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DENSITY PROBLEMS FOR SECOND ORDER SOBOLEV SPACES AND CUT-OFF

FUNCTIONS ON MANIFOLDS WITH UNBOUNDED GEOMETRY

DEBORA IMPERA, MICHELE RIMOLDI, AND GIONA VERONELLI

Abstract. We consider complete non-compact manifolds with either a sub-quadratic growth of the norm of
the Riemann curvature, or a sub-quadratic growth of both the norm of the Ricci curvature and the squared
inverse of the injectivity radius. We show the existence on such a manifold of a distance-like function with
bounded gradient and mild growth of the Hessian. As a main application, we prove that smooth compactly
supported functions are dense in W 2,p. The result is improved for p = 2 avoiding both the upper bound
on the Ricci tensor, and the injectivity radius assumption. As further applications we prove new disturbed
Sobolev and Calderón-Zygmund inequalities on manifolds with possibly unbounded curvature and highlight
consequences about the validity of the full Omori-Yau maximum principle for the Hessian.
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1. Introduction and main results

Let (Mm, g) be a smooth, complete, possibly non-compact, Riemannian manifold without boundary.
For p ∈ [1,∞) and k ≥ 2, denote by W k,p(M) the space of functions on M whose (weak) derivatives of

order 0 to k have a finite Lp norm. Moreover, let W k,p
0 (M) be the closure of C∞c (M) in W k,p(M).

A classical result in geometric analysis states that for any complete Riemannian manifold, W 1,p
0 (M) =

W 1,p(M) for any p ∈ [1,∞), [5]. In this paper, we are interested in the following

Problem 1.1. Under which (geometric) assumptions on M does one have that W 2,p
0 (M) = W 2,p(M)?

Classical results on this topic can be found in [6], [24] and references therein. In the following proposition
we collect the most up-to-date achievements: point (I) was shown by E. Hebey, [23, Theorem 2.8]; point
(II) was proved by B. Güneysu in [18, Proposition III.18]; point (III) is due to L. Bandara, [7] (for an
alternative proof see also [18, Proposition III.18]).

Proposition 1.2. Let (Mm, g) be a complete Riemannian manifold.
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2 DEBORA IMPERA, MICHELE RIMOLDI, AND GIONA VERONELLI

(I) If |Ricg| ≤ C for some constant C ≥ 0 and injg(M) > 0, then for every p ∈ [1,∞) we have

W 2,p
0 (M) = W 2,p(M).

(II) If |Riemg| ≤ C for some constant C ≥ 0, then for every p ∈ [1,∞) we have W 2,p
0 (M) = W 2,p(M).

(III) If Ricg ≥ −C for some constant C ≥ 0 (no assumptions on the injectivity radius!) then W 2,2
0 (M) =

W 2,2(M).

Often in the applications it is useful to relax the assumptions on the geometry of the manifold, allowing
to the bounds on the curvature and on the injectivity radii to be more flexible. The main purpose of this
paper is to investigate density problems for second order Sobolev spaces under not necessarily constant
bounds on the curvature and (when it is the case) letting the injectivity radii suitably decay at infinity. In
particular we obtain the following

Theorem 1.3. Let (M, g) be a complete Riemannian manifold and o ∈ M a fixed reference point. Set
r(x)

.
= distg(x, o). Suppose that one of the following set of assumptions holds

(a) for some i0 > 0 and D > 0,

|Ricg|(x) ≤ D2(1 + r(x)2), injg(x) ≥ i0
D(1 + r(x))

> 0 on M.

(b) for some D > 0,
|Sectg|(x) ≤ D2(1 + r(x)2).

Then, for every p ∈ [1,∞), we have W 2,p
0 (M) = W 2,p(M)

Moreover, in the special case p = 2, we can obtain the following improvement of [7, Theorem 1.1], where
neither an upper bound on the Ricci curvature nor the assumption on the injectivity radii are required.
As it is customary in this case the Bochner formula plays a key role.

Theorem 1.4. Let (M, g) be a complete Riemannian manifold, o ∈ M , r(x)
.
= distg(o, x), and suppose

that for some D > 0
Ricg(x) ≥ −D2(1 + r(x)2).

Then W 2,2
0 (M) = W 2,2(M).

To prove our density results we employ the method introduced in [17], [20]. The key step in the proof
is the construction on the manifold of special sequences of cut-off functions, with a suitable control on
the gradient and on second order derivatives. In this regard let us notice that, as a matter of fact,
Proposition 1.2 can be seen as a consequence of the existence of such sequences of cut-off functions under
the assumptions at hand. More precisely, the result in point (II) uses point (iii) of Proposition 2.3 below,
while the result in point (III) can be seen as a consequence of the general criterion (point (a)) given in
Proposition 2.4, Theorem B in [20], and point (i) in Proposition 2.3. Finally, also point (I) can be proved
using the cut-off functions given by point (iv) in Proposition 2.3 together with Proposition 2.4 (b)1.

Note that such cut-off functions can be tailored starting from suitable smooth exhaustion functions
whose gradient and Hessian are controlled in terms of explicit functions of the distance from a fixed
reference point. Recall that a smooth function ρ : M → R on a Riemannian manifold (M, g) is said to be
an exhaustion function if, for every a ∈ R, the sublevel sets Mρ(a) = {x ∈M : ρ(x) < a} are relatively
compact. In this direction, in this paper we prove the following

Theorem 1.5. Let (M, g) be a complete Riemannian manifold and o ∈M a fixed reference point, r(x)
.
=

distg(x, o). Suppose that one of the following set of assumptions holds

(a) for some 0 < η ≤ 1, some D > 0 and some i0 > 0,

|Ricg|(x) ≤ D2(1 + r(x)2)η, injg(x) ≥ i0
D(1 + r(x))η

> 0 on M.

(b) for some 0 < η ≤ 1 and some D > 0,

|Sectg|(x) ≤ D2(1 + r(x)2)η.

1Note however that the original proof by Hebey uses a different argument based on a delicate covering technique.
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Then there exists an exhaustion function H ∈ C∞(M) such that for some positive constant C > 1 inde-
pendent of x and o, we have on M that

(i) H is a distance-like function, i.e., C−1r(x) ≤ H(x) ≤ C max {r(x), 1};
(ii) |∇H|(x) ≤ C;

(iii) |HessH| (x) ≤ C max{r(x)η, 1}.

To obtain distance-like exhaustion functions with controlled gradient and Hessian, the previous strategy
introduced by L.-F. Tam in [32] and adopted also in [30] was the following. One starts with a distance-like
function with bounded gradient (which always exists on complete manifolds, [15]) and let it evolve under
the heat flow on M . The evolution at a fixed positive time (say t = 1) preserves the linear growth of
the initial datum, as well as the boundedness of the gradient. Moreover Euclidean parabolic Schauder
estimates, applied in harmonic coordinates charts of fixed radius centered at any x ∈M , permit to control
the L∞-norm of the Hessian. However, when the Ricci curvature is unbounded and the injectivity radius is
possibly null, the estimates in the heat flow method are difficult to implement, and the parabolic method
apparently does not permit to get Theorem 1.5 in its more general assumptions. Accordingly, we use here
a different strategy.

The starting point is a recent result established by D. Bianchi and A. G. Setti, [8], where exhaustion func-
tions with controlled gradient and Laplacian are constructed on manifolds with Ricci curvature bounded
from below by a possibly unbounded non-positive function of the distance from a fixed reference point, with-
out any assumption on the injectivity radius. As in Tam’s result, our strategy is then, roughly speaking,
to use harmonic coordinates in order to gain a control on the whole Hessian of these exhaustion func-
tions. An application of elliptic Schauder estimates, Sobolev embeddings and a local Calderón-Zygmund
inequality permits then to conclude the proof. Note that this latter part is technically more involved than
in the parabolic case, since we have to estimate solutions of a semilinear (elliptic) equation instead of a
homogenous (parabolic) equation. To deal with the non-uniform bounds on Ric and inj, everything is
done locally, in a suitable ball, with radius decaying at infinity, where we can guarantee the existence of
harmonic coordinates with respect to which we have a good control on the metric.

We mention that these techniques can be naturally extended to study density problems for higher order
Sobolev spaces on manifolds with unbounded geometry. These results will be presented in the forthcoming
paper [26].

As a further application, the distance-like function H exhibited in Theorem 1.5 permits to deduce
the validity of a disturbed Sobolev inequality on non-compact manifolds with possibly unbounded Ricci
curvature and possibly vanishing global injectivity radius. It is well known that on a complete non-compact
manifold with Ricci curvature bounded from below and a strictly positive lower bound on vol(B1(x))

uniform in x, one has the continuous embedding W 1,p(M) ⊂ Lpm/(m−p)(M), [33]. By a result of Croke, the
assumption on the volumes of unitary balls is implied by a positive lower bound on the injectivity radius,
[12, Proposition 14]. Under a conformal change of the Riemannian metric the Ricci curvature modifies
following an equation which involves the gradient and the Hessian of the conformal factor. Accordingly,
in the assumption of Theorem 1.5 we can use the distance-like function H to get a metric g̃ in the same
conformal class of (M, g) with bounded Ricci curvature and a lower bound on the volumes of unitary balls2.
Moving back from g̃ to g, we deduce a Sobolev-type inequality on (M, g).

Theorem 1.6. Let (Mm, g) be a smooth, complete non-compact Riemannian manifold without boundary.
Let o ∈M , r(x)

.
= distg(x, o) and suppose that for some 0 < η ≤ 1, D > 0 and some i0 > 0,

|Ricg|(x) ≤ D2(1 + r(x)2)η, injg(x) ≥ i0
D(1 + r(x))η

.

2Because of [28], this result is true without curvature and injectivity radius assumptions. The main achievement here is
the second order control of the conformal factor.
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Let p ∈ [1,m) and q ∈ [p,mp/(m− p)]. Then there exist constants A1 > 0, A2 > 0, depending on m, p, q
and the constant C from Theorem 1.5, such that for all ϕ ∈ C∞c (M) it holds(∫

M
|ϕ|qdvolg

) 1
q

≤ A1

(∫
M
|∇ϕ|pdvolg

) 1
p

+A2

(∫
M

max{1; r2η}|ϕ|pdvolg

) 1
p

(1)

Disturbed Sobolev inequalities were obtained in the original paper by Varopoulos, [33], and subsequently
improved by Hebey, [23]. Namely, they proved that if Ricg ≥ −(m − 1)D for some positive constant D,
then (∫

M
ϕ

mp
m−p vαdvolg

)m−p
mp

≤ A
(∫

M
|∇ϕ|pvβdvolg

) 1
p

+B

(∫
M
ϕpvβdvolg

) 1
p

,(2)

where 1 ≤ p < m, α and β are real constants satisfying β/p − α(m − p)/(mp) ≥ 1/m, and v(x)
.
=

(volg(B1(x)))−1. Combining (2) with Theorem 1.5 and the conformal method described above, we get
a quite general family of Sobolev-type inequalities which contains the one in Theorem 1.6 when q =
mp/(m− p); see Theorem 7.1. As a special case of Theorem 7.1, one has also the validity of (1) provided
that |Sectg|(x) ≤ D2(1 + r(x)2)η and

(3) volg(Br−η(x)(x)) ≥ E

(1 + r(x))mη
.

It is a natural question whether (3) together with Ricg & −r2η would suffice to prove Theorem 1.6. Note
that both the upper bound on Ricci and the lower bound on the injectivity radius are used to get harmonic
radius estimates. On the other hand, the weight r2η in (1) probably can not be avoided since an unweighted
Sobolev inequality would imply a lower bound on volg(B1(x)), [9].

Ideas in the proof of Theorem 7.1 and Theorem 1.6 can also be applied to other integral inequalities,
permitting for instance to obtain the validity of the following L2-Calderón-Zygmund inequality with weight
in our general assumptions. For some results in the same spirit see also [3, Section 7].

Theorem 1.7. Let (Mm, g) be a smooth, complete non-compact Riemannian manifold without boundary.
Let o ∈M , r(x)

.
= distg(x, o) and suppose that one of the following curvature assumptions holds

(a) for some 0 < η ≤ 1, some D > 0 and some i0 > 0,

|Ricg|(x) ≤ D2(1 + r(x)2)η, injg(x) ≥ i0
D(1 + r(x))η

> 0 on M.

(b) for some 0 < η ≤ 1 and some D > 0,

|Sectg|(x) ≤ D2(1 + r(x)2)η.

Then there exist constants A1 > 0, A2 > 0, depending on m, η, D and the constant C from Theorem 1.5,
such that for all ϕ ∈ C∞c (M) it holds

‖|Hessϕ|g‖2L2 ≤ A1‖H2ηϕ‖2L2 +A2‖∆ϕ‖2L2 .(4)

An extensive study of Lp-Calderón-Zygmund inequalities (in short CZ(p)) and their interplay with the
geometry was initiated in [20], and we refer to that paper for an introduction to this topic. Even though
CZ(2) is known to hold globally, without even require geodesic completeness, under a global lower bound
on the Ricci curvature, it is in general false without this assumption; see [20, Theorem B]. On the other
hand, for p 6= 2, p ∈ (1,∞), CZ(p) holds if (M, g) has bounded Ricci curvature and a positive injectivity
radius; see [20, Theorem C]. The proof of this result seems to really depend on a harmonic radius bound,
and hence on the bound on the injectivity radius. Since in our setting (M, g̃) has bounded Ricci curvature
and volume non-collapsing but, as far as we know, its injectivity radius is not necessarily bounded from
below on the whole of M, it remains an open question if a CZ(p) with weight similar to (4) holds in our
assumption when p 6= 2, .

The organization of this paper is as follows. In Section 2 we recap some known results about the existence
of special sequences of cut-off functions and see how these can be used to obtain density results for second
order Sobolev spaces. In Section 3 we see explicitly how, on a suitable ball centered at each point of a
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manifold with a non-constant Ricci curvature bound and suitably decaying injectivity radii, we can control
in harmonic coordinates the metric. In Section 4 we construct good distance-like exhaustion function in
this generality, first dealing with sub-quadratic Ricci curvature growth and suitably decaying injectivity
radii and then with the situation in which we have sub-quadratic sectional curvature growth (and no
assumptions on the injectivity radii). Starting from these exhaustion functions, in Section 5 we construct
the cut-off functions needed for the proof of our first density result (Theorem 1.3). In Section 6 we focus on
the case p = 2 and give the proof of Theorem 1.4. In this case we are assuming only a quadratic negative
lower bound on the Ricci curvature. Making use of the weak Laplacian cut-off functions constructed in [8],
under these assumptions, we are able to prove the density result by applying the divergence theorem to a
suitable compactly supported vector field together with the Bochner formula. In Section 7 we prove the
general Theorem 7.1 about disturbed Sobolev inequalities and, as a consequence of the proof of this latter,
we deduce Theorem 1.6. Finally, as suggested by one of the anonymous referees, in Section 8 we discuss
some further applications of Theorem 1.5 and of the proof of Theorem 1.6. In a first part we deduce
geometric conditions ensuring the validity of the full Omori-Yau maximum principle at infinity for the
Hessian or the validity of martingale completeness. A final subsection is devoted to the proof of Theorem
1.7

2. Sequences of Cut-off functions and applications to density problems

Sequences of Laplacian and Hessian cut-off functions where defined in [17] and [20]. Here we will need to
introduce also the slightly different notions of weak Laplacian and weak Hessian cut-off functions. Namely

Definition 2.1. A complete Riemannian manifold (M, g) is said to admit a sequence {χn} ⊂ C∞c (M) of
Laplacian cut-off functions, if {χn} has the following properties:

(C1) 0 ≤ χn(x) ≤ 1 for all n ∈ N, x ∈M ;
(C2) for all compact K ⊂M , there is a n0(K) ∈ N such that for all n ≥ n0(K), one has χn|K = 1;
(C3) ‖∇χn‖∞ → 0 as n→∞;
(C4) ‖∆χn‖∞ → 0 ad n→∞.

Furthermore, (M, g) is said to admit a sequence {χn} ⊂ C∞c (M) of weak Laplacian cut-off functions, if
{χn} satisfies (C1), (C2), and there exist constants A1, A2 such that, for all n ∈ N,

(C3’) ‖∇χn‖∞ ≤
A1
n ;

(C4’) ‖∆χn‖∞ ≤ A2.

Definition 2.2. (M, g) is said to admit a sequence {χn} ⊂ C∞c (M) of Hessian cut-off functions, if {χn}
satisfies (C1), (C2), (C3), and

(C4”) ‖Hess(χn)‖∞ → 0 as n→∞.

Furthermore, (M, g) is said to admit a sequence {χn} ⊂ C∞c (M) of weak Hessian cut-off functions, if {χn}
satisfies (C1), (C2), and there exist constants A1, A2 such that, for all n ∈ N,

(C3”) ‖∇χn‖∞ ≤ A1;
(C4”’) ‖Hessχn‖∞ ≤ A2.

The following proposition (partially taken from [18]) should give the state of the art on the existence of
such sequences of cut-off functions: point (i) follows by [31] (see also [17] for an alternative proof in the
case C = 0), point (ii) was proved in [8]; point (iii) is a consequence of [10, Lemma 5.3], point (iv) was
proven in [30, Corollary 5.1] sharpening a construction given in [32]; (v) is a consequence of [25, Theorem
1.3].

Proposition 2.3. Let (Mm, g) be a complete Riemannian manifold.

(i) If (M, g) has Ricg ≥ −C for some constant C ≥ 0, then M admits a sequence of Laplacian cut-off
functions.

(ii) More generally, fix a reference point o in (M, g), and denote by r(x)
.
= distg(x, o). If

Ricg ≥ −(m− 1)C2(1 + r2)η,
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with η ∈ [−1, 1] then, for every R ≥ 1 when η ∈ (−1, 1] and for every R > 0 when η = −1, and
for every γ bigger than some constant Γ(η, C,m) depending only on η, C and m, there exists a
sequence {φR} ⊂ C∞c (M) of cut-off functions such that
(1) φR ≡ 1 on BR(o);
(2) supp(φR) ⊂ BγR(o);

(3) |∇φR| ≤ C1
R ;

(4) |∆φR| ≤ C2
R1−η .

In particular, for η ∈ [−1, 1) this is a sequence of Laplacian cut-off functions.
(iii) If ‖Riemg‖∞ <∞ then there exists a sequence of Hessian cut-off functions.
(iv) If ‖Ricg‖∞ <∞ and inj(M) > 0 then there exists a sequence of Hessian cut-off functions
(v) There exist ε(m) and Λ′(m) such that if −Λ′ ≤ Ricg ≤ Λ and volg(B1(x)) ≥ (1 − ε)ωm, for all

x ∈M and for some Λ ≥ 0, then there exists a sequence of Hessian cut-off functions.

Following the terminology introduced in [20], we recall that a Lp-Calderón-Zygmund inequality (CZ(p))
is said to hold on (M, g) for some 1 < p < ∞ if there are constants C1 ≥ 0 and C2 > 0, such that for all
u ∈ C∞c (M) one has

(CZ(p)) ‖Hess(u)‖Lp ≤ C1 ‖u‖Lp + C2 ‖∆u‖Lp .

Note that, as in [20], here we have left out the case p = 1, since such an inequality indeed fails for the
Euclidean Laplace operator in Rm.

The following result was proven in [17]; see also Proposition 3.6 in [20].

Proposition 2.4 (Theorem 2.6 in [17] and Proposition 3.6 in [20]). (a) Assume that (CZ(p)) holds for
some 1 < p < ∞ and that M admits a sequence of Laplacian cut-off functions. Then one has that
W 2,p

0 (M) = W 2,p(M).

(b) If M admits a sequence of weak Hessian cut-off functions, then one has W 2,p
0 (M) = W 2,p(M) for all

1 < p <∞.

Remark 2.5. Actually, what is asked in point (b) of Proposition 3.6 in [20] is the existence of a sequence
of genuine Hessian cut-off functions. Here we observe that what is really needed for the density result is
that the gradient and the Hessian of the cut-offs are uniformly bounded. Indeed, first note that C∞(M)∩
W 2,p(M) is dense in W 2,p(M) (see for instance [16, Theorem 2]). Then, given a smooth f ∈ W 2,p(M),
pick a sequence {χn} of weak Hessian cut-off functions and define fn

.
= χnf . Proceeding as in [20], we get

that

‖(fn − f)‖Lp = ‖((1− χn)f)‖Lp(5)

‖∇(fn − f)‖Lp ≤ ‖f∇χn‖Lp + ‖(1− χn)∇f‖Lp(6)

‖Hess(fn − f)‖Lp ≤ ‖fHess(χn)‖Lp + ‖|∇χn||∇f |‖Lp + ‖(1− χn)Hess(f)‖Lp(7)

Each of (1 − χn), ∇χn and Hess(χn) is uniformly bounded and supported in supp(1 − χn). Moreover by
property (C2), given any compact set K ⊂ M , we have that supp(1 − χn) ⊂ M \K for n large enough.
Since f ∈W 2,p(M) this permits to conclude that all the terms at the RHS of (5), (6) and (7) tend to 0 as
n→∞.

3. Harmonic coordinates and rescalings

Recall that a local coordinate system
{
xi
}

is said to be harmonic if for any i, ∆gx
i = 0. The harmonic

radius is then defined as follows.

Definition 3.1. Let (Mm, g) be a smooth Riemannian manifold and let x ∈M . Given Q > 1, k ∈ N, and
α ∈ (0, 1), we define the Ck,α harmonic radius at x as the largest number rH = rH(Q, k, α)(x) such that
on the geodesic ball BrH (x) of center x and radius rH , there is a harmonic coordinate chart such that the
metric tensor is Ck,α controlled in these coordinates. Namely, if gij, i, j = 1, . . . ,m, are the components
of g in these coordinates, then

(1) Q−1δij ≤ gij ≤ Qδij as bilinear forms;



DENSITY PROBLEMS FOR SECOND ORDER SOBOLEV SPACES 7

(2)
∑

1≤|β|≤k r
|β|
H sup |∂βgij(y)|+

∑
|β|=k r

k+α
H supy 6=z

|∂βgij(z)−∂βgij(y)|
dg(y,z)α ≤ Q− 1.

We then define the (global) harmonic radius rH(Q, k, α)(M) of (M, g) by

rH(Q, k, α)(M) = inf
x∈M

rH(Q, k, α)(x)

where rH(Q, k, α)(x) is as above.

As a consequence of [4, Lemma 2.2] we have the validity of the following

Proposition 3.2. Let α ∈ (0, 1), Q > 1, δ > 0. Let (Mm, g) be a smooth Riemannian manifold, and Ω
an open subset of M . Set

Ω(δ) = {x ∈M s.t. dg(x,Ω) < δ} .
Suppose that

|Ricg(x)| ≤ 1 and injg(x) ≥ i for all x ∈ Ω(δ),

then, there exists a positive constant CHR = CHR(m,Q, k, α, δ, i), such that for any x ∈ Ω

rH(Q, 1, α)(x) ≥ CHR.

Since
∂sg

ij = −∂sglkgilgkj ,
note that under the assumptions of Proposition 3.2, for every x ∈ Ω, on BrH (x) we have also that:

(1’) Q−1δij ≤ gij ≤ Qδij ;
(2’)

∑m
s=1 rH sup

∣∣∂sgij(y)
∣∣+
∑m

s=1 r
1+α
H supy 6=z

|∂sgij(z)−∂sgij(y)|
dg(y,z)α ≤ C(Q),

for some constant C(Q) > 0, depending only on Q.

Fix now o ∈ M , denote by r(x)
.
= dg(x, o) and assume that, for some non-decreasing λ : R → R+ and

some uniform constant i0 > 0,

|Ricg(x)| ≤ λ2(r(x)) and injg(x) ≥ i0
λ(r(x))

on M.

We are going to suitably rescale the metric g in order to be able to apply Proposition 3.2.
Given x ∈M \ B̄g

2(o), for any y ∈ Bg
1(x) we have that

|Ricg(y)| ≤ λ2(r(x) + 1) and injg(y) ≥ i0
λ(r(x) + 1)

.

Denoting by
λ1

.
= λ(r(x) + 1),

we introduce the rescaled metric
gλ(y) = λ2

1g(y).

Then, for any y ∈ Bgλ
λ1

(x),

|Ricgλ(y)| ≤ 1 and injgλ(y) ≥ λ1injg(y) ≥ λ1
i0
λ1

= i0.

By Proposition 3.2 we have that there exists a constant CHR(m,Q,α, δ, i0) > 0 such that ∀ y ∈ Bgλ
λ1−δ(x),

there exist harmonic coordinates on Bgλ
CHR

(y) for which the metric gλ satisfies the analogous relations to

(1), (1’), (2) and (2’) with rH = CHR (and k = 1).

Hence, coming back to g, for every y ∈ Bg

1− δ
λ1

(x) we can find on Bg
CHR/λ1

(y) harmonic coordinates with

respect to which

(i) Q−1λ−2
1 δij ≤ gij ≤ Qλ−2

1 δij ;

(ii)
∑m

s=1 λ
2
1CHR sup |∂sgij(y)|+

∑m
s=1C

1+α
HR λ

2−α
1 supy 6=z

|∂sgij(z)−∂sgij(y)|
dg(y,z)α ≤ Q− 1;

and thus also

(i’) Q−1λ2
1δ
ij ≤ gij ≤ Qλ2

1δ
ij ;
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(ii’)
∑m

s=1 λ
−2
1 CHR sup

∣∣∂sgij(y)
∣∣+
∑m

s=1C
1+α
HR supy 6=z λ

−2−α
1

|∂sgij(z)−∂sgij(y)|
dg(y,z)α ≤ C(Q),

for some constant C(Q).

4. Construction of controlled exhaustion functions

The key step in our construction of sequences of (weak) Hessian cut-off functions is to exhibit suitable
smooth exhaustion functions with a good explicit control on the gradient and the Hessian in terms of the
distance function r to a fixed reference point. It is already known that this is possible when ‖Riemg‖∞ <∞,
[10], or when ‖Ricg‖∞ < ∞ and injg(M) > 0, [30]. For a further recent result see also [25]. Here, we will
deal with the situation in which the curvature is controlled by a sub-quadratic function of the distance
from a fixed reference point.

4.1. Sub-quadratic Ricci growth. Let o ∈ M , r(x)
.
= distg(x, o) and suppose that we are in the

assumption (a) of Theorem 1.5. Up to change the values of the constants D and i0, this is equivalent to
assume that for some 0 < η ≤ 1, D > 0 and some i0 > 0,

(8) |Ricg|(x) ≤ D2(1 + r(x)2)η
.
= λ2(r(x)), injg(x) ≥ i0

λ(r(x))
, on M.

All over this section, C will denote real constants greater than 1, all independent of x ∈ M , whose
explicit value can possibly change from line to line. Moroever, for any β > 0, the Euclidean ball of radius
β centered at the origin will be denoted by Bβ .

Step 0: Exhaustion functions with controlled Laplacian.

Let h ∈ C∞(M) be the exhaustion function given in [8, Theorem 2.1]. Then

(i) C−1r(x)1+η ≤ h(x) ≤ C max
{
r(x)1+η, 1

}
on M ;

(ii) |∇h| ≤ Crη on M \ B̄1(o);
(iii) |∆h| ≤ Cr2η on M \ B̄1(o).

Moreover, by the construction in the proof of [8, Theorem 2.1], h is a solution of

(9) ∆h = |∇h|2 − θr̃2η .
= f

on M \ B̄1(o), where θ is a positive fixed constant and r̃ ∈ C∞(M) is a smooth 1st order approximation of
the distance function, which satisfies in particular

• C−1r(x) ≤ r̃(x) ≤ C max {r(x), 1}
• |∇r̃| ≤ C

on M .

Step 1: using harmonic coordinates.

Given x ∈M \ B̄2(o), we define hx : Bε(x)→ R by

hx(y) = h(y)− h(x).

Then hx(x) = 0, hx satisfies (9), and

• |∇hx| ≤ Crη ;
• |∆hx| ≤ Cr2η;
• |Hesshx| = |Hessh| ,

Fix now α ∈ (0, 1), an accuracy Q > 1 and a sufficiently small δ > 0. By (8) and Section 3, letting again

λ1
.
= λ(r(x) + 1) = D((r(x) + 1)2 + 1)η/2,

we know that there exists a constant CHR(m,Q,α, δ, i0) such that we can find on BCHR/λ1
(x) a harmonic

chart
ϕH = (y1, . . . , ym) : BCHR/λ1

(x)→ U ⊂ Rm,
such that ϕH(x) = 0, and with respect to which

(i) Q−1λ−2
1 δij ≤ gij ≤ Qλ−2

1 δij ;

(ii)
∑m

s=1 λ
2
1CHR sup |∂sgij(y)|+

∑m
s=1C

1+α
HR λ

2−α
1 supy 6=z

|∂sgij(z)−∂sgij(y)|
dg(y,z)α ≤ Q− 1;
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(i’) Q−1λ2
1δ
ij ≤ gij ≤ Qλ2

1δ
ij ;

(ii’)
∑m

s=1 λ
−2
1 CHR sup

∣∣∂sgij(y)
∣∣+
∑m

s=1C
1+α
HR λ

−2−α
1 supy 6=z

|∂sgij(z)−∂sgij(y)|
dg(y,z)α ≤ C(Q),

for some constant C(Q).

Step 2: pointwise Schauder estimate.

Note that

BCHR/
√
Q ⊂ U = ϕH

(
BCHR/λ1

(x)
)
.

Define ĥx
.
= hx ◦ ϕ−1

H , f̂
.
= f ◦ ϕ−1

H , and ĝij
.
= gij ◦ ϕ−1

H . Letting β
.
= CHR/(2

√
Q), define ĥβ,x : B2 → R by

ĥβ,x(v)
.
= ĥx(βv). Then

∂2
ij ĥβ,x(v) = β2∂2

ij ĥx(βv).

By (9), we hence get that in these coordinates, on B2,

ĝij(βv)∂2
ij ĥβ,x(v) =β2ĝij(βv)∂2

ij ĥx(βv)

=β2f̂(βv).

Hence

(10) λ−2
1 ĝij(βv)∂2

ij ĥβ,x(v) = λ−2
1 β2f̂(βv)

.
= f̂β(v).

Note that

λ−2
1 ĝij(β·) ≥ λ−2

1 Q−1λ2
1δ
ij = Q−1δij on B2,∥∥λ−2

1 ĝij(β·)
∥∥
L∞(B2)

≤ Qλ−2
1 λ2

1 = Q,[
λ−2

1 ĝij(β·)
]
C0,α
L∞

(0) ≤ λ−2
1 β

CHR
C(Q)λ2

1 = C(Q)/2
√
Q.

Applying classical pointwise Schauder estimates for second order elliptic operators (see in particular [21,
Theorem 1.1] or [22, Theorem 5.20]) to equation (10) we hence get that

(11)
[
ĥβ,x

]
C2,α
L∞

(0) ≤ C
{∥∥∥ĥβ,x∥∥∥

L∞(B1)
+
∥∥∥f̂β∥∥∥

L∞(B1)
+
[
f̂β

]
C0,α
L∞

(0)

}
.

From this it follows that

β2
∣∣∣∂2
ij ĥx(0)

∣∣∣ ≤ C {∥∥∥ĥx∥∥∥
L∞(Bβ)

+
β2

λ2
1

∥∥∥f̂∥∥∥
L∞(Bβ)

+
β2+α

λ2
1

[
f̂
]
C0,α
L∞ (Bβ)

}
,

i.e.

(12)
∣∣∣∂2
ij ĥx(0)

∣∣∣ ≤ C { 1

β2

∥∥∥ĥx∥∥∥
L∞(Bβ)

+
1

λ2
1

∥∥∥f̂∥∥∥
L∞(Bβ)

+
βα

λ2
1

[
f̂
]
C0,α
L∞ (Bβ)

}
.

From now on we will denote ĥx simply by ĥ, being understood the fact that it depends on the point x we
have fixed on M .

About the first term on the RHS of (12), we note that for any v ∈ Bβ, letting y = ϕ−1
H (v), we have that

|ĥ(v)| =|hx(y)| = |h(y)− h(x)|(13)

≤Cdg(x, y) sup{rη(ζ) : ζ ∈ Bdg(x,y)(x)}

≤C
(
r(x) +

CHR
λ1

)η CHR
λ1

≤C.

Here the last inequality comes from the definition of λ1.
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About the second term, note that

|f̂(v)| =|f(y)| =
∣∣|∇hx|2(y)− θr̃(y)2η

∣∣
≤Cr(y)2η

≤C
(
r(x) +

CHR
λ1

)2η

≤Cρ2ηr(x)2η,

for some positive constant ρ > 1. In particular,

1

λ2
1

∥∥∥f̂∥∥∥
L∞(Bβ)

≤ C r(x)2η

λ2
1

(14)

≤ C.

It remains to estimate [f̂ ]
C0,α
L∞ (Bβ)

. Letting v, w ∈ Bβ, note that∣∣∣f̂(v)− f̂(w)
∣∣∣

|v − w|α
=
||∇hx|2(ϕ−1

H (v))− |∇hx|2(ϕ−1
H (w))− θ(r̃2η(ϕ−1

H (v))− r̃2η(ϕ−1
H (w)))|

|v − w|α
(15)

≤[|∇hx|2 ◦ ϕ−1
H ]

C0,α
L∞ (Bβ)

+ C
|r̃2η(ϕ−1

H (v))− r̃2η(ϕ−1
H (w))|

|v − w|α
.

The first term will be estimated in Step 3 and Step 4 below. About the second term, letting y = ϕ−1
H (v)

and z = ϕ−1
H (w), we have that

|r̃2η(ϕ−1
H (v))− r̃2η(ϕ−1

H (w))|
|v − w|α

=
|r̃(y)2η − r̃(z)2η|
|v − w|α

(16)

≤ sup{2ηr̃(ζ)2η−1|∇r̃|(ζ) : ζ ∈ Bmax{dg(x,y),dg(x,z)}(x)} dg(y, z)
|v − w|α

≤2ηC sup{r̃(ζ)2η−1 : ζ ∈ Bdg(x,y)(x)}
√
Q

λ1
|v − w|1−α

≤2ηC

√
Q

λ1
(2β)1−αρ2η−1r(x)2η−1,

where Q is the chosen accuracy of the harmonic coordinates.

Step 3: estimate of [|∇hx|2 ◦ ϕ−1
H ]

C0,α
L∞ (Bβ)

using Sobolev embeddings.

Letting p > m, by the Euclidean Sobolev embeddings (see e.g [1, p. 109]), we have

[|∇hx|2 ◦ ϕ−1
H ]

C0,α
L∞ (Bβ)

≤ K3

‖|∇hx|2 ◦ ϕ−1
H ‖

p
Lp(Bβ) +

∑
j

‖∂j
(
|∇hx|2 ◦ ϕ−1

H

)
‖pLp(Bβ)


1/p

,

with α = 1 − m
p and K3 a positive constant depending only on p, m and α. Concerning the first term in

the RHS, since |∇hx| ≤ Crη we get

‖|∇hx|2 ◦ ϕ−1
H ‖

p
Lp(Bβ) ≤ C‖r

2η ◦ ϕ−1
H ‖

p
Lp(Bβ) ≤ ωmCβ

m‖r‖2ηpL∞(BCHR
2λ1

(x))(17)

≤ C
(
r(x) +

CHR
2λ1

)2ηp

,

where ωm is the volume of the m-dimensional unit sphere. Concerning the second term, let us compute

∂j(|∇hx|2 ◦ ϕ−1
H ) = ∂j(∂khx∂ihxg

ki)

= 2∂j∂khx∂ihxg
ki + ∂khx∂ihx∂jg

ki,
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so that

‖∂j(|∇hx|2 ◦ ϕ−1
H )‖Lp(Bβ) ≤2‖∂j∂kĥ∂lĥĝkl‖Lp(Bβ) + ‖∂kĥ∂lĥ∂j ĝkl‖Lp(Bβ)

≤2
∑
k,l

‖∂j∂kĥ‖Lp(Bβ)‖∂lĥ‖L∞(Bβ)Qλ
2
1 +

∑
k,l

‖∂kĥ‖Lp(Bβ)‖∂lĥ‖L∞(Bβ)
C(Q)

CHR
λ2

1

≤2m2‖D2ĥ‖Lp(Bβ)‖Dĥ‖L∞(Bβ)Qλ
2
1 +m2‖Dĥ‖Lp(Bβ)‖Dĥ‖L∞(Bβ)

C(Q)

CHR
λ2

1

≤2m2‖D2ĥ‖Lp(Bβ)‖|∇hx| ◦ ϕ−1
H ‖L∞(Bβ)Q

3/2λ1

+m2‖|∇hx| ◦ ϕ−1
H ‖Lp(Bβ)‖|∇hx| ◦ ϕ−1

H ‖L∞(Bβ)
QC(Q)

CHR
,

where we are denoting by Dĥ and D2ĥ, respectively, the Euclidean gradient and the Euclidean Hessian of
ĥ, and we have used the fact that

(18) |Dĥ|2 = ∂kĥ∂lĥδ
kl ≤ λ−2

1 Q∂kĥ∂lĥĝ
kl = λ−2

1 Q|∇hx|2 ◦ ϕ−1
H .

Reasoning as in (17) we get

‖∂j(|∇hx|2 ◦ ϕ−1
H )‖Lp(Bβ) ≤2m2C‖D2ĥ‖Lp(Bβ)‖rη ◦ ϕ−1

H ‖L∞(Bβ)Q
3/2λ1

+m2C‖rη ◦ ϕ−1
H ‖Lp(Bβ)‖rη ◦ ϕ−1

H ‖L∞(Bβ)
QC(Q)

CHR

≤Cλ1

(
r(x) +

CHR
2λ1

)η
‖D2ĥ‖Lp(Bβ) + C

(
r(x) +

CHR
2λ1

)2η

.

Step 4: estimate of ||D2ĥ||Lp(Bβ) by a Calderón-Zygmund inequality.

Let φ ∈ C∞c (B2β) be such that 0 ≤ φ ≤ 1 and φ ≡ 1 on Bβ and max{‖∇φ‖∞; ‖∆φ‖∞} < C1 for some
C1 = C1(β,m) ∈ R. According to the Calderón-Zygmund inequality, [14, Corollary 9.10], there exists a
constant C2 = C2(m, p) > 0 such that

‖D2ĥ‖Lp(Bβ) ≤ ‖D2(φĥ)‖Lp(B2β)(19)

≤ C2‖∆0(φĥ)‖Lp(B2β)

≤ C2

(
‖φ∆0ĥ‖Lp(B2β) + ‖ĥ∆0φ‖Lp(B2β) + 2‖Dĥ ·Dφ‖Lp(B2β)

)
≤ C2

(
‖∆0ĥ‖Lp(B2β) + C1‖ĥ‖Lp(B2β) + 2C1‖Dĥ‖Lp(B2β)

)
,

where ∆0 =
∑

i ∂i∂i is the Euclidean Laplacian.
Now,

|∆0ĥ| = |∂k∂j ĥδkj |

≤ |∂k∂j ĥĝkj |Qλ−2
1 = Qλ−2

1 |∆hx| ◦ ϕ
−1
H

≤ CQλ−2
1

(
r2η ◦ ϕ−1

H

)
.

Accordingly,

‖∆0ĥ‖Lp(B2β) ≤ Cλ−2
1

(
r(x) +

CHR
λ1

)2η

.

As in (13) we have that ‖ĥ‖L∞(B2β) ≤ C, so that ‖ĥ‖Lp(B2β) ≤ C. Moreover, using (18),

‖Dĥ‖Lp(B2β) ≤ λ−1
1

√
Q‖|∇hx| ◦ ϕ−1

H ‖Lp(B2β) ≤ λ−1
1 C

(
r(x) +

CHR
λ1

)η
.
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Inserting these estimates in (19) gives

‖D2ĥ‖Lp(Bβ) ≤C2

[
Cλ−2

1

(
r(x) +

CHR
λ1

)2η

+ C

(
1 + λ−1

1

(
r(x) +

CHR
λ1

)η)]
≤C.

Coming back to Step 3,

‖∂j(|∇hx|2 ◦ ϕ−1
H )‖Lp(Bβ) ≤ Cr2η

and

(20) [|∇hx|2 ◦ ϕ−1
H ]

C0,α
L∞ (Bβ))

≤ Cr2η.

Step 5: estimate of |Hessh|.
Using (20) and (16), we get by (15) that

βα

λ2
1

[f̂ ]
C0,α
L∞ (Bβ)

≤ C,

and hence, by (12), (13) and (14),

|∂2
ijhx(x)| = |∂2

ij ĥ(0)| ≤ C.
Recalling now that

∇i∇jhx = ∂2
ijhx − Γkij∂khx,

we can compute that

|Hesshx| (x) =
[
gikgjl

(
∂2
ijhx − Γsij∂shx

) (
∂2
klhx − Γtkl∂thx

)] 1
2

(x)

≤
[
gikgjl∂2

ijhx∂
2
klhx + gikgjlΓsijΓ

t
kl∂shx∂thx

−2gikgjl∂2
ijhxΓtkl∂thx

] 1
2

(x).

Since

|gikgjl∂2
ijhx∂

2
klhx|(x) ≤Q2λ4

1

∣∣∣δikδjl∂2
ijhx(x)∂2

klhx

∣∣∣ (x)

=Q2λ4
1|∂ijhx|2(x) ≤ Cλ4

1 ≤ Cr4η(x),

|gikgjlΓsijΓtkl∂shx∂thx|(x) ≤9

4
CQ5 (Q− 1)2

C2
HR

λ2
1r

2η(x)

≤ Cr4η(x),

|2gikgjl∂2
ijhxΓtkl∂thx|(x) ≤2C2Q6

√
Q

(Q− 1)

CHR
λ4

1λ
−1
1 rη(x)

≤ Cr4η(x),

we eventually obtain that

(21) |Hessh| (x) = |Hesshx| (x) ≤ Cr2η(x).

We have thus proved the following

Theorem 4.1. Let (M, g) be a complete Riemannian manifold and o ∈M a fixed reference point, r(x)
.
=

distg(x, o). Suppose that for some 0 < η ≤ 1, some D > 0 and some i0 > 0,

|Ricg|(x) ≤ D2(1 + r(x)2)η, injg(x) ≥ i0
D(1 + r(x))η

> 0 on M.

Then there exists an exhaustion function h ∈ C∞(M) such that, for some positive constant C independent
of x and o, we have that
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(i) C−1r(x)1+η ≤ h(x) ≤ C max
{
r(x)1+η, 1

}
on M ;

(ii) |∇h| ≤ Crη on M \ B̄2(o);
(iii) |Hessh| (x) ≤ Cr(x)2η on M \ B̄2(o)

Finally note that the first part of Theorem 1.5 is equivalent to Theorem 4.1 up to introduce the new

function H ∈ C∞(M) defined by H = h
1

1+η .

4.2. Sub-quadratic sectional curvature growth (no assumptions on injectivity radius). Let
o ∈M , r(x)

.
= distg(x, o) and let us assume that, for some 0 < η ≤ 1 and D > 0,

(22) |Sectg|(x) ≤ D2(1 + r(x)2)η.

As in Step 0 of Subsection 4.1, we start with the exhaustion function h given in [8].
Given R0 ∈ R+, to be chosen later, and x ∈M such that r(x) > 1 +R0, we have that on BR0(x)

|Sectg| ≤ D2(1 + (R0 + r(x))2)η
.
= Kx,R0 .

By a localized version of the Cartan-Hadamard theorem (see e.g. [19, Lemma 2.7]) we have that for every
0 < R < min

{
π/
√
Kx,R0 , R0

}
, there exists a smooth complete Riemannian manifold (M̄, ḡ), x̄ ∈ M̄ , and

a smooth surjective local isometry

F
.
= Fg,x,R : Bḡ

R(x̄)→ Bg
R(x),

such that

• F (x̄) = x;
• injḡ(x̄) ≥ R;

• |Sectḡ| ≤ Kx,R0 on Bḡ
R(x̄);

• F (Bḡ
r (x̄)) = Bg

r (x), for all 0 < r < R.

In particular, for every ȳ ∈ Bḡ
R/2(x̄) ,we have that

(23) |Sectḡ|(ȳ) ≤ Kx,R0 , injḡ(ȳ) ≥ dḡ
(
ȳ, ∂Bḡ

R(x̄)
)
≥ R

2
.

We define h̄x : Bḡ
R(x̄)→ R by

h̄x(ȳ) = h(F (ȳ))− h(F (x̄)).

Then h̄x(x̄) = 0, and

• |∇̄h̄x| ≤ Cr̄η,
• |∆̄h̄x| ≤ Cr̄2η,
• |Hessḡh̄x|ḡ(ȳ) = |Hessgh|g(y) onBḡ

R(x̄),

with r̄
.
= r ◦ F . Moreover, by (9),

∆̄h̄x = |∇̄h̄x|2ḡ − θ(r̃ ◦ F )2η .
= f̄ .

Letting λ2
R0

.
= (m− 1)Kx,R0 , we set

ḡλ = λ2
R0
ḡ.

Then, by (23)

|Ricḡλ |(ȳ) ≤ 1, injḡλ(ȳ) ≥ λR0

R

2
.

Assuming that R0 ≥
(
π
D

) 1
1+η , we can take R = π

2
√
Kx,R0

, getting that

injḡλ(ȳ) ≥
√
m− 1π

4

.
= i0.

Given α ∈ (0, 1), Q > 1 and δ > 0, Proposition 3.2 hence yields that there exists a constant CHR(m,Q,α, δ, i0)
such that for every ȳ ∈ Bḡ

R
2
− δ
λR0

(x̄) we can find on Bḡ
CHR
λR0

(ȳ) harmonic coordinates with respect to which

(i) Q−1λ−2
R0
δij ≤ ḡij ≤ Qλ−2

R0
δij ;

(ii)
∑

s λ
2
R0
CHR sup |∂sḡij(ȳ)|+

∑
sC

1+α
HR λ

2−α
R0

supȳ 6=z̄
|∂sḡij(z̄)−∂sḡij(ȳ)|

dḡ(ȳ,z̄)α ≤ Q− 1;
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and thus also

(i’) Q−1λ2
R0
δij ≤ ḡij ≤ Qλ2

R0
δij ;

(ii’)
∑

s λ
−2
R0
CHR sup

∣∣∂sḡij(y)
∣∣+
∑

sC
1+α
HR supȳ 6=z̄ λ

−2−α
R0

|∂sḡij(z)−∂sḡij(y)|
dḡ(ȳ,z̄)α ≤ C(Q),

for some constant C(Q). Traveling through again Step 2, 3, 4 and 5 of Subsection 4.1 we eventually get
that

|Hessh|g(x) = |Hessh̄x|ḡ(x) ≤ Cr̄2η(x̄) = Cr2η(x).

We have thus proved the following

Theorem 4.2. Let (M, g) be a complete Riemannian manifold and o ∈M a fixed reference point, r(x)
.
=

distg(x, o). Suppose that for some 0 < η ≤ 1 and D > 0,

|Sectg|(x) ≤ D2(1 + r(x)2)η.

Then there exists an exhaustion function h ∈ C∞(M) such that, for some positive constants C > 1
independent of x and o and for some radius R0, we have that

(i) C−1r(x)1+η ≤ h(x) ≤ C max
{
r(x)1+η, 1

}
on M ;

(ii) |∇h| ≤ Crη on M \ B̄1+R0(o);
(iii) |Hessh| (x) ≤ Cr(x)2η on M \ B̄1+R0(o)

Once again, defining H ∈ C∞(M) by H = h
1

1+η , we get that the second part of Theorem 1.5 is equivalent
to Theorem 4.2.

5. Hessian cut-off functions

In this section we construct (weak) Hessian cut-off functions starting from the distance-like functions
obtained in the previous sections. This will permit to conclude the proof of Theorem 1.3.

Lemma 5.1. Let (M, g) be a complete Riemannian manifold and o ∈ M a fixed reference point. If there
exists an exhaustion function h ∈ C∞(M) such that for some positive constants Dj, ρ̄ > 0, β > εi ≥ 0, we
have that

(i) D1r(x)β ≤ h(x) ≤ D2 max
{

1, r(x)β
}

for every x ∈M ;

(ii) |∇h|(x) ≤ D3r(x)β−ε1, for every x ∈M \ B̄ρ̄(o);
(iii) |Hess(h)|(x) ≤ D4r(x)β−ε2, for every x ∈M \ B̄ρ̄(o).

Then given a γ > (D2/D1)1/β, there exists a family of cut-off functions {χR} such that

(1) χR = 1 on BR(o) and χR = 0 on M \BγR(o);

(2) |∇χR| ≤ C1
Rε1 ;

(3) |Hess(χR)| ≤ C2

Rmin{2ε1,ε2}
.

In particular {χn} is a family of weak Hessian cut-off functions for every ε1, ε2 and of genuine Hessian
cut-off functions whenever ε1ε2 > 0.

Proof. Let Γ = D2
D1
≥ 1, and γ > Γ

1
β a real number. Let φ ∈ C∞(R, [0, 1]) be such that

φ|(−∞,Γ] = 1, φ|[γβ ,∞) = 0, |φ′|+ |φ′′| ≤ a,

for some a > 0. For any R > 0, let φR ∈ C∞([0,+∞)) be defined by

φR(t)
.
= φ

(
t

D1Rβ

)
.

Then

|φ′R| ≤
a

D1Rβ
, |φ′′R| ≤

a

D2
1R

2β
.

For each radius R� 1, define χR := φR ◦ h. Then it is immediate to verify that {χR} meets the required
properties. �

We are finally in the position to give the
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Proof (of Theorem 1.3). Under the assumptions (a) or (b) of the theorem, applying respectively Theorem
4.1 or Theorem 4.2, we get the existence of a distance-like function h with suitably controlled growth of
the derivatives up to the 2nd order. Hence Lemma 5.1 applies and guarantees the existence of a sequence
of (weak)-Hessian cut-off functions. Then Theorem 1.3 is a direct consequence of Proposition 2.4, (b). �

6. The special case p = 2

Proof of Theorem 1.4. Let λ2(r(x))
.
= −D2(1 + r(x)2). By [8, Corollary 2.3] we know that there exist a

large constant γ > 1 and a sequence of weak Laplacian cut-off functions {χn} ⊂ C∞c (M) such that

(1) χn ≡ 1 on Bn(o);
(2) supp(χn) ⊂ Bγn(o);

(3) |∇χn| ≤ C1
n ;

(4) |∆χn| ≤ C2.

with C1 and C2 independent of n.
As noticed in Remark 2.5, it is sufficient to consider f ∈ C∞(M)∩W 2,2(M). We want to prove that χnf

converges to f in W 2,2(M). By properties (1) and (2) and the dominated convergence theorem it follows
that ∫

M
|f − χnf |2dvolg → 0,

as n→∞. Furthermore, by properties (1), (2), (3), and the dominated convergence theorem, we have that∫
M
|∇f −∇(χnf)|2dvolg =

∫
M
|∇f − (χn∇f + f∇χn)|2dvolg

=C

∫
M
f2|∇χn|2dvolg + C

∫
M

(1− χn)2|∇f |2dvolg → 0,

as n→∞. We now note that∫
M
|Hess(χnf)−Hessf |2dvolg =

∫
M

(1−χn)2|Hessf |2dvolg+2

∫
M
|∇χn|2|∇f |2dvolg+

∫
M
|f |2|Hessχn|2dvolg.

Reasoning as above we get that the first two terms on the RHS converge to 0. About the last term, using
Bochner formula and our curvature assumption, we have that

div

(
f2∇|∇χn|2

2

)
=f2 ∆|∇χn|2

2
+ f

〈
∇f,∇|∇χn|2

〉
=f2

[
|Hessχn|2 + Ricg(∇χn,∇χn) + 〈∇χn,∇∆χn〉

]
+ 2f |∇χn| 〈∇f,∇|∇χn|〉

≥f2|Hessχn|2 + f2Ricg(∇χn,∇χn) + f2 〈∇χn,∇∆χn〉 −
f2

2
|∇|∇χn||2 − 2|∇χn|2|∇f |2

≥f
2

2
|Hessχn|2 − 2|∇χn|2|∇f |2 − λ2f2|∇χn|2 + div

(
f2∆χn∇χn

)
− 2f∆χn 〈∇f,∇χn〉 − f2(∆χn)2

≥f
2

2
|Hessχn|2 − 3|∇χn|2|∇f |2 − λ2f2|∇χn|2 + div

(
f2∆χn∇χn

)
− 2f2(∆χn)2

Integrating, we get that

(24)
1

2

∫
M
f2|Hessχn|2dvolg ≤

∫
M
λ2f2|∇χn|2dvolg + 2

∫
M
f2(∆χn)2dvolg + 3

∫
M
|∇f |2|∇χn|2dvolg.

By property (3), and the dominated convergence theorem the last term on the RHS of (24) converges to 0 as
n→∞. Moreover, by properties (1) and (2), we have that ∇χn and ∆χn are supported in Bγn(o) \Bn(o).
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Hence, using property (3), the definition of λ, and the fact that f ∈ L2(M), we have that∫
M
λ2|∇χn|2f2dvolg =

∫
Bγn(o)\Bn(o)

λ2|∇χn|2f2dvolg

≤
∫
M\Bn(o)

C
1 + γ2n2

n2
f2dvolg ≤ C̃

∫
M\Bn(o)

f2dvolg → 0,

as n→∞. Similarly, by property (4),∫
M
f2(∆χn)2dvolg ≤ C2

2

∫
M\Bn(o)

f2dvolg → 0,

as n→∞. This finally gives our claim. �

7. A disturbed Sobolev inequality

In this section we first prove the following general disturbed Sobolev inequality. Then we will deduce
Theorem 1.6 from the proof of Theorem 7.1.

Theorem 7.1. Let (Mm, g) be a smooth, complete non-compact Riemannian manifold without boundary.
Let o ∈M , r(x)

.
= distg(x, o) and suppose that one of the following set of assumptions holds

(a) for some 0 < η ≤ 1, some D > 0 and some i0 > 0,

|Ricg|(x) ≤ D2(1 + r(x)2)η, injg(x) ≥ i0
D(1 + r(x))η

> 0 on M.

(b) for some 0 < η ≤ 1 and some D > 0,

|Sectg|(x) ≤ D2(1 + r(x)2)η.

Let p ∈ [1,m) and q = mp/(m − p) and let (α, β) ∈ R × R satisfying β/p − α/q ≥ 1/m. Then there exist
constants A1 > 0, A2 > 0, depending on m, p, α, β and the constant C from Theorem 1.5, such that for
all ϕ ∈ C∞c (M) it holds(∫

M
Vα|ϕ|qdvolg

) 1
q

≤ A′
(∫

M
Vβ|∇ϕ|pdvolg

) 1
p

+B′
(∫

M
Vβ|ϕ|pHpηdvolg

) 1
p

.

Here

Vα(x)
.
= (r(x) + 1)−αmη

(
volg(B

g
R1

(x))
)−α

, with R1 = R1(x)
.
=

{
C−η(r(x)− 1)−η if r(x) > 1 + C−1

1 otherwise,
,

and

Vβ(x)
.
= (max{1; r(x)− 1})−βmη

(
volg(B

g
R2

(x))
)−β

, with R2 = R2(x)
.
=
C−η

2
min{1; r(x)−η}.

Remark 7.2. As we will see in (35), a lower bound on the injectivity radius implies a lower bound on the
volumes. Accordingly, Theorem 7.1 applies in more general situations with respect to Theorem 1.6, e.g.
under the assumption (b), or in case the volumes of geodesics balls of (M, g) increase at infinity. On the
other hand, in Theorem 7.1 the value of q = pm/(m− p) is fixed.

Proof (of Theorem 7.1). Let φ ∈ C∞(M) be a positive function to be choosen later, and define a new
conformal metric g̃ = e2φg. Then, for any X ∈ TM , we have that

Ricg̃(X,X) = Ricg(X,X)− (m− 2)
[
Hess(φ)(X,X)− g(X,∇φ)2

]
+ g(X,X)

(
∆φ− (m− 2)|∇φ|2

)
Accordingly

|Ricg̃| ≤ C(m)e−2φ
{
|Ricg|+ [|Hess(φ)|+ |∇φ|2]

}
Now, let H ∈ C∞(M) be the exhaustion function given by Theorem 1.5. Without loss of generality we
can suppose that H > 1 on M . Indeed, if it is not the case, one can replace H with a new function which
approximates max{2;H} uniformly on M , and in C2-norm outside a compact set. We recall the properties
of H: for some positive C > 1,
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• max
{

1, C−1r
}
≤ H ≤ C max {1, r};

• |∇H|(x) ≤ C;
• |HessH|(x) ≤ C max {rη, 1}.

Choose φ = η ln(H). In particular, since eφ = Hη > 1, (M, g̃) is complete. Moreover,

|∇φ|(x) = η

∣∣∣∣∇HH
∣∣∣∣ ≤ ηC

and

|Hessφ|(x) = η

∣∣∣∣HessH

H
− dH ⊗ dH

H2

∣∣∣∣ ≤ 2ηC2 max {r(x)η, 1} .

Thus there exists a constant C̃ > 0 depending on m, η and C such that

(25) |Ricg̃|(x) ≤ C(m)

H2η

{
λ(r(x)) + 2ηC2 max {r(x)η, 1}+ η2C2

}
≤ C̃,

where we are still using the notation λ(r(x))
.
= D2(1 + r2)η.

Set v(x) =
(

volg̃(B
g̃
1(x))

)−1
. Letting p ∈ [1,m) and q = mp/(m − p) and let (α, β) ∈ R × R satisfying

β/p−α/q ≥ 1/m, from [24, Theorem 3.8], we have the validity on (M, g̃) of the disturbed Sobolev inequality

(26)

(∫
M
|u|qvαdvolg̃

) 1
q

≤ A
(∫

M
g̃(∇̃u, ∇̃u)

p
2 vβdvolg̃

) 1
p

+B

(∫
M
|u|pvβdvolg̃

) 1
p

for all u ∈ C∞c (M), and for some positive constants A and B independent of u.
Moving back to the metric g, this latter becomes(∫

M
vα|u|qemφdvolg

) 1
q

≤ A
(∫

M
g(∇u,∇u)

p
2 e(m−p)φvβdvolg

) 1
p

+B

(∫
M
|u|pemφvβdvolg

) 1
p

for all u ∈ C∞c (M), i.e.

(27)

(∫
M

(
|u|H

mη
q

)q
vαdvolg

) 1
q

≤ A
(∫

M
|∇u|pH(m−p)ηvβdvolg

) 1
p

+B

(∫
M
|u|pHmηvβdvolg

) 1
p

.

In the following we will simplify the notation by writing |∇ · |2 for g(∇·,∇·). Set ϕ = uH
mη
q . Then

u = ϕH
−mη

q and

|∇u|2 ≤ H−
2mη
q

(
|∇ϕ|+ mη

q

|ϕ|
H
|∇H|

)2

,

from which, using Jensen’s inequality, we deduce that

|∇u|p ≤ H−
mηp
q

(
|∇ϕ|+ mη

q

|ϕ|
H
|∇H|

)p
≤ 2p−1H

−mηp
q |∇ϕ|p + 2p−1

(
mη

q

)p
|ϕ|pH−

(
mη
q

+1
)
p|∇H|p

and

|∇u|pH(m−p)η ≤ 2p−1H

(
m−p−mp

q

)
η|∇ϕ|p + 2p−1|ϕ|p

(
mη

q

)p
H
mη−pη−mηp

q
−p|∇H|p

≤ 2p−1H

(
m−p−mp

q

)
η|∇ϕ|p + 2p−1|ϕ|p

(
mη

q

)p
H
mη−mηp

q |∇H|p.
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Since |∇H| is bounded, we finally get from (27)(∫
M
|ϕ|qvαdvolg

) 1
q

=

(∫
M

(
|u|H

mη
q

)q
vαdvolg

) 1
q

≤ A2
p−1
p

(∫
M

[
H

(
m−p−mp

q

)
η|∇ϕ|p + |ϕ|p

(
mη

q

)p
H
mη−mηp

q |∇H|p
]
vβdvolg

) 1
p

+B

(∫
M
|ϕ|pHmη−mηp

q vβdvolg

) 1
p

≤ A′
(∫

M
H

(
m−p−mp

q

)
η|∇ϕ|pvβdvolg

) 1
p

+B′
(∫

M
|ϕ|pHmη−mηp

q vβdvolg

) 1
p

,

where A′ = A2
p−1
p and B′ = A2

p−1
p mη

q C +B, with C the constant in Theorem 1.5. Note that mp
q = m− p,

which in turn implies that mη − mηp
q = pη. Hence(∫

M
vα (|ϕ|)q dvolg

) 1
q

≤ A′
(∫

M
|∇ϕ|pvβdvolg

) 1
p

+B′
(∫

M
|ϕ|pHpηvβdvolg

) 1
p

.(28)

To conclude, we need the following lemmas.

Lemma 7.3. For all x ∈M , Bg̃
1(x) ⊂ Bg

R1
(x), with R1 = R1(x) =

{
C−η(r(x)− 1)−η if r(x) > 1 + C−1

1 otherwise.

Lemma 7.4. For all x ∈M , Bg̃
1(x) ⊃ Bg

R2
(x), with R2 = R2(x) = C−η

2 min{1; r(x)−η}.

According to Lemma 7.3, and using the point-wise control on H, we have that

vα(x) ≥ (volg̃(B
g
R1

(x)))−α =

(∫
BgR1

(x)
Hmη(y)dvolg(y)

)−α
≥ C−α(r(x) + 1)−αmη

(
volg(B

g
R1

(x))
)−α

,

while according to Lemma 7.4, we have that

vβ(x) ≤ (volg̃(B
g
R2

(x)))−β =

(∫
BgR2

(x)
Hmη(y)dvolg(y)

)−β
≤ Cβ(max{1; r(x)− 1})−βmη

(
volg(B

g
R2

(x))
)−β

.

Inserting the previous inequalities in (28) concludes the proof of Theorem 7.1.
�

It remains to prove Lemmas 7.3 and 7.4.

Proof (of Lemma 7.3). Let y ∈ Bg̃
1(x) and σ : [0, a] → M a minimizing geodesic of (M, g̃) connecting x

and y. Let a0 = sup{s ∈ [0, a] : σ([0, s]) ⊂ Bg
dg(x,y)(x)}. Then

1 > dg̃(x, y)(29)

=

∫ a

0
g̃(σ̇, σ̇)1/2(s) ds

≥
∫ a0

0
g̃(σ̇, σ̇)1/2(s) ds

=

∫ a0

0
eφg(σ̇, σ̇)1/2(s) ds

≥ inf{Hη(z) : z ∈ Bg
dg(x,y)(x)}dg(x, y).
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Since H(z) > max{1;C−1r(z)}, we get

(30) dg(x, y) < 1,

which prove the lemma when r(x) < 1 + 1/C. Otherwise,

inf{Hη(z) : z ∈ Bg
dg(x,y)(x)} ≥ Cη(r(x)− 1)η.

Inserting in (29) gives

dg(x, y) < C−η(r(x)− 1)−η.(31)

This concludes the proof of the remaining case. �

Proof (of Lemma 7.4). Let y ∈ Bg
R2

(x) and σ : [0, a] → M a minimizing geodesic of (M, g) connecting x
and y. Then

R2 > dg(x, y)(32)

=

∫ a

0
g(σ̇, σ̇)1/2(s) ds

=

∫ a

0
e−φg̃(σ̇, σ̇)1/2(s) ds

≥ inf{H−η(z) : z ∈ Bg
R2

(x)}dg̃(x, y)

≥ inf{C−η min{1, r−η(z)} : z ∈ Bg
R2

(x)}dg̃(x, y).

Suppose first that r(x) ≥ 1 +R2(x). Then Bg
R2

(x) ⊂M \Bg
1(o). In particular, for all z ∈ Bg

R2
(x) it holds

r−η(z) ≤ 1, from which

inf{C−η min{1, r−η(z)} : z ∈ Bg
R2

(x)} = inf{C−ηr−η(z) : z ∈ Bg
R2

(x)}
≥ C−η [r(x) +R2]−η .

The relation (32) implies in this case that

dg̃(x, y) <R2C
η [r(x) +R2]η =

1

2
min{1; r(x)−η} [r(x) +R2]η

≤1

2
r(x)−η [r(x) +R2]η ≤ r(x)−η

2

[
r(x) +

1

2

]η
< 2η−1 ≤ 1

since R2 ≤ 1/2. On the other hand, if r(x) < 1 +R2(x), then for all z ∈ Bg
R2

(x) one has

r(z) ≤ r(x) +R2 ≤ 1 + 2R2 ≤ 2.

In particular min{1; r−η(z)} ≥ 2−η and (32) implies

C−η2−ηdg̃(x, y) ≤ R2 ≤
C−η

2
,

from which dg̃(x, y) ≤ 2η−1 ≤ 1. �

Proof (of Theorem 1.6). Suppose first that q = mp/(m − p). Since the assumptions of Theorem 7.1 are
satisfied, we have the validity of (28).

Reasoning as in the proof of Lemma 7.3, one get the existence of R > 0 such that for all x ∈M \Bg
R(o),

ρ > 0, one has

(33) Bg
ρr−η(x)

(x) ⊂ Bg̃
2ρ(x).
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Then

volg̃(B
g̃
2ρ(x)) ≥ volg̃(B

g
ρr−η(x)

(x))(34)

≥ inf{emφ(z) : z ∈ Bg
ρr−η(x)

(x)}volg(B
g
ρr−η(x)

(x))

≥
(
r(x)− ρr−η(x)

)mη
volg(B

g
ρr−η(x)

(x))

≥ rmη(x)

2
volg(B

g
ρr−η(x)

(x))

for r(x) large enough. Recall the following result by Croke.

Lemma 7.5 (Proposition 14 in [12]). There exists a dimensional constant Cm > 0 such that for any x ∈M
and i > 0, if

∀y ∈ Bg
i
2

(x), injg(y) > i,

then

volg(B
g
i
2

(x)) ≥ Cmim.

Let E = min{i0/D; 2} and choose i = i(x) = E(1 + r(x))−η. There exists a positive radius Rη large
enough depending on η such that for all x ∈M \Bg

Rη
(o) and for all y ∈ Bg

i
2

(x) we have

injg(y) ≥ E

(1 + r(y))η
≥ 1

2

E

(1 + r(x))η
≥ i.

Then Lemma 7.5 applies and we get that for all x ∈M \Bg
Rη

(o)

volg

(
Bg
E(1+r(x))−η/4(x)

)
≥ Cm

Em

2m(1 + r(x))mη
.

Choosing ρ = E/4 in (34), we finally obtain that

volg̃(B
g̃
1(x)) ≥ volg̃(B

g̃
E/2(x))(35)

≥ rmη(x)

2
volg(B

g
Er−η(x)/4

(x))

≥ Cm
rmη(x)

2

Em

2m(1 + r(x))mη

≥ CmE
m

2

if r(x) is large enough. In particular, since volg̃(B
g̃
1(x)) is continuous with respect to x on M , it is uniformly

lower bounded by a positive constant on the whole M . On the other hand, volg̃(B
g̃
1(x)) is also uniformly

upper bounded on M by Bishop-Gromov theorem, since Ricg̃ is bounded. In particular vα is uniformly

lower bounded by a positive constant, and vβ is uniformly upper bounded, so that the conclusion follows
from (28).

The case q ∈ [p,mp/(m− p)) can be treated similarly, using the standard Sobolev inequality instead of
(26). Indeed, according to [33, 11] (see also [23, Theorem 3.2]),(∫

M
|u|qdvolg̃

) 1
q

≤ A
(∫

M
g̃(∇̃u, ∇̃u)

p
2 dvolg̃

) 1
p

+B

(∫
M
|u|pdvolg̃

) 1
p

for all u ∈ C∞c (M). This latter is satisfied because of the bounds on the Ricci curvature and on the volumes
of small balls given in (25) and (35). �

8. Some further applications

In this last section we highlight some additional applications of Theorem 1.5 and of the proof of Theorem
1.6.
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8.1. Full Omori-Yau maximum principle for the Hessian. Recall that a Riemannian manifold (M, g)
is said to satisfy the full Omori-Yau maximum principle for the Hessian if for any function u ∈ C2(M)
with u∗ = supM u < +∞, there exists a sequence {xn}n ⊂M with the properties

(i)u(xk) > u∗ − 1

k
, (ii) |∇u(xk)| <

1

k
, (iii) Hess(u)(xk) <

1

k
g,

for each k ∈ N.
Letting o be a fixed reference point in the complete Riemannian manifold (M, g) and denoting by r(x)

the distance function from o, the full Omori-Yau maximum principle for the Hessian is known to hold e.g.
if the radial sectional curvature of M (i.e. the sectional curvature of 2-planes containing ∇r), satisfies

Krad ≥ −C2(1 + r2)

k∏
j=1

(
ln(j)(r)

)2
,

where log(j) stands for the j-th iterated logarithm; see [29].
The search of conditions weaker than a quadratic sectional curvature decay to −∞ is a challenging

problem; see e.g. [2, Remark 5.6]. As a consequence of our results we can actually guarantee the validity
of the full Omori-Yau maximum principle for the Hessian under a Ricci quadratic bound and a linear
injectivity radius decay. Namely, let (M, g) be a complete Riemannian manifold, o ∈ M a fixed reference
point and r(x)

.
= distg(x, o). Suppose that for some D > 0 and some i0 > 0, we have that

(36) |Ricg| (x) ≤ D2(1 + r(x)2), injg(x) ≥ i0
D(1 + r(x))

> 0 on M.

Then the smooth exhaustion function H constructed in Theorem 1.5 fulfill all the relevant requirements of
[29, Theorem 1.9] with the choice G(t) = 1 + t2. We hence obtain the validity of the following

Corollary 8.1. Under the assumptions (36), the full Omori-Yau maximum principle for the Hessian holds
on (M, g).

In this regard, one could also note that distance-like functions with controlled Hessian on an ambient
space are actually inherited by properly immersed submanifolds with controlled growth of the second
fundamental form. Indeed, using the same notations as above, suppose that (M, g) is a complete manifold
satisfying

(37) |Ricg|(x) ≤ D2(1 + r(x)2)η, injg(x) ≥ i0
D(1 + r(x))η

> 0 on M.

and let ϕ : (Σ, h)→ (M, g) be an isometric proper immersion. Then, letting H be the distance-like function
given by Theorem 1.5 on (M, g), we have that the function γ : Σ→ R+ defined by

γ
.
=
H2

2
(ϕ)

is still a proper function. Moreover, letting {ei} be a local orthonormal frame on Σ, we can compute

|∇γ|2 =
∑
i

h(∇γ, ei)2 = (H(ϕ))2
∑
i

h(∇MH, ei)2

≤(H(ϕ))2|∇MH|2 ≤ C(H(ϕ))2 = 2Cγ,

Denoting by (·)⊥ the projection on the normal bundle of Σ, and by A(·, ·) the second fundamental form of
the immersion, we also have that, for any X ∈ TΣ,

Hess γ(X,X) =h(∇X∇γ,X)

=g(∇MX (H∇MH −H(∇MH)⊥), X)

=H HessM (X,X) + (g(∇MH,X))2 −Hg((∇MH)⊥, A(X,X))

≤
(
|H||HessM (H)|+ |∇MH|2 + |H||∇MH||A|

)
|X|2

Hence, using the properties of H, an application of [29, Theorem 1.9] yields the validity of the following
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Corollary 8.2. Let (M, g) be a complete Riemannian manifold, o ∈ M , r(x)
.
= distg(x, o) and assume

that assumptions (37) are satisfied. Let ϕ : (Σ, h) → (M, g) be an isometric proper immersion such that
the second fundamental form A satisfies

|A| ≤ Cr,
outside a compact set, for some constant C > 0. Then the full Omori-Yau maximum principle for the
Hessian holds on (Σ, h).

8.2. Martingale completeness. A probabilistic concept, introduced in [13], that in many instances seems
to be related to maximum principles for the Hessian, is the martingale completeness. A manifold (M, g)
is called martingale complete if and only if each martingale on (M, g) has infinite lifetime almost surely.
Even though recent advances, using the language of subequations by Harvey-Lawson, can be found in [27],
the relation between this property and geometry has not been fully understood yet. A classical criterion
for its validity is given in [13, Proposition 5.37]: if on (M, g) there exists a positive function f ∈ C2 such
that

(i)f is proper, (ii)|∇f | ≤ C, (iii) Hess(f) ≤ Cg,
for some constant C > 0, then (M, g) is martingale complete. It is hence a simple consequence of [30,
Proposition 1.3] that a manifold with bounded Ricci curvature and positive injectivity radius is martingale
complete. Up to our knowledge this was not yet observed in literature. One can then argue similarly to
the previous subsection to transfer this property also to properly immersed submanifolds with bounded
second fundamental form.

8.3. An L2-Calderon-Zygmund inequality with weight. In this final subsection, reasoning as in
Section 7, we give a proof of Theorem 1.7 stated in the Introduction.

Proof of Theorem 1.7. Let H ∈ C∞(M) be the exhaustion function given by Theorem 1.5. As in the proof
of Theorem 7.1, without loss of generality we can suppose that, for some positive C > 1,

• max
{

1, C−1r
}
≤ H ≤ C max {1, r};

• |∇H|(x) ≤ C;
• |HessH|(x) ≤ C max {rη, 1}.

Choose φ = η ln(H) and define a new conformal complete metric g̃ := e2φg on M . We have in particular
that |Ricg̃|(x) is uniformly bounded on M ; see (25). According to [20, Theorem B and Proposition 4.5],
one has the validity of the following Calderon-Zygmund inequality on (M, g̃): for all u ∈ C∞c (M) and all
ε > 0, it holds

‖|H̃essu|g̃‖2
L̃2
≤ C̃ε2

2
‖u‖2

L̃2
+

(
1 +

C̃2

2ε2

)
‖∆̃u‖2

L̃2
.(38)

where C̃ is the constant in (25).

Here and in what follows recall that H̃ess, ∆̃, ∇̃ and | · |g̃ are respectively the Hessian, Laplacian,
covariant derivative and tensorial norm on M relative to the metric g̃. Moreover we are denoting ‖f‖2

L̃2

.
=∫

M |f |
2dvolg̃. All over this proof, Ci will denote real positive constants depending only on m, η, D and the

constant C in Theorem 1.5.
By standard computations, one has

(39) H̃essu = Hessu− du⊗ dφ− dφ⊗ du+ g(∇u,∇φ)g,

from which

e4φ|H̃essu|2g̃ = |Hessu|2g + 2|∇u|2g|∇φ|2g + (m− 2)g(∇u,∇φ)2 − 2g(∇u,∇φ)∆gu− 4Hessu(∇u,∇φ)

≥ |Hessu|2g + 2|∇u|2g|∇φ|2g − (m− 2)|∇u|2g|∇φ|2g − |∇u|2g|∇φ|2g − |∆gu|2

− 1

2
|Hessu|2g − 8|∇u|2g|∇φ|2g.
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Since |∇φ|g ≤ ηC we obtain

|H̃essu|2g̃dvolg̃ ≥ e(m−4)φ

{
1

2
|Hessu|2g − (m+ 5)η2C2|∇u|2g − |∆gu|2

}
dvolg.

On the other hand, tracing (39) and proceeding as above, we get

|∆̃u|2dvolg̃ ≤ 2e(m−4)φ
{
|∆u|2 + (m− 2)2η2C2|∇u|2g

}
dvolg.

Suppose that m−4
2 η

(
m−4

2 η − 1
)
6= 0, the other case being easier. Inserting the two last inequalities in (38),

and recalling that eφ = Hη, we obtain

‖H(m−4)η/2|Hessu|g‖2L2 ≤ 2(m+ 5)η2C2‖H(m−4)η/2|∇u|g‖2L2 + 2‖H(m−4)η/2∆u‖2L2(40)

+ C̃ε2‖Hmη/2u‖2L2 + 2

(
2 +

C̃2

ε2

)
‖H(m−4)η/2∆u‖2L2

+ 2

(
2 +

C̃2

ε2

)
(m− 2)2η2C2‖H(m−4)η/2|∇u|g‖2L2

= C̃ε2‖Hmη/2u‖2L2 + C1‖H(m−4)η/2|∇u|g‖2L2 + C2‖H(m−4)η/2∆u‖2L2 .

Now, given ϕ ∈ C∞c (M), choose u = H−(m−4)η/2ϕ. We can compute that

∇ϕ =
m− 4

2
ηH(m−4)η/2−1u∇H +H(m−4)η/2∇u,

Hessϕ =
m− 4

2
η

(
m− 4

2
η − 1

)
H(m−4)η/2−2udH ⊗ dH +

m− 4

2
ηH(m−4)η/2−1uHessH

+
m− 4

2
ηH(m−4)η/2−1(du⊗ dH + dH ⊗ du) +H(m−4)η/2Hessu,

and

∆ϕ =
m− 4

2
η

(
m− 4

2
η − 1

)
H(m−4)η/2−2u|∇H|2 +

m− 4

2
ηH(m−4)η/2−1u∆H

+ (m− 4)ηH(m−4)η/2−1g(∇u,∇H) +H(m−4)η/2∆u.

In turn, since |∇H|/H ≤ C, |HessH|/H ≤ C and H(m−4)η/2 ≤ Hmη/2, this gives

‖|Hessϕ|g‖2L2 ≤ 4‖H(m−4)η/2|Hessu|g‖2L2 + C3‖Hmη/2u‖2L2 + C4‖H(m−4)η/2|∇u|g‖2L2 ,

and

‖∆ϕ‖2L2 ≥ 4‖H(m−4)η/2∆u‖2L2 − C5‖Hmη/2u‖2L2 − C6‖H(m−4)η/2|∇u|g‖2L2 ,

Noticing also that

‖H(m−4)η/2|∇u|g‖2L2 ≤ 2‖|∇ϕ|g‖2L2 + C7‖Hmη/2u‖2L2 ,

from (40), we thus get

‖|Hessϕ|g‖2L2 ≤ C7‖H2ηϕ‖2L2 + C8‖|∇ϕ|‖2L2 + C9‖∆ϕ‖2L2 .

To conclude the proof, we note that by divergence theorem and Cauchy-Schwarz inequality one has

‖|∇ϕ|‖2L2 =

∫
M
|∇ϕ|2dvolg = −

∫
M
ϕ∆ϕ ≤ 2‖ϕ‖2L2 + 2‖∆ϕ‖2L2

≤ 2‖H2ηϕ‖2L2 + 2‖∆ϕ‖2L2 .

�

Acknowledgements. The first author is partially supported by INdAM-GNSAGA. The second and third
authors are partially supported by INdAM-GNAMPA. We would like to thank the anonymous referees for
their remarks and suggestions which have greatly improved the exposition and the quality of the paper.



24 DEBORA IMPERA, MICHELE RIMOLDI, AND GIONA VERONELLI

References

[1] Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, vol. 65, Academic Press [A subsidiary of Harcourt
Brace Jovanovich, Publishers], New York-London, 1975.
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264, Birkhäuser/Springer, Cham, 2017. MR 3751359
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[20] Batu Güneysu and Stefano Pigola, The Calderón-Zygmund inequality and Sobolev spaces on noncompact Riemannian

manifolds, Adv. Math. 281 (2015), 353–393. MR 3366843
[21] Qing Han, Schauder estimates for elliptic operators with applications to nodal sets, J. Geom. Anal. 10 (2000), no. 3,

455–480. MR 1794573
[22] Qing Han and Fanghua Lin, Elliptic partial differential equations, Courant Lecture Notes in Mathematics, vol. 1, New

York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence,
RI, 1997. MR 1669352

[23] Emmanuel Hebey, Sobolev spaces on Riemannian manifolds, Lecture Notes in Mathematics, vol. 1635, Springer-Verlag,
Berlin, 1996. MR 1481970

[24] , Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lecture Notes in Mathematics, vol. 5,
New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence,
RI, 1999.

[25] Shaochuang Huang, A note on existence of exhaustion functions and its applications, J. Geom. Anal. (2018).
[26] Debora Impera, Michele Rimoldi, and Giona Veronelli, Higher order distance-like functions and Sobolev spaces, In prepa-

ration.
[27] Luciano Mari and Leandro F. Pessoa, Duality between Ahlfors-Liouville and Khas’minskii properties for nonlinear equa-

tions, arXiv preprint server - arXiv: 1603.09113 (2016).
[28] Olaf Müller and Marc Nardmann, Every conformal class contains a metric of bounded geometry, Math. Ann. 363 (2015),

no. 1-2, 143–174. MR 3394376
[29] Stefano Pigola, Marco Rigoli, and Alberto G. Setti, Maximum principles on Riemannian manifolds and applications,

Mem. Amer. Math. Soc. 174 (2005), no. 822, x+99. MR 2116555
[30] Michele Rimoldi and Giona Veronelli, Extremals of Log Sobolev inequality on non-compact manifolds and Ricci soliton

structures, Calc. Var. Partial Differential Equations 58 (2019), no. 2, Art. 66, 26pp.



DENSITY PROBLEMS FOR SECOND ORDER SOBOLEV SPACES 25

[31] Richard Schoen and Shing-Tung Yau, Lectures on differential geometry, Conference Proceedings and Lecture Notes in
Geometry and Topology, I, International Press, Cambridge, MA, 1994, Lecture notes prepared by Wei Yue Ding, Kung
Ching Chang [Gong Qing Zhang], Jia Qing Zhong and Yi Chao Xu, Translated from the Chinese by Ding and S. Y.
Cheng, With a preface translated from the Chinese by Kaising Tso. MR 1333601

[32] Luen-Fai Tam, Exhaustion functions on complete manifolds, Recent advances in geometric analysis, Adv. Lect. Math.
(ALM), vol. 11, Int. Press, Somerville, MA, 2010, pp. 211–215. MR 2648946

[33] Nicolas Th. Varopoulos, Small time Gaussian estimates of heat diffusion kernels. I. The semigroup technique, Bull. Sci.
Math. 113 (1989), no. 3, 253–277. MR 1016211

(Debora Impera) Dipartimento di Scienze Matematiche ”Giuseppe Luigi Lagrange”, Politecnico di Torino,
Corso Duca degli Abruzzi, 24, Torino, Italy, I-10129

E-mail address: debora.impera@gmail.com

(Michele Rimoldi) Dipartimento di Scienze Matematiche ”Giuseppe Luigi Lagrange”, Politecnico di Torino,
Corso Duca degli Abruzzi, 24, Torino, Italy, I-10129

E-mail address: michele.rimoldi@polito.it

(Giona Veronelli) Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca, via R. Cozzi 55,
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