
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Untestable faults identification in GPGPUs for safety-critical applications / Condia, Josie E. Rodriguez; Da Silva, Felipe
A.; Hamdioui, S.; Sauer, C.; Reorda, M. Sonza. - ELETTRONICO. - (2019), pp. 570-573. (Intervento presentato al
convegno 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS) tenutosi a Genova nel
27-29 Nov. 2019) [10.1109/ICECS46596.2019.8964677].

Original

Untestable faults identification in GPGPUs for safety-critical applications

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ICECS46596.2019.8964677

Terms of use:

Publisher copyright

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2785749 since: 2020-01-27T19:01:36Z

Institute of Electrical and Electronics Engineers

Untestable faults identification in GPGPUs for

safety-critical applications

Josie E. Rodriguez Condia¹, Felipe A. Da Silva² ³, S. Hamdioui³, C. Sauer² and M. Sonza Reorda¹

¹Politecnico di Torino,

Torino, Italy

²Cadence Design Systems,

Munich, Germany

³Delft University of Technology,

Delft, The Netherlands

Abstract 1 — Nowadays, General Purpose Graphics Processing

Units (GPGPUs) devices are considered as promising solutions for

high-performance safety-critical applications, such as those in the

automotive field. However, their adoption requires solutions to

effectively detect faults arising in the device during the operative

life. Hence, effective in-field test solutions are required to

guarantee high-reliability levels. In this paper, we leverage the

results of Software-Based Self-Test (SBST) based approaches for

GPGPUs by deploying new techniques for automating the

identification of untestable faults (UF). Our methodology has

achieved fault coverage of 82.8% when applied to an open-source

implementation of the NVIDIA G80 GPU architecture. The

proposed approach combining SBSTs and UFs identification

appears as an effective solution for the reliability analysis of

GPGPUs.

Keywords— GPGPUs, SBST, Testing, Untestable faults.

I. INTRODUCTION

General Purpose Graphics Processing Units (GPGPUs) are
largely used in applications aiming at efficiently processing
large amounts of data (such as in scientific computing and in
multimedia applications). Nowadays, these devices are also
adopted in complex safety-critical applications, such as the
automotive ones [1]. GPGPUs are designed targeting
performance and power constraints and thus employ aggressive
technology scaling solutions. It has been shown that some
implementation technologies are more prone to faults during the
lifetime of the device [2] causing unaffordable failures in the
safety-critical domain. Hence, in-field test is required to early
identify these faults. Unfortunately, the architectural complexity
of GPGPUs exacerbates the difficulties in the identification of
effective test techniques to be used during in-field operations.
While several works exist dealing with the effects of transient
faults on GPGPUs, in this paper we focus on permanent faults,
which also play a major role in determining the reliability
figures of GPGPU-based applications, especially due to the
advanced semiconductor technologies they typically rely on.

Test solutions for complex embedded systems can be based
either on Design for Testability (DfT) approaches, such as
Built-In Self-Test (BIST), or on functional solutions. DfT is
effective for the end of the manufacturing test. However, it is

1 This work has been partially supported by the European Commission through

the Horizon 2020 RESCUE-ETN project under grant 722325.

not always suitable for in-field test, especially due to its
intrusiveness and duration. On the other hand, functional test
methods based on Software-Based Self-Test (SBST) employ the
Instruction Set of the available CPU modules in the device to
perform the test. A test program is employed to apply patterns
to each target module and propagate the fault effects to visible
locations (e.g., memory), thus allowing their detection.

The SBST approach is currently experiencing a growing
success, mainly because it offers the possibility to the
semiconductor company manufacturing the device (and
knowing its internal structure) to develop the test code, grade it
in terms of achieved Fault Coverage (FC), and pass it to the
system company, which eventually integrates it in the
application code. Test code is often activated in small chunks,
fitting in the idle times of the application. These codes are
organized in a set of procedures, composing Self-Test Libraries
(STL). STLs are currently offered by several semiconductor and
IP companies. Based on this scenario, the availability of
effective STL libraries able to achieve a good FC on a given
device could represent a significant added value for products
used in safety-critical applications.

Concerning GPGPUs, effective techniques for STL
development have not yet been devised, mainly due to their
architectural complexity and by the lack of suitable HDL
models. In this paper, we first summarize our previous work
towards the definition of SBST techniques to detect permanent
faults in different GPGPU modules. Our work exploited an
open-source VHDL GPGPU model (named FlexGrip) of the
G80 architecture of NVIDIA [3]. In [4] we proposed some first
works targeting the warp scheduler in a GPGPU. In [5], we
presented an SBST approach to detect permanent faults in the
pipeline registers (PRs) of a GPGPU and for the first time, we
reported an experimental evaluation of its effectiveness, based
on assessing the achieved FC. However, the FC achieved by the
SBST techniques may be difficult to precisely assess, since a
significant number of untestable faults (UFs) often exist in
hardware models, due to the encoding style or to the design
flow characteristics.

According to functional safety standards (e.g., ISO 26262
for automotive), the FC must be computed with respect to a
fault list from which UFs are removed. Unfortunately, UF
identification can hardly be automated when complex devices
such as GPGPUs are considered. Contemplating this scenario,
the main contributions of this paper are:

 Demonstration of how combined techniques can
leverage UF identification.

 Definition of a semi-automated method to evaluate UFs
based on the adoption of Formal Methods.

Experimental results show that the proposed method can
identify a significant number of UFs, thus allowing to
effectively reducing the effort to assess the quality of an SBST
test suite and to improve the accuracy of the computed FC.

The paper is organized as follows: Section II introduces the
architecture of the GPGPU model we adopted (FlexGrip), the
developed test programs and also presents the UFs and
identification methods. Section III describes the proposed
method for UF identification and FC improvement. Section IV
describes the used environment for the identification of UFs.
Section V reports some experimental results and Section VI
finally draws some conclusions.

II. BACKGROUND

GPGPUs are special-purpose processors designed to execute
simultaneously multiple tasks in groups (32 threads form a
warp) using Streaming Multiprocessors (SMs). Each SM
includes multiple execution units (Scalar Processors, or SPs),
caches, (local and shared) memories, Register Files (RFs), a
warp scheduler and dispatcher controllers. The SM executes the
same instruction on different SPs using particular thread
operands. Internally, the SM employs multiple pipeline stages to
process one instruction and improve performance.

A. Pipeline registers in FlexGrip

The pipeline registers (PRs) are placed between every
couple of pipeline stages to store temporary data from the
previous stage and supply data to the next one. In FlexGrip, the
PRs are distributed between the five stages in the SM, named
Fetch, Decode, Read, Execute and Write-back. PRs are also
placed between the Warp scheduler and the Fetch and Write-
back stages.

The PRs store mainly operands for warp instruction
execution. Nevertheless, these also include control information
related to the warp instruction status. The Warp-Fetch (W-F)
PR is composed of 140 control bit-fields representing the status
of a warp instruction on the SM. These include the Warp
program counter (WPC), the initial and active thread mask
(AThM), and parameters for shared memory and general-
purpose registers size configuration. The Fetch-Decode (F-D)
PR, with 237 bits, includes the same information of the previous
stage, adding the warp instruction operational code. The
Decode-Read (D-R) PR (391 bits) stores the specific
instructions format fields to activate some operational modes or
sub-modules in the next stage. The Read-Execute (R-E) PR
(302 bits) additionally includes Temporary Registers (TRs),
which handle a large number of operands (24,697 bits) and
predicate conditions for each SP in the execute stage. The
Execute-Writeback (E-Wr) PR (251 bits) also contains the TRs
(24,704 bits). The high number of bits in the R-E and E-Wr
registers is caused by the TRs size. These structures temporarily
store operands and results of logical, arithmetical and control-
flow operations of each thread on an SP in the SM.

The work reported in this paper has been performed on a
modified version of the original Flexgrip model described in
[3], where we fixed some bugs related to the implementation of
the supported instructions, removed some compiler restrictions
and added some extensions. Although the FlexGrip model does
not completely match the architecture of the most recent
GPGPU devices, the reported results are still mostly valid for
them as well. Further details about the improvements we
introduced in FlexGrip can be found in [6].

B. Preliminary Test program generation

In [5], we proposed a method to write effective SBST
programs to test stuck-at faults in the PRs, based on a bottom-up
approach and resorting to multiple parallel programs (kernels),
which focuses on specific PRs fields. Each kernel is written
through a high-level CUDA compiler when possible. Some
assembly instructions were added when strictly necessary.

PRs are divided into two groups and multiple subsets for the
purpose of SBST design. In [5] we described methods to excite
and make observable permanent faults affecting fields in the
PRs. Those are the Warp instruction status registers (WPC and
AThM) and the Kernel parameter fields (GPRS size, shared
memory base fields, others). Restrictions are caused by the
CUDA-C compiler environment, which employs advanced
algorithms for resource and performance optimization. To
circumvent these limitations, combinations of assembly and
CUDA-C languages and special coding styles have been
developed.

C. Untestable faults

An untestable fault (UF) is a fault for which no test exists.
This also means that UFs cannot produce any failure in the
operating environment. UFs can be classified as i) Structural
(or combinational) UFs are not testable even if the
combinational block where the fault is located is fully
controllable and observable. An ATPG tool can identify these
faults. ii) Sequential UFs are faults that cannot be tested due to
the sequential behavior of the circuit: for example, some
internal states required for the test may not be reachable. iii)
On-line functional UFs [7] are faults that cannot be tested in a
functional manner (i.e., without resorting to DfT) in operational
conditions, as defined by the hardware configuration. 0

As our experimental results proved [7, 8], UFs represent a
significant percentage of the faults. This may be due to different
reasons, such as the used encoding style, the constraints adopted
when assembling the whole design, etc.

UFs should be removed from the fault list used during fault
simulation experiments aimed at assessing the FC achieved by a
given Self-Test Library for two reasons: i) They are guaranteed
not to produce any relevant failure in the operating conditions;
thus, the time spent for their fault simulation is wasted. ii) They
do not impact the reliability: hence, when assessing the
reliability parameters (e.g., during an FMECA process) of a
system [9] they should not be considered.

In this work, we focus on RT-level descriptions and on the
last two categories of UFs.

D. Untestable faults Identification

UF identification is challenging because a fault can be
labeled as untestable only if one can prove that it cannot be
tested by ANY functional test stimulus. For that reason, fault
simulation cannot identify UFs. The formal analysis appears as
a good alternative since it is not limited to a specific time or
state. Instead, the scope is global, and every evaluation context
is considered. Generally speaking, Formal Tools automatically
generate properties, not requiring knowledge of formal
languages. In addition, they allow integration with Fault
Simulators providing fault lists optimization and reducing
simulation campaign duration. This work deploys the automated
analysis (Standard Analysis, or SA) of the Functional Safety
Verification (FSV) app from the Cadence® JasperGold (JG)
Formal Verification Platform [10].

The SA is applied as a pre-qualification flow for simulation,
to reduce the fault list by identifying UFs. The testability of the
faults is determined by verifying: i) if there is a physical

connection between the fault location and the observation points
(strobes); ii) if the signals that drive the faulty node allows the
activation of the fault; iii) if the fault could be observable in at
least one strobe of the design.

FIG. 1. STANDARD ANALYSIS EXAMPLE (CONE OF INFLUENCE ANALYSIS)

Fig. 1 shows the Structural Examination applied by the SA.
This example circuit includes combinational logic (g), inputs
(in), outputs (out) and fault targets (f). The following fault
behaviors are considered by applying Structural Analysis:

1. The Observation Point (strobe) ‘out0’ only depends on
faults in its Cone of influence. Thus, any outside fault ‘f1’ is
considered as UF.

2. Depending on the characteristics of ‘g1’ drivers, the
controllability of ‘f2’ is defined. If ‘g1’ always outputs a logic
1, ‘f2’ would not be controllable for Stuck-at-1 faults. Thus, a
Stuck-at-1 fault in ‘f2’ would be classified as UF.

3. Characteristics of the logic gate ‘g2’ could propagate a
fault ‘f3’. If any of the ‘g2’ (AND gate) inputs is always set to
logic 0, the effect of ‘f3’ would never propagate to ‘out0’.
Therefore, ‘f3’can be classified as UF.

The deployment of formal techniques to reduce the effort of
Fault Injection Simulation is explored in different works [11,
12]. An integrated fault analysis flow allows the deployment of
the SA before the start of the simulation. The analysis will
reduce the number of faults to be simulated by leveraging
results for UFs.

III. METHODOLOGY

 We aim to combine the efficiency of automatic analysis
tools with some assisted checks and structural analysis to
identify UFs in complex designs. This approach is integrated
into the test program design flow (see Fig 2).

FIG. 2. A GENERAL SCHEME OF THE METHOD TO IDENTIFY UNTESTABLE

FAULTS COMBINED WITH THE TEST PROGRAM DESIGN FLOW

Initially, the Device Under Test (DUT) is analyzed in order
to identify sub-modules or structures that cannot be tested. This
task is performed through a SA analysis. Then, an assisted
checker verifies results coherency, considering module
operation and tool configuration. An additional manual
structural analysis can be performed. Nevertheless, it requires
high expertise and deep knowledge of the device operation and
architecture. This process can be performed using methods,
such as those in [7]. Results from automated and manual
methods are combined to reduce the number of faults during
test program design.

Test programs are designed using SBST techniques and FC
is computed. If the FC is lower than expected, two actions can
be taken. The first action (1) consists of test program
improvement. The second action (2) is based on complementary
UF analysis. Finally, results are used to adjust the test programs
or the FC assessment. In the end, two benefits are expected: the
UFs identification and the FC improvement.

IV. EXPERIMENTAL RESULTS

2,382 faults were considered in the control-path fields of the
PRs during the experiments. The RT-level model of FlexGrip,
configured with one SM and 32 SP-cores, was employed and
the analysis was limited to the stuck-at faults on the inputs and
outputs of the Flip-Flops of each PR. The experiments were
performed on a workstation composed of a twelve-core Intel
Xeon processor running at 2.5 GHz, and 256 GB of RAM. Fault
simulation campaigns required about 6 hours to be completed.

Table 1 shows the features of the 10 SBST kernels we wrote
following the proposed techniques. It shows that most of the
kernels have a low number of instructions and also a short
execution time. We also considered four representative
benchmarks for comparison purposes. Their main
characteristics are reported at the top of Table 1. Additional
details can be found in [5].

Table 1 reports the achieved FC for the applications and the
SBST programs. The FC in the applications is obtained as the
average result of multiple simulations with various input data
sets. Results show a relatively moderate FC (from 32% to 57%)
with a high percentage of fault detections as hanging conditions.
In contrast, the cumulative FC achieved by all the test kernels is
significantly higher (about 66%), and most of the fault effects
are visible as a result of data corruption. Initially, UFs were not
considered for determining the FC in the previous results. UFs
were then identified by a combination of techniques. First,
manual UF identification was performed. Then, JG was
configured for the SA analysis considering all stuck-at faults
inside the SM and their propagation to the strobe outputs. These
strobes were defined as the bus connections with the global
memory and the output control signals. Moreover, some black
boxes replaced the internal memories.

V. EXPERIMENTAL SET UP FOR FC ASSESSMENT

 We set up an ad hoc environment to evaluate the stuck-at
fault FC. This is based on a fault manager, which translates a
fault location into the command sequence for a logic simulator
(ModelSim). The fault injector tool is composed of a fault
controller (FCT), a fault decoder (FDT) and a fault checker and
classifier (FCCT).

A fault injection campaign starts by creating the fault list.
This list includes all stuck-at faults on each bit of each register.
Then, FCT launches a fault-free (golden) simulation and the
memory results and the kernel time simulation are stored.
Afterward, FDT reads one line from the fault list and translates
it into the command sequence for Modelsim. This command is
executed, and the fault simulation starts. The maximum fault
execution time is fixed at twice the golden execution time to
consider performance degradation effects by the fault effect.

FCCT compares the memory results and the execution time
to classify each fault. Faults are classified in the following
categories: i) Silent Data Corruption fault (SDC), when the
fault generates mismatches in memory, ii) Hanging (Crash)
fault, if the fault is able to stop or prevent the kernel execution,
iii) Timeout, if the fault affects the system introducing a delay in
the execution and the results are not affected, and iv) Silent,
when the fault does not affect the system execution and results.

yes (1)

Checker

no
Low FC?

FC assessment

Test program design

Automated standard

analysis (SA)

DUT (GPGPU module)

Manual structural

analysis

Other

analyses
yes (2)

End

Untestable Faults

Identification

Checker

Automated standard

analysis (SA)

FC is computed as the ratio between the number of faults
belonging to the first 3 categories and the total number of faults.

TABLE 1. PERFORMANCE OF THE BENCHMARKS AND THE SBST PROGRAMS
Kernel Execution

time

(Clock C.)

Memory

size (Bytes)

SDC (%) Hanging

(%)

Timeout

(%)

FC (%)1

VectorAdd 28,565 768 18.10 20.82 0.62 32.37

MatrixMul 201,365 768 9.74 42.67 0.92 43.66

Edge Detection 688,305 2,048 19.89 49.44 1.03 57.60

FFT 584,265 512 21.89 42.36 0.67 53.15

WS_T_D 16,449 128 4.61 25.23 16.67 38.08

WS_T_V1 2,175 128 4.77 23.33 13.85 34.34

WS_T_V2 1,913 128 4.82 23.64 13.95 34.72

GPR_T_3R 2,273 384 14.51 21.85 0.82 30.35

GPR_T_12R 23,586 8,192 16.77 21.49 0.51 31.74

GPR_T_63R 103,930 400 20.10 22.49 0.56 35.10

B_T 283,714 1,500 9.13 22.51 1.23 26.91

PC_T 31,570 128 21.69 17.59 0.41 38.37

PSR_T 178,750 9,256 19.74 23.54 4.46 39.08

SBST Overall - - 38.31 23.44 18.51 65.70

Table 2 reports the obtained FC on each PR and some
details about the effectiveness of UFs identification techniques.
It shows the Testable Fault Coverage (TFC), computed as the
ratio between the detected faults and the total number of faults,
having removed UFs from the fault list. TFC1 considers UFs
identified by the manual method, only, while TFC2 considers
the combination of both techniques. Some UFs are
simultaneously detected by the two methods.

The manual approach identified 672 UFs in the PRs
employing structural information of the model, only. These UFs
belong to bit-fields in the WPC register, the initial active thread
mask, and some other fields which are present in the design but
did not affect the benchmarks or the SBST kernels execution. In
contrast, 805 UFs were classified by using the semi-automated
method and combining the results. Thus, the FC increased by
2.72% obtaining a TFC2 of 82.98%. It is worth noting that the
UFs detected by the automatic methods were not detected
during the manual analysis. In the SA UFs, column two values
are listed. The first one indicates the total number of UFs. The
second one (in parenthesis) represents the effective UFs after
the assisted checking process. This process removes faults that
belong to signals whose value is defined in the configuration
phase and remains unchanged during the application execution.

TABLE 2. FC AND UNTESTABLE FAULTS IDENTIFICATION RESULTS
Pipeline

Register

FC (%) Manual

UFs

TFC1

(%)

SA

UFs

Automated

UFs

Total

UFs

TFC2 (%)

F-D 64.98 72 76.62 84 34 106 83.70

D-R 38.49 72 42.39 290(118) 47 199 45.39

R-E 46.69 256 81.03 162(134) 14 270 84.43

E-Wr 50.0 128 67.11 148(82) 38 166 88.05

Wr-W 65.79 72 90.21 28(0) 0 72 90.21

W-F 68.21 72 91.83 46(18) 0 72 91.83

Overall 65.70 672 80.26 758(484) 133 805 82.98

The UFs were classified depending on the location and the
intended functionality in the PRs. In the GPGPU, 39.3% of UFs
are part of configuration fields, 25.36% belong to execution or
data movement operations, 31.27% are fields for thread
management and the remaining 4.08% are part of instruction
decoding fields. Clearly, the effectiveness of the automated
method depends on the target PRs, but in some cases, it
significantly improves the results of the manual one.
Additionally, it must be highlighted that the effort required by
the manual method is significant in terms of skills and time,
while the automated methods only require a few hours of
computational time.

The combined methods to develop SBST programs and
identify UFs seem to be effective for increasing the FC in a
target structure. The SBST approach is effective for fault
detection on most of the PR fields and the cumulative FC of all
kernels reaches a relatively high percentage. The Signature per
Thread strategy was crucial in the process of detecting faults in

the GPGPU [5]. Similarly, the UFs identification increased the
TFC by up to 17.2%. Nevertheless, it is worth noting that the
verification of formal properties in a design may be
computationally hungry by the excessive number of operations,
such as in the propagation analysis. For that reason, it may be
more convenient to apply formal methods either to single
modules within the whole device or to perform it after some
preliminary screening, e.g., on the faults that were not classified
after fault injection simulation.

VI. CONCLUSIONS

In this work, we face the issue of effectively in-field testing
GPGPU modules with respect to permanent faults. One possible
solution lies in adopting functional solutions, such as SBST
approaches. In such a case, identifying untestable faults allows
first to reduce the fault simulation cost required to compute the
Fault Coverage, and secondly to correctly compute the same
figure, pruning the fault list from untestable faults. For this
purpose, we experimentally evaluated a solution based on the
adoption of a commercially available tool originally intended
for design validation, showing that it is able to both reduce the
required effort and improve the obtained results.

The proposed method for untestable faults identification was
able to identify a significant number of them with a reduced
effort and could more precisely assess the Fault Coverage
achieved by the Self-Test Library we developed for the GPGPU
module. Work is currently being done to improve the Self-Test
Library (in terms of achieved Fault Coverage and targeted
modules) and to adopt further functionalities of the Cadence
suite, thus increasing the effectiveness of the approach.

REFERENCES

[1] W. Shi, M. B. Alawieh, X. Li, and H. Yu, "Algorithm and hardware
implementation for visual perception system in autonomous vehicle: A

survey," Integration, vol. 59, pp. 148-156, 2017/09/01/ 2017.

[2] S. Hamdioui, D. Gizopoulos, G. Guido, M. Nicolaidis, A. Grasset, and
P. Bonnot, "Reliability challenges of real-time systems in forthcoming

technology nodes," in 2013 Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2013, pp. 129-134.
[3] K. Andryc, M. Merchant, and R. Tessier, "FlexGrip: A soft GPGPU for

FPGAs," in 2013 International Conference on Field-Programmable

Technology (FPT), 2013, pp. 230-237.
[4] B. Du, J. E. R. Condia, M. Sonza Reorda, and L. Sterpone, "About the

functional test of the GPGPU scheduler," presented at the On-Line

Testing Symposium (IOLTS) 2018 IEEE 24th International, 2018.
[5] J. E. R. Condia and M. Sonza Reorda, "Testing permanent faults in

pipeline registers of GPGPUs: A multi-kernel approach," presented at

the 25th IEEE International Symposium on On-Line Testing and Robust
System Design (IOLTS), 2019, to appear.

[6] B. Du, J. E. R. Condia, and M. Sonza Reorda, "An extended model to

support detailed GPGPU reliability analysis," presented at the 14th IEEE
International Conference on Design & Technology of Integrated

Systems in Nanoscale Era (DTIS), 2019.

[7] R. Cantoro, A. Firrincieli, D. Piumatti, M. Restifo, E. Sanchez, and M.
Sonza Reorda, "About on-line functionally untestable fault identification

in microprocessor cores for safety-critical applications," in 2018 IEEE

19th Latin-American Test Symposium (LATS), 2018, pp. 1-6.
[8] C. Gursoy and e. al., "New categories of Safe Faults in a processor-

based Embedded Systems," presented at the 22th International

Symposium on Design and Diagnostics of Electronic Circuits&Systems
(DDECS), Cluj-Napoca, Romania, 2019, to appear.

[9] H.-L. Ross, Functional Safety for Road Vehicles: New Challenges and

Solutions for E-mobility and Automated Driving: Springer Publishing
Company, Incorporated, 2016.

[10] I. Cadence Design Systems, "JasperGold Functional Safety

Verification App User Guide," Product version 2018.03 ed. ed, 2018.
[11] K. Devarajegowda and J. Vliegen, "Deploying formal and simulation in

mutual-exclusive manner using jaspergolds proofcore technology,"

presented at the Cadence User Conference CDNLive EMEA, 2017.
[12] S. Marchese and J. Grosse, "Formal fault propagation analysis that

scales to modern automotive SoCs," presented at the 2017 Design and

Verification Conference and Exhibition DVCON Europe, 2017.

