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Abstract—Edge computing allows computationally intensive
tasks to be offloaded to nearby (more) powerful servers, passing
through an edge network. The goal of such offloading is to reduce
data-intensive application response time or energy consumption,
crucial constraints in mobile and IoT devices. In challenged
networked scenarios, such as those deployed by first responders
after a natural or man-made disaster, it is particularly difficult
to achieve high levels of throughput due to scarce network
conditions.

In this paper, we present an architecture for traffic manage-
ment that may use deep learning to support forwarding during
task offloading in these challenging scenarios. In particular, our
goal is to study if and when it is worth using deep learning to
route traffic generated by microservices and offloading requests
in these situations. Our design is different than classical ap-
proaches that use learning since we do not train for centralized
routing decisions, but we let each router learn how to adapt
to a lossy path without coordination, by merely using signals
from standard performance-unaware protocols such as OSPF.
Our results, obtained with a prototype and with simulations are
encouraging, and uncover a few surprising results.

I. INTRODUCTION

Data-intensive computing requires seamless processing
power which is often unavailable at the network-edge, but
rather hosted in the cloud platforms. The large amount of
mobile and IoT devices that has become available in the
past few years produces and will produce a massive amount
of data, introducing several data and network orchestration
challenges and opportunities. The majority of these devices
do not have or cannot handle the computational requirements
to process the data they capture. For this reason, solutions
that require outsourcing the responsibility to perform (some
or all) computations to the edge cloud grew in popularity in
recent years [1]–[5]. The process of transferring or delegating
computational tasks is called offloading [2] or onloading [6].
Offloading or onloading operations are crucial for mobile
devices because they lead to lower response time, lower
processing time and smaller device energy consumption. In
critical scenarios, such as natural or man-made disasters [7],
where the physical network infrastructure is scarce or likely to
be temporarily unavailable, not only is computation offloading
helpful, but it becomes a necessity. This is because as latency
requirements become more strict, network alternatives are
scarce and data needs fast delivery. In this or similar scenarios,
responsive path management solutions to direct offloading
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requests, e.g., mobile-generated traffic steering, may become
an essential application requirement.
How are we different? Traffic engineering solutions used
in production today (e.g., OSPF, ECMP), are performance-
unaware, that is, they react only when losses or delay impact
the cost assigned to a path; we argue that those are hence
unsuitable for unstable or unreliable networks; moreover, in
the presence of dynamic traffic and network conditions, these
solutions are known to lead to sub-optimal performance [3],
[5], [8]–[11]. To fill the performance-unaware gap of many
(edge) network decision problems, the community has revived
the decade old [12] idea of Data-driven networking [4], [13]–
[15]. Despite the wide use of machine learning to solve net-
working problems [16], e.g., traffic classification [17], latency
prediction [18] and video streaming bitrate optimization [19],
most of these approaches follow into two categories: either a
model is trained in a centralized fashion, as a Software-Defined
Network controller application [16], [20], or distributed ma-
chine learning is used to train learning models faster [21].

While several traffic engineering solutions have been de-
vised using deep learning, see for example [16], we could
not find an architecture that supports deep learning at every
switch, and that provide performance-aware forwarding de-
cisions learning from performance unaware protocols. While
it may be challenging to apply our approach to very large
networks, despite the recent advances in high-performance
switches, we believe that our architecture can be ideal for the
task offloading problem during critical networked scenarios,
such as those of a data collection for situation awareness
in disaster scenarios. In our architecture design, we identify
the necessary and sufficient mechanisms for task and traffic
offloading management within edge computing, i.e., we ex-
tract the management mechanisms required to solve the task
offloading problem and we compare several traffic engineering
policies.

We prototype a simple yet effective protocol for task of-
floading and tested its programmability over MiniNeXT [22],
a network emulation environment based on containers. Finally,
we evaluate the performance tradeoff within several policies
using different network conditions and we find a few expected
and a few surprising results. By opening the deep learning
“can” we found a few “worms”. One surprising result can be
summarized as: deep learning based traffic offloading policies,
when each router runs a separate supervised learning model,
may not always help improving network performance, so
the training overhead time may not be justified. Another



message from our study lies in the poorly explored use
of our performance-agnostic traffic engineering policies to
generate performance-aware policies. We release the code of
our prototype [23] to allow the community to exploit it and
explore other (deep learning based) traffic offloading policies.
Paper outline. The rest of this paper is organized as fol-
lows. Section II illustrates a summary of the related work.
Section III and Section IV describe in detail the architecture
and the implementation of the LSTM based traffic offloading
policy. Section V shows and discusses results obtained by the
prototype in several scenarios. Finally, Section VI concludes
the paper and also presents a set of open questions.

II. RELATED WORK

The body of existing literature on topics relevant to this
paper is large. In this section, our focus is only on the subset
of solutions that we believe are the most appropriate to define
our contributions. For a recent taxonomy on cyber-foraging or
task offloading solution, we recommend these surveys [1], [2],
while for machine learning solutions applied to networking,
we recommend the survey of Boutaba et al [16].
Machine Learning for Offloading at the Edge. In recent
years, machine learning has been used to solve various chal-
lenges, but it has not been widely adopted in edge comput-
ing problems until recently. Among the most relevant work
we found Malmos [24], a mobile offloading scheduler that
uses machine learning techniques to decide whether mobile
computations should be offloaded to external resources or
executed locally. Another example of machine learning applied
to computation offloading in mobile edge networks is the work
by Crutcher et al. [25]. Here, statistical regressions are used to
predict the energy consumption during the offloading process
as well as the time for the access point to receive the payload.
As in [24], [25] we also adopt machine learning, although we
use deep learning, not statistical or reinforcement learning, but
our focus is on the architecture design and implementation
of a policy based architecture, for the routing between the
processes involved in the offloading mechanisms, as opposed
to focusing merely on a single policy.
Deep Learning for Traffic Engineering. The closest work
to ours is Kato et. al [26] (that we implement as one of our
architecture’s policies, and whose results we compare against
are outperformed). They use a simple deep neural network
(DNN) technique for network traffic control. In particular,
their data-driven decision is based on the number of inbound
packets that a router or a switch sees at a given time; data
points used to train the DNN are obtained from the Open
Shortest Path First (OSPF) algorithm, a standard internal
routing protocol in today’s networks. By combining the next
hop decision for each router, the system is able to predict the
whole path from source to destination. Results show that the
system is able to improve performance in terms of signaling
overhead, throughput, and average per hop delay with respect
to the classic OSPF algorithm. We also use OSPF to train
our own novel traffic offloading policy, but we were able to
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Fig. 1: Architecture overview. Our offloading logic policy uses LSTM to
predict the next hop during the inter-process communication of any edge
computing offloading process.

improve their accuracy and network performance results by
using LSTM instead of a DNN.

Our novel LSTM based policy is also inspired by COY-
OTE [8], that aims at generating optimal traffic splitting ratios
in order to minimize link over-utilization. Given the limited or
absent knowledge of traffic demands, this method strategically
advertises fake links and nodes to adjust the splitting ratios
resulting from traditional OSPF-ECMP. Their results show
that the splitting ratios generated by COYOTE were closer
to the optimum than those of ECMP. As in [8], we also use
performance unaware OSPF and ECMP, but to train an LSTM
algorithm and use such information to our advantage when
the network experience losses for performance-aware routing
during the offloading process. Also, we do not require the
installation of another routing algorithm, which was our goal.

III. ARCHITECTURE AND OFFLOADING PROTOCOL

In this section we present the details of our proposed
architecture ( Figure 1), and the workflow of our offloading
protocol (Figure 2).

A. Offloading Architecture

We consider a scenario in which mobile devices wish to
offload tasks to the edge cloud in a network that supports
SDN. The main components (invariances of the offloading
problem) that we envision are: (i) a mobile device interface:
interface for communications between the mobile devices and
the offloading system (ii) an edge cloud interface: interface
for communications between the edge cloud and the offloading
system (iii) the offloading logic: each offloading policy can
be programmed here to serve the edge client. Note that many
offloading solutions [2] merely focus on proposing a different
policy for this block, (iv) An SDN controller: this is the
component responsible for enforcing the (task or virtual path)
offloading policies in the hosting networked infrastructure.

The mobile device interface provides a set of primitives
allowing the mobile devices and the offloading system to
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Fig. 2: Offloading workflow: mobile devices and an server orchestrate the
offloading requests via an SDN controller: the best path to the best offloading
server needs to be found even in presence of challenged environments such
as scarce network connectivity in a natural or man-made disaster.

communicate efficiently, and formalizes the offloading request
requirements. The edge cloud interface has a similar role, but
in this case the primitives are meant for the communication
between the offloading system and the edge cloud. The of-
floading logic is the main part of the architecture. It contains
the set of policies available as offloading criterion, allowing
the mobile devices to specify which one they intend to use
and users to implement their own. Finally, our architecture
includes an SDN controller. In our implementation we used
Ryu [27].

B. Offloading Protocol

This section describes the communication protocol of the
architecture components that are: (i) the mobile device, (ii)
the SDN controller, (iii) the offloading server and (iv) the
edge server.

Figure 2 shows the message sequence needed to complete
an offloading request, according to our protocol; we identified
five logic steps required to complete an offloading request:

(1) the mobile device sends an offload request to the offload-
ing server. (2) The offloading server decides whether or not it
is possible to accept the request and if so, where to offload it
according to a set of configurable, i.e., programmable policies.
(3) The offloading server asks the SDN controller to install on
the switches the flow rules required by the offloading policy,
when needed: the required flows may be already installed. (4)
The offloading server forwards the offloaded task to the edge
server. (5) The edge server sends the result of the computation
back to the offloading server, which in turn forwards it to the
device.

Our focus is on optimizing messages (4) and (5) making
the routing across the edge network between the offload-
ing server and the edge server performance-aware. However,
the task offloading ecosystem is complex, and many other
mechanisms are involved. These factors include application
requirements formalization, task retrieval, and edge server/-
cloud discovery [1], [28]. In this work, we assume that
all application requirements are expressed in terms of CPU
ratio (average CPU used to execute the task on the mobile
device), memory footprint (quantity of memory required by
the application), and desired latency (specifying if the task is
urgent or if it can wait). We assume that the offloading server is
aware of the available edge servers. Our implementation over
MiniNeXT [22] presented in the following sections uses a Link
Layer Discovery Protocol (LLDP). An interesting research di-
rection, however, is the design of a fast and reliable offloading

server discovery protocol. With regard to the task retrieval
process, our system offers two different possibilities: one in
which the task is hosted on the server with the possibility to
retrieve it with a unique identifier; in the second one, the task
is sent to the server and wrapped in a container. We tested our
(open-source) implementation with a java package JAR and a
python package EGG.

We end this section describing the implementation specifics
of each message of the protocol.

a) OffloadRequest: This message is sent from the mobile
device to the offloading server and includes the requirements
(in terms of CPU, memory and latency), the type of the task (to
support serverless computing), and, optionally, the task itself.
Being an application protocol, we wanted to be agnostic to the
underlying network architecture and hence we also introduced
a latency priority level; this would allow us to support real-
time applications.

b) Response: is a message used for several purposes:
to confirm the reception of a message, signal an error or
return the result of the computation. This protocol has been
prototyped with Google Protocol Buffers [29] that guarantee
language independence, hardware independence, and expand-
ability with the only limitation of not being self-delimiting,
requiring therefore a signaling message.

IV. OFFLOADING PATH PREDICTION VIA DEEP LEARNING

Low-latency is a crucial aspect of task offloading systems,
especially when it comes to computationally expensive tasks.
Several studies exist on characterization of the slow path
in OpenFlow [30]; it was surprising to us, however, that
a neglected aspect in the edge computing literature [2] is
the latency minimization of the inter-process communication
among offloading servers and devices, while passing through
an edge network. To reduce such latency, we optimize the
end-to-end path between the communicating parties by trying
to predict not congested paths. In the rest of this section we
explore the use of deep learning techniques to achieve this
goal.

The architecture described in Section III-A includes the of-
floading logic block, responsible for determining the criterion
on which the offloading is based. Despite leaving this logic as
a policy, we explore the performance of a deep-learning based
offloading policy.

In particular, we exploit the congestion-agnostic limitation
of traditional routing algorithms when applied in this context.
These algorithms do not consider how rapid network load
changes may affect the data-intensive, latency-sensitive needs
of edge computing applications. Relying on higher level TCP-
based solutions for congestion and flow control, that by design
are (mostly) end-to-end, is insufficient. The path computed by
standard routing protocols is computed by taking into account
parameters such as the nominal interface speed.

The intuition behind our proposed solution is that collab-
orative traffic steering should be able to identify and avoid
congestion situations, without using TCP or other active queue



management approaches such as Explicit Congestion Notifi-
cation (ECN). By collaborative we mean requiring (a priori
or on demand) the participation of multiple network elements
in the routing decision process. The information used by our
protoype is the number of incoming packets on any given edge
switch or router (node). The idea is that the packet distribution
on the nodes reflects the network conditions. For example, a
high packet count on a router is an indicator of a big load that
is probably going to lead to packet loss and retransmission.
We also have to consider that the distribution of packets on
the routers is influenced by the routing algorithm: nodes that
appear in multiple paths will probably have a higher count
than less traversed nodes because they forward packets for
multiple source-destination pairs. If routers were able to see
all possible outcomes of a routing protocol in a network and
extract the consequent traffic patterns, they could try to choose
the less busy path.

Of course checking all possible outcomes is not scalable;
it is known, however, that deep learning models use pruning
search space strategies. We compare performance of multiple
deep learning models by emulating a small network with ten
routers, and using input given by the widely deployed routing
algorithm Open Shortest Path First (OSPF) for training the
deep learning component. We vary the network configurations
and record the traffic patterns. A posteriori, we use the
collected data and the routing choices taken by the routing
protocol to build a model capable of predicting each hop of the
path, from each source to each destination. With our approach,
we are correlating traffic patterns and routing decisions; this
correlation allows our system to dynamically adapt to the
network conditions, a behavior that would not occur with a
traditional routing algorithm.

The following section describes that steps we followed to
converge to the final deep learning model.

A. Data Generation Process

The majority of datasets available to the community refer to
traffic captured in datacenters, non-edge networks, or do not
contain details about the underlying topology or the logged
routing strategies. For these reasons, we created our own
novel dataset by means of a network emulation strategy that
considers all the elements we require to train our deep learning
system. This includes (i) the network topology, (ii) the routing
information, and (iii) the packet count on each node. The
final dataset consists of a collection of samples containing,
at any given time, the packet count together with the routing
decision that was made. During the data generation process,
the network is torn down and rebuilt with new link speeds,
so that the OSPF configurations are different. We generated a
dataset of 17, 696 samples; we then used 85% of these samples
as a training set, and the remaining 15% was used as a test
set.

B. Deep Learning Model

The deep learning model chosen for this work is a Long-
Short Term Memory (LSTM) Recurrent Neural Network, a
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Fig. 3: Model topology: R1-R6 are outer routers while R7-R10 are inner
routers. Each router runs a next-hop predictor based on LSTM.

class of neural networks capable of using sequential informa-
tion and to exhibit a dynamic temporal behavior. We wanted
our model to learn the correlation between changes in the
packet distribution and routing decisions over time.

Given the computational complexity of standard routing
algorithms, training a single model to route all traffic becomes
quickly infeasible as the network between mobile user and
offloading server grows in size. To this aim, we trained a
separate deep learning model for every source-destination pair,
resulting in multiple simpler i.e., smaller, models. Assuming
that each router only has a single outgoing interface, training
an edge network with N routers will result in N(N −1) deep
learning models. Each model can be trained independently,
making the training phase easy to parallelize.

1) Modeling Input and Output of the RNN: Supervised
learning involves a sample space X and a label space Y , with
the neural network responsible for learning a mapping function
from values in X to labels in Y , for each (xi, yi) ∈ X × Y .
Our input/output modeling follows an approach similar to the
one described in [26]. Given a set of outer routers O, and the
set of all the routers in the edge network R, for each source-
destination pair (s, d) ∈ R × O, the deep learning system
learns the next hop for destination d.

The easiest way to model the input is an N -dimensional
array, with N being the number of routers in the network.
Such an array is indexed by the router identifier, so the i-th
element of the array is the number of incoming packets
on router i. The output is modeled as a one-hot encoded 1

router indexed array, with a 1 in the position indexed by the
predicted next hop; the size of the output is again equal to
the number of routers in the network.

Choosing the Right Neural Network Architecture. The
architecture of a deep neural network is determined by the
number of layers, the number of processing units (neurons) per
layer, and the interconnections between the layers. Choosing
these parameters once at the beginning, hoping to achieve
good performance, is not feasible given the impossibility to

1In machine learning, one-hot is a group of bits among which the legal
combinations of values are only those with a single high bit and all the others
low.



Neurons
Layers 4 8 16 32 64 128

Accuracy % Loss Accuracy % Loss Accuracy % Loss Accuracy % Loss Accuracy % Loss Accuracy % Loss
2 86.59% 0.5147 88.82% 0.3946 92.95% 0.3026 94.85% 0.2159 95.60% 0.1659 96.08% 0.1368
4 76.48% 0.6416 87.69% 0.4644 92.99% 0.2435 94.90% 0.2045 95.70% 0.1554 96.58% 0.1214
6 64.90% 0.7727 88.82% 0.4450 92.72% 0.2515 95.25% 0.1663 95.38% 0.1541 96.14% 0.1149
8 65.84% 0.7953 87.42% 0.4914 91.01% 0.3340 95.08% 0.1718 95.83% 0.1374 95.73% 0.1361

TABLE I: LSTM parameter exploration and deep learning model tuning: we found that: (1) despite an architecture with 128 neurons giving the highest
accuracy, the marginal gain increasing the neurons diminishes; (2) an LSTM architecture with 6 layers gives lowest loss.

derive them from a formal description of the problem; thus,
these parameters need to be tuned in a preliminary phase. As
a general rule, a neural network too small will be unable to
solve the problem while neural networks too big will probably
overfit on the training set (they will find incorrect solutions).
Regardless of the problem solved and of the machine learning
structure, a known empirical result in the literature of deep
learning states that for the majority of the problems, adding
additional hidden layers has a diminishing marginal gain i.e.,
it often does not improve the performance of the deep learning
system.

To define the parameters of our neural network, we follow
these three steps: (1) we pick a source-destination pair on the
edge computing network that requires a complex model, (2)
we cross-validate each combination of layers and neurons of
the neural network, and (3) we choose the combination whose
accuracy – loss ratio is the highest.

It is important to clarify what we mean with “source-
destination pair that requires a complex model“: cross-
validating different architectures on all the possible pairs
would be excessively time-consuming. Instead, we perform
the validation on a single source destination pair. From now
on, we refer to such pair to be a “target”. For this validation
to be meaningful, we need our target to be representative
enough of the problem we are modeling: since we want our
system to learn alternative (virtual) routes or paths, it would
not make sense to choose a target of two directly connected
nodes, because the resulting model would be too simple. As a
consequence, we choose target routers that are multiple hops
apart, e.g., (R1, R4).

In the cross-validation phase, we have tested 24 different
configurations by trying all the combinations of the following
parameters: hidden layers = {2, 4, 6, 8} and neurons =
{4, 8, 16, 32, 64, 128}.

Note that each hidden layer is a recurrent layer within an
LSTM cell. We test each configuration 10 times on different
partitions of the dataset, producing the results in Table I.
The table shows two metrics: accuracy (percentage of samples
correctly classified) and cross-entropy loss (distance between
predicted and true label distribution); as expected, adding
more layers does not significantly improve the performance.
Noticeable improvements instead arose when we increased the
number of neurons in each LSTM layer (Table I): 4-layers 128-
neurons achieves the best performance in terms of accuracy
whereas 6-layers 128-neurons has the lowest loss; it is worth
noticing that given a fixed number of neurons, the accuracy
typically differs by less than 1%.

From this first analysis, it is clear that to achieve the best
accuracy, each layer of the neural network needs to have 128
processing units. Deciding what is the optimal number of
layers is the last challenge we need to solve. Since the gain in
performance with an increase of the number of layers is not
noticeable, we decided to take into account other factors to
choose the final LSTM architecture. Figure 4a compares the
different training times with the model performance in terms
of accuracy; it is clear that while the training time increases
noticeably with additional hidden layers, the gain in accuracy
is at times negligible. Considering the limited (computational
power and) training time, and the number of models we wish
to train, we decided to use a network with merely 2 layers
and 128 neurons, as a good performance - time trade-off.

As a result of this analysis, the final architecture is com-
posed of: one input layer (10 neurons), two hidden layers (128
neurons ea., hyperbolic tangent activation 2), one output layer
(10 neurons, sigmoid activation).

After choosing the correct LSTM architecture, we also apply
proper input normalization and regularization techniques to
improve the training performance in terms of both accuracy
and loss.

V. EVALUATION RESULTS

In this section we evaluate our architecture prototype. All
our code is available at [23]. Our evaluation focus is the core
of our novel LSTM based algorithm to predict least congested
offloading paths. First, we detail the technologies used in
our evaluation testbed, then we discuss how our system can
emulate OSPF by analyzing the results of the model training;
finally we discuss the performance of the path prediction
model as a substitute to more traditional routing algorithms.
For a more complete analysis, we also implement the same
Deep Neural Network (DNN) described in [26], a traditional
neural network with four hidden layers and sixteen neurons in
each layer. We use this network to compare the performance
between DNNs and LSTM for the same task and understand
if our hypothesis about RNNs is correct.

A. Evaluation Testbed

Our prototype has been implemented using the following
technologies: we employ Ryu [27] as an SDN controller and
Google Protocol Buffers [29] as serialization/deserialization
abstract syntax notation. To emulate the edge network we
used MiniNExT [22], a Mininet 3 extension layer that supports

2The activation function defines the output of a node given an input [31].
3mininet.org
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routing engines and process identifier namespaces. Finally, we
used Quagga [32] as a routing software suite and Keras [33]
as a machine learning library.

B. Learning from OSPF

Our system is built to learn the behavior of OSPF across
different configurations, and correlate it with different traf-
fic patterns. We use LSTM RNN as a learning algorithm
and build a model for each source-destination pair in our
topology (Figure 3): the total number of models is given by
all the possible source-destination pairs, with the destination
addresses considered only on the outer routers not considering
the source; for any given router, the number of addresses
associated with it is equal to the number of its interfaces. In
our considered scenario, this resulted in a set of 162 distinct
models that are used to determine the hop-by-hop path from
a source router to a specific destination address. The path
is computed iteratively as follows: starting from the source,
the model for the selected destination is used to predict the
next hop, then the predicted next hop becomes the new source
router; the process is then repeated until the predicted hop is
the final destination.

Figure 4b shows the model training progress over time in
terms of accuracy and loss: the plot shows the average of the
metrics over all 162 models. The slopes of the graphs give
us an idea of what is happening during the training phase:
at the beginning (epochs 0-20), both slopes are very steep,
indicating that the model is abandoning the initial randomness
and converging towards a final stable solution. Afterwards,
from epoch 20 to epoch 60, as the gradient diminishes, the
slope starts to decrease slowly, indicating that the gradient
has probably entered the region of the space in which it will
converge to the problem solution. Finally, the curve becomes
almost flat, showing that the gradient has reached its minimum.
Note how in both graphs, the two curves have the same
behavior: this shows that the model is learning “without losing
generalities”. An increasing accuracy on the training set with a
steady or decaying validation accuracy would be a clear sign
of overfitting, a situation in which the model becomes too
specialized on the training data and it is not able to properly
classify new samples. The figure shows better performance for
both accuracy and loss on the validation data rather than on
the training data; even if generally unusual, the reasons of this
behavior can be found in the dropout regularization technique.

Connectivity rate Validation accuracy
30% 99.1%
35% 98.5%
40% 84.6%
45% 88.8%
50% 86.7%

TABLE II: Impact of the network density on the average
validation accuracy of the deep learning model (randomly
connected physical networks).

At training time, because of dropout, only part of the network
is used; on the other hand, when testing the development of
the model on the validation set, regularization mechanisms
(i.e., dropout) are turned off, so the network is used in its
completeness. This means that the whole network is used to
measure accuracy and loss on the validation set but only a
part of it is used for the same metrics at training time; for
this reason, the performance on the validation set are slightly
better than on the training set.

To understand how well our model can emulate OSPF,
we need to analyze the performance on the test set. The
system achieves an average accuracy of 98.71%, with a loss
of only 0.0496, a promising result. With an accuracy of
almost 99%, our LSTM-RNNs policy performs better than
traditional DNNs [26], (which our prototype supports) that
achieves around 90% of accuracy; however, this comparison
should be taken with caution, considered that the topologies
in the two experiments are slightly different and experiment
reproducibility is an open issue in machine learning [34]. The
comparison of these two approaches is shown in Figure 4c.

Our architecture can be easily extended to support any type
of topology using a configuration file with number of nodes
and links. However, to prevent accuracy performance drop, a
re-tuning of the LSTM parameters and the whole training is
of course required. Our tests on random network topologies
with increasingly high connectivity values demonstrates that,
even though the model accuracy is not idea, small changes
in the choice of model parameters lead to practically good
performance (Table II).

C. Overwriting OSPF Routing Decisions
To evaluate its performance when overwriting OSPF rules,

we observe the behavior of the path prediction system in a
functioning network. In particular, we use the same topology
(Figure 3) and traffic simulator adopted in the dataset gen-
eration phase; to ease the analysis process, all links are set



Fig. 5: Routing policies retransmission comparison. Our
proposed LSTM policy has the highest throughput by
minimizing retransmissions in challenged scenarios.

Fig. 6: Comparison of the number of (severely) lossy
links traversed by OSPF and LSTM.

to the same rate. Afterwards, we select a source router and
a destination address and examine the difference in behavior
between OSPF and our system.

In general, our emulated edge network shows a dynamic
behavior, and our prototype predicted several paths for the
same destination under different traffic conditions. In partic-
ular, we run four traffic simulations, each of them for fifteen
minutes, varying the loss rate on the link chosen by OSPF
to connect source and destination; at the same time, the path
prediction component computes a new path every five seconds.
Considering Figure 3, the selected target is (R1, R3), with the
default path being R1, R2, R3 and the loss being varied on the
link between R1 and R2. Being performance unaware, OSPF
always chooses the same path, even when the link has (some)
losses. To adapt the threshold, a human needs to manually
reconfigure each router. Our system reacts dynamically by
proposing alternative paths.

By studying the system behavior in the presence of losses,
it is possible to understand if our model is able to detect
and overcome these problems. We test loss rates of 0%,
5%,10%, 15% and count the number of predictions different
from OSPF (table III). With the loss set to 0%, 43% of the
time the predicted path is different from OSPF; if the loss
is increased to 5%, the ratio of paths different from OSPF
slightly rises to 45%, indicating that the system is able to
detect the change. The same happens for a loss of 10%, with
a much more noticeable improvement in the system behavior;
63.5% of the proposed paths are in fact, different from the
one chosen by OSPF. For the successive loss rate, equal to
15%, the performance goes down a little with only a 59.5%
different path ratio; the reasons for this loss in performance are
discussed in section VI. The ideal behavior would be for the
system to detect the link loss and consequently stop predicting
paths going through the damaged link. In our analysis this
happens only with a limited loss rate.

Table IV compares the resulting retransmission rate of our
system, OSPF, and Equal Cost Multi Path (ECMP) routing
algorithms. The retransmission rate is computed by taking
into account how many times traffic would pass through the
leaky link, considering two equal-cost paths for ECMP and the
ratios in table IV for our system. Overall, the LSTM policy
that we propose has a lower retransmission rate than the other
policies, therefore reaching a higher throughput. In Figure 5
we compare these three policies (LSTM, ECMP and OSPF),

Link loss Different path rate Same OSPF path rate
0% 43% 57%
5% 45% 55%
10% 63.5% 36.5%
15% 59.5% 40.5%

TABLE III: Path predictions different and equal to OSPF.

Routing Strategy
Link loss rate OSPF ECMP DNN LSTM

0% 0% 0% 0% 0%
5% 5% 2.50% 2.70% 2.75%
10% 10% 5% 7.70% 3.65%
15% 15% 7.50% 9% 6.07%

TABLE IV: Routing strategies retransmission rate comparison.

showing the overhead needed to transmit the same amount of
data. When there is no link loss, the three policies behave
very similarly; however, as soon as a loss rate is introduced,
the performance gap of our proposed LSTM policy increases
with the loss rate.
D. Evaluation in Challenged Scenarios

We compared several routing policies in critical scenarios,
where network connectivity is scarce. We decide to simulate
a network in which statistically, half of the links are affected
by a loss rate; we use the same loss rates of the previous
experiments (5%, 10%, 15%), running each experiment ten
times, and generating traffic between five different targets. The
purpose of this experiment is to understand if our approach
is used with our LSTM policy, has higher resiliency than
OSPF when up to half of the edge network are unavailable.
To compare the performance of the two routing policies, we
counted the number of times the lossy links were selected
(Figure 6). The chart compares the total number of defective
links traversed in all runs for each link loss rate. In this case,
the LSTM policy does not introduce any significant advantage
under critical circumstances; overall, the performance of the
two policies are similar, with OSPF performing even better
when the link loss rate is set to 10% and 15%. The reasons
for the poor performance of the LSTM policy are due to our
training approach; our LSTM policy predicts alternative paths
based on the network conditions, proposing alternative paths.
Given that half of the links in the network are affected by loss,
the majority of the proposed alternative paths pass through
these links, resulting in poor performance. In Section VI we
give a few hints on how to overcome such limitations of these
and other deep learning policies.



VI. DISCUSSION AND CONCLUSION

In this work, we presented a policy-based architecture for
task and path offloading. Our main goal has been to provide
a testing platform for task offloading and routing policies,
in support of offloading tasks traversing challenged edge
networks. Our virtual network testbed prototype based on
MiniNExT found interesting results and was released to allow
the community to compare novel or existing routing policies
in different edge computing scenarios [23].

In our prototype evaluation, we focused on a specific traffic
offloading policy tradeoff. In particular, we compared deep
learning based routing policies with ECMP and OSPF. Our
policy tradeoff analysis exposed advantages and challenges
of using deep learning as alternative to traditional routing
algorithms, when deployed on a single node and not as
centralized (SDN) controller application.

Despite the limited size of our dataset, our initial policy
tradeoff analysis results have shown how a cooperative routing
policy may lead to better performance than traditional routing
methods at the edge, especially with unstable network con-
ditions such as those that arise within an IoT network trying
to operate at the network edge during a natural or man-made
disaster.
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