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In this paper, we present a new discretization strategy for the boundary element 
formulation of the Electroencephalography (EEG) forward problem. Boundary integral 
formulations, classically solved with the Boundary Element Method (BEM), are widely 
used in high resolution EEG imaging because of their recognized advantages, in several 
real case scenarios, in terms of numerical stability and effectiveness when compared with 
other differential equation based techniques. Unfortunately, however, it is widely reported 
in literature that the accuracy of standard BEM schemes for the forward EEG problem 
is often limited, especially when the current source density is dipolar and its location 
approaches one of the brain boundary surfaces. This is a particularly limiting problem 
given that during an high-resolution EEG imaging procedure, several EEG forward problem 
solutions are required, for which the source currents are near or on top of a boundary 
surface.
This work will first present an analysis of standardly and classically discretized EEG forward 
problem operators, reporting on a theoretical issue of some of the formulations that have 
been used so far in the community. We report on the fact that several standardly used 
discretizations of these formulations are consistent only with an L2-framework, requiring 
the expansion term to be a square integrable function (i.e., in a Petrov–Galerkin scheme 
with expansion and testing functions). Instead, those techniques are not consistent when 
a more appropriate mapping in terms of fractional-order Sobolev spaces is considered. 
Such a mapping allows the expansion function term to be a less regular function, thus 
sensibly reducing the need for mesh refinements and low-precisions handling strategies 
that are currently required. These more favorable mappings, however, require a different 
and conforming discretization, which must be suitably adapted to them. In order to 
appropriately fulfill this requirement, we adopt a mixed discretization based on dual 
boundary elements residing on a suitably defined dual mesh. We devote also a particular 
attention to implementation-oriented details of our new technique that will allow the rapid 
incorporation of our finding in one’s own EEG forward solution technology. We conclude by 
showing how the resulting forward EEG problems show favorable properties with respect 
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to previously proposed schemes, and we show their applicability to real-case modeling 
scenarios obtained from Magnetic Resonance Imaging (MRI) data.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Dans ce papier, nous présentons une nouvelle stratégie de discrétisation pour la formulation 
aux éléments de frontière du problème direct de l’électroencéphalographie (EEG). Les 
méthodes aux éléments frontières (BEM) sont largement utilisées en imagerie EEG à haute 
résolution dans divers scénarios, pour leur stabilité numérique et leur efficacité reconnues 
par rapport à d’autres techniques basées sur des équations différentielles.
Malheureusement, il est également reconnu dans la littérature que leur précision diminue 
particulièrement lorsque la source de courant est dipolaire et se situe près de la surface 
du cerveau. Ce défaut constitue une importante limitation, étant donné qu’au cours d’une 
session d’imagerie EEG à haute résolution, plusieurs solutions du problème direct EEG sont 
requises, pour lesquelles les sources de courant sont proches ou sur la surface de cerveau.
Ce travail présente d’abord une analyse des opérateurs intervenant dans le problème direct 
et leur discrétisation. Nous montrons que plusieurs discrétisations couramment utilisées ne 
conviennent que dans un cadre L2, nécessitant que le terme d’expansion soit une fonction 
de carré intégrable. Dès lors, ces techniques ne sont pas cohérentes avec les propriétés 
spectrales des opérateurs en termes d’espaces de Sobolev d’ordre fractionnaire.
Nous développons ensuite une nouvelle stratégie de discrétisation conforme aux espaces 
de Sobolev avec des fonctions d’expansion moins régulières, donnant lieu à une nouvelle 
formulation intégrale. Le solveur résultant présente des propriétés favorables par rapport 
aux méthodes existantes et réduit sensiblement le recours à un maillage adaptatif et 
autres stratégies actuellement requises pour améliorer la précision du calcul. Les résultats 
numériques présentés corroborent les développements théoriques et mettent en évidence 
l’impact positif de la nouvelle approche.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

State-of-the-art high-resolution Electroencephalography (EEG) can righteously be considered a fully fledged imaging tech-
nique for the brain [1]. Its high temporal resolution, together with the compatibility and complementarity with other 
imaging strategies – Magnetoencephalography (MEG), Positron Emission Tomography (PET), and Magnetic Resonance Imag-
ing (MRI) – [2–5], explains the steady interest that EEG is attracting in neuroimaging [6–8]. The peculiarity of high-resolution 
EEGs with respect to the traditional analyses based on grapho-elements, is the reconstruction of the volume brain sources 
based on scalp potential data [9,10]. This is the EEG inverse source problem, which is, as it is well known, ill-posed [11]. 
The solution to the EEG inverse source problem relies on multiple iterated solutions to the EEG forward problem where, 
known the configuration of brain sources, the electric potential is recovered at the scalp [12]. The accuracy in the solution 
to the EEG forward problem clearly impacts and limits the accuracy of the associated EEG inverse problem: a low accuracy 
of the solutions to the EEG forward problem translates in a low accuracy of the inverse problem solution [13]. This results 
in the pressing need to keep the accuracy of the EEG forward problem as high as possible.

Among the techniques to solve the EEG forward problem, Boundary Element Method (BEM) is a widely used one [14]. 
This numerical strategy is based on an integral formulation equivalent to the Poisson equation and, when compared with 
other numerical approaches like the Finite Element Method (FEM) or the Finite Difference Method (FDM) [15], BEM based 
solvers only discretize the surfaces enclosing the different brain regions and do not require the use of boundary conditions 
to terminate the solution domain. This results in interaction matrices of a smaller dimensionality [16] and explains the 
popularity of the BEM approach in the scientific community. Unfortunately, standard BEM methods are no panacea. It is 
widely reported, in fact, that the accuracy of standard BEM schemes for the forward EEG problem is often limited, especially 
when the current source density is dipolar and its location approaches one of the brain boundary surfaces [17,18]. This is 
a particularly limiting problem given that, during the solution to the EEG inverse source problem, several forward EEG 
problem solutions are required for which the the primary current density terms are near or on top of a boundary surface 
[19,20].

Three main strategies have been reported in the literature to limit the impact of accuracy losses: (i) the avoidance of 
brain source modeling near boundaries [21], (ii) the use of global or local mesh refinements that can better handle the 
singularity of the dipolar source term [22,23,20], and (iii) the introduction of a symmetric boundary element formulation 
[24,25]. All the above-mentioned techniques can sensibly improve source-related precision issues, but at the same time 
they present some undesirable drawbacks: (i) avoiding the positioning of dipolar sources near boundaries, on the one hand, 
represents a limitation on correct modeling [19] and, on the other hand, it increases the ill-posedness of the inverse-source 
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problem [26]. (ii) The use of mesh refinements increases the computational burden, due to the higher dimensionality of 
the refined models, and this can result in substantial inefficiencies [21,27]. This is especially true in the context of inverse 
source problem solutions, where sources are often equally distributed near the boundaries of brain layers [19]. (iii) The use 
of symmetric formulations, which are based on a clever and complete exploitation of the representation theorem, results in 
the simultaneous resolution of two integral equations in two unknowns, and sensibly improves the accuracy of BEM method 
based EEG imaging. However, these formulations result in more unknowns, which increases the computational complexity 
of the EEG forward and inverse solutions. Moreover, the symmetric formulation in [24,25] presents a conditioning that is 
dependent on and growing with the number of unknowns (or equivalently with the inverse of the mesh parameter). This 
ill-conditioning results in harder-to-obtain numerical solutions to realistic problems as the matrix inversion becomes an 
increasingly unstable operation [28].

To circumvent the above-mentioned limitations, this work proposes a different approach. We first start from analyzing 
the mapping properties of standard EEG forward problem operators (double and adjoint double layer). We report on the 
fact that standardly used discretizations of these operators are consistent only with an L2-formulation, requiring the ex-
pansion term to be a square integrable function. Instead, those techniques are not consistent when a mapping in terms 
of fractional-order Sobolev spaces is considered. Such a mapping, in the case of the adjoint double layer operator, would 
allow the expansion term to be a less regular function, sensibly reducing the need for mesh refinements and low-precisions 
handling strategies currently required. These more favorable mappings, however, require a different and conforming dis-
cretization that must be suitably adapted to them. Some of the authors of this work presented in the past a strategy to 
comply with proper Sobolev space mappings based on dual elements. This approach was introduced in [29] and named 
“mixed discretization”. Mixed discretizations are conforming with respect to Sobolev properties of second kind operators. 
This approach has been subsequently applied to several problems in electromagnetics [30,31] and acoustics [32]. In this 
work, we have applied the mixed discretization concept to the case of multi-layered EEG operators used to solve piecewise 
homogeneous and isotropic nested head models. This discretization strategy can be extended to non-nested topologies. The 
resulting forward EEG problems show favorable properties with respect to previously proposed schemes. As a complement 
to the theoretical and numerical treatments, a particular attention has been devoted to implementation-oriented details 
that will allow the specialized practitioner to easily incorporate these findings in his EEG forward solution technology. Very 
preliminary and partial results of this contribution have been presented in a conference contribution [33].

This paper is organized as follows: in Section 1 we first review classical EEG discretizations and we analyze their consis-
tency with respect to fractional-order Sobolev space mappings; we then introduce dual basis functions and the new forward 
EEG mixed discretized formulations we propose in this work. Following this, we develop a new robust integral representa-
tion which features high accuracy even when the conductivity ratio is high. In Section 3, we present a complete numerical 
study of the new techniques to comparatively test their performance against the state of the art. This will be done on both 
canonical spherical models (for which benchmarking against analytic solutions is possible) and on realistic models arising 
from MRI data. Section 4 presents our discussion of these results and our conclusions.

1. Methods

1.1. Standard integral equation formulations of the electroencephalography forward problem

Let σ be a smooth, isotropic conductivity distribution and let j be a quasi-static electric volume current density distri-
bution in R3. The current density j generates the electric potential φ, a relationship that is mathematically expressed by 
the Poisson’s equation

∇ · σ∇φ = f = ∇ · j , in R3 (1)

When σ models the conductivity distribution of a human head, the problem of finding the electric potential φ is denoted 
as the EEG forward problem [14,11].

In BEM techniques, the head is usually modeled by domains of different areas of constant conductivity. The conductiv-
ity σ is a piecewise constant function dividing the space R3 in a nested sequence of regions as depicted in Fig. 1. The 
different domains corresponding to the regions where σ is constant and equal to σi are labeled Ωi with i = 1, . . . , N + 1. 
The domain ΩN+1 is the exterior region, extending to infinity, with σN+1 = 0. In ΩN+1 no current sources are present. The 
surfaces separating the different regions of conductivity are labeled Γi with i = 1, . . . , N as shown in Fig. 1.

In order to account for piecewise continuous σ , Eq. (1) must be complemented by transmission and boundary conditions 
resulting in [34]

σi�φ = f in Ωi, for all i = 1, . . . , N (2)

�φ = 0 in ΩN+1 (3)

[φ] j = 0 on Γ j, for all j = 1, . . . , N (4)

[σ∂n̂φ] j = 0 on Γ j, for all j = 1, . . . , N (5)
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Fig. 1. Nested sequences of regions with constant conductivity.

The expression [g] j denotes the jump of the function g at the surface Γ j , that is,

[g] j = g|−Γ j
− g|+Γ j

(6)

with g|−Γ j
and g|+Γ j

the interior and exterior limits of g at the surface Γ j , respectively. These limits are defined as

g|±Γ j
(r) := lim

α→0± g(r + αn̂) for all r on Γ j (7)

where n̂ denotes the normal at each surface (see Fig. 1).

1.1.1. Boundary integral operators
Boundary element methods provide a numerical approximation of the potential φ [35,36] when the forward EEG prob-

lem is cast in an integral equation formulation. In the following, we introduce the integral operators and their mapping 
properties, and we review the standard integral formulations of the EEG forward problem.

Definition 1 (Boundary integral operators). Let Ω ⊂ R3 be a bounded Lipschitz domain with boundary Γ := ∂Ω . We define 
the single layer operator

S : H−1/2(Γ ) → H1/2(Γ ), (Su)(r) =
∫
Γ

G(r − r′)u(r′)dS(r′) (8)

the double layer and adjoint double layer operator

D : H1/2(Γ ) → H1/2(Γ ) , (Du)(r) :=
∫
Γ

∂n̂′ G(r − r′)u(r′)dS(r′) (9)

D∗ : H−1/2(Γ ) → H−1/2(Γ ) , (D∗u)(r) =
∫
Γ

∂n̂G(r − r′)u(r′)dS(r′) (10)

and the hypersingular operator

N : H1/2(Γ ) → H−1/2(Γ ) , (Nu)(r) =
∫
Γ

∂n̂,n̂′ G(r − r′)u(r)dS(r′) (11)

In the definitions above, the function

G(r − r′) = 1

4π|r − r′| (12)

is the free-space Green’s function. The Sobolev spaces Hx , x ∈ {−1/2, 1/2}, appearing in the mapping properties are briefly 
defined in Appendix A.

Remark. The reader should be warned that there is no consistent naming of the operators above in the literature and the 
naming choice made here is the one classically adopted in potential theory (see for example [28]).
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Source modeling and inhomogeneous solution Current dipoles are a common approximation of brain electric sources making 
them a widely used model in the forward and inverse EEG problem [37–39]. The current dipole is defined by

jdip(r) = qδr0(r) (13)

where q represents the dipole moment and δr0 the Dirac delta function. The corresponding potential in an infinite homo-
geneous domain is

vdip(r) = 1

4π
q · (r − r0)

|r − r0|3 (14)

Throughout the following sections, we use

vs,Ωi = vdip for r0 ∈ Ωi (15)

Moreover, whenever two underscore indices j, i are added to an operator symbol we mean that, in defining the operator, 
the integration is constrained to the ith surface and the integral is evaluated only on the jth surface. For example, S ji is 
defined as

(S ji p)(r) =
∫
Γi

G(r − r′)p(r′)dS(r′), r ∈ Γ j (16)

1.1.2. Boundary integral formulations
Three integral formulations are commonly used for computing the electric potential φ in Eq. (1) [25,40–42]. All of them 

leverage the same principle: the electric potential φ is decomposed into

φ = vs + vh (17)

such that σi�vs = f in Ωi for all i = 1, . . . , N (see Eq. (2)) and such that vh is a piecewise harmonic correction ensuring 
that φ will satisfy the boundary conditions (4) and (5). For setting the notation and for the sake of self-consistency, we list 
these formulations below; for a more detailed derivation, we refer the reader to [25] and references therein.

The adjoint double layer formulation. In this formulation, the ansatz for vs1 has the following form:

vs1 =
N∑

i=1

vs,Ωi

σi
(18)

This choice satisfies Eq. (2) and Eq. (3), and in addition, [vs1] j = 0 and [∂n̂ vs1] j = 0. Theorem 1 in Appendix B is then used 
to construct a harmonic function a vh1 such that a Neumann’s boundary condition is satisfied. It is obtained that

∂n̂ vs1|Γ j
= σ j + σ j+1

2(σ j+1 − σ j)
qΓ j −

N∑
i=1

D∗
jiqΓi for j = 1, . . . , N (19)

The double layer formulation. The following particular solution is put forward (see, for example, [25] or [40])

vs2 =
N∑

i=1

vs,Ωi (20)

which satisfies Eq. (2), [vs2] = 0, and [∂n̂ vs2] = 0. After complementing it with a harmonic solution vh2 that satisfies, 
[∂n̂ vh2] = 0, it is obtained

vs2|Γ j
= σ j + σ j+1

2
φΓ j −

N∑
i=1

(σi+1 − σi)D jiφΓi (21)

The symmetric formulation. Differently from the previous two approaches, in the symmetric formulation, the harmonic 
function vh3 is constructed as follows [25]

vh3,Ωi =
{

φ − vs,Ωi
σi

, in Ωi

− vs,Ωi
σi

, in R3 \ Ω i
(22)

Then, it can be shown that

σ−1
i+1(vs,Ωi+1)

∣∣
Γi

− σ−1
i (vs,Ωi )

∣∣
Γi

= Di,i−1φΓ − 2DiiφΓ +Di,i+1φΓ − σ−1Si,i−1dΓ + (σ−1 + σ−1 )SiidΓ − σ−1Si,i+1dΓ (23)
i−1 i i+1 i i−1 i i+1 i i+1 i+1
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and

(∂n̂ vs,Ωi+1)
∣∣
Γi

− (∂n̂ vs,Ωi )
∣∣
Γi

= σiNi,i−1φΓi−1 − (σi + σi+1)NiiφΓi + σi+1Ni,i+1φΓi+1 −D∗
i,i−1dΓi−1 + 2D∗

iidΓi −D∗
i,i+1dΓi+1 (24)

hold for i = 1, . . . , N . Here we have used the notation dΓi = σi∂n̂φ|−Γi
.

1.2. Analysis of the main drawbacks of standard discretizations

To evidence the drawbacks of standard (currently used in literature) BEM discretizations of the EEG forward problem, 
we have to consider Petrov–Galerkin theory, which provides the convergence properties of a numerical boundary element 
solution in the case of asymmetric discretizations [36].

1.2.1. Petrov–Galerkin method reviewed
Let X and Y be Hilbert spaces, and A : X → Y ′ a bounded, linear operator. We can associate with A a bilinear form 

a : X × Y → R that satisfies |a(x, y)| ≤ C ‖x‖X ‖y‖Y with C > 0. We are faced with the variational problem to find u ∈ X
such that a(u, v) = 〈 f , v〉Y ′×Y for all v ∈ Y with f ∈ Y ′ .

To solve this variational formulation, we cast this problem into a matrix-vector equation by using finite-dimensional 
subspaces Xh ⊂ X and Yh ⊂ Y with dim(Xh) = dim(Yh) = M . The task is to find uh ∈ Xh such that a(uh, vh) = 〈 f , vh〉Y ′

h×Yh

for all vh ∈ Yh . The function uh is an approximation of u and this approach is called the Petrov–Galerkin method [36].
The key ingredient of the Petrov–Galerkin method is that the testing is always performed in the dual space of the range 

of A, where we notice that Y ′′ = Y because of the reflexivity of Y .

1.2.2. Standard discretizations
The classical integral equations presented in Section 1.1.2 are discretized using a BEM approach. The different regions 

Ωi of the head are approximated with polygonal domains. On these domains, meshes are generated by using a triangular 
tessellation. The potential φ is approximated by a linear combination of expansion functions αi ∈ Xα , i.e.

φ ≈
Nα∑
j=1

c jα j for r ∈
⋃

i

Γi (25)

where c j are the (unknown) expansion coefficients, and Nα = dim Xα is the dimensionality of the function space Xα .
Commonly used functions are the piecewise constant functions (PCFs) p j (also referred to as patch functions) and 

piecewise linear functions (PLFs) λ j (also referred to as linear Lagrangian or pyramid functions). These functions form 
the boundary element spaces span{p j}Np

j=1 =: Xp and span{λ j}Nλ
j=1 =: Xλ and it holds that Xp ⊂ H−1/2 and Xλ ⊂ H1/2 [36]. 

Both the PCFs and the PLFs form a partition of unity.
We denote the system matrix that stems from the discretization of an operator X with the expansion functions α j and 

testing functions βi as Xβα with

[Xβα]i j = (βi,Xα j)L2 (26)

This notation is necessary, as some operators are discretized with different expansion and testing functions.
A standard discretization in the literature for the adjoint double layer and double layer formulation is the one where 

PCFs are used as expansion and testing functions [25,40]. Using the notation of Eq. (26), such a discretization for the adjoint 
double layer formulation would read

Ik,pp − D∗
kl,pp = vs1,k,p k, l = 1, . . . , N (27)

where

[Ik,pp]i j = σk + σk+1

2(σk+1 − σk)
(p(k)

i , p(k)
j )L2(Γk)

(28)

[D∗
kl,pp]i j = (p(k)

i ,D∗
kl p(l)

j )L2(Γk)
(29)

[vs1,k,p]i = (p(k)
i , ∂n̂ vs1)L2(Γk)

(30)

and qΓk ≈ ∑
i[qk,p]i p(k)

i .
The Petrov–Galerkin theory reviewed in the previous section, however, prohibits the use of PCFs as testing functions 

since on the right-hand-side we have the sum of the identity operator I and the adjoint double layer operator D∗ terms. 
Since I : H−1/2 → H−1/2, the entire right-hand side is a (bijective) mapping from H−1/2 to H−1/2. The dual space of the 
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range is H1/2. As Xp � H1/2, we cannot use PCFs as testing functions: they are not regular enough and thus the commonly 
used discretization of the operator in Eq. (27) is incompatible with the mapping H−1/2 → H−1/2 of the operator.

Also the classical discretization for the double layer formulation (Eq. (21)) is leveraging on PCF both as expansion and 
testing functions, i.e.

J k,pp + ζl Dkl,pp = vs2,k,p k, l = 1, . . . , N (31)

where

[ J k,pp]i j = σk + σk+1

2
(p(k)

i , p(k)
j )L2(Γk)

(32)

[Dkl,pp]i j = (p(k)
i ,Dkl p(l)

j )L2(Γk)
(33)

[vs2,k,p]i = −(p(k)
i , vs2)L2(Γ )k

(34)

and φΓk ≈ ∑
i[φk,p]i p(k)

i and ζl = −(σl+1 − σl). For the double layer formulation (Eq. (31)), we find that the operator on 
the left-hand side is a mapping H1/2 → H1/2, since I maps from H1/2 to H1/2. The relationship Xp � H1/2 implies that the 
use of PCFs as expansion functions is forbidden. More regular expansion functions must be used.

The standard discretization of the symmetric formulation reads [25]

−σk Nkk−1,λλ + D∗
kk−1,λp + ηk Nkk,λλ − 2D∗

kk,λp − σk+1 Nkk+1,λλ + D∗
kk+1,λp = vsym,k,λ (35)

Dkk−1,pλ − σ−1
k Skk−1,pp − 2Dkk,pλ + θk Skk,pp + Dkk+1,pλ − σ−1

k+1 Skk+1,pp = psym,k,p (36)

where

[Nkl,λλ]i j = (λ
(k)
i ,Nklλ

(l)
j )L2(Γk)

(37)

[Skl,pp] = (p(k)
i ,Skl p(l)

j )L2(Γk)
(38)

[Dkl,pλ]i j = (p(k)
i ,Dklλ

(l)
j )L2(Γk)

(39)

[D∗
kl,λp]i j = (λ

(k)
i ,D∗

kl p(l)
j )L2(Γk)

(40)

[vsym,k,λ]i = (λ
(k)
i ,σ−1

k+1(vs,Ωk+1)
∣∣
Γk

− σ−1
k (vs,Ωk )

∣∣
Γk

)L2 (41)

[psym,k,p]i = (p(k)
i , (∂n̂ vs,Ωk+1)

∣∣
Γk

− (∂n̂ vs,Ωk )
∣∣
Γk

)L2 (42)

with ηi = σi +σi+1, θi = σ−1
i +σ−1

i+1, φΓk ≈ ∑
i[φk,λ]iλ

(k)
i , and dΓk ≈ ∑

i[φk,p]i p(k)
i . In contrast to the classical discretizations 

of the double layer and adjoint double layer operators, the symmetric formulation in [25] is discretized in a way that is 
completely conforming with respect to the fractional-order Sobolev space mappings. The single-layer operator Si j maps 
from H−1/2 to H1/2 and thus the dual of its range is the space H−1/2, allowing the use of PCFs as expansion and testing 
functions (see Eq. (41)). The hypersingular operator Ni j is discretized with PLFs as both expansion and testing functions, 
since the derivatives render the usage of PCFs impossible (see Eq. (35)). This is a conforming choice given that a lower 
regularity would not be allowed since Ni j is a mapping from H1/2 to H−1/2 and thus both expansion and testing functions 
should belong at least to H1/2. Similar arguments can be used to show the conformity of the expansion and testing function 
choices for Di j and D∗

i j in Eq. (39) and Eq. (40), respectively.
Furthermore, while the double layer and the adjoint double layer approaches give rise to a dense matrices, the matrices 

obtained from the symmetric approach are band diagonal. The entries of the matrix of the symmetric approach include only 
the interaction between adjacent compartments, which consequently reduces the computational cost.

Yet, the symmetric approach has two drawbacks: its discretization gives rise to a matrix that is one and half times the 
size of the matrices of the previous two approaches and, since the symmetric formulation operator is of the first kind, the 
resulting matrix is ill-conditioned (when the number of unknowns is increased by decreasing the average edge length h, 
the condition number grows unbounded [43]). We note that the double layer and adjoint double layer formulations are 
Fredholm integral equations of the second kind [44]. This kind of equations gives rise to well-conditioned systems.

Higher-order functions could be used to solve the above-mentioned problems in standard discretizations of the double 
and adjoint double layer operator. For example, given that the PLFs belong to the space H1/2 and this space itself is a subset 
of the space H−1/2, one could think of using PLFs as expansion and testing functions in Eq. (27) and Eq. (31). Although this 
leads to a conforming testing, it results in schemes that have either expansion or testing functions more regular than 
necessary, which can slow down the convergence of the approximate solution to the exact solution as h decreases; this 
effect is especially notable in the presence of irregular geometries such as highly realistic phantoms of the human head. 
Moreover, the usage of PLFs increases the computational burden: the handling of the singularity of the Green’s function 
[45–47] in the integration routines becomes computationally more expensive and more difficult to implement.
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Table 1
The abbreviations and discretizations of the standard formulations.

Label Formulation Function Drawbacks

Expansion Testing

Standard discretizations
1Aa Adjoint double layer p p UR for testing
1Ab Adjoint double layer λ λ ER for expansion
1Ba Double layer p p UR for expansion
1Bb Double layer λ λ ER for testing
1C Symmetric p, λ p, λ Double-sized and ill-conditioned system matrix

ER: Excessive regularity
UR: Insufficient regularity

Fig. 2. The standard (thick lines) and the barycentrically refined (thin lines) mesh. The grey area is a dual cell.

Summarizing, the standard low-order discretizations of the EEG forward problem do not comply with the EEG opera-
tors requirements in terms of regularity and can lead to erroneous solutions, while the symmetric formulation is correctly 
discretized, but requires four times the memory space and it is an ill-conditioned formulation. The problem could be ame-
liorated by higher-order functions, but this increases the computational burden, and it is more complicated to implement. 
The above considerations are summarized in Table 1.

1.3. New mixed discretized EEG formulations

A joint application of PCFs and PLFs is not possible without getting a rectangular matrix – owing to the fact that the 
number of PCFs Np equals the number of cells of the mesh NCells, while the number of PLFs Nλ equals the number of inner 
nodes NNodes of the mesh.

We must use a new set of PCFs and PLFs whose span has the right dimension. Such functions can be constructed by 
using the dual mesh, that is, the mesh where the nodes of the original mesh become cells and vice versa. In the following, 
we refer to these functions as Dual Piecewise Constant Functions (DPCFs) p̃i and Dual Piecewise Linear Functions (DPLFs) 
λ̃i , and they form the spaces Xp̃ and Xλ̃ .

The dual mesh is obtained by barycentrically refining a standard triangular mesh: each triangle is split into six sub-
triangles by connecting the midpoints of each edge with the opposite node. This is shown in Fig. 2, where the original cells 
are those with bold edges. The union of the greyed cells around the center node of this figure form the dual cell.

In the following, a mixed discretization scheme for the EEG-based forward problem is proposed. The operators are 
discretized and tested in a conforming way with respect to Sobolev space mapping properties. Mixed and conforming 
discretization techniques were introduced by [29] in the context of full-wave solutions to scattering problems. These dis-
cretizations make use of suitably chosen dual functions. There are several ways to define these dual functions. In this work, 
we adopt the functions proposed in [48] in the context of Calderon preconditioning of scattering problems.

1.3.1. Dual functions
The definition of the DPCFs is simple. The support of the DPCF p̃ j is given by the cells on the barycentrically refined 

mesh that are attached to the jth node (Fig. 2 shows the support of a DPCF). When r is in the support of p̃ j , the function 
value p̃ j(r) = 1 and is zero when r is not in the support of p̃ j . Let pbar

i be the standard PCFs defined on the barycentrically 
refined mesh. For the example given in Fig. 2, we find
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Fig. 3. Transformation matrix coefficient.

Fig. 4. An example of a typical BC piecewise linear function.

p̃ j =
12∑

i=1

αi pbar
i (43)

where αi = 1 for all i = 1, . . . , 12.
The function λ̃ j is attached to the cell j and it can be represented as a linear combination of seven standard PLFs λbar

j
defined on the barycentrically refined mesh. Fig. 3 shows the general case, where the nodes of the seven relevant PLFs are 
labeled with the coefficients βi that are chosen such that

λ̃ j =
7∑

i=1

βiλ
bar
i (44)

For the first coefficient, which is associated with the center PLF, we always have β1 = 1, while for the next three coefficients, 
which are associated with the PLFs defined on the midpoints of the edges of the primal cell, we always have βi = 1/2 with 
i = 2, . . . , 4. The last three coefficients β5, β6 and β7, which are associated with PLFs defined on nodes of the primal cell, 
their weights are given by 1/NCells,i with i = 5, . . . , 7 and NCells,i being the number of cells of the primal mesh that are 
attached to the respective node. In the example given, the coefficients are α5 = 1/5, α6 = 1/6, and α7 = 1/6. It can be 
shown that these DPLFs form a partition of unity [48]. Fig. 4 visualizes an example of a DPLF function.

1.3.2. New formulations
Following the considerations of the previous sections, we propose new mixed discretization strategies for the adjoint 

double layer, double layer, and symmetric approaches. For the adjoint double layer approach, we use standard PCFs as 
expansion and DPLFs as testing functions. This results in⎡⎢⎣ I 1,̃λp − D∗

11,̃λp
−D∗

12,̃λp
−D∗

13,̃λp
−D∗

21,̃λp
I 2,̃λp − D∗

22,̃λp
−D∗

23,̃λp
−D∗

31,̃λp
−D∗

32,̃λp
I 3,̃λp − D∗

33,̃λp

⎤⎥⎦ ·
⎡⎣q1,p

q2,p
q3,p

⎤⎦
︸ ︷︷ ︸

qp

=
⎡⎣ vs1,1,̃λ

vs1,2,̃λ
vs1,3,̃λ

⎤⎦ (45)

where

[Ik,̃λp]i j = σk + σk+1
(̃λ

(k)
i , p(k)

j )L2(Γ ) (46)

2(σk+1 − σk)
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[D∗
kl,̃λp

]i j = (̃λ
(k)
i ,D∗

kl p(l)
j )L2(Γ ) (47)

[vs1,k,̃λ]i = (̃λ
(k)
i , ∂n̂ vs1)L2(Γ ) (48)

and qΓk ≈ ∑
i[qk,p]i p(k)

i .⎡⎢⎢⎢⎢⎢⎣
β1 I p̃λ + α1 D11,̃pλ −2S11,̃pp −σ2 D12,̃pλ S12,̃pp 0

−2N11,̃λλ δ1 I λ̃̃p + γ1 D∗
11,̃λp

N12,̃λλ −σ−1
2 D∗

12,̃λp
0

−σ2 D21,̃pλ S21,̃pp β2 I p̃λ + α2 D22,̃pλ −2S22,̃pp −σ3 D23,̃pλ
N21,̃λλ −σ−1

2 D∗
21,̃λp

−2N22,̃λλ δ2 I λ̃p + γ2 D∗
22,̃λp

N23,̃λλ
0 0 −σ3 D32,̃pλ S32,̃pp β3 I p̃λ + α3 D33,̃pλ

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

φ1,λ
d1,p
φ2,λ
d2,p
φ3,λ

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
vsym,1,̃p
psym,1,̃λ
vsym,2,̃p
psym,2,̃λ
vsym,3,̃p

⎤⎥⎥⎥⎥⎦ (49)

For the double layer approach, on the other hand, we use standard PLFs as expansion and DPCFs as testing functions. 
The system we have to solve is⎡⎣ J 1,̃pλ + ζ1 D11,̃pλ ζ2 D12,̃pλ ζ3 D13,̃pλ

ζ1 D21,̃pλ J 2,̃pλ + ζ2 D22,̃pλ ζ3 D23,̃pλ
ζ1 D31,̃pλ ζ2 D32,̃pλ I 3,̃pλ + ζ3 D33,̃pλ

⎤⎦ ·
⎡⎣φ1,λ

φ2,λ
φ3,λ

⎤⎦
︸ ︷︷ ︸

φp

=
⎡⎣ vs2,1,̃p

vs2,2,̃p
vs2,3,̃p

⎤⎦ (50)

where

[ J k,̃pλ]i j = σk + σk+1

2
(̃p(k)

i , λ
(k)
j )L2(Γ ) (51)

[Dkl,̃pλ]i j = (̃p(k)
i ,Dkl λ

(l)
j )L2(Γ ) (52)

[vs2,k,̃p]i = −(̃p(k)
i , vs2)L2(Γ ) (53)

and φΓk ≈ ∑
i[φk,λ]iλ

(k)
i and ζl = −(σl+1 − σl).

For the sake of completeness, we also consider a mixed discretization for the symmetric formulation. When a mixed 
discretization is applied to Eq. (23) and Eq. (24), we obtain a rectangular system matrix. To obtain a square system matrix, 
we propose a slightly modified symmetric formulation given by

(vs,Ωi+1)
∣∣
Γi

− (vs,Ωi )
∣∣
Γi

= σiDi,i−1φΓi−1 − (σi + σi+1)DiiφΓi − (σi − σi+1)φΓi + σi+1Di,i+1φΓi+1

− Si,i−1dΓi−1 + 2SiidΓi + Si,i+1dΓi+1 (54)

and

(σ−1
i ∂n̂ vs,Ωi+1)

∣∣∣
Γi

− (σ−1
i+1∂n̂ vs,Ωi )

∣∣∣
Γi

= Ni,i−1φΓi−1 − 2NiiφΓi +Ni,i+1φΓi+1 − σ−1
i D∗

i,i−1dΓi−1

+ (σ−1
i + σ−1

i+1)D
∗
iidΓi − (σ−1

i − σ−1
i+1)dΓi − σ−1

i+1D
∗
i,i+1dΓi+1 (55)

In the case of three layers, the explicit expression of the resulting linear system is given in Eq. (49), where we use

[Nkl,̃λλ]i j = (̃λ
(k)
i ,Nklλ

(l)
j )L2(Γk)

(56)

[Skl,̃pp]i j = (̃p(k)
i ,Skl p(l)

j )L2(Γk)
(57)

[Dkl,̃pλ]i j = (̃p(k)
i ,Dklλ

(l)
j )L2(Γk)

(58)

[D∗
kl,̃λp

]i j = (̃λ
(k)
i ,D∗

kl p(l)
j )L2(Γk)

(59)

[vsym,k,̃p]i = (̃p(k)
i , (vs,Ωk+1)

∣∣
Γk

− (vs,Ωk )
∣∣
Γk

)L2

[psym,k,̃λ]i = (̃λ
(k)
i , (σ−1

k ∂n̂ vs,Ωk+1)

∣∣∣
Γk

− (σ−1
k+1∂n̂ vs,Ωk )

∣∣∣
Γk

)L2

with coefficients
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αi = (σi + σi+1) , βi = (σi − σi+1)/2

γi = (σ−1
i + σ−1

i+1) , δi = (σ−1
i+1 − σ−1

i )/2

An important point to note is that the BEM equations mentioned above correspond to the interior Neumann problem. 
Therefore, the potential is only determined up to an additive constant. This gives rise to singular matrices. Hence, an 
additional condition is needed to solve these systems. The most commonly used one is 

∫
Γ

φdS(r) = 0, which corresponds 
to a surface potential of zero mean. We do not further detail this point given that this is a standard procedure which is 
widely documented [49,50].

The integrals found in the operators D and D∗ are computed numerically using Gauss quadrature [51] with seven points 
when the expansion and testing triangle are far from each other. When the expansion and testing triangles are too close, so 
that the singular kernel cannot be numerically integrated accurately enough, we employ a singularity extraction technique 
[46] for the inner integrations. For the integration of the N operator, we follow a standard approach by using its weak 
formulation such that the derivatives are placed on the testing and expansion functions [36]. The identity operators are 
always computed analytically.

2. The problem of high conductivity contrast

2.1. Isolated skull approach

As mentioned before, the head is modeled with multilayered compartments of different conductivity (see Fig. 1). Let 
ω denote the conductivity ratio between two layers. When ω is small (i.e. ω < 10), the double layer and adjoint double 
layer formulations produce optimum approximation. In the presence of a layer of low conductivity (ω > 10), however, those 
formulations suffer from numerical inaccuracies. This stems from the fact that the solution scales differently on the inter-
faces of the head model. Even though conforming discretization improves their accuracy, these formulations yield inaccurate 
results when the conductivity contrast becomes large. This constitutes a serious drawback given the actual low conductivity 
of the skull in comparison with the conductivity of the brain and the scalp. In order to overcome this problem, Hamalainen 
and Sarvas [52] proposed a numerical strategy named Isolated Skull Approach (ISA) for the double layer formulation. This 
scheme was first formulated for three-layer head model and then generalized to an arbitrary number of layers by [22,53]. 
The principle of this approach is to write the total potential as a sum of two terms:

φ = φISA + φcorr (60)

The first term φISA is the potential computed assuming an isolated model consisting of only the compartments that are 
under the skull. The second part φcorr is a correction term computed as in the standard double layer formulation with a 
right-hand side equal to (for three layers model)

vs3 = σskull(vs2 − φISA) (61)

where σskull is the conductivity of the skull. We note that φISA is different from zero only on the surfaces corresponding to 
the tissues located under the skull. For more details about this approach, we refer the interested reader to [52,22,53]

2.2. Indirect adjoint double layer formulation

While the ISA solves the problem of conductivity ratio for the DL formulation, unfortunately, however, we do not find 
in the literature a similar way to address this problem for the adjoint double layer formulation. In order to alleviate this 
shortcoming, we present here a new procedure to compute the potential that we call it Indirect Adjoint Double Layer 
formulation (IADL). In contrast to the existing adjoint double layer formulation, the new approach allows for computing the 
electric potential accurately, even in the case of a large dynamic range in the conductivity of the different compartments. 
The main idea is to write the potential as a contribution of monopole sources JΓ2 and JΓ3 distributed on the two outermost 
layers. This can formally be written as

φ|Ω3
= S JΓ2 + S JΓ3 (62)

Applying the gradient operator along the normal direction, we get

∂n̂φ|Γ j
= ± JΓj

2
+D∗

j2 JΓ2 +D∗
j3 JΓ3 for j = 2,3 (63)

where the sign of 
JΓj
2 depends on the orientation of the normal. This equation relates the densities JΓ2 and JΓ3 to the 

current densities. It will be enforced on JΓ2 and JΓ3 such that:

• ∂n̂φ|Γ = 0

3
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Fig. 5. The multi-layered spherical structure that is used for the evaluation of the different discretizations. Note, that the conductivity σ2 was varied in 
parts of the simulations.

•

∂n̂φ|Γ2
= −1

2
q[Γ2] +

N∑
i=1

D∗
2iqΓi + ∂n̂ vs1|Γ2

(64)

= σ2

σ3 − σ2
qΓ2 (65)

where qΓi is the solution to the original problem in Eq. (19) on the ith interface. In order to reuse the block matrices of the 
operator D∗ previously built to solve the original problem of Eq. (19), the densities JΓ2 and JΓ3 are discretized with the 
same basis functions. Hence, there is no additional computational cost at this stage. By solving this small auxiliary problem 
(Eq. (63)), the obtained potential shows higher accuracy, independently of the conductivity ratio.

Summarizing, with our new technique, the potential can be computed accurately as follows:

(1) solve the adjoint double layer formulation Eq. (19) to obtain the vector q;
(2) solve the auxiliary problem in Eq. (63); for the three-layer head model, it is explicitly given by the following:[− 1

2 I 22 + D∗
22 D∗

23
D∗

32
1
2 I 33 + D∗

33

]
·
[

J 2
J 3

]
︸ ︷︷ ︸

J Γ

=
[ σ2

σ3−σ2
q2

0

]
(66)

(3) the potential is then given by Eq. (62).

3. Results

To show the practical impact of our newly proposed schemes, we compared them with some of the most common 
BEM formulations. A first set of comparisons has been obtained on the traditional multi-layered spherical model [54–56]. 
The reason for this choice is that the analytic solution available for such a model provides a rigorous reference for solidly 
assessing the numerical performance of all different formulations. This set of comparisons is then complemented by a 
second one, where we show that our new methods are naturally applicable to MRI-obtained models and that also in this 
case their performance compares quite favorably with the existing techniques.

3.1. Numerical experiments on a layered spherical head model

The radii of the concentric spheres of the model (Fig. 5) are 0.87 dm, 0.92 dm, and 1 dm. Each sphere is triangulated 
with an average edge length h = 0.12 dm resulting in 1488 elements on the first layer, 1608 elements on the second layer, 
and 1920 elements on the third layer. The triangulation is uniform delivering a mesh of approximately equally sized and 
shaped elements. The corresponding (normalized) conductivities are σ1 = 1, σ2 = 1/15, and σ3 = 1, which we abbreviate 
with the ratio 1:1/15:1 [57]. The source is modeled by a current dipole of magnitude one.
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Table 2
The abbreviations and discretizations of the new formulations.

Label Formulation Function

Expansion Testing

Mixed discretizations (this work)
2A Adjoint double layer p λ̃

2B Double layer λ p̃
2C New symmetric p, λ p̃, λ

Table 3
The abbreviations and discretizations of the new formulations.

Label Formulation Function

Expansion Testing

1Bb-ISA Isolated skull approach λ λ

This work:
2B-ISA Isolated skull approach λ p̃
1Ab-IA Indirect adjoint double layer λ λ

2A-IA Indirect adjoint double layer p λ̃

Fig. 6. Relative error as a function of the dipole position inside the sphere Γ1 with the conductivity σ2 = 1/15 S m1.

In Tables 1 to 3, we summarize the different discretization strategies and, accordingly, we reference these strategies in 
the legends of the plots. In the first experiment, the position and orientation of the dipole were the varying factors. Thus, 
a set of 1200 dipoles were generated and randomly placed at a different radial distance from the center of the spheres. For 
each dipole position, simulations were run for both radially and tangentially oriented sources. Fig. 6 shows, for different 
formulations, the mean of the relative error with respect to the analytic solution as a function of the source dipole’s 
eccentricity. We see that, in general, the relative error increases when the dipole approaches the surface Γ 1. However, 
the formulations properly discretized are less affected by this phenomenon than other formulations. We also observe that 
the isolated skull scheme has improved the accuracy of the double layer formulation, similar observations with our new 
technique IADL. In all cases, adjoint double layer formulations present more accurate results.

In order to observe the variance of the best performing methods, we illustrate in Fig. 7 the boxplot of the relative error 
as a function of the source depth. We can see that while delivering the most accurate results, the indirect adjoint double 
layer formulation is also stable having a small variance.

The behavior as well as the accuracy of the different BEM formulations depend on the conductivity ratio of the different 
compartments of the head. This aspect has been investigated and the results are shown in Fig. 8, displaying the relative 
error as a function of the electric resistivity 1/σ2 when the dipole is positioned at 0.83 dm along the x-axis. We observe 
that the standard non-conforming discretizations of the double layer and the adjoint double layer operator (1Aa and 1Ba) 
are more strongly impacted by the change of the conductivity σ2 than the other formulations. The isolated skull approach 
(ISA) is often used in literature in the presence of a layer of low conductivity to mitigate its impact on the solution error 
[52,22,53]. Fig. 8 shows also the impact of the use of the ISA technique on both standard formulations and on the mixed dis-
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Fig. 7. Relative error as a function of the dipole position inside the sphere Γ1 with the conductivity σ2 = 1/15 S m1.

Fig. 8. Relative error as a function of the normalized electric resistivity 1/σ2 when the dipole is positioned at 0.83 dm along the x-axis.

cretized schemes that we propose in this work. It is found THAT the benefits of the ISA and of the discretization technique 
we propose are cumulative, and that the two techniques can be perfectly used together. We also see that the symmetric for-
mulation cope well with high conductivity ratios. In addition, we observe that the indirect adjoint double layer formulation 
is superior in the whole range.

3.2. Numerical experiments on an MRI-obtained head model

Although spherical models (and associated analytical solutions) are fundamental for a robust assessment of any newly 
proposed forward solution strategy, it is of fundamental importance to show the applicability and performance of the 
technique proposed here on realistic MRI-obtained head models. These models allow for an individual-based head model 
to be used in solving the forward problem and translates in more precise source localization [6]. Different well-established 
methods exist in the literature for extracting the cerebral interfaces and are available in several commercial and academic 
packages including Curry, ScanIP, ASA, BESA, FieldTrip [58], FMRIB [59], FreeSurfer [60], BrainVISA [61], BrainSuite [62], 3D 
Slicer [63], and BrainVoyager [64]. In our numerical experiment, we have leveraged on BrainSuite to obtain an automatic 
segmentation of the brain, skull, and scalp. The MRI images used here are a T1-weighted scans of 256 × 256 × 256 cubic 
voxels (refer to Fig. 9). After following the standard pipeline to reconstruct the surfaces of head tissues, the obtained model 
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Fig. 9. MRI-based head model: scalp, skull and brain.

Fig. 10. MRI-based head model: surface potential.

Table 4
Memory and time consumption for the double layer and adjoint double layer discretizations.

Function CPU 
(#)

Memory 
(GB)

Time

Expansion Testing CG (s) Total (s)

Adjoint double layer discretizations
p p 30 12 12 556
p λ̃ 30 12 15 654
λ λ 30 3 9 765
Double layer discretizations
p p 30 12 11 514
λ p̃ 30 3 7 607
λ λ 30 3 6 721

is made of 7296, 7296, and 15786 cells for the brain, the skull, and the scalp, respectively. The conductivity of the brain, 
the skull, and the scalp is σ1 = 1, σ2 = 1/15, and σ3 = 1, respectively.

After the forward problem has been solved, the resulting surface potential can be visualized in Fig. 10. Since the exact 
solution is unavailable in this case, FEM served as a reference. It was solved on a refined model having 6 million tetra-
hedrons. The results of this benchmarking can be seen in Fig. 11, where a dipolar source was moved from the center to 
the surface of the brain as it is shown with red in Fig. 9. The relative error with respect to the reference solution has 
been computed for all approaches presented in the previous section. We observe that the dual adjoint double layer and the 
symmetric formulations delivers the most accurate results.

Table 4 summarizes the measurement of the memory and computational time to solve the forward problem. Timing mea-
surements concerns only the adjoint double layer and the double layer formulations with different discretization schemes. 
The machine used is a Dell server R920 working under windows system. From the table, we conclude that the proposed 
mixed discretization is not more computationally demanding while complying with the operators mapping properties.
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Fig. 11. Head: relative error as a function of the normalized electric resistivity 1/σ2 when the dipole is positioned at 0.83 dm along the x-axis.

4. Discussion and conclusions

The numerical results confirm that classical, commonly used, discretizations of the integral operators D and D∗ result 
in substantially lower level of accuracy than those achievable with their mixed discretized counterparts that we propose 
here (Figs. 6 and 7). If we then look for the best possible forward problem formulations across all different operators, 
depending on the scenario (position of the dipole, conductivity), either the mixed discretization or the piece-wise linear 
PLFs discretization of the adjoint double layer operator (2A and 1Ab) provide the overall best accuracy. The reader should 
remember, however, that the PLF discretization always comes at the price of an increase in the computational burden. 
Moreover, every time the dipolar brain source comes close to a brain layer interface, we find that the mixed discretization 
yields always comparable accuracy with the PLF discretization.

We varied the conductivity over a wide range of values. In recent reports, the conductivity ratio of brain, skull, and scalp 
is estimated from in vivo measurements to be between 1:1/15:1 and 1:1/25:1, and the ratio 1:1/80:1 arising from in vitro 
measurements and which until recently has been used in neuroimaging applications is currently questioned [65,66,57,67]. 
We have observed that, for the relevant range of in vivo measured conductivities, a straightforward application of double 
layer and adjoint double layer formulation leads to a poor accuracy. The application of ISA technique to both standard 
formulations and on the mixed discretized schemes substantially improves their accuracy. We also observed that the new 
integral representation (IADL) yields the highest accuracy compared with other methods (see Fig. 8).

From our experiments, it is evident that also the symmetric formulation performs quite well when the dipole is near 
the surface (see Figs. 6 and 7). This is consistent with the theoretical consideration that the symmetric formulation is 
a conformingly discretized scheme. However, it should be noted that the symmetric formulation comes at the cost of a 
considerable computational burden. The dimension of the system matrix is one and a half times the size of the matrices 
of the mixed discretization. Thus the symmetric formulation is comparatively less competitive in the source localization 
process, where the propagation model needs to be calculated many times.

For the sake of completeness, we also presented a mixed discretization of the symmetric formulation. No advantages 
were observed, since the original symmetric formulation was already discretized conformingly, and the obtained system is 
plagued with the same drawbacks as the original symmetric formulation. We note also that the application of the isolated 
skull approach improves the accuracy of the solution, especially for shallow dipoles. The improvement, however, comes at 
the cost of some additional computations.

In conclusion, the numerical results confirm what can be theoretically expected, i.e. that mixed and conforming dis-
cretizations provide formulations with a higher level of accuracy of their standard counterparts. Moreover the adjoint double 
layer operator provides often the global optimum across all operators and discretizations. Taking into account that the com-
putational costs of the mixed discretization is lower than those of higher order alternatives, the discretizations schemes 
proposed here can be a very competitive new option among all EEG forward formulations.
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Appendix A. Relevant Sobolev spaces

This appendix contains the definitions of the Sobolev spaces used in this paper. The presentation is concise for the sake 
of brevity; the interested reader could refer to [68] for further details on the topic.

The Sobolev space H1(Ω) is defined as

H1(Ω) = { f : Ω →R | f ∈ L2(Ω) ∧ ∇ f ∈ (L2(Ω))3}
The space L2 is the set of all equivalence classes of functions that are square integrable in the Lebesgue sense:

L2(Ω) = { f : Ω →R | ‖ f ‖L2(Ω) < ∞} (67)

with the L2-norm defined as

‖ f ‖L2(Ω) = (

∫
Ω

| f (r)|2dr)1/2 (68)

From the space H1(Ω), we can define the fractional-order Sobolev space H1/2(Γ ) as

H1/2(Γ ) = { f : Γ →R | ∃g ∈ H1(Ω) so that g|Γ = f }
The space H−1/2(Γ ) is the topological dual space of H1/2(Γ ), that is, the space that contains all the linear and continuous 
functionals that map the functions of H1/2(Γ ) to R [68].

Appendix B. The representation theorem

The representation theorem allows one to represent the solution u of the Laplace equation on a domain Ω in terms of 
its boundary values [69].

Theorem 1. Let Ω− ⊂ R3 be an open, connected set with smooth boundary Γ , Ω+ = R3 \ Ω− its complement. Let �u = 0 in 
Ω = Ω+ ∪ Ω− , and let u satisfy the conditions

lim
r→∞ r|u(r)| < ∞ (69)

lim
r→∞ r

∂u

∂r
(r) = 0 (70)

where r = ‖r‖. We define p = ∂n̂u. Then it holds

−p = +N [u] −D∗[p] , for r ∈ Ω (71)

u = −D[u] + S[p] , for r ∈ Ω (72)

−p|±Γ = +N [u] + (±I/2 −D∗)[p] , for r ∈ Γ (73)

u|±Γ = (∓I/2 −D)[u] + S[p] , for r ∈ Γ (74)

where I is the identity operator and the operators S , D, D∗, and N are defined in Eqs. (8) to (11).

Whenever [u] or [p], respectively, are zero, we obtain

p|±Γ = ∓[p]/2 +D∗[p] , for r ∈ Γ (75)

and

u|±Γ = ∓[u]/2 −D[u] , for r ∈ Γ (76)

The representation theorem holds also in the presence of multilayered structures as depicted in Fig. 1. Let ξΓi and μΓi be 
functions defined on the ith surface. We define the potentials uh1 = ∑N

i=1 SξΓi and uh2 = ∑N
i=1 DμΓi . Then we obtain
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∂n̂u±
h1(r) = ∓ξΓ j /2 +

N∑
i=1

D∗
jiξΓi for r ∈ Γ j (77)

u±
h2(r) = ±μΓ j /2 +

N∑
i=1

D jiμΓi for r ∈ Γ j (78)
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