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Abstract

This work presents contact problems of laminated structures via the Carrera Unified Formulation (CUF). The

modeling approach makes use of higher-order 1D elements accounting for transverse shear and stretching. The

current work considers normal, frictionless contact based on a node-to-node formulation, and the penalty ap-

proach to enforce the contact constraints. Numerical assessments compare classical beam theories, higher-order

CUF, and 3D finite element models regarding solution accuracy, computational size, and time required for the

analysis. The results show the validity of Layer-Wise CUF models to capture both global and local deformations

accurately, which is a shortcoming of classical beam theories, and require at least an order of magnitude fewer

degrees of freedom and computational time than a full 3D finite element analysis. Particularly relevant are the

accurate distributions of transverse shear stress and stretching along the thickness in the perspective of failure

analyses.
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1 Introduction

Contact mechanics is an important aspect of structural analysis as there usually exists a state of static or

dynamic contact between various components of a mechanical system. Some instances of contact include

meshing gears, forming processes, and the simulation of indentation. An important engineering application of

contact is the impact analysis of structures. This is especially relevant due to the increasing use of composite

laminated materials in which impacts can cause localized damage and delamination, the latter leading to a

severe reduction of the structural mechanical properties.

The numerical modeling of contact is a current issue in the field of computational mechanics [1]. Various

techniques have arisen during the last few decades with varying complexity. Early works introduced node-to-

node contact algorithms in which the contact constraint acts at the nodal level [2, 3]. Node-to-node algorithms

constitute the simplest approach and may have limited applications due to the requirements of a conforming

mesh and nodal compatibility between the contacting bodies. The necessity to overcome such restrictions led

to the development of contact algorithms based on node-surface interactions in which a constraint on the slave

node avoid penetration through the master surface [4, 5]. Such a class of contact strategies, often referred to as

single-pass methods, ensures that the slave nodes do not penetrate the master surface but has not constraints

concerning the nodes of the master surface penetrating the slave surface. Such methods may not be effective for

specific geometries and often fail the contact patch test [6]. This led to the development of two-pass algorithms

with a two-way application of the standard node-surface algorithm, i.e., the master surface and slave node

definitions swapped in the second run. While such a technique results in an attractive solution that passes the

contact patch test, it often suffers from locking, i.e., over-constraining of the system. For this reason, efforts

shifted to surface-based approaches in which the contact constraint acts in an integral or weak form over the

contact surfaces of the interacting bodies [6–8]. A particular class of surface-based contact algorithms is the

mortar method in which the discretization of the slave surface defines the interpolation of the contact constraints

[1, 9–11].

More recently, researchers have proposed methods to transform non-matching meshes of interacting bodies

to enable the use of node-to-node contact algorithms. Such a strategy for tackling the problem of contact aims

to exploit the simplicity of node-based algorithms and their low computational cost as compared to surface-

based algorithms. Some instances include the use of variable node elements [12], the use of polyhedral elements

with sud-dividable polygonal faces [13], and the use of virtual contact elements to interface the two contacting

surfaces [14]. All these techniques effectively convert a general non-matching mesh into equivalent discretizations

having nodal compatibility at the various interfaces and allowing for the use of classical node-to-node contact

formulations.

The high-fidelity numerical modeling of composite structures using 3D FE can involve very high computa-

tional costs. Particularly demanding outputs are transverse axial, and shear stresses playing a decisive role in

failure initiation and propagation. Contact problems, due to their inherent nonlinearity, can further increase



the computational cost of the analysis. Refined beam theories may address the issue of computational effort

given that refined models are available and extensive works by Wriggers et al. on the development of contact

algorithms specifically for beams [15–18]. Examples of approaches to refining beam models include the Gener-

alised Beam Theory (GBT) which applies cross-section deformation modes to obtain the deformed configuration

[19, 20] and the Variational Asymptotic Method to refine the beam theory [21] with rigorous control of the ac-

curacy. The present work utilizes the Carrera Unified Formulation (CUF) [22]. CUF layer-wise (LW) beam

models can obtain accurate stress fields in a computationally efficient manner [23]. The CUF framework has re-

cent extensions to nonlinear problems involving geometrical nonlinearities [24], as well as material nonlinearities

[25, 26].

The current work involves the assessment of 1D structural models for contact problems involving composite

structures and using CUF [22]. Geometrical constraints based on the non-penetration condition enforce contact

between the interacting bodies modeled using higher-order beams based on CUF. The numerical results underline

the role of higher-order cross-sectional displacement fields to capture 3D-like stress fields. The paper has the

following sections: Section 2 describes CUF in detail, while a brief introduction to contact mechanics and its

implementation in CUF via a node-to-node formulation is in Section 3. The numerical assessments are in Section

4, and finally, the conclusions in Section 5.

2 Structural theories and finite element formulation

Given a beam segment, aligned along the y-axis, as shown in Fig. 1, CUF defines its displacement field as

u(x, y, z) = Fτ (x, z)uτ (y), τ = 1, 2, . . .M (1)

where the expansion function Fτ defines the cross-section kinematics, and uτ (y) is the vector of the generalized

displacements. The number of terms in the expansion function is M . The choice of the expansion and the

number of terms defines a structural theory. This paper makes use of Taylor and Lagrange expansions, as

detailed below.

z

y

x

Figure 1: Arbitrary beam element and Cartesian reference frame

Taylor expansion This class of expansion functions, referred to as TE, employs a Taylor series of the type xi

zi across the cross-section of the beam. The order of the resulting polynomial is N and arbitrary. For instance,



the second-order TE model - N = 2 - is

ux = ux1 + xux2 + zux3 + x2ux4 + xzux5 + z2ux6

uy = uy1 + xuy2 + zuy3 + x2uy4 + xzuy5 + z2uy6

uz = uz1 + xuz2 + zuz3 + x2uz4 + xzuz5 + z2uz6

(2)

Classical beam models such as the Euler-Bernoulli Beam Theory (EBBT) and Timoshenko Beam Theory (TBT)

are special cases of the N = 1 case. In this class of the expansion function, the system unknowns are the dis-

placements and their derivatives till the N th order. More details on the use of the Taylor series as a class of

expansion functions in CUF are in [27].

Lagrange expansion In this class of expansion, referred to as LE, Lagrange polynomials define the displace-

ment field over the cross-section. LE results in pure displacement degrees of freedom (DOF) with no rotations

or derivatives involved. The displacement field of the 9-node quadratic cross-sectional element (L9) is

ux =

9∑
τ=1

Fτ (x, z) · uxτ (y)

uy =

9∑
τ=1

Fτ (x, z) · uyτ (y)

uz =

9∑
τ=1

Fτ (x, z) · uzτ (y)

(3)

where uxτ , uyτ , uzτ are translational DOF and Fτ is the Lagrange interpolation function. Further details on

the use of LE as a class of expansion function in CUF are in [28].

Finite element formulation The stress and strain vectors are

σ = {σxx, σyy, σzz, σxy, σxz, σyz}

ε = {εxx, εyy, εzz, εxy, εxz, εyz}
(4)

The linear strain-displacement relation is

ε = Du (5)

where D is

D =


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The stress-strain relation is

σ = Cε (6)

where C is the material stiffness matrix. The structure has standard beam elements along the axis using the

nodal interpolation functions Ni,

u(x, y, z) = Fτ (x, z)Ni(y)uτi (7)

According to the principle of virtual displacements (PVD),

δLint = δLext (8)

where δLint is the virtual variation of the internal strain energy,

δLint =

∫
V

δεTσdV (9)

δLext is the virtual work due to external loading,

δLext = FsNjδu
T
sjP (10)

where P is the external force vector. Via Eqs. (6), (7) and (9), the stiffness matrix reads

δLint = δuTsjk
ijτsuτi (11)

where

kijτs =

∫
l

∫
A

DT (Ni(y)Fτ (x, z))CD(Nj(y)Fs(x, z)) dA dl (12)

where A and l indicate the axial and cross-sectional domains. kijτs is a 3 × 3 matrix and referred to as the

Fundamental Nucleus (FN). Its form remains invariant for any given expansion function and order. A detailed

explanation of the concept of the fundamental nucleus and its role in CUF is in [22].

3 Contact Mechanics

3.1 Contact kinematics

Let us consider two distinct bodies Ωi, i = 1,2, as shown in Fig. 2. Two distinct points X1 and X2 initially

on the boundary of the respective bodies, come into contact due to the applied deformation ϕ. The position of

the points Xi in the current configuration is

xi = Xi + ui; i = 1, 2 (13)



where ui is the displacement of the reference point Xi. For the case of contact between the two bodies, the

two points occupy the same physical space as soon as x1 = x2. Contact models may take into account the

�1

�2

�(�2)

�(�1)
X1

X2

x1 = x2

�

�

Figure 2: Reference and current configurations of two distinct bodies coming into contact

application of geometric constraints or constitutive laws at the contact interface resulting in a micromechanical

approach [29]. The current study adopts geometrical constraints with a non-penetration condition. Such a

condition uses a gap function gN ,

gN = (x2 − x1) · n1 ≥ 0 (14)

where n1 is the normal vector to Ω1. For the case of geometrically linear kinematics, the gap function given in

Eq. (14) becomes

gN = [(X2 −X1) + (u2 − u1)] · n1 ≥ 0 (15)

The above results in an alternative definition of the gap function as

gN = (u2 − u1) · n1 + ginit ≥ 0 (16)

where the initial gap between the two bodies, ginit, is

ginit = (X2 −X1) · n1 (17)

The system is then in a state of contact when the gap function gN = 0. The normal component of the stress

tensor is then the contact pressure pN , which is equal and opposite for the two bodies at the point of contact.

This leads to a set of Kuhn-Tucker type equations referred to as Hertz-Signorini-Moreau conditions [29],

gN ≥ 0, pN ≤ 0, gNpN = 0 (18)



3.2 Weak form of contact

The resulting variational form is

δLint ≥ δLext + δLc (19)

where δLc is the variation of the work due to contact. In the current work, the nonlinear contact problem is

implicitly solved using Newton’s method with the penalty approach for the treatment of the contact constraint.

Thus, the work due to contact takes the form

Lc =
1

2

∫
∂Ωc

εNg
2
NdA (20)

where ∂Ωc is the contact surface, and εN is the penalty parameter for normal contact. The virtual variation

becomes

δLc =

∫
∂Ωc

εNgNδgNdA (21)

3.3 Node-to-Node contact

In the node-to-node formulation, the contact constraints act at the nodal level. Based on the penalty approach,

the global equilibrium equation takes the following form

[K + Kp]u = F̄ (22)

where Kp is the penalty stiffness matrix. The global penalty matrix stems from the assembly of the penalty

stiffness terms for a given node pair i,

kpi = εNnTi ni (23)

where ni = {nx, ny, nz} is the unit normal vector between the node pair i, and εN is the penalty parameter. In

the current work, the penalty parameter is [30]

εN ≤
min(K + Kp)√

N · t
(24)

where N is the degrees of freedom of the global system, and t is the round-off error. The nodal contact force,

Fci , for the node pair i is

Fc
i = εNgNni (25)

The contact force term is an addition to the external force vector, and the sum represents the right-hand side

of Eq. (22), such that

F̄ = Fc + Fext (26)



4 Numerical Examples

4.1 Preliminary assessments via Hertzian contact of two cylinders

The current example is a standard benchmark test for which an analytical solution is available and hence serves

to validate the contact implementation in the CUF framework. An analytical solution exists for two parallel

cylinders with a line load, which results in a state of Hertzian contact [31]. The numerical case considers two

half-cylinders, as shown in Fig. 3. The mechanical characteristics are as in [10]. Both cylinders have a radius

R = 8, unit thickness, Young’s modulus E = 200, and Poisson’s ratio ν = 0.3. The load stems from a vertical

displacement, uz = -0.01, on the upper cylinder, as shown in Fig. 3. The numerical results used two models,

namely, beam theories based on CUF, and 3D FE in ABAQUS, the latter serving as a reference numerical

solution. Table 1 lists the model data for the CUF and ABAQUS models.

R8

R8
z

x

Figure 3: Half-cylinders in a state of Hertzian contact

Table 1: Modeling data for the numerical models used in the analysis of Hertzian contact

Model Discretization of each half-cylinder Total DOF Time (s)

ABQ - Coarse 1,000 C3D8R 8,445 11
ABQ - Medium 6,000 C3D8R 44,583 76
ABQ - Refined 32,000 C3D8R 218,559 719
CUF - 1D 1 B4 - 128 L9 13,176 296

Figure 4 shows the displacement uz along z at [x = 8.0, y = 0.5], while Fig. 5 shows the normal stress σzz

along the same line. The 3D distribution of the vertical displacement uz in the vicinity of the contact region is

in Fig. 6. Table 2 summarizes the numerical results at the center of the contact region.

The numerical results suggest that

1. The CUF results are in good agreement with both the analytical and 3D FE solutions obtained by a



Figure 4: Vertical displacement uz along the z-axis

Figure 5: Normal stress σzz along the z-axis
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Figure 6: Distribution of the vertical displacement uz near the contact region

Table 2: Numerical results at the center of the contact region [x = 8.0, y = 0.5, z = 8.0]

Model σzz

ABQ - Coarse -0.49371
ABQ - Medium -0.96185
ABQ - Refined -1.42374
CUF - 1D -1.47791
Hertz - Analytical -1.68676



3D finite element analysis. In particular, the maximum transverse axial stress is particularly demanding

regarding the mesh resolution required.

2. The CUF model can capture the deformed configuration at the contact region in a computationally

efficient manner, requiring about 16 times fewer DOF than a standard 3D FE. Significant advantages in

the computational time are observable although, most likely, such an advantage could increase via further

optimization of the CUF FE code.

3. As well known, the inclusion of the transverse stretching is decisive to detect such results.

4.2 Laminated beams in contact

The current example considers two composite laminated beams which come into contact due to an applied

central deflection, as shown in Fig. 7. Each beam consists of 3 plies, [0/90/0], with each ply having a thickness

of 0.001 m. The ends of both beams are clamped, and a displacement uz = 0.15 m is at the mid-span of the

upper beam, i.e., [x = 0.05, y = 1.0, z = 0.106]. The material system used is IM7/8552, see Table 3.

uz

L = 2 m

tlam = 0.003

0.1

0

90

0

0

90

0

y

z

x

z

W = 0.1 m

Figure 7: A schematic representation of two laminated beams coming into contact (all dimensions in m)

Table 3: Orthotropic material properties

E1 [GPa] E2 [GPa] E3 [GPa] G12 [GPa] G13 [GPa] G23 [GPa] ν12 ν13 ν23

165.0 9.0 9.0 5.6 5.6 2.8 0.34 0.34 0.5

The structural models adopted are classical beam theories - EBBT and TBT - and higher-order CUF beam

models. Reference numerical solutions stemmed from 3D FE using ABAQUS. Table 4 summarizes the model

data concerning the mesh and computational effort.

The results of the numerical analyses refer to the maximum applied displacement. Figure 8 shows the

longitudinal displacement, uy, and vertical deflection, uz, along the y-axis, [x = 0.05, z = 0.003], whereas the

axial stress σyy along the same line is in Fig. 9. LW indicates that the LE CUF model adopted provides a

layer-wise modeling of the laminate. Figure 10 shows the ux along the x-axis of the lower beam, [y = 1.0, z =

0.003]. The transverse shear stress, σyz, through the thickness of both beams at [x = 0.05, y = 0.8] is in Fig. 11

and its distribution through the cross-section at [y = 0.8] in Fig. 12. Tables 5 and 6 summarise the numerical

results for the top and bottom beams, respectively.



Table 4: Model information for the two beams in contact

Model Discretization of each beam Total DOF Time (s)

3D FE
ABQ - Coarse 6,000 C3D8R, 1 element per ply 51,597 57
ABQ - Medium 14,400 C3D8R, 2 elements per ply 107,541 191
ABQ - Refined 43,200 C3D8R, 3 elements per ply 301,041 785
ABQ - Quadratic 6,000 C3D20R, 1 element per ply 189,945 436

1D CUF
CUF LW 20 B4 - 12 L9 23,058 227

Table 5: Numerical results for the upper beam at the point x = 0.05, y = 0.8, z = 0.106

Model uy [mm] uz [mm] σyy [MPa]

3D FE
ABQ - Coarse 0.2156 -134.340 -89.1
ABQ - Medium 0.2159 -134.363 -111.7
ABQ - Refined 0.2158 -134.353 -119.1
ABQ - Quad 0.2156 -134.316 -133.7

Classical Beam Theory
EBBT 0.2159 -134.395 -126.4
TBT 0.2159 -134.395 -126.4

CUF Layer-Wise Theory
CUF LW 0.2157 -134.335 -126.6

Table 6: Numerical results for the lower beam at x = 0.05, y = 0.8, z = 0.003

Model uy × 103 [mm] uz [mm] σyy [MPa]

3D FE
ABQ - Coarse 7.188 -44.761 -29.7
ABQ - Medium 7.193 -44.779 -37.2
ABQ - Fine 7.193 -44.776 -39.7
ABQ - Quad 7.186 -44.765 -44.5

Classical Beam Theory
EBBT 7.198 -44.798 -42.1
TBT 7.198 -44.798 -42.1

CUF Layer-Wise Theory
CUF LW 7.190 -44.778 -42.2
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Figure 8: Displacement components along the longitudinal axis of the lower beam
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Figure 9: Axial stress σyy along the longitudinal axis of the lower beam
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Figure 10: Transverse displacement ux along the x-axis of the lower beam
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Figure 11: Shear stress σyz through the thickness of the laminated beams
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Figure 12: Shear stress σyz distribution over the cross-section of the beams in contact [y = 0.8 m]



The numerical results suggest that

1. Lower-order models, i.e., EBBT and TBT, provide good accuracy concerning transverse displacement and

axial stress.

2. The proper detection of transverse shear stresses requires higher-order models. Moreover, the CUF model

layer-wise capabilities lead to fairly good continuity of transverse shear at the interfaces.

3. 3D FE requires multiple elements through the ply thickness to accurately capture interlaminar shear

stresses leading to very high computational costs due to the aspect ratio constraints.

4. The CUF LW model requires about 21x fewer degrees of freedom and 6x less computational time, compared

to a full 3D finite element analysis, for comparable quality of results.

4.3 Sandwich beam under bending

The current example considers a sandwich beam consisting of a soft foam core and composite laminated face-

sheets. The beam is under a 3-point bending test with the ends clamped, and the central bending load applied

via a semi-circular roller, as shown in Fig. 13. Each face-sheet is a 3-ply laminate with a [0/90/0] stacking

sequence and a ply thickness of 1 mm. The composite material system is Glass-Fibre/Polyester, see Table 7. The

foam core is isotropic with Young’s Modulus E = 35 MPa and Poisson’s ratio ν = 0.4. The structural model

Foam Core

0

90

0

0

90

0

W = 50 mm

3

3

33

L = 500 mm

R 36
y

z

x

z

Figure 13: Doubly-clamped sandwich beam under three-point bending

Table 7: Material properties of the face-sheet used in the sandwich beam under three-point bending

Material E1 [GPa] E2 [GPa] E3 [GPa] G12 [GPa] G13 [GPa] G23 [GPa] ν12 ν13 ν23

Glass fibre-Polyester 25.8 8.7 8.7 3.5 3.5 2.4 0.34 0.34 0.47

is 1D CUF LW, and the indenting roller is a beam with a semi-circular cross-section, oriented perpendicular to

the sandwich beam. Reference numerical solutions stemmed from 3D FE analysis in ABAQUS. The modeling

details for the various models are in Table 8. The results refer to the configuration in which the top surface of

the beam reached uz = -4 mm. The shear stress σyz through the thickness of the sandwich, at the point [x =

0.025, y = 0.15], is in Fig. 14. The contour plots of the transverse stretching εzz, axial and shear stress σyy and

σyz of the cross-section at the mid-span [y = 0.25 m], are in Fig. 15, 16 and 17, respectively. The numerical

results in various points of the structure are in Table 9.

The results suggest that



Table 8: Model information for the various finite element analyses of the sandwich beam under 3-point bending

Model Sandwich beam discretisation DOF CPU Time (s)

3D FE
ABQ3D - Coarse 11,200 C3D8R, 1 element per ply 45,408 40
ABQ3D - Medium 44,800 C3D8R, 2 elements per ply 153,300 320
ABQ3D - Refined 80,000 C3D8R, 4 elements per ply 261,675 832
ABQ3D - Quadratic 14,000 C3D20R, 1 element per ply 201,504 396

CUF LW
CUF LW 10 B4 - 32 L9, 1 element per ply 14,229 279

Table 9: Numerical results at specific points of the sandwich structure as obtained by the various analyses

Model uy [mm] σzz [MPa] σyy [MPa]
(y = 125, z = 36) (z = 0)

Reference 3D FE
ABQ3D - Coarse 0.0527 -1.17 23.8
ABQ3D - Medium 0.0530 -1.28 27.1
ABQ3D - Refined 0.0531 -1.34 28.9
ABQ3D - Quad 0.0531 -1.35 30.7

CUF Layer-Wise Theory
CUF LW 0.0553 -1.33 31.1
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Figure 14: Transverse shear stress σyz through the thickness of the sandwich outer layers
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Figure 15: Transverse axial strain εzz distribution at the cross-section of the sandwich beam [y = 0.25 m]
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Figure 16: Axial stress σyy distribution at the cross-section of the sandwich beam [y = 0.25 m]
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Figure 17: Transverse shear stress σyz distribution at the cross-section of the sandwich beam [y = 0.15 m]



1. As in the previous case, the proposed formulation proved accurate in detecting strain and stress compo-

nents.

2. The use of refined 1D models leads to a fairly complex cross-sectional distribution of εzz and as accurate

as 3D FE.

3. The computational advantages of the present framework remain.

5 Conclusion

This paper has presented numerical results on contact problems of composite structures via 1D models ac-

counting for transverse shear and stretching. Numerical assessments considered analytical solutions, classical

beam theories, and 3D FE for comparison purposes. The present formulation - stemmed from the 1D CUF

models - provides a layer-wise description of the multilayer structure and the full 3D strain and stress field. The

numerical results suggest that

1. Classical beam theories are reliable to predict the global transverse displacement distribution but are

unable to account for localized deformations that often occur in the contact region causing both local

cross-sectional changes.

2. The present LW formulation provides accurate through-the-thickness strain and stress distributions with

almost continuous transverse shear distributions.

3. As compared to 3D FE, 1D CUF-LW provides a two-order of magnitude reduction in the degrees of freedom

and a one-order of magnitude reduction in the computational time. 3D FE requires multiple elements

along the thickness to capture transverse distributions, and such a requirement combines negatively with

the aspect ratio constraint.

The proper detection of the full 3D strain and stress field within the nonlinear contact framework is the first

step towards the impact analysis and to detect the onset of damage and further propagations. Further works

include the implementation of surface-based contact algorithms.
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