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Abstract—Computing capability demand has grown massively
in recent years. Modern GPU chips are designed to deliver
extreme performance for graphics and for data-parallel general
purpose computing workloads (GPGPU computing) as well.
Many GPGPU applications require high reliability, thus relia-
bility evaluation has become a crucial step during their design.
State-of-the-art techniques to assess the reliability of a system
are fault injection and ACE analysis. The former can produce
accurate results despite eternal time while the latter is very fast
but it lacks accuracy of the results. In this paper we introduce
a new sampling methodology based on cluster sampling that
enables the exploitation of ACE analysis to accelerate the fault
injection process. In our experiments we demonstrate that state-
of-the-art fault injection techniques, generating random faults
according to a uniform distribution, is outperformed by the
proposed sampling technique, thus enabling several advantages
in terms of accuracy and evaluation time. To quantify the
introduced benefits we analyzed the micro-architecture reliability
of an AMD Southern Islands GPU in presence of single bit
upset affecting the vector register file for 6 benchmarks. One
of the most important achievements is that considering all
the benchmarks, on average, we are one order of magnitude
faster/more accurate than uniform-sampling-based techniques in
case of non exhaustive fault injection campaigns, while more than
two orders of magnitude in case of exhaustive campaigns.

Index Terms—Reliability, GPGPU, fault injection, ACE anal-
ysis, cluster sampling.

I. INTRODUCTION

Graphics Processing Units (GPUs) constitute an important
part of the recently emerging computing continuum whose to-
tal market is more than two billion devices per year and whose
application fields range from smartphones to mission-critical
data center machines [1]. Technologies of this continuum have
introduced benefits for several design parameters (i.e., perfor-
mance and power consumption) but reliability remains a major
concern [2]. Evaluating the reliability of GPU-based systems
running complex applications is extremely challenging due to
their hardware complexity. This requires complex and time
consuming simulations. However, addressing GPUs reliability
is necessary since GPUs are finding application in critical
scenarios [3]. Accurate and fast techniques able to carefully
trade-off between reliability analysis time and accuracy of the
reported measurements are required to design complex GPU-
based systems and to help reducing power consumption due
to reliability over-design [4].

In literature some GPU reliability analysis techniques based
on physical error injections have been presented [5], [6].
However, simulation-based techniques are usually preferred
in this domain due to the reproducibility of the results and
robustness. Similarly to the CPU domain, two reliability
evaluation methodologies for GPUs have been established:
fault injection [7]–[12] and Architectural Correct Execution
(ACE) analysis [10], [12], [13].

A fault injection campaign starts from the generation of
a list of faults to be analyzed (injected). For each fault the
system is simulated and the fault occurrence is emulated.
Eventually, the output of the system is evaluated to understand
if the injected fault is masked or a misbehavior is detected.
A larger number of injections leads to better accuracy. One
of the main drawbacks of this technique is the huge amount
of time required to perform simulations to achieve accurate
results.

Differently, ACE analysis aims at identifying the hardware
resources that need to be correct to have the outcome of the
application uncorrupted. This operation is not an easy task, so
reliability of the system is always underestimated in order to
simplify the analysis and make it faster [12].

This paper presents a methodology to improve reliability
analysis of a GPU based system through fault injection.
The goal is to improve the evaluation time and accuracy by
applying fault pruning techniques coupled with cluster fault
sampling techniques.

The idea of pruning the fault list by removing faults whose
effect can be determined a priori is not new. In [14] Register
Transfer Level (RTL) fault injections into RTL resources (i.e.,
registers or flip-flops) are limited to those intervals between
a write and the last read of the resource. ACE analysis
through micro-architecture simulator is a very efficient way
to identify these intervals. Similarly, in [7] micro-architecture
level fault injection is limited to so called util resources, i.e.,
resources used at least once in the context of the application.
When considering the above mentioned pruning techniques, a
problem that is often neglected is that their application must be
carefully taken into account when sampling the fault list for a
fault injection campaign. Other sampling strategies should be
adopted instead of the uniform sampling used in [7] to avoid
biases and errors in the estimations.



The advantages of the proposed technique with respect to
the one described in [7] can be appreciated under two points
of view: (i) given a predefined amount of time to perform
simulations, obtained results are more accurate, (ii) given
a target accuracy, results can be computed faster (i.e., they
require less injections). Experiments show that, on average,
we are one order of magnitude faster than [7] in case of non
exhaustive fault injection campaigns and more than two orders
of magnitude faster than [7] in case of exhaustive campaigns.

The paper is organized as follows: Section II describes the
proposed methodology and its associated workflow. Section
III presents the experimental setup and the results. Finally,
Section IV concludes the paper.

II. METHODOLOGY

The aim of the paper is the introduction of a methodology
to improve fault-injection-based reliability evaluation of an
application running on a GPU, in terms of evaluation time and
accuracy. For our purpose, we use the Architecture Vulnera-
bility Factor as reliability metric [15]. AVF is the probability
that a fault affecting a component manifests at the output of
the system (i.e., the result of the application).

As a fault model, in this work we consider single event
upsets (SEUs) occurring in the register file of the GPU. These
memory elements are of particular interest for saving power
as reported in [12]. The proposed approach is based on two
steps, i.e., fault pruning and injection sampling described in
detail in the following sections.

A. Fault pruning

The goal of fault injection is to establish if a fault corrupts
the outcome of the application or, despite its presence, the
outcome of the application is still correct. In case of correct
output the injected error is masked.

Several fault injection techniques such as the one presented
in [9] identify the target faults without taking into account if
the outcome of the corresponding injections can be evaluated
without simulations. It can happen that some components
of the system are unemployed during the execution of an
application, thus even if they are affected by a fault, the
outcome of the system is correct. Detecting which components
and resources are not involved during the computation can save
time since injecting a fault into them is not relevant. This is
the case of the general purpose register file of a GPU. When
a kernel (a GPGPU application) is executed, only a portion of
the vector register file is used while the remaining part stays
idle. The resources that are used at least once in the context
of an application are named util resources [7]. The occupancy,
Occ, of a hardware component is defined as the ratio between
util resources and the total number of resources. The AVFUtil

is the AVF computed considering util resources, only. It is
related to AVF by the following relation:

AV F = AV FUtil ×Occ =

M̄

Inj
=

M̄Util

InjUtil
×Occ

(1)

where M̄ is the number of non masked injections considering
both the util and non util injections, M̄Util is the number of
non masked util injections, Inj is the number of injections
considering both the util and non util injections and InjUtil

is the number of util injections . Since the non util injections
are always masked, then M̄ = M̄Util. From (1) it can be
derived that:

Injutil = Inj ×Occ (2)

Considering that 0 <= Occ <= 1, in order to compute
the outcome of Inj injections we can just simulate InjUtil

injections, thus reducing the number of injections by a factor
of 1/Occ. Resorting to util injections introduces some benefits,
however the outcome of many of the util faults can be
evaluated without running any simulation too.

Fig. 1: Faults can affect different resources at different clock
cycles.

To further prune the list of candidate faults, we propose
to exploit ACE analysis [15]. ACE analysis can be used to
identify ACE resources, i.e., resources that must be correct to
have an uncorrupted outcome. Particular attention must be paid
at the sampling phase when combining ACE analysis and fault
injections, as better explained in the next subsection. There are
many flavors of ACE analysis and for our purpose we chose
the one taking into account read and write sequences of a
given hardware resource [15] whose behavior is summarized
in Figure 2.

If a fault in a hardware component occurs before a read
operation, without being written, the fault is not masked. For
this reason a hardware resource is considered as ACE in all
time intervals preceding read operations. We name such time
intervals as vulnerable timing windows (VTW) of a resource.

Combining the concepts of util and ACE resources, fault
injections can therefore be limited to ACE util resources only,
i.e., util resources during their VTW (Figure 1). Similarly to
(1):

AV FUtil = AV FACE Util ×ACE UtilFactor =

M̄Util

InjUtil
=

M̄ACE Util

InjACE Util
×ACE UtilFactor

(3)



Fig. 2: The vulnerable timing windows considered in our ACE
analysis.

where AV FACE Util is the AV F computed considering ACE
util injections, that are injections in util resources during
their ACE intervals, M̄ACE Util is the number of non masked
ACE util injections, InjACE Util is the number of ACE util
injections and the ACE UtilFactor is the ratio between the
number of all possible ACE util injections and the number of
all possible util injections. Applying the same procedure as
before, the non ACE util injections are always masked, thus
M̄Util = M̄ACE Util. From (3) it can be derived that:

InjACE Util = InjUtil ×ACE UtilFactor (4)

As 0 <= ACE UtilFactor <= 1, in order to compute the out-
come of InjUtil injections we can just simulate InjACE Util

injections, thus reducing the number of injections by a factor
of 1/ACE UtilFactor.

B. Injection sampling

Once all the possible faults are identified, it is required to
choose which ones to inject. This phase is named sampling.
Usually, in fault injection, faults are sampled uniformly in
terms of time and resource since SEUs are assumed to manifest
with equal probability of time and location. In details, in a
state-of-the-art scenario the addressed faults may affect all
possible components at all possible clock cycles with equal
probability. When considering util faults only [7], a boundary
is applied to the components by selecting a subset of all the
possible ones. In this case uniform random sampling is still
valid since there is no relation between resources and clock
cycles. Util resources are the same for the entire duration of
the application. However, when considering ACE util faults
a dependency between resources and clock cycles is created:
a given resource is ACE util just for given time intervals.
As a consequence, uniform random sampling of time and
component as employed in fault injection of [7] becomes non
optimal for our purposes.

We propose to resort to cluster sampling as a solution.
Cluster sampling is based on clusters. Each cluster is a group
of individuals. In details we consider a two-stage cluster
sampling. This technique consists of two steps: (i) the clusters
are sampled and (ii) individuals are sampled from the selected
clusters. For our purpose we adapted two approaches based on
two-stage cluster sampling from [16]. First step for both of the
approaches is the ACE analysis of the executed application re-
quired to profile the VTW of all hardware resources. It is worth
mentioning that injecting in a VTW results in the computation
of the outcome of all the injections points affecting the same

resource at a clock cycle belonging to the same VTW. For this
reason we can consider each of the VTW as a cluster and its
duration expressed in clock cycles (the number of equivalent
injections) can be used as a probabilistic weight. Once all the
VTW are identified and their weight is quantified, they need
to be sampled. Two slightly different approaches have been
considered: the first one is the weight and sample (WAS),
which considers weights at first and later it samples, while the
second one is the sample and weight (SAW), which samples
at first and then it weights.

In the remaining of this section we use the following
notation: the number of sampled clusters is n, the number
of non-masked ACE util injections is a and the weight is w.
Finally the subscript i indicates the reference to the i − th
sampled cluster.

• Weight and sample (WAS): the first sampling stage is
based on proportional to size sampling (PSS). Clusters are
selected with a probability proportional to the associated
wi. Once the clusters are selected an injection is evaluated
for each of them. The second sampling stage is based on
uniform sampling and the same number of individuals
must be analyzed for each of the selected cluster. In this
particular case we consider just a single individual per
cluster as its outcome is the same to the other individuals
in its cluster. If the outcome is non-masked, then ai = 1,
otherwise ai = 0. With this approach, adapting the theory
introduced in [16] to our case, the AV FACE Util can be
estimated as:

AV FACE Util =

∑n
i=1 ai
n

(5)

with a standard error equal to:

se(AV FACE Util) =

√∑n
i=1 (ai −AV FACE Util)2

n(n− 1)
(6)

• Sample and Weight (SAW): the first sampling stage
is based on uniform sampling. Clusters are selected
with equal probability. Once the clusters are selected an
injection is evaluated for each of them. The second stage
of the clustering sampling is based on PSS and all the
individuals of the selected clusters must be analyzed. In
this particular case we consider wi individuals per cluster.
If the outcome of the injection is non-masked, then
ai = 1, otherwise ai = 0. In order to guarantee a PSS, ai
is multiplied by the associated wi. Again, adapting [16]
to our case, the AV FACE Util can be computed as:

AV FACE Util =

∑n
i=1 ai × wi∑n

i=1 wi
(7)

with a standard error equal to:

se(AV FACE Util)

√∑n
i=1 w

2
i (ai −AV FACE Util)2

n(n− 1)w̄2

(8)
where w̄ is the mean w considering all the n clusters.



C. The proposed workflow

The proposed workflow can be applied to micro-architecture
and RTL simulators as well. Some changes to the workflow
must be adopted with respect to fault injection campaigns de-
scribed in [7] in order to implement the proposed methodology.
In details, we add new steps concerning the fault generation,
as reported in Figure 3. First, the application must be profiled
to identify the VTW and to acquire information about the
execution of the kernels. The VTW are profiled in terms
of duration, first clock cycle and the involved architectural
general purpose vector register. Information about kernel exe-
cution is needed to map architectural registers to the physical
memory elements, since this mapping depends on some kernel
parameters and it is not the same for all the kernels. After
that, the fault pool can be generated according to the chosen
cluster sampling technique. Once all the faults are injected
and the fault outcomes are classified properly, the final value
of the AV FACE Util and se(AV FACE Util) can be computed
respectively according to (5) and (6) for WAS, and to (7) and
(8) for SAW.

Fig. 3: The workflow: first step is the profiling, second step
is the fault pool generation, third step is fault injection, final
step is fault classification and evaluation.

III. EXPERIMENTAL RESULTS

A. Experimental setup

For our purpose we implemented the workflow described
in subsection II-C in the multi2sim micro-architecture simu-
lator [17]. The target GPU is the AMD HD Radeon™7970
belonging to the Southern Islands architecture. We performed
the reliability analysis for 6 AMD-APP SDK benchmarks1:
Bitonic Sort (BS), Discrete Cosine Transform (DCT), Matrix
Transpose (MT), Reduction (RED), Scan Large Arrays (SLA)
and Simple Convolution (SC). For each benchmark we iden-
tified all VTW by profiling the involved resource, the start
cycle and the duration. The amount of information required
per benchmark is proportional to column VTW of Table I. We
ran a fault simulation for each of VTW in order to compute
the exact value of the AV FUtil as described in Section II.

1AMD-APP-SDK v.2.5 for multi2sim available at:
https://github.com/Multi2Sim/m2s-bench-amdsdk-2.5

TABLE I: The number of util faults is very big and an
exhaustive fault injection campaign requires huge duration.
Resorting to ace faults introduces marginal benefits, while
addressing vulnerable time windows is the best option being
from 2 to 3 orders of magnitude faster.

Benchmark UTIL ACE VTW INJ RED
BS 415841280 32939648 731136 569x
DCT 3488235520 905388032 7274496 480x
MT 845152256 408547328 4063232 208x
RED 1532344320 362733120 1447968 1058x
SLA 5531212800 693824864 2360736 2343x
SC 534282240 455500864 3248512 164x
AVG 2057844736 476488976 3187680 804x

The goal of the experimental campaign is to compare the
accuracy of the estimated AV FUtil when using the proposed
approaches (i.e., WAS, SAW) with those obtained by applying
the technique proposed in [7]. Reliability analysis is computed
for different number of samples ranging from 10 to 6 millions.
For each number of samples, each technique and each applica-
tion, the reliability evaluation is repeated 100 times so that we
were able express the difference between the obtained results
and the exact ones in terms of Mean Squared Error (MSE).

B. Results

One of the goals of our experiments is to demonstrate
how the fault injection campaigns can be pruned. Trying to
identify a priori faults that are masked is a valuable method,
introducing remarkable benefits as shown in Figure 4, which
reports the proportion of the faults distinguishing among non-
util (NU) faults, util non-ace (UNA) faults and ace util faults
(A). It can be noticed that reduction of the fault space from
NU to util (UNA and A) is of several orders of magnitude.
On the opposite, the reduction form util (UNA and A) to ace
faults is not so big, it is marginal for some benchmarks as MT
and SC.

Table I illustrates the number of all possible util faults, ACE
faults and VTW. The ratio between util and ACE faults is
not as high as the ratio between ACE faults and VTW. This
implies that addressing ACE faults only would introduce just
marginal advantages. Instead, dealing with VTW allows us to
reduce the number of injections with respect to util faults of
at least 164 times (for SC). Such a reduction strongly depends
on the application: in the best case it is equal to 2,343 times
(SLA), while on average it is 804 times.

The MSE of each benchmark varying the number of samples
and the sampling technique is reported in Figure 5, alongside
the exact value of the AV FUtil computed in exhaustive
fault injection campaigns. The convergence curve of all the
techniques is very similar and it is proportional to

√
n, where

n is the number of samples, as expected.
In all the cases SAW technique outperforms the others. The

maximum difference between SAW and the other happens for
SLA where it reaches more than one order of magnitude, while
it is negligible for SC if compared to [7]. More specifically,
the gap between SAW and [7] seems to be correlated to the
number of UNA faults shown in Figure 4. This is verified for



Fig. 4: Most of the faults can be classified as masked without
running any simulation. This is the case of non util (NU)
and util non ace (UNA), representing more than 99% of all
the faults on average. This proves that moving towards better
techniques to reduce the number of fault simulations would
enable fast results of exhaustive fault injection campaigns.

SC and MT which have the smallest percentage of UNA faults
and exhibit the smallest gap. Differently SLA and BS have the
largest percentage of UNA faults and exhibit the largest gap.

SAW technique has a less predictable behavior as for BS
and RED the position of its MSE is in between SAW and [7],
for MT and SLA its MSE is very similar to [7], while for
SC and DCT it has the worst MSE. This suggests that the
MSE of SAW strongly strongly depends on the application.
In fact, (8) gives a valuable explanation: the error depends on
the distribution of the VTW.

Finally, observing all the graphs of Figure 5, it can be stated
that some benchmarks converge faster than others. BS is the
fastet, SC is the slowest, while DCT, MT, RED and SLA are
in the middle. This trend is also present when analyzing the
percentage of ace faults (A) in Figure 4. In fact, ace faults
represent our sampling space and smaller sampling spaces
imply faster convergence rate.

IV. CONCLUSION

This paper introduces a new methodology for the sampling
and the computation of the results based on cluster sampling.
Thanks to this sampling strategy ACE analysis can be ex-
ploited to limit the resources to analyze through fault injection.
We adapted the two cluster sampling techniques presented in
[16] which best fit our purpose. Experiments demonstrate that
the WAS is the best strategy, outperforming both WAS and [7]
in all the analyzed benchmarks. The proposed solution is on
average one order of magnitude faster/more accurate in case
of non-exhaustive fault injection campaign and two orders of
magnitude for exhaustive campaigns, allowing to compute the
exact value of AV FUtil for some small applications running
on a GPU for the first time.
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(a) The MSE for the BS, where Ȳ = 0.056491 (b) The MSE for the DCT, where Ȳ = 0.194105

(c) The MSE for the MT, where Ȳ = 0.429848 (d) The MSE for the RED, where Ȳ = 0.150909

(e) The MSE for the SLA, where Ȳ = 0.107056 (f) The MSE for the SC, where Ȳ = 0.630058

Fig. 5: The MSE is computed for each benchmark evaluating the AV FUtil for each combination of number of samples and
technique. For each combination the AV FUtil is estimated 100 (n) times. The MSE = (

∑n
i (Yi − Ȳ )2)/n

, where Yi is one evaluation of the AV FUtil and Ȳ is the exact value of the AV FUtil computed through the exhaustive fault
injection campaigns. Ȳ is also reported for each benchmark.


