the anisotropic fibre contribution Ŵfa±, based 248

on the ensemble potential Ŵe introduced in (13). Thus, 249

Ŵ (C, X) = (1− Φf )Ŵm(C)+

+ Φf (Ŵfi(C) + Ŵe+(C, X) + Ŵe−(C, X)), (29)

where Φf is the fibre volumetric fraction, assumed homo- 250

geneous through the sample, and 251

Ŵm(C) = 1
2km[Î1 − 3], (30a)

Ŵfi(C) = 1
2kfi [Î1 − 3], (30b)

Ŵfa±(C, X) = 1
4kfa H(Î4±(X)− 1)[Î4±(X)− 1]2, (30c)

where Î1 = tr(C) and the step function H is needed to 252

“switch-off” fibres with stretch smaller than one. The sec- 253

ond Piola-Kirchhoff stress is obtained as S = 2 ∂Ŵ/∂C 254

and, in particular, the anisotropic ensemble contribution 255

is given by 256

Se± = J−1
P

∫
S2

2
∂W̌fa±

∂Ǐ4±

∂Ǐ4±
∂C

Ψ̌(µ), (31)

where we used (14) to transform Ŵfa± into W̌fa± and 257

∂Ǐ4±
∂C

=
∂(P T

±CP± : µ⊗ µ)

∂C
= P T

± ⊗P T
± : µ⊗ µ, (32)

with components (P±)Aα(P±)Bβ µ
αµβ (see Curnier et al., 258

1995, for the definition of the “tensor-down” product ⊗). 259

In order to enforce the incompressibility constraint, we 260

employ the pulled-back deviatoric part (see Federico, 2012) 261

of the second Piola-Kirchhoff stress, 262

Sd ≡ Dev∗S = S − 1
3 (C : S)C−1. (33)
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We emphasise that, since we consider that the elastic po-263

tential of the matrix does not evolve and we have two264

families of fibres with different implants, we only consider265

the fibre part of the deviatoric Mandel stress as the driving266

force of evolution, i.e.,267

Med± = Dev (CSe±) = CSe± − 1
3 (I : CSe±)IT . (34)

Equilibrium, Boundary Conditions, Integration.268

The cylinder is under uniform pressure ℘ on the inner269

boundary ∂Bi and and zero traction on the outer bound-270

ary ∂Bo, and body force and inertial effects are neglected.271

Thus, the evolution of the tissue is governed by the equa-272

tion for P , given in (17) and equipped with appropriate273

initial conditions, and by the boundary value problem274

DivT = 0, inB. (35a)

T N = −J ℘F−T , on ∂Bi, (35b)
T N = 0, on ∂Bo, (35c)

where N is the normal covector to the boundary ∂B, and275

the hypothesis of isochoric deformation implies J = 1.276

Since we consider an axisymmetric problem, the first277

Piola-Kirchhoff stress is independent of Θ and Z. Also,278

the boundary conditions ensure that the matrix associated279

with the first Piola-Kirchhoff stress is diagonal, i.e., [[T ]] =280

diag[Tr
R, Tθ

Θ, Tz
Z ]. The first Piola-Kirchhoff stress can281

be expressed as the sum of its hydrostatic and deviatoric282

components, and in terms of the deviatoric second Piola-283

Kirchhoff stress, as284

T = Th + Td = −J pF−T + g F Sd. (36)

The hydrostatic pressure p is found from (35) (see Grillo285

et al., 2015).286

Evolution Equation. The evolution equation for each287

of the Ṗ± is obtained from that of LP± = Ṗ±P
−1
± by288

right-multiplying Equation (20) written for each P±, by289

the corresponding P±290

Ṗ± = −k JP± P± g−1P T
±Med±P

−T
± g. (37)

In our example, using (3) and (21), solving Equation (37)291

for the deviatoric Mandel stress Med± of each of the two292

fibre families, and then summing to obtain the overall de-293

viatoric Mandel stress of the fibres Med, yields294

λ̇s

λs
= k (Med)R

R, (38a)
1
2λ

2
s(3 cos(2γ)−1)λ̇s−(λ6

s−1)γ̇ sin(2γ)

λ3
s

= k (Med)Θ
Θ. (38b)

Numerical Algorithm. To study the numerical ex-295

ample discussed in the previous sections, a code is devel-296

oped in Wolfram Mathematica. The main focus of the297

numerical algorithm in this study is to have high accuracy298

and precision as we are studying a model with a simple ge-299

ometry (isochoric inflation of a hollow cylinder). Although300

the geometry is simple, the evolution equation (38) makes301

Parameter Value Symbol
inner radius 1 mm Ri
outer radius 2 mm Ro
internal pressure 0.02 MPa ℘i
initial angle π/4 γ0

initial λs 1.014 λs0
matrix stiffness 0.0375 MPa km
fibre isotropic stiffness 0.0375 MPa kfi
fibre anisotropic stiffness 0.0375 MPa kfa
remodelling stiffness 5× 10−8 s/Pa k
fibre volume fraction 0.2 Φf

Table 1: Parameters employed in the numerical analysis.

the model computationally heavy. In this numerical study, 302

we have two types of integrals: the surface integral over 303

the unit sphere S2, which describes the fibre distribution, 304

and the integral over the interval bounded by the inner 305

and the outer radii [Ri, Ro]. For the surface integral, we 306

use the Lebedev quadrature (Lebedev, 1977), in which the 307

grid points and the corresponding weights are obtained 308

from the exact integration of spherical harmonics up to 309

an arbitrary order. The model parameters are given in 310

Table 1. 311

7. Numerical Results 312

Figure 3 represents the evolution of the straightening 313

stretch λs. The behaviour of λs is monotonically decreas- 314

ing in the radius R throughout the evolution. The dif- 315

ference λs(Ri, t) − λs(Ro, t) increases monotonically with 316

time. We note that the λs(Ro) evolves due to the fact that 317

the radial deviatoric Mandel stress of the fibres, Med is not 318

zero (Equation (38)), although the total Mandel stress M 319

vanishes due to the boundary conditions. 320

1.0 1.2 1.4 1.6 1.8 2.0
1.0

1.1

1.2

1.3

undeformed radius R (mm)

st
ra

ig
ht

en
in

g
st

re
tc

h
λ
s 0 s 200 s

400 s 600 s
800 s

Figure 3: Evolution of the straightening stretch λs with time.

Figure 4 shows the evolution of the behaviour of the 321

angle γ describing the preferred fibres direction with time. 322

After remodelling, the maximum and minimum angles oc- 323

cur at the inner and outer radii, respectively. The differ- 324
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ence γ(Ri, t) − γ(Ro, t) is more pronounced in the early325

cycles and then tends to remain constant with time.326

1.0 1.2 1.4 1.6 1.8 2.0

45
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γ
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) 0 s 200 s
400 s 600 s
800 s

Figure 4: Evolution of the preferred fibre angle γ with time.

Figure 5 shows the evolution of the radial first Piola-327

Kirchhoff stress TrR (dashed lines) and circumferential328

first Piola-Kirchhoff stress TθΘ (solid lines) as a function329

of the deformed radius r = ξ(R, t). The remodelling makes330

the circumferential stress TθΘ more homogeneous through-331

out the thickness of the tube. The difference TθΘ(Ri, t)−332

Tθ
Θ(Ro, t) before remodelling is about 23 kPa at t = 0 s333

and it reduces to 16 kPa at t = 400 s and to 14 kPa at334

t = 800 s.335
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Figure 5: First Piola-Kirchhoff stresses TrR (dashed lines) and TθΘ

(solid lines).

One of the most prominent mechanical aspects of bi-336

ological tissues is the presence of residual stresses. Fung337

(1983) predicted that the distribution of residual stresses338

in the arteries is such that the residual circumferential339

stress (along Θ-axis) is compressive in the interior layers340

and tensile in the outer ones. The residual second Piola-341

Kirchhoff stresses for our benchmark problem is shown in342

Figure 6 as a function of the undeformed radius R, at time343

t = 800 s. All three principal residual stresses increase344

monotonically and the residual circumferential stress SΘΘ,345

in accordance with Fung (1983), is compressive at the in- 346

ner wall and tensile at the outer wall.
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Figure 6: Residual second Piola-Kirchhoff stresses at time t = 800 s.
347

8. Discussion and Conclusions 348

In this work we introduced a thermodynamically ad- 349

missible model for pure remodelling of a fibre-reinforced 350

material representing the arterial wall tissue. The ap- 351

proach is based on the theory of material uniformity, which 352

is described by the material implant P . We proposed a 353

simple evolution law, in which the inhomogeneity rate LP 354

is linearly related to the deviatoric Mandel stress Md. 355

Using the evolution law (38), we solved a benchmark 356

numerical problem describing a pressurised thick-walled 357

cylinder under plane strain conditions, with uniform in- 358

ternal pressure, as in the works by Olsson and Klarbring 359

(2008) and Grillo et al. (2015). We use the same consti- 360

tutive laws as in the work by Grillo et al. (2015) but a 361

more realistic fibre orientation probability, with two fam- 362

ilies of fibres each obeying a bivariate von Mises distribu- 363

tion (Holzapfel et al., 2015; Gizzi et al., 2018) (Figure 2). 364

The results for the remodelling angle are qualitatively 365

similar to those obtained by Grillo et al. (2015). Both 366

models predict that the preferred angle γ increases with 367

time, with values at the inner radius Ri being the largest. 368

Moreover, the dependence on radius and time of the ra- 369

dial and circumferential stresses TrR and TθΘ in our model 370

(Figure 5) is similar to that in the paper by Grillo et al. 371

(2015). However, while in Grillo et al. (2015) the cylin- 372

der deflates as it becomes stiffer circumferentially, in our 373

study the cylinder inflates. This is not surprising, as we 374

have two evolving mechanisms that work simultaneously, 375

namely the relaxation of the fibres (increasing straighten- 376

ing stretch λs) and the change in fibre angle (increasing 377

preferred angle γ). Indeed, when λs increases, it causes a 378

relaxation of the fibres, and the cylinder needs to inflate 379

so that the fibres reach their straightening stretch and are 380

able to bear load. 381

Other studies considered a change of undulation of the 382

fibres or fibrils and our model is in agreement with these 383
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findings, despite being fundamentally different in the basic384

assumptions. Indeed, Humphrey (1999) considers resorp-385

tion and deposition of new fibres and Watton and Hill386

(2009) and Watton et al. (2009) consider pre-stretch in Z-387

direction. The relaxation effect that our model predicts388

has been observed by Kamiya and Togawa (1980). In ad-389

dition, the residual stress is compressive in the inner layer390

and tensile in the outer layer, in agreement with the be-391

haviour described by Fung (1983).392

It is noteworthy that, in our model, we did not pre-393

scribe the evolution law in accordance to experimental ob-394

servations. Rather, we postulated an evolution law solely395

based on the conditions of reduction to the archetype (17)396

and of compliance with the dissipation inequality (18). In397

spite of its relatively simple form, the evolution law could398

qualitatively reproduce the remodelling behaviour seen in399

other studies. This indicates that the framework based400

on the theory of evolution and material uniformity can be401

a viable and promising paradigm to explore growth and402

remodelling of biological tissues.403

This work followed Epstein and Maugin (2000) and Ep-404

stein and Elzanowski (2007), who used the theory of uni-405

formity with a time-dependent implant P , which consti-406

tutes an internal variable. In contrast, Grillo et al. (2015)407

treated the fibre mean angle as a kinematic variable that408

satisfies a balance of generalised forces, following the same409

philosophy used by Di Carlo and Quiligotti (2002). Al-410

though different in nature, these two approaches give qual-411

itatively similar results.412

The proposed model constitutes a step further in the413

study of growth and remodelling of fibre-reinforced soft414

biological tissues, in the framework of material implant415

theory. Even though the numerical example lacks the nec-416

essary details to study specific cases such as hypertension417

and aneurysms, the agreements of the results with previ-418

ous studies make this framework promising.419
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