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Abstract 1 — Nowadays, General Purpose Graphics Processing 

Units (GPGPUs) devices are considered as promising solutions for 

high-performance safety-critical applications, such as those in the 

automotive field. However, their adoption requires solutions to 

effectively detect faults arising in the device during the operative 

life. Hence, effective in-field test solutions are required to 

guarantee high-reliability levels. In this paper, we leverage the 

results of Software-Based Self-Test (SBST) based approaches for 

GPGPUs by deploying new techniques for automating the 

identification of untestable faults (UF). Our methodology has 

achieved fault coverage of 82.8% when applied to an open-source 

implementation of the NVIDIA G80 GPU architecture. The 

proposed approach combining SBSTs and UFs identification 

appears as an effective solution for the reliability analysis of 

GPGPUs. 

Keywords— GPGPUs, SBST, Testing, Untestable faults. 

I. INTRODUCTION 

General Purpose Graphics Processing Units (GPGPUs) are 
largely used in applications aiming at efficiently processing 
large amounts of data (such as in scientific computing and in 
multimedia applications). Nowadays, these devices are also 
adopted in complex safety-critical applications, such as the 
automotive ones [1]. GPGPUs are designed targeting 
performance and power constraints and thus employ aggressive 
technology scaling solutions. It has been shown that some 
implementation technologies are more prone to faults during the 
lifetime of the device [2] causing unaffordable failures in the 
safety-critical domain. Hence, in-field test is required to early 
identify these faults. Unfortunately, the architectural complexity 
of GPGPUs exacerbates the difficulties in the identification of 
effective test techniques to be used during in-field operations. 
While several works exist dealing with the effects of transient 
faults on GPGPUs, in this paper we focus on permanent faults, 
which also play a major role in determining the reliability 
figures of GPGPU-based applications, especially due to the 
advanced semiconductor technologies they typically rely on. 

Test solutions for complex embedded systems can be based 
either on Design for Testability (DfT) approaches, such as 
Built-In Self-Test (BIST), or on functional solutions. DfT is 
effective for the end of the manufacturing test. However, it is 
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not always suitable for in-field test, especially due to its 
intrusiveness and duration. On the other hand, functional test 
methods based on Software-Based Self-Test (SBST) employ the 
Instruction Set of the available CPU modules in the device to 
perform the test. A test program is employed to apply patterns 
to each target module and propagate the fault effects to visible 
locations (e.g., memory), thus allowing their detection. 

The SBST approach is currently experiencing a growing 
success, mainly because it offers the possibility to the 
semiconductor company manufacturing the device (and 
knowing its internal structure) to develop the test code, grade it 
in terms of achieved Fault Coverage (FC), and pass it to the 
system company, which eventually integrates it in the 
application code. Test code is often activated in small chunks, 
fitting in the idle times of the application. These codes are 
organized in a set of procedures, composing Self-Test Libraries 
(STL). STLs are currently offered by several semiconductor and 
IP companies. Based on this scenario, the availability of 
effective STL libraries able to achieve a good FC on a given 
device could represent a significant added value for products 
used in safety-critical applications. 

Concerning GPGPUs, effective techniques for STL 
development have not yet been devised, mainly due to their 
architectural complexity and by the lack of suitable HDL 
models. In this paper, we first summarize our previous work 
towards the definition of SBST techniques to detect permanent 
faults in different GPGPU modules. Our work exploited an 
open-source VHDL GPGPU model (named FlexGrip) of the 
G80 architecture of NVIDIA [3]. In [4] we proposed some first 
works targeting the warp scheduler in a GPGPU. In [5], we 
presented an SBST approach to detect permanent faults in the 
pipeline registers (PRs) of a GPGPU and for the first time, we 
reported an experimental evaluation of its effectiveness, based 
on assessing the achieved FC. However, the FC achieved by the 
SBST techniques may be difficult to precisely assess, since a 
significant number of untestable faults (UFs) often exist in 
hardware models, due to the encoding style or to the design 
flow characteristics.  

According to functional safety standards (e.g., ISO 26262 
for automotive), the FC must be computed with respect to a 
fault list from which UFs are removed. Unfortunately, UF 
identification can hardly be automated when complex devices 
such as GPGPUs are considered. Contemplating this scenario, 
the main contributions of this paper are: 



 Demonstration of how combined techniques can 
leverage UF identification. 

 Definition of a semi-automated method to evaluate UFs 
based on the adoption of Formal Methods.  

Experimental results show that the proposed method can 
identify a significant number of UFs, thus allowing to 
effectively reducing the effort to assess the quality of an SBST 
test suite and to improve the accuracy of the computed FC. 

The paper is organized as follows: Section II introduces the 
architecture of the GPGPU model we adopted (FlexGrip), the 
developed test programs and also presents the UFs and 
identification methods. Section III describes the proposed 
method for UF identification and FC improvement. Section IV 
describes the used environment for the identification of UFs. 
Section V reports some experimental results and Section VI 
finally draws some conclusions. 

II. BACKGROUND 

GPGPUs are special-purpose processors designed to execute 
simultaneously multiple tasks in groups (32 threads form a 
warp) using Streaming Multiprocessors (SMs). Each SM 
includes multiple execution units (Scalar Processors, or SPs), 
caches, (local and shared) memories, Register Files (RFs), a 
warp scheduler and dispatcher controllers. The SM executes the 
same instruction on different SPs using particular thread 
operands. Internally, the SM employs multiple pipeline stages to 
process one instruction and improve performance. 

A. Pipeline registers in FlexGrip 

The pipeline registers (PRs) are placed between every 
couple of pipeline stages to store temporary data from the 
previous stage and supply data to the next one. In FlexGrip, the 
PRs are distributed between the five stages in the SM, named 
Fetch, Decode, Read, Execute and Write-back. PRs are also 
placed between the Warp scheduler and the Fetch and Write-
back stages. 

The PRs store mainly operands for warp instruction 
execution. Nevertheless, these also include control information 
related to the warp instruction status. The Warp-Fetch (W-F) 
PR is composed of 140 control bit-fields representing the status 
of a warp instruction on the SM. These include the Warp 
program counter (WPC), the initial and active thread mask 
(AThM), and parameters for shared memory and general-
purpose registers size configuration. The Fetch-Decode (F-D) 
PR, with 237 bits, includes the same information of the previous 
stage, adding the warp instruction operational code. The 
Decode-Read (D-R) PR (391 bits) stores the specific 
instructions format fields to activate some operational modes or 
sub-modules in the next stage. The Read-Execute (R-E) PR 
(302 bits) additionally includes Temporary Registers (TRs), 
which handle a large number of operands (24,697 bits) and 
predicate conditions for each SP in the execute stage. The 
Execute-Writeback (E-Wr) PR (251 bits) also contains the TRs 
(24,704 bits). The high number of bits in the R-E and E-Wr 
registers is caused by the TRs size. These structures temporarily 
store operands and results of logical, arithmetical and control-
flow operations of each thread on an SP in the SM.  

The work reported in this paper has been performed on a 
modified version of the original Flexgrip model described in 
[3], where we fixed some bugs related to the implementation of 
the supported instructions, removed some compiler restrictions 
and added some extensions. Although the FlexGrip model does 
not completely match the architecture of the most recent 
GPGPU devices, the reported results are still mostly valid for 
them as well. Further details about the improvements we 
introduced in FlexGrip can be found in [6]. 

B. Preliminary Test program generation 

In [5], we proposed a method to write effective SBST 
programs to test stuck-at faults in the PRs, based on a bottom-up 
approach and resorting to multiple parallel programs (kernels), 
which focuses on specific PRs fields. Each kernel is written 
through a high-level CUDA compiler when possible. Some 
assembly instructions were added when strictly necessary. 

PRs are divided into two groups and multiple subsets for the 
purpose of SBST design. In [5] we described methods to excite 
and make observable permanent faults affecting fields in the 
PRs. Those are the Warp instruction status registers (WPC and 
AThM) and the Kernel parameter fields (GPRS size, shared 
memory base fields, others). Restrictions are caused by the 
CUDA-C compiler environment, which employs advanced 
algorithms for resource and performance optimization. To 
circumvent these limitations, combinations of assembly and 
CUDA-C languages and special coding styles have been 
developed. 

C. Untestable faults 

An untestable fault (UF) is a fault for which no test exists. 
This also means that UFs cannot produce any failure in the 
operating environment. UFs can be classified as i) Structural 
(or combinational) UFs are not testable even if the 
combinational block where the fault is located is fully 
controllable and observable. An ATPG tool can identify these 
faults. ii) Sequential UFs are faults that cannot be tested due to 
the sequential behavior of the circuit: for example, some 
internal states required for the test may not be reachable. iii) 
On-line functional UFs [7] are faults that cannot be tested in a 
functional manner (i.e., without resorting to DfT) in operational 
conditions, as defined by the hardware configuration. 0 

As our experimental results proved [7, 8], UFs represent a 
significant percentage of the faults. This may be due to different 
reasons, such as the used encoding style, the constraints adopted 
when assembling the whole design, etc.  

UFs should be removed from the fault list used during fault 
simulation experiments aimed at assessing the FC achieved by a 
given Self-Test Library for two reasons: i) They are guaranteed 
not to produce any relevant failure in the operating conditions; 
thus, the time spent for their fault simulation is wasted. ii) They 
do not impact the reliability: hence, when assessing the 
reliability parameters (e.g., during an FMECA process) of a 
system [9] they should not be considered. 

In this work, we focus on RT-level descriptions and on the 
last two categories of UFs.  

D. Untestable faults Identification 

UF identification is challenging because a fault can be 
labeled as untestable only if one can prove that it cannot be 
tested by ANY functional test stimulus. For that reason, fault 
simulation cannot identify UFs. The formal analysis appears as 
a good alternative since it is not limited to a specific time or 
state. Instead, the scope is global, and every evaluation context 
is considered. Generally speaking, Formal Tools automatically 
generate properties, not requiring knowledge of formal 
languages. In addition, they allow integration with Fault 
Simulators providing fault lists optimization and reducing 
simulation campaign duration. This work deploys the automated 
analysis (Standard Analysis, or SA) of the Functional Safety 
Verification (FSV) app from the Cadence® JasperGold (JG) 
Formal Verification Platform [10]. 

The SA is applied as a pre-qualification flow for simulation, 
to reduce the fault list by identifying UFs. The testability of the 
faults is determined by verifying: i) if there is a physical 



connection between the fault location and the observation points 
(strobes); ii) if the signals that drive the faulty node allows the 
activation of the fault; iii) if the fault could be observable in at 
least one strobe of the design. 

 

FIG.  1.  STANDARD ANALYSIS EXAMPLE (CONE OF INFLUENCE ANALYSIS) 
 

Fig. 1 shows the Structural Examination applied by the SA. 
This example circuit includes combinational logic (g), inputs 
(in), outputs (out) and fault targets (f). The following fault 
behaviors are considered by applying Structural Analysis: 

1. The Observation Point (strobe) ‘out0’ only depends on 
faults in its Cone of influence. Thus, any outside fault ‘f1’ is 
considered as UF. 

2. Depending on the characteristics of ‘g1’ drivers, the 
controllability of ‘f2’ is defined. If ‘g1’ always outputs a logic 
1, ‘f2’ would not be controllable for Stuck-at-1 faults. Thus, a 
Stuck-at-1 fault in ‘f2’ would be classified as UF. 

3. Characteristics of the logic gate ‘g2’ could propagate a 
fault ‘f3’. If any of the ‘g2’ (AND gate) inputs is always set to 
logic 0, the effect of ‘f3’ would never propagate to ‘out0’. 
Therefore, ‘f3’can be classified as UF. 

The deployment of formal techniques to reduce the effort of 
Fault Injection Simulation is explored in different works [11, 
12]. An integrated fault analysis flow allows the deployment of 
the SA before the start of the simulation. The analysis will 
reduce the number of faults to be simulated by leveraging 
results for UFs.  

III. METHODOLOGY 

 We aim to combine the efficiency of automatic analysis 
tools with some assisted checks and structural analysis to 
identify UFs in complex designs. This approach is integrated 
into the test program design flow (see Fig 2). 

 
FIG.  2.  A GENERAL SCHEME OF THE METHOD TO IDENTIFY UNTESTABLE 

FAULTS COMBINED WITH THE TEST PROGRAM DESIGN FLOW  
 

Initially, the Device Under Test (DUT) is analyzed in order 
to identify sub-modules or structures that cannot be tested. This 
task is performed through a SA analysis. Then, an assisted 
checker verifies results coherency, considering module 
operation and tool configuration. An additional manual 
structural analysis can be performed. Nevertheless, it requires 
high expertise and deep knowledge of the device operation and 
architecture. This process can be performed using methods, 
such as those in [7]. Results from automated and manual 
methods are combined to reduce the number of faults during 
test program design.  

Test programs are designed using SBST techniques and FC 
is computed. If the FC is lower than expected, two actions can 
be taken. The first action (1) consists of test program 
improvement. The second action (2) is based on complementary 
UF analysis. Finally, results are used to adjust the test programs 
or the FC assessment. In the end, two benefits are expected: the 
UFs identification and the FC improvement. 

IV. EXPERIMENTAL RESULTS  

2,382 faults were considered in the control-path fields of the 
PRs during the experiments. The RT-level model of FlexGrip, 
configured with one SM and 32 SP-cores, was employed and 
the analysis was limited to the stuck-at faults on the inputs and 
outputs of the Flip-Flops of each PR. The experiments were 
performed on a workstation composed of a twelve-core Intel 
Xeon processor running at 2.5 GHz, and 256 GB of RAM. Fault 
simulation campaigns required about 6 hours to be completed. 

Table 1 shows the features of the 10 SBST kernels we wrote 
following the proposed techniques. It shows that most of the 
kernels have a low number of instructions and also a short 
execution time. We also considered four representative 
benchmarks for comparison purposes. Their main 
characteristics are reported at the top of Table 1. Additional 
details can be found in [5].  

Table 1 reports the achieved FC for the applications and the 
SBST programs. The FC in the applications is obtained as the 
average result of multiple simulations with various input data 
sets. Results show a relatively moderate FC (from 32% to 57%) 
with a high percentage of fault detections as hanging conditions. 
In contrast, the cumulative FC achieved by all the test kernels is 
significantly higher (about 66%), and most of the fault effects 
are visible as a result of data corruption. Initially, UFs were not 
considered for determining the FC in the previous results. UFs 
were then identified by a combination of techniques. First, 
manual UF identification was performed. Then, JG was 
configured for the SA analysis considering all stuck-at faults 
inside the SM and their propagation to the strobe outputs. These 
strobes were defined as the bus connections with the global 
memory and the output control signals. Moreover, some black 
boxes replaced the internal memories. 

V. EXPERIMENTAL SET UP FOR FC ASSESSMENT 

 We set up an ad hoc environment to evaluate the stuck-at 
fault FC. This is based on a fault manager, which translates a 
fault location into the command sequence for a logic simulator 
(ModelSim). The fault injector tool is composed of a fault 
controller (FCT), a fault decoder (FDT) and a fault checker and 
classifier (FCCT). 

A fault injection campaign starts by creating the fault list. 
This list includes all stuck-at faults on each bit of each register. 
Then, FCT launches a fault-free (golden) simulation and the 
memory results and the kernel time simulation are stored. 
Afterward, FDT reads one line from the fault list and translates 
it into the command sequence for Modelsim. This command is 
executed, and the fault simulation starts. The maximum fault 
execution time is fixed at twice the golden execution time to 
consider performance degradation effects by the fault effect. 

FCCT compares the memory results and the execution time 
to classify each fault. Faults are classified in the following 
categories: i) Silent Data Corruption fault (SDC), when the 
fault generates mismatches in memory, ii) Hanging (Crash) 
fault, if the fault is able to stop or prevent the kernel execution, 
iii) Timeout, if the fault affects the system introducing a delay in 
the execution and the results are not affected, and iv) Silent, 
when the fault does not affect the system execution and results. 

yes (1) 

Checker 

no 
Low FC? 

FC assessment 

Test program design 

Automated standard 

analysis (SA) 

DUT (GPGPU module) 

Manual structural 

analysis 

Other 

analyses 
yes (2) 

End 

Untestable Faults 

Identification 

Checker 

Automated standard 

analysis (SA) 



FC is computed as the ratio between the number of faults 
belonging to the first 3 categories and the total number of faults. 

TABLE 1. PERFORMANCE OF THE BENCHMARKS AND THE SBST PROGRAMS 
Kernel Execution 

time 

(Clock C.) 

Memory 

size (Bytes) 

SDC (%) Hanging 

(%) 

Timeout 

(%) 

FC (%)1 

VectorAdd 28,565 768 18.10 20.82 0.62 32.37 

MatrixMul 201,365 768 9.74 42.67 0.92 43.66 

Edge Detection 688,305 2,048 19.89 49.44 1.03 57.60 

FFT 584,265 512 21.89 42.36 0.67 53.15 

WS_T_D 16,449 128 4.61 25.23 16.67 38.08 

WS_T_V1 2,175 128 4.77 23.33 13.85 34.34 

WS_T_V2 1,913 128 4.82 23.64 13.95 34.72 

GPR_T_3R 2,273 384 14.51 21.85 0.82 30.35 

GPR_T_12R 23,586 8,192 16.77 21.49 0.51 31.74 

GPR_T_63R 103,930 400 20.10 22.49 0.56 35.10 

B_T 283,714 1,500 9.13 22.51 1.23 26.91 

PC_T  31,570 128 21.69 17.59 0.41 38.37 

PSR_T 178,750 9,256 19.74 23.54 4.46 39.08 

SBST Overall - - 38.31 23.44 18.51 65.70 
 

Table 2 reports the obtained FC on each PR and some 
details about the effectiveness of UFs identification techniques. 
It shows the Testable Fault Coverage (TFC), computed as the 
ratio between the detected faults and the total number of faults, 
having removed UFs from the fault list. TFC1 considers UFs 
identified by the manual method, only, while TFC2 considers 
the combination of both techniques. Some UFs are 
simultaneously detected by the two methods. 

The manual approach identified 672 UFs in the PRs 
employing structural information of the model, only. These UFs 
belong to bit-fields in the WPC register, the initial active thread 
mask, and some other fields which are present in the design but 
did not affect the benchmarks or the SBST kernels execution. In 
contrast, 805 UFs were classified by using the semi-automated 
method and combining the results. Thus, the FC increased by 
2.72% obtaining a TFC2 of 82.98%. It is worth noting that the 
UFs detected by the automatic methods were not detected 
during the manual analysis. In the SA UFs, column two values 
are listed. The first one indicates the total number of UFs. The 
second one (in parenthesis) represents the effective UFs after 
the assisted checking process. This process removes faults that 
belong to signals whose value is defined in the configuration 
phase and remains unchanged during the application execution. 

TABLE 2. FC AND UNTESTABLE FAULTS IDENTIFICATION RESULTS 
Pipeline 

Register 

FC (%) Manual 

UFs 

TFC1 

(%) 

SA  

UFs 

Automated 

UFs 

Total 

UFs 

TFC2 (%) 

F-D 64.98 72 76.62 84 34 106 83.70 

D-R 38.49 72 42.39 290(118) 47 199 45.39 

R-E 46.69 256 81.03 162(134) 14 270 84.43 

E-Wr 50.0 128 67.11 148(82) 38 166 88.05 

Wr-W 65.79 72 90.21 28(0) 0 72 90.21 

W-F 68.21 72 91.83 46(18) 0 72 91.83 

Overall 65.70 672 80.26 758(484) 133 805 82.98 
 

The UFs were classified depending on the location and the 
intended functionality in the PRs. In the GPGPU, 39.3% of UFs 
are part of configuration fields, 25.36% belong to execution or 
data movement operations, 31.27% are fields for thread 
management and the remaining 4.08% are part of instruction 
decoding fields. Clearly, the effectiveness of the automated 
method depends on the target PRs, but in some cases, it 
significantly improves the results of the manual one. 
Additionally, it must be highlighted that the effort required by 
the manual method is significant in terms of skills and time, 
while the automated methods only require a few hours of 
computational time. 

The combined methods to develop SBST programs and 
identify UFs seem to be effective for increasing the FC in a 
target structure. The SBST approach is effective for fault 
detection on most of the PR fields and the cumulative FC of all 
kernels reaches a relatively high percentage. The Signature per 
Thread strategy was crucial in the process of detecting faults in 

the GPGPU [5]. Similarly, the UFs identification increased the 
TFC by up to 17.2%. Nevertheless, it is worth noting that the 
verification of formal properties in a design may be 
computationally hungry by the excessive number of operations, 
such as in the propagation analysis. For that reason, it may be 
more convenient to apply formal methods either to single 
modules within the whole device or to perform it after some 
preliminary screening, e.g., on the faults that were not classified 
after fault injection simulation. 

VI. CONCLUSIONS 

In this work, we face the issue of effectively in-field testing 
GPGPU modules with respect to permanent faults. One possible 
solution lies in adopting functional solutions, such as SBST 
approaches. In such a case, identifying untestable faults allows 
first to reduce the fault simulation cost required to compute the 
Fault Coverage, and secondly to correctly compute the same 
figure, pruning the fault list from untestable faults. For this 
purpose, we experimentally evaluated a solution based on the 
adoption of a commercially available tool originally intended 
for design validation, showing that it is able to both reduce the 
required effort and improve the obtained results. 

The proposed method for untestable faults identification was 
able to identify a significant number of them with a reduced 
effort and could more precisely assess the Fault Coverage 
achieved by the Self-Test Library we developed for the GPGPU 
module. Work is currently being done to improve the Self-Test 
Library (in terms of achieved Fault Coverage and targeted 
modules) and to adopt further functionalities of the Cadence 
suite, thus increasing the effectiveness of the approach.  
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