POLITECNICO DI TORINO
Repository ISTITUZIONALE

Generating Neural Archetypes to Instruct Fast and Interpretable Decisions

Original

Generating Neural Archetypes to Instruct Fast and Interpretable Decisions / Barbiero, Pietro; Ciravegna, Gabriele;
Cirrincione, Giansalvo; Tonda, Alberto; Squillero, Giovanni. - STAMPA. - 1009:(2020), pp. 45-52. ((Intervento presentato
al convegno The International Conference on Decision Economics [10.1007/978-3-030-38227-8_6].

Availability:
This version is available at: 11583/2792951 since: 2020-02-17T13:11:23Z

Publisher:
Springer

Published
DOI:10.1007/978-3-030-38227-8 6

Terms of use:
openAccess

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

31 January 2023



Generating Neural Archetypes to Instruct Fast
and Interpretable Decisions

Pietro Barbiero!, Gabriele Ciravegna?, Giansalvo Cirrincione®, Giovanni
Squillero' and Alberto Tonda*

! Politecnico di Torino, Torino, Italy
pietro.barbiero@studenti.polito.it
https://orcid.org/0000-0003-3155-2564

giovanni.squillero@polito.it
2 University of Siena, Siena, Italy
gabriele.ciravegna@unifi.it
3 University of South Pacific, Suva, Fiji
nimzoexinb9@gmail.com
4 Université Paris-Saclay, INRA, UMR 782 GMPA, 78850, Thiverval-Grignon France

alberto.tonda@inra.fr

Abstract. In the field of artificial intelligence, agents learn how to take
decisions by fitting their parameters on a set of samples called training
set. Similarly, a core set is a subset of the training samples such that, if
an agent exploits this set to fit its parameters instead of the whole train-
ing set, then the quality of the inferences does not change significantly.
Relaxing the constraint that restricts the search for core sets to the
available data, neural networks may be used to generate virtual samples,
called archetype set, containing the same kind of information. This work
illustrates the features of GH-ARCH, a recently proposed self-organizing
hierarchical neural network for archetype discovery. Experiments show
how the use of archetypes allows both ML agents to make fast and accu-
rate predictions and human experts to make sense of such decisions by
analyzing few important samples.
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1 Introduction

In recent years, the development of modern technologies and infrastructures
(such as internet of things, high-performance computing, and GPUs) as well
as novel programming paradigms (e.g. parallelization) has led to a new era in
knowledge discovery. As large sets of samples allow for estimating the parameters
of very complex models, suddenly some intractable problems become easy to deal
with. Among artificial intelligence disciplines, machine learning has captured
most of the interest in scientific communities as it provides a set of models
with large capacity (i.e. number of parameters) suitable for almost any kind of
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data sets. On the other hand, some researchers are expressing doubts about the
effective exploitation of machine learning in real contexts [1] [2]. In fact, if on one
side the capacity is the main reason of their success, on the other side the large
number of parameters makes these models nearly impossible to be interpreted. In
some real contexts, such as health-care and economics, it is important not only to
take the right decisions, but also to explain the reason why they are better than
others. Machine learning algorithms learn to make predictions by fitting their
parameters using a set of samples (i.e. the training set). However, as for human
beings, during the learning phase ML agents tend to give more weight to some
training samples than others, as their features are more useful in estimating the
model parameters. For highly complex models, the analysis of such key samples
may be useful for human experts to have an insight on how agents are reasoning.
As the size of databases is increasingly large, searching manually for fundamental
samples has become an intractable problem. As a result, in the last few years,
ML researchers and big data experts have proposed several algorithms for the
extraction of fundamental sets of data, called core sets, from sizable databases.
More concretely, a core set can be defined as the subset of the training samples of
minimal size that is required for a given algorithm to provide good results, even
as good as it would have if trained on the whole training set [3]. In other words, a
core set summarizes the information contained in a data set, with the constraint
that each core sample belongs to the training set. However, it is reasonable that
better summaries can be discovered if such constraint is removed. If core samples
are allowed to be outside the set of training data they are named archetype
samples. Following this idea, the Growing Hierarchical Archetype (GH-ARCH)
algorithm has been recently proposed for archetype discovery [4]. GH-ARCH is
a neural network which builds an incremental and self-organized tree performing
hierarchical clustering. For each layer, the final positions of neurons in the feature
space represent the virtual set of points corresponding to the archetype set. The
hierarchical structure of the neural network allows the user for the selection of
archetype sets of different size. In the following, the GH-ARCH neural network
is used to extract archetypes for different ML classifiers. Results of experiments
described in section 3 show how the use of archetypes allows both ML classifiers
to make fast and accurate predictions and human experts to make sense of such
decisions by analyzing few important samples.

2 GH-ARCH

The Growing Hierarchical Archetype algorithm (GH-ARCH) is a recently pro-
posed neural network for archetype discovery. Most of complex problems can be
seen in a multi-resolution way where few key concepts are represented in higher
levels and finer details are shown in deeper layers. For this reason, hierarchical
algorithms, as GH-ARCH, are popular and effective techniques for extracting
understandable information from data, as human experts can make sense of key
aspects of the problem by having a look at few key concepts. Besides, GH-ARCH
is a data driven (self-organization) and incremental approach in the sense that
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Fig.1: Scheme of GH-ARCH for archetype extraction. A,,;, is a user-defined
parameter.

both the number of neurons and their position in the feature space are auto-
matically estimated from data. The technique described in this section directly
derives from the Growing Hierarchical EXIN (GH-EXIN) algorithm [5], a neural
network for hierarchical clustering. In both cases, neurons can be seen as rep-
resentative prototypes of clusters as they are placed in such a way to provide
the best topological representation of the data distribution. Therefore, once the
positions of such prototypes is estimated from data, they can be interpreted as
an archetype set of representative virtual samples. Figure 1 visually describes
how GH-ARCH is used for archetype discovery. The major difference between
the two algorithms consists in the final goal of the algorithm and on the in-
dices to be minimized: while GH-EXIN is a network which focuses on finding
biclusters and minimize a biclustering quantization index, GH-ARCH attempts
to minimize the heterogeneity and maximize the purity of the clusters, in order
to group points which are both close to each other and belonging to the same
class. The way in which data is divided at deeper and deeper levels, on the other
hand, follows the same algorithm and it is explained in the following. For each
father neuron, a neural network is trained on its corresponding Voronoi set (set
of data represented by the father neuron). The children nodes are the neurons of
the associated neural network, and determine a subdivision of the father Voronoi
set. For each leaf, the procedure is repeated. The initial structure of the neural
network is a seed, i.e. a pair of neurons, which are linked by an edge, whose
age is set to zero. Multiple node creation and pruning determines the correct
number of neurons of each network. For each epoch (presentation in a random
way of the whole training set to the network) the basic iteration starts at the
presentation of a new data point, say x;. All neurons are ranked according to the
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Euclidean distances between x; and their weights. The neuron with the shortest
distance is the winner w;. If its distance is larger than the scalar threshold of
the neuron (novelty test), a new neuron is created with weight vector given by
x;.The initial weight vectors are heuristically defined as the average feature val-
ues of the points in the Voronoi set, and the neural thresholds are given by the
mean distance among the same points. Otherwise, there is a weight adaptation
and the creation of an edge The weight computation (training) is based on the
Soft Competitive Learning (SCL) [6] paradigm, which requires a winner-takes-
most strategy: at each iteration, both the winner and its neighbors change their
weights but in different ways: w; and its direct topological neighbors are moved
towards x; by fractions a1 and «,, (learning rates), respectively, of the vector
connecting the weight vectors to the datum. This law requires the determina-
tion of a topology (neighbors) which is achieved by the Competitive Hebbian
Learning (CHL) rule [6], used for creating the neuron connections: each time a
neuron wins, an edge is created, linking it to the second nearest neuron, if the
link does not exist yet. If there was an edge, its age is set to zero and the same
age procedure as in [7] is used as follows. The age of all other links emanating
from the winner is incremented by one; during this process if a link age is greater
than the agemax scalar parameter, it is eliminated (pruning). The thresholds of
the winner and second winner are recomputed as the distance to their farthest
neighbor. At the end of each epoch, if a neuron remains unconnected (no neigh-
bors), it is pruned, but the associated data points are analyzed by a new ranking
of all the neurons of the network (i.e. also the neurons of the neural networks
of the other leaves of the hierarchical tree). If it is outside the threshold of the
new winner, it is labeled as an outlier and pruned. If, instead, it is inside, it is
assigned to the winner Voronoi set. Each leaf neural network is controlled by the
purity, calculated as

P = max {ci} (1)

where ¢; is the number of elements belonging the class i within the Voronoi set
of the leaf and C is the number of classes; and by the heterogeneity, calculated
as the sum of the Euclidean distances between the neuron (w.) and the N data
composing its Voronoi set (x;):

N
H=Y |lw, - (2)
i=1

In particular, the training epochs are stopped when the estimated value of these
parameters falls below a percentage of the value for the father leaf. This tech-
nique creates a vertical growth of the tree. The horizontal growth is generated
by the neurons of each network. However, a simultaneous vertical and horizontal
growth is possible. At the end of a training, the graphs created by the neuron
edges are checked. If connected subgraphs are detected, each sub-graph is con-
sidered as a father, by estimating the centroid of the cluster (vertical growth)
and the associated neurons as the corresponding sons (horizontal growth). This
last step ends the neural clustering on the Voronoi set of one leaf to be expanded.
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The decision on whether to expand a leaf is again based on the purity and the
heterogeneity of that leaf. In case either the purity of the leaf is lower than P,
or the heterogeneity is higher than H,,,. (user-dependent parameter), the node
is labelled as parent_node and a further neural clustering is run on its Voronoi
set. After repeating this procedure for all the leaves of a single layer, recalling
Fig. 1, a given classifier is trained on the weight vectors of the leaves found
by GH-ARCH so far. In case the accuracy obtained on a test set is higher than
Ain, the current list of archetypes is returned. Nonetheless, the algorithm stops
also in case there are no leaves to be expanded: this may occur when the current
purity and heterogeneity of all leaves are already high. Lastly, if points grouped
by a leaf do not belong to the same class, the label of the archetype of that leaf
is assigned by means of a majority voting procedure.

3 Experimental results

Both the experiments presented in this section can be reproduced using our
code freely available on Bitbucket®. All the used classifiers are implemented in
the scikit-learn [3] Python module and use default parameters. For the sake of
reproducibility, a random seed is set for all the algorithms exploiting pseudo-
random elements.

3.1 Understanding archetypes

In order to understand at a glance the importance of archetypes, GH-ARCH is
first applied to a synthetic data set called Blobs. It is composed of three isotropic
2-dimensional gaussian distributions, each one representing a different class. In
figure 2, four archetype sets are shown at different resolution levels, correspond-
ing to the 2nd and the 3rd layer of GH-ARCH. These virtual sets of samples are
used to train RandomPForest [9] and Ridge [10] classifiers in place of the whole
training set. Observe how even using 3-4 samples the accuracy of predictions
is comparable with the one obtained exploiting the whole training set. Besides,
archetypes in deeper layers of GH-ARCH represent the data set distribution in
more detail. Finally, notice how archetypes seem to have a regularization ef-
fect on tree-based classifiers like RandomForest, as the corresponding decision
boundaries are smoother than the ones obtained with the whole training set.

3.2 Making sense of archetypes and decisions in economics

In order to show how to exploit GH-ARCH in a real setting, the proposed ap-
proach is applied to the Car data set [11], containing the information of 406 cars
produced in USA or in Europe/Japan. Cars are characterized considering both
architectural features (e.g. number of cylinders and weight) and the production
year. Four ML classifiers are trained on GH-ARCH archetypes to predict the re-
gion of origin (USA vs not-USA): Bagging [12], RandomForest [9], Ridge [10], and

® https://bitbucket.org/neurocoreml/archetypical-neural-coresets/
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Fig.2: GH-ARCH on the Blobs dataset using RandomForest (left) and Ridge
(right) classifiers. Archetypes in the first and the second row corresponds to the
ones of the 2nd and the 3rd hierarchical level of GH-ARCH, respectively. The
last row show the decision buondaries obtained using all the training samples to
fit model parameters.

RandomForest Bagging LogisticRegression Ridge
algorithm size accuracy avg time size accuracy avg time size accuracy avg time size accuracy avg time
all samples 270 0.8824 270 0.9338 270 0.8971 270 0.8750
GH-ARCH (2L) 4 0.7868 0.06 4 0.7721 0.07 4 0.8235 0.03 4 0.8162 0.03
GH-ARCH (5L) 76 0.8971 0.20 76 0.8456 0.17 66 0.8309 0.15 76 0.8382 0.14
GIGA 27 0.6985 0.15 27 0.7426 0.15 27 0.6838 0.15 27 0.6250 0.15
FW 35 0.7206 0.63 35 0.7279 0.63 35 0.6912 0.63 35 0.6618 0.63
MP 26 0.6250 0.57 26 0.6250 0.57 26 0.6324 0.57 26 0.6324 0.57
FS 17 0.6250 0.62 17 0.6250 0.62 17 0.6250 0.62 17 0.6250 0.62
OP 6 0.6324 0.05 6 0.6176 0.05 6 0.6544 0.05 6 0.6471 0.05
LAR 8 0.6250 0.01 8 0.6250 0.01 8 0.6912 0.01 8 0.6324 0.01

Table 1: Cars data set. Training set size, classification accuracy on an unseen
test set and running time (in seconds) for different classifiers exploiting both
GH-ARCH and state-of-the-art algorithms for core set discovery.

LogisticRegression [13]. The results obtained exploiting GH-ARCH are then com-
pared against the 6 coreset discovery algorithms GIGA [14], FW [15], MP [16],
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Fig.3: Boxplots displaying the mean Table 2: Archetype set of extracted in the
and the standard deviation of the train- 2nd layer of GH-ARCH for RandomForest.
ing distribution for each feature. On

top of boxplots, swarmplots show the

archetype set extracted in the 2nd layer

of GH-ARCH for RandomForest.

OMP [16], LAR [17] [18], and FSW [19]. The comparison is performed on three
metrics: 1. coreset size (lower is better); ii. classification accuracy on the test set
(higher is better); iii. running time of the algorithm (lower is better). Table 1
summarizes the results obtained for each ML classifier. With regard to the accu-
racy on an unseen test set, classifiers trained using archetypes extracted in the
5th layer of GH-ARCH are comparable with the ones trained using the whole
training set. In order to show how archetypes can be useful in interpreting model
decisions, we manually analyzed the archetypes extracted in the 2nd hierarchical
layer of GH-ARCH. Figure 3 and table 2 show in two different ways (graphical
and tabular) the archetype set found. Observe how the American archetypes A2
and A3 are very different from the European/Japanese. More in detail, EU/JP
vehicles seem more ecological, as they have a better miles per gallon (mpg) ratio.
American cars, instead, appear to be more powerful as they have higher values
for number of cylinders, engine displacements (in cubic centimeters), horsepower,
and weight (in 1bs.). Summarizing, the use of archetypes allows ML agents, such
RandomForest, to make fast and accurate predictions and allows human experts
to make sense of such decisions by analyzing few important samples.

4 Conclusions

Coreset discovery is a research line of utmost practical importance, and several
techniques are available to find the most informative data points in a given
training set. Limiting the search to existing points, however, might impair the
final objective, that is, finding a set of points able to summarize the information
contained in the original dataset. In this work, hierarchical clustering, based
on a novel neural network architecture (GH-EXIN), is used to find meaningful
archetype sets, virtual but representative data points. Results on a real economic
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dataset shows how archetypes may be useful in explaining decisions taken by
machine learning classifiers.
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